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Abstract. In this article, we deal with fast algorithms for the quater-
nionic Fourier transform (QFT). Our aim is to give a guideline for choos-
ing algorithms in practical cases. Hence, we are not only interested in the
theoretic complexity but in the real execution time of the implementation
of an algorithm. This includes floating point multiplications, additions,
index computations and the memory accesses. We mainly consider two
cases: the QFT of a real signal and the QFT of a quaternionic signal.
For both cases it follows that the row-column method yields very fast
algorithms. Additionally, these algorithms are easy to implement since
one can fall back on standard algorithms for the fast Fourier transform
and the fast Hartley transform. The latter is the optimal choice for real
signals since there is no redundancy in the transform. We take advantage
of the fact that each complete transform can be converted into another
complete transform. In the case of the complex Fourier transform, the
Hartley transform, and the QFT, the conversions are of low complexity.
Hence, the QFT of a real signal is optimally calculated using the Hartley
transform.

1 Introduction

In 1mage processing, the complex and the quaternionic Fourier transform are
important tools. Hence, it is advantageous to have fast algorithms for these
transforms. In the past, many algorithms for the complex Fourier transform
have been proposed [1, 9, 4]. Most of them use the radix-n principle. By new
algebraic embeddings, the theoretic complexities of the algorithms have been
decreased. Mostly, the considerations only deal with the number of floating point
multiplications.

In this paper, we mainly present fast algorithms for the quaternionic Fourier
transform [6, 2]. We specialize in radix-2 algorithms since we think that higher
radices yield unnecessary extensions of the spatial domain (the domain must be a
power of n). Furthermore, we consider both, the additive and the multiplicative
complexity since there is no difference in the execution time nowadays. Our aim
is to equip the reader with the necessary basics on choosing the right algorithm
in a certain case.

We underline our results by experiments on a real computer. Many algorithms
and combinations have been tested, though we have not implemented every
algorithm in the same environment.
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2 Basics

In this section we define the discrete quaternionic Fourier transform (DQFT),
which is based on the continuous transform proposed independently by Ell and
Biilow [6, 2]. Furthermore, we state the standard 1-D fast Fourier transform
(FFT1) and the 1-D fast Hartley transform (FHT1). We suppose that the reader
is familiar with the algebra of quaternions IH, the Fourier transform and the
Hartley transform.

2.1 The Quaternionic Fourier Transform

Let {1 _], k} denote the basis of the algebra of quaternions IH, where we have
= j2 =k = —1 and ij = —ji = k. The coeflicient-selection operators are

deﬁned by Re(g) + iIm(q) + jIm(q) + kKm(q) = ¢ for ¢ € H. The discrete

quaternionic Fourier transform (QFT) is defined by sampling the QFT
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according to [3].

The inverse transform 1s obtained by changing the signs in the exponential
terms and by multiplying an additional normalizing factor (M N)~!. Except for
the different imaginary units, the QFT is calculated in the same way as the
complex Fourier transform.

The quaternionic spectrum of a real signal is quaternionic Hermite symmet-
ric, 1.e. we have

Fi(u,—v) = a(Fi(u,v)) and F(—u,v) = B(F(u,v)) , (2)

where a(q) = —igi and F(¢) = —jqj are two non-trivial involutions of the
quaternion algebra. Hence, the QFT of a real signal consists of 75% redundant
data.

2.2 The Fast Fourier Transform and the Fast Hartley Transform

In this paper, we use the discrete Fourier transform (DFT) without a normaliz-
ing factor. Applying the decimation of time method, we obtain the formula for
the FFT

Fy=Fi4 e g 3)

where F, F'® and F° denote the spectra of f, f°, and f?, respectively, and
fﬁq — me and fr?’], = f2m+1~

The Hartley transform [1] is a real valued integral transform. The only formal
difference to the complex (inverse) Fourier transform is that the sine-function in

the kernel is not multiplied by the imaginary unit.
The discrete Hartley transform (DHT) is defined by

M-1
Z cas(2rmu/M) = Z fm (cos(2rmu/M) + sin(2rmu/M)) . (4)

m= m=0



The shift-theorem of the DHT reads [1]

M
Z fm—acas2rmu/M) = Hy, cos(2rau/M) + Hpyr_y sin(2rau/M) . (5)

m=0

Consequently, the decimation of time method yields a formula, which is dif-
ferent from (3):

H, = HS 4+ H? cos(2mu2™") + HE sin(2ru2™%) | (6)

where H, H¢, and H? denote the Hartley transforms of f, f¢, and f°, respectively,
and fﬁq = me and fr?’], = f2m+1~

3 Fast Algorithms for 2-D Signals

In this section, we describe the row-column method, which yields a fast algorithm
for an n-D transform using 1-D transforms. Another approach for developing fast
algorithms is the 2-D decimation method which divides the signal into four parts
[8]. Finally, the mappings between the Hartley transform, the QFT and the
complex spectrum of a 2-D signal are given.

3.1 The Row-Column Method

Consider a 2-D integral transform whose kernel is separable. Such a transform
can be calculated by applying 1-D transforms on each coordinate. Without loss
of generality, we firstly apply the transform with respect to the z-coordinate and
secondly wrt. the y-coordinate.

Since the kernels of the complex 2-D Fourier transform and the QFT are
separable, we can state the row-column algorithm of FFT1s (RC-FFT1).

1. The 2-D Fourier transform is separable. Therefore, the complex Fourier
transform of a 2-D signal fy, , can be calculated by applying the 1-D FFT to

each column of f, ,,. Thereby, the signal f, , is obtained by the application
of the 1-D FFT to each row of f,, ,. Hence, the spectrum can be calculated
by M + N 1-D transforms.

2. The QFT is separable, too.

N—-1 M—-1
Fl,=3 ( ST e BT M (Re(frn) + AT (f i, n))
n=0 m=0
Fiin
M—-1 .
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m=0
sk
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+Re(f]k )) —]27'rvn/N+Z» Z (Im(f )_I_Im(fikn).) —j2rvn/N G
n=0 n=0
FE . i

Therefore, the QFT of a 2-D signal f,, , can be calculated by applying the

1-D FFT to each column of both ffn and fi,n Hence, the QFT can be
calculated by 2M + 2N 1-D FFTs.



Note 1. The Hartley kernel is not separable, since
cas(2m(um + vn)) # cas(2rum)cas(2ron) . (8)

Nevertheless, the application of the row-column method to FHT1s (RC-FHT1)
yields an interesting transform, since the DQFT of a real signal can be synthe-
sized from the RC-FHT1 (see Sect. 3.3). The only difference between the 2-D
DHT and the result of the RC-FHT1 is the sign of the component, which is odd
wrt. both coordinates.

3.2 The 2-D Decimation Method

Fast algorithms for the 2-D transforms can be developed by dividing the spatial
domain with respect to both coordinates:

ee

n = fomoan Foon = fomt12n Fdn = Fomansr Foon = fomt1,2041 - (9)

Note that the signal must be of quadratic shape 2% x 28 = N x N. The (quater-
nionic) Fourier transforms of f¢¢, f°¢, f° and f°° are denoted by F¢¢, F°¢ F'¢°,
and F°°, respectively. The corresponding Hartley transforms are denoted by
Hee H?® H®° and H°°. Using this notation, we can state the following equa-
tions:

Fuy=F, + stive—iZWU/N 4 szj)ve_iZWv/N 4 ngjve—iZW(u+v)/N (10)

Fe, = Fe + e—izm/Nngav i szf)ve_jzm/N _|_e—i27ru/NF5:)Ue—i27rv/N (11)

Hy oy = Hi + HiSycos(2mu/N) + Hy % sin(2mv/N) + H5 cos(2mu/N)  (12)
—|—Hgfv sin(2ru/N) + HZ?U cos(2m(u+v)/N) + Hgf% sin(2m(u 4+ v)/N)

where N=2>2 t4=N —vand v =N —v.

Note 2. We cannot apply the n-D decimation method to the Clifford Fourier
transform (CFT), since this method requires a commutative algebra if n > 2. The
CFT is the generalization of the QFT for higher dimensions [2]. This problem
concerning the decimation can be solved by embedding the transform into a
different, commutative algebra [7].

3.3 The Mappings between the Spectra

Since we can convert each complete transform into each other, we have six map-
pings which describe the relation between the DHT, the DQFT and the DFT of
a real signal. We define four operators, which yield the even and odd part of a
2-D signal wrt. the z- and the y-coordinate

Be(f(z,y)) = $(f(z,y) + f(—2,y) + f(x,—y) + f(—2, —y))
Eo(f(z,y)) = §(f(z,y) + f(—z,y) — f(x,—y) — f(—x,—y)) (13)
Oe(f(x,y)) = :(f(z,y) — f(—2,y) + flx,—y) — f(—=2,—y))
Oo(f(x,y)) = +(f(z,y) — f(—=x,y) — f(z,—y) + f(—=z,—y))



Using this operators, we obtain the following Table 1.

Note that the row-column

method. applied to 1-D  ransform relation to DHT

FHTs yields a transform

which differs from the F= Ee(H) —iBo(H) — iOe(H) + Oo(H)
2-D DHT wrt. Oo(H) P= Ee(H) — jEo(H) — iOe(H) — kOo(H)
only. Let H denote the relation to DFT

transform which 1s calcu-

Then, Oo(H) = —OO(H). P = Ee(F) + kEo(F) + Oe(F) — kOo(F)
Hence, H is a complete relation to DQFT
reprgsentatlon and we can H = Ee(Fq) + on(Fq) + iOe(Fq) + kOo(Fq)
obtain the DQFI by ap- g = Ee(F?) —kEo(F9) + Oe(F?) + kOo(F?)

plying the RC-FHT1 al-

gorithm Table 1: Relations between the transforms
F? = Ee(H) — jEo(H) — iOe(H) + kOo(H) . (14)

4 Complexities

In this section, we consider the complexities of the presented algorithms, in order
to decide which one is the fastest. Since the DFT and the DQFT of a real signal
contain redundancy, we present one approach which reduces the redundancy in
order to speed up the algorithm. Besides the theoretic complexities, we consider
the execution time of real implementations.

4.1 Optimizations

First of all, we have one effect which can be used to speed up any of the presented
transforms. We know that a phase-shift by 7 yields a change of sign. Due to this
fact, we can calculate the values at the frequencies u and u+ N/2 using the same

addends, e.g.
Fy, (11 Ee
(FU+N/2) - (1 —1) <e—i2W/NF;) ' (15)

Consequently, the number of multiplications for each n-D fast transform is di-
vided by 27. Furthermore, we decrease the number of additions for the FHT
since we have

(Hﬁﬁ/z) = G —11) (H;; cos(2mu/N) +£i’]‘{,_usin(27ru/]\7)) (16)

in the 1-D case.

Due to Hermite symmetry, we have a redundancy of 50% for the DFT and
of 75% for the DQFT. We can use the Hermite symmetry directly by copying
the data and changing the signs in the imaginary parts. This method yields a



lower complexity of arithmetic operations, but increases the number of mem-
ory accesses. Therefore, it is advantageous to use an implicit method, called
overlapping [4].

The idea of the latter is to create a new, complex signal f = f° 4 ¢f° of the
length N/2. Since the DFT is linear, the spectra F¢ and F° can be extracted
from the spectrum F of f (F = F°4+4F°). Hence, the complexity is divided by an
asymptotic factor of two. For the FQFT, we can apply the same approach, 1.e. we
have f = f° +if° + jf°° + kf°°. This increases the asymptotic complexity by
four.

4.2 Evaluation of the Complexities

Since modern processors evaluate floating point multiplications as fast as addi-
tions [11, 5, 12], we do not only consider the number of floating point multipli-
cations, but also the number of additions and the total number of floating point
operations (flops). Since we can easily convert one spectrum to another, it is not
crucial for the estimation of the complexity, if the calculated spectrum is real,
complex or quaternionic. Nevertheless, our aim 1s to develop the fastest way to
calculate the DQFT.

In the Table 2, the flops of the presented 1-D fast algorithms can be found.
Every algorithm uses the
effect of the m-phase, and
the FFT1 algorithm for real
signals uses overlapping. For  FHT1 Nlog, N %N log, N gN log, N

the sake of clarity we sup- 3 5
pose that overlapping halves FETL(IR) ~ Nlogy N 5N log, N 5N log, N

the complexity. Note that FFT1 (C) 2Nlog, N 3Nlogy N 5N logy N
this is not true for finite sig-
nal lengths. The complexity
1s reduced by a factor less than two in this case.

In the Table 3, the flops of the presented 2-D decimation algorithms and
the row-column algorithms can be found. Every algorithm uses the effect of the
m-phase, where the matrix of combinations of the signs can be separated [9]:

transform multiplications additions flops

Table 2: Complexities of the presented 1-D algorithms

11 1 1 101 0 1100
1—=11 -1} _ (010 1 1-100 17
11 —-1-1)~110-10 0011 (17)
1-1-11 01 0 —1 001-1

The separation de-

creases the number transform multiplications additions flops

of additions needed g, pypy 2N?log, N 3N2log, N 5NZlog, N

for the four quad-
rants by two thirds. RC-FFTI (IR) 3NZ?log, N %NZ log, N 12—5]\72 log, N
Furthermore,  the  RC-FFT1 (H) 8NZ%log, N 12N2log, N 20N?log, N
FQFT algorithm for 3 Ar2 11 Ar2 17 272

. FHT2 cN?log, N 3 N7logy N Z*N7log, N
real signals uses over- 2 4 4
lapping. For the sake ~ FFT2 (IH) 6NZ%logys N 11N2log, N 17TN%log, N
of clarity we provide  FQFT (IR) 2N?log, N 2NZ%logy, N 4NZ?log, N
that  overlapping  popp (1) §NZlog, N 8NZlog, N 16N?log, N
quarters the complex- &2 82 82
ity. Again, this is not Table 3: Complexities of the presented 2-D algorithms




true for finite signal sizes.

Note that the RC-FFT1 (IR) algorithm uses three overlapping FFT1s since in
(7) f7%* = 0 and both f# and f! are real valued. The FFT2 (IR) is omitted since
overlapping cannot be applied in this case, unless the DQFT is used [4].

4.3 Comparison of the Algorithms

According to Table 2, the fastest algorithm for calculating the 1-D Fourier trans-
form of a real signal is the FHT1 or the FFT1 with overlapping. Since the over-
lapping yields a high linear complexity, we prefer the FHT1.

In a real implementation, the time for the memory access cannot be neglected.
Therefore, the FHT1 and the FFT1 with overlapping are not twice as fast as
the FFT1 without overlapping. Our implementation of the FHT1 takes less than
two thirds of the execution time of the FFT1 from the numerical recipes [10],
but it takes more than one half of the time (e.g. 5.0s versus 8.9s).

For complex signals, the FFT1 is the fastest algorithm. The execution of two
FHT1s takes more execution time than one FFT1.

The quaternionic Fourier transform of a 2-D signal can be calculated in many
ways. According to Table 3, we have the following ranking of algorithms for real
signals: FQFT, FHT2, RC- DQFT of a real signal

FHT1, RC-FFT1. Note that " ‘ ‘ ‘ ‘ ‘ ‘
for the execution time we
have another ranking. The
overlapping in the FQFT al- L
gorithm yields a high quad-  *
ratic complexity. Hence, for ,/
realistic sizes the Hartley
transforms have lower com- )
plexities. In real implemen- I o
tations, the RC-FHT1 algo- FOFT,”
rithm takes the least execu- %7 /
tion time, since the mem-
ory access of the FHT2 is
more complicated. Depend- RC-FHT1
ing on the implementation, fo0 200 380 42)0 séo séu 7(30 8(‘)0 92)0 10‘00 1100
we have the execution time s

ranking RC-FHT1, FHT2, Fig.1: Execution time for the estimation of the DQFT
RC-FFTI1, FQFT (Fig. 1). on a SPARCstation 10

For quaternionic signals, we have the following ranking according to Table 3:
FQFT, FFT2, RC-FFT1. Though the FFT2 should be faster than the RC-FFT1
(as well for the evaluation of the DQFT as for the DFT), most implementations
of the FFT2 are RC-FFT1 algorithms [10]. Depending on the implementation,
we have the execution time ranking RC-FFT1, FFT2', FQFT?2.

For both cases of the DQFT (real and quaternionic signal), the row-column
method has the advantage that both coordinates are independently extended to
a power of two. For the 2-D decimation algorithms, the signal must in addition
be quadratic.

601 L,/

seconds
»
3
T

@
S

_~'RC-FFTL

! We provide that the FFT2 is implemented by FFT1s.

2 The memory access is distributed over the whole data, which yields a slower execu-
tion.



5 Conclusion

We have presented different algorithms for evaluating the DQFT of real and
quaternionic signals. The comparison of these algorithms, their complexities and
their execution times yield some characterizing properties:

- We have algorithms which are based on well known transforms (e.g. on the

FFT1) and we have some which are new (FQFT).

- Some algorithms are modular (row-column) and some are monolithic.

- The implementation can yield a simple and short code (FFT1) or a compli-

cated and extensive code (FQFT with overlapping).

- The algebraic representation can be simple (FHT1) or complicated (FQFT).
In our experiments we ascertained that those algorithms which can be imple-
mented most easily and which are modular have the shortest execution time
though their theoretic complexity is not the lowest. Obviously, the implementa-
tions are faster, if they use simple algebraic representations. On the other hand,
the FHT1 (6) has more addends than the FFT1 (3). Hence, the FFT1 is the
optimal transform for signals which are not real valued.

Since we can construct a very fast algorithm using the standard FFT1, there
is only little programming effort to obtain an implementation which evaluates
the DQFT. For real signals, the FHT1 should be used instead of the FFTI,
which yields a shorter execution time and less programming effort than an im-
plementation of overlapping.
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