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1 IntroductionThe intrinsic parameters of a camera �x the relation between image pixel coordinates andray directions in the 3D camera coordinate system. In the nineties many approaches (see(Faugeras, 1992)) were proposed that solve visual tasks without knowledge of the intrinsicparameters. However, any visual capability involving metric information necessitates themapping between image plane and ray directions. The transition between absent andcomplete knowledge of the intrinsic parameters has been formalized in geometric termsin the exposition (Faugeras, 1995).We are interested here in calibration procedures suitable for active camera systemsmounted on mobile robots. The use of the degrees of freedom of the camera introducesadditional information compared to static camera systems. However, the use of an activecamera on a mobile robot poses some requirements which might not be met by traditionalcalibration as used for 3D-measurement tasks in a static environment. This implies theneed to get rid of special calibration objects like plates and cubes with known geome-try in world coordinates. Second, the camera should be able to be calibrated withoutinterruption of the robot's motion. Third, calibration should use image features thatallow accurate image position estimation and robust matching among multiple views.Fourth, calibration of the intrinsic parameters should be decoupled from the computa-tion of the extrinsic parameters which relate a �xed world coordinate system with thecamera coordinate system. Of course, we do not expect to achieve the same precision aswell established techniques like Tsai's (1986) which use hundreds of points with exactlyknown world coordinates as well as data from the camera speci�cation. According to thedescribed requirements we present in this paper a new approach for the computation ofthe intrinsic parameters making following two assumptions:1. The only assumption on the world is the existence of one set of parallel lines.2. The active camera should be able to rotate around the two axes of the cameracoordinate system (tilt and pan).Lines are image features with parameters that can be estimated robustly. Hough transformtechniques exist (Lutton et al., 1994; Palmer et al., 1993) that group lines into sets ofprojections of parallel lines. If the line direction is not parallel to the image plane theprojections of parallel lines intersect at the vanishing point. When a camera is arbitrarilymoving the vanishing points change their position only due to camera rotation. In practice,large rotation angles are required to obtain accurate estimates of the intrinsic parameters.The family of parallel lines should thus subtend a wide visual angle. However, thisrequirement can be attenuated by allowing the camera to translate since translation doesnot a�ect the vanishing points. A further advantage regarding active systems is thatintrinsic calibration can be carried out before sensor-e�ector calibration since a deviationof the projection center from the rotation axes introduces just a translation. However,the camera axes should be adjusted to be parallel to the rotation axes of the mountingplatform.If the rotation axis remains �xed the projection of the trajectory of a point is aconic section. The coe�cients of the conic section contain information on the axis andthe intrinsic parameters. We illustrate in Fig. (1) such a hyperbola in the image planeproduced by a rotation of the camera around the vertical axis. If the rotation is around2



the x- or y- axis the solution for the intrinsic parameters is in closed form but only asubset of the parameters can be computed from every conic section. Using both rotationswe are able to obtain all the intrinsic parameters in closed form.

Figure 1. A rotation of the camera around the vertical Ys-axis is equivalent to the rota-tion of a point about this axis. The circular cone including the point trajectory intersectsthe image plane in a hyperbola.No iterative minimization is needed in any of the algorithmic steps. We put specialemphasis on the propagation of the error through covariances in the intermediate esti-mates. Using the methodology proposed by Kanatani (1993) we eliminate the bias in thecomputation of the coe�cients of the conic section.We will show in the experiments that the image centers can be computed more reliablythan the scaling factors. This fact can be geometrically interpreted by means of the pointdistribution constraining the conic to be �tted which in our case will be shown to be ahyperbola. The recovery of the image center depends on the feasibility of the symmetryaxes estimation whereas the recovery of the scaling factors depends on the slopes of theasymptotes. In fact, the limited span of the point distribution allows only the reliable3



estimation of the hyperbola symmetry axis but not of the asymptotes, hence the moreaccurate estimation of the image centers.The main factor a�ecting accuracy is the amount of rotation carried out by the camera.We test the sensitivity of the approach to error in the line parameters. We compare ourresults to results obtained by the implementation of another active calibration approachthat uses point trajectories under varying zoom to compute the image center and orthog-onal sets of parallel lines (conjugate vanishing points) to estimate the scaling factors (Li,1994).We begin with a review of approaches which avoid using the world coordinates ofcalibration points. We continue with the mathematical description of the algorithm.Then we delve into the statistics of conic �tting. We �nish by describing our experimentalresults both on synthetic as well as real data.2 Related WorkConsidering related work we will refer only to approaches that use motion in order tocalibrate the intrinsic parameters without knowledge of world points or angles. We justmention that a couple of approaches (Caprile & Torre, 1990; Echigo, 1990) exist usingvanishing points and stationary cameras but they assume knowledge of the angles betweenthe representative parallels. Neither of them can compute all the intrinsics parameters.Since the seminal paper by Maybank and Faugeras (1992) it is known that intrin-sic parameters encoded in the image of the absolute conic can be obtained from pointcorrespondences in four views. Later it was proven (Luong & Vieville, 1994) that theimage of the absolute conic can also be obtained from point correspondences of threeviews if they are projections from points on the plane at in�nity. For projections of pointswith �nite depth this is equivalent to three views arising from two pure rotations of thecamera (Hartley, 1994). Although the computation of the intrinsics is in principle linearaccording to the latter approaches a non-linear re�nement step is applied to increase ac-curacy. Dron's work (1993) can be classi�ed in the same framework of absent or knowntranslation, however, it uses only linear least squares techniques.We proceed with approaches using point correspondences and known rotation angles.Du and Brady (1993) as well as Basu (1995) use the optical 
ow arising from smallrotations. Basu applies two independent rotations (pan and tilt), uses contours insteadof points, and makes an initial hypothesis on the location of the image center. Du andBrady use the conic sections from the trajectories of points to obtain a more accurateimage center estimate. Stein (1995) and Vieville (1994) solve the nonlinear equations ofmotion arising from a rotation around a �xed axis using known rotation angles. Vievillegives also a solution for the unknown but constant rotation axis.The most closely related work to ours is the approach by Beardsley et al. (1992).They use the trajectories of the vanishing points arising from the �xed axis rotation ofparallel lines on a turntable. Since they can produce a full cycle rotation they obtain afull ellipse on the image. As they do not know the rotation axis one trajectory is notenough to recover the intrinsic parameters. From three ellipses the aspect ratio as well asthe image center - intersection of the major axes - can be obtained. The focal length isthen computed from the locus of vertices of circular cones that could give rise to the givenellipse. Our approach avoids the use of a special apparatus (turntable) by producing thetrajectories with camera rotations. We gain in the sense that the �xed axis is then known4



but we pay in accuracy since the arising hyperbolic arcs are of limited extend due to thesmall amount of feasible rotation.3 From parallel lines to conic sectionsTo describe the camera model we introduce three coordinate systems: The standardcoordinate system (xs; ys; zs) with origin at the projection center (or optical center ornodal point) and zs-axis parallel to the optical axis of the camera, the normalized cameracoordinate system (xn; yn) on the plane zs = 1 with origin at (0,0,1) of the standardcoordinate system, and the image coordinate system (xp; yp) where the image data aremeasured in pixel units. The perspective projection from a point (xs; ys; zs) in space toa point (xn; yn) in the plane zs = 1 is given by xn = xs=zs and yn = ys=zs. Thus, apoint (xn; yn) in the normalized system de�nes the ray �(xn; yn; 1) through the point inspace. The mapping from the normalized to the image coordinate system is an a�netransformation 0B@ xpyp1 1CA| {z }xp = 0B@ sx sxy x00 sy y00 0 1 1CA| {z }S 0B@ xnyn1 1CA| {z }xn (1)The task of intrinsic calibration is to correspond ray directions to pixel positions. Since aray direction is given by a point in the normalized coordinate system intrinsic calibrationmeans recovering the a�ne transformation de�ned above. The parameter pair (x0; y0) isthe image center (or principal point) de�ned as the intersection of the optical axis withthe image plane in image coordinates (pixel units). The parameter sy is equal to the focallength divided by the vertical dimension of a cell in the CCD chip. The parameter sx isequal to the focal length divided by the horizontal dimension of a cell and multiplied bythe sampling ratio between the digitizer and the CCD-signal. The parameter sxy countsfor non-orthogonality of the pixel grid and will be regarded as negligible (see (Faugeras,1995) for its interpretation). Furthermore, we do not consider in this study non-linearradial distortions that appear in case of wide-angle lenses.The description given above is not su�cient to model projections of points or lines atin�nity, therefore we introduce homogeneous coordinates (~xs; ~ys; ~zs; ~ws) in P3 for the stan-dard coordinate system, ~xn = (~xn; ~yn; ~wn) in P2 for the normalized, and ~xp = (~xp; ~yp; ~wp)also in P2 for the image coordinate system. We obtain always the inhomogeneous co-ordinates by dividing by the last homogeneous coordinate if the latter is not zero. Theequations ~ws = 0 and ~wn = 0 de�ne the plane at in�nity in P3 and the line at in�nityin P2, respectively. As a 2D a�ne transformation leaves the line at in�nity invariant itsmapping on the image coordinate system is also ~wp = 0. We introduce now the projectionequation for homogeneous coordinates:0B@ ~xp~yp~wp 1CA| {z }~xp = 0B@ sx sxy x00 sy y00 0 1 1CA| {z }S 0B@ ~xn~yn~wn 1CA| {z }~xn and 0B@ ~xn~yn~wn 1CA| {z }~xn = 0B@ 1 0 0 00 1 0 00 0 1 0 1CA0BBB@ ~xs~ys~zs~ws 1CCCA| {z }~xs :
5



A set of parallel lines with direction (lx; ly; lz) in projective space meet at the point ofthe plane at in�nity (lx; ly; lz; 0). The projection of this point on the image plane is thevanishing point - the intersection of the projections of the parallel lines. Its normalizedhomogeneous coordinates are (lx; ly; lz) (easily derived from (2)) and its position on theimage plane is at in�nity if lz = 0.Suppose now that a camera moves from pose 1 to pose 2 with translation vector Tand a rotation matrix R :0BBB@ ~xs1~ys1~zs1~ws1 1CCCA =  R T0 0 0 1 !0BBB@ ~xs2~ys2~zs2~ws2 1CCCA (2)We can see that if a point lies at in�nity then only the rotation a�ects the new position ofthe point. By applying (2) and ~ws1 = ~ws2 = 0 we obtain the transformation of the pointin normalized ~xn1 = R~xn2 (3)as well as image coordinates ~xp1 = SRS�1~xp2: (4)Both transformations are invertible, hence they are collineations in P2. They express thetransformation of an image point in case of pure rotation and �nite 3D-point depth orin case of arbitrary motion and a 3D-point at in�nity. The second equation in (4) givestwo constraints in inhomogeneous coordinates used by all approaches (see for example(Hartley, 1994; Vieville, 1994)) for estimation of intrinsic parameters from rotations.Let us suppose that the camera rotates around a �xed axis N (kNk = 1). Then thetrajectory of the 3D-point in the standard coordinate system is a circle. The resultedcone in the standard coordinate system with vertex at the optical center (Fig. 1) and axisN reads (NTxs)2 = g2kxsk2 (5)with xTs = (xs; ys; zs) and g equal to the cosine of the opening angle of the cone. Sincexn = (1=zs)xs the equation in normalized coordinates reads(NTxn)2 = g2kxnk2 (6)and after rearranging terms and transforming to image coordinatesxTp S�1T (NNT � g2I)S�1xp = 0 (7)which is as expected the equation of a conic section in R2 .There are two degenerate cases for this conic section. We will describe them for ourapplication where the conic sections are trajectories of vanishing points. The �rst appearswhen the parallel lines giving rise to the vanishing point are perpendicular to the rotationaxis. The cone degenerates to a plane and the trajectory of the vanishing point is a linein the image plane. The second degenerate case is when the direction of the parallel lines6



is parallel to the rotation axis. The cone degenerates to a line and the conic section to apoint at in�nity.The �ve coe�cients of the conic section depend on the two parameters of the rotationaxis, the four intrinsic parameters, and the parameter g which depends on which pointis tracked in the scene. As already shown (Beardsley et al., 1992) more than one conicsection arising from a di�erent rotation axis is needed to recover the intrinsic parameters.Instead, we will study here the special cases where the rotation axis is known. Using onecamera of the binocular head in Fig. 2 we perform one rotation about the tilt axis x andone rotation about the vergence axis y - we will call pan axis y.�
y� x

Figure 2. The camera is rotated with angle � about the tilt axis x and with angle �about the vergence axis y.For the rotation about the x-axis we set NT = (1; 0; 0) in (7) and obtain1� g2g2 (xp � x0)2s2x � (yp � y0)2s2y = 1: (8)The center of the hyperbola coincides with the center of the image and the length ofthe semi-axis in y-direction is equal the scale factor sy - see also Fig. 8f. The scalingfactor sx is coupled with the cosine of the cone's opening angle and cannot recovered from(8). The ordinate y0 of the center gives the symmetry axis of the hyperbola whereas x0and sy �x the position and the slope of the asymptotes, respectively. It will turn out inthe experiments that the abscissa x0 of the center of the hyperbola cannot be reliablyrecovered since the position of the asymptotes can not be su�ciently constrained.For the rotation about the y-axis we set NT = (0; 1; 0) in (7) and obtain�(xp � x0)2s2x + (yp � y0)2s2y 1� g2g2 = 1: (9)Similar to the x-axis rotation (x0; y0) is the center of the hyperbola - see also Fig. 8c- andonly x0 and sx can be estimated reliably.The algorithm is broken into two steps:1. Rotate around the x-axis and �t a conic to the data points. From the coe�cientsof the conic and (8) obtain y0 and sy.2. Rotate around the y-axis and �t a conic to the data points. From the coe�cientsof the conic compute center and the axes of the hyperbola to recover x0 and sx (9).7



4 Statistical estimationThe computation of the intersection of lines in the image and in particular the �tting ofa conic need special care regarding error treatment (see also (Kanatani, 1993)).Let xp cos �i + yp sin �i � di = 0 be the equation of the i-th line in the image. Theline parameters (�; d) are obtained with the Hough-Transform. To compute the lineintersection point we apply Maximum-Likelihood estimation which maximizes the densitye�PNi=1 �2i2�2�i where �i = xp cos �i + yp sin �i � diand �2� is the error variance approximately equal to the variance �2d of the distance fromthe origin to the line according to the applied resolution of the Hough space. The MLEyields a least squares minimization of the linear system� cos �i sin �i � xpyp ! = di i = 1 : : : N:The covariance matrix of the estimate reads� =  �2x �2xy�2xy �2y ! = �2d  PNi=1 cos2 �i PNi=1 cos �i sin �iPNi=1 cos �i sin �i PNi=1 sin2 �i !�1 : (10)The largest eigenvalue of � reads�max(�) = 2�2d(N �qN2 � 4PNi=1PNj=i+1 sin2(�i � �j)) :We observe that the largest eigenvalue increases with decreasing deviation between theline directions and becomes in�nite when all lines are parallel. Line directions tend tobe parallel when the e�ective �eld of view is small and the intersection point is far awayfrom the center. The eigenvector of the covariance matrix corresponding to the largesteigenvalue gives the direction of maximal uncertainty. It can be shown for the case oftwo lines that this direction is parallel to the angle bisector of the lines which can beintuitively generalized to the average direction in case of N lines. This covariance matrixis propagated to the next step of the conic �tting.The equation of the conic (7) can be written as a quadratic form xTpAxp = 0 where Ais a symmetric matrix with A12 = A21 = 0 because the rotation axis N in (7) is either(1; 0; 0) or (0; 1; 0). Decoupling the vanishing point coordinates from the unknowns weobtain dTa = 0 with dT = � x2p y2p xp yp 1 � (11)and aT = � A11 A22 2A13 2A23 A33 � (12)which leads to the weighted least squares minimization ofMXi=1 (dTi a)2Var[dTi a] : (13)8



If we exactly compute the variance Var[dTa] we will obtain a nonlinear minimizationproblem because the unknown a will appear in the denominator of every summationterm. Therefore, we apply approximate weights equal to the trace tr(�i) of the covariancematrix of the i-th vanishing point.As the vector of unknowns a can be computed up to a scaling factor we have tointroduce a constraint if we do not use the exact weightings in (13) where the coe�cientsappear in the denominators. As Kanatani (1993) argues minimizing with respect totranslation and rotation invariance - constraint A211+A222 = 1 - does not apply in the caseof points with anisotropic noise and unequal weightings. He proposes the usual constraintkak = 1 leading to the minimizationminkak=1aTCa with C = MXi=1 1tr(�i)didTi : (14)The solution is the eigenvector of C corresponding to the smallest eigenvalue.The matrix C is corrupted by noise �C since it contains the noisy measurements of thevanishing points (xp; yp). Assuming that the noise (�xp; �yp) in the points is anisotropicGaussian with zero mean and covariance matrix � given in (10) the expectation of C+�Creads E[C + �C] = MXi=1E[Ci + �Ci]:To compute E[Ci + �Ci] for one point we temporarily omit the index i in the pointcoordinates as well as the point variancesE[Ci + �Ci] = 1tr(�)E[0BB@ (xp + �xp)4 (xp + �xp)2(yp + �yp)2 � � �(xp + �xp)2(yp + �yp)2 (yp + �yp)4 � � �... ... 1CCA]:After computation of the joint moments up to fourth order of �xp and �yp the expec-tation E[�Ci] reads E[�Ci] = 1tr(�) 0BBB@ C2x2 C2x3CT2x3 �2x �2xy 0�2xy �2y 00 0 0 1CCCA (15)whereC2x2 =  6x2p�2x + 3�4x x2p�2y + y2p�2x + 4xpyp�2xy + �2x�2y + 2�4xyx2p�2y + y2p�2x + 4xpyp�2xy + �2x�2y + 2�4xy 6y2p�2y + 3�4y !and C2x3 =  3xp�2x 2xps2xy + yp�2x �2x2yp�2xy + xp�2y 3yp�2y �2y ! :From the perturbation theorem for eigenvectors (Kanatani, 1993; Golub & van Loan,1989) of symmetric matrices we can derive the bias of the solution â asE[�â] = ���4j=1ujuTj�j �E[�C]â (16)9



where (�j;uj) are the four remaining eigenvalue-eigenvector pairs. We observe that thebias is equal zero only if the expectation of �C vanishes. Unfortunately, the expectationE[�C] is the sum of the matrices E[�Ci] equal for every point to the second term of (15)and does not vanish. Hence, to eliminate the bias we have to subtract the expectationE[�Ci] in (15) from every data matrix Ci.The �nal minimization that yields an unbiased estimate readsminkak=1aT� MXi=1 1tr(�i)didTi � E[�Ci]�a: (17)As simulation tests by (Fitzgibbon & Fisher, 1995) showed the Kanatani procedure issuperior for data from small portions of the conic. The same authors experimentallyshowed that this algorithm does not always detect the desired conic kind - here hyperbola- for high noise levels. However, such estimates were observed in our experiments in amuch smaller extent than the one given in (Fitzgibbon & Fisher, 1995). In this sectionwe described how the covariance matrix of the estimated vanishing points is introducedin the conic �tting step in order to properly weigh the data as well as to eliminate thebias in the estimates of the conic coe�cients.5 ExperimentsWe begin with experimental results on synthetic data. The image lines used are noisecorrupted images of the lines on a cube covered with a checker-board similar pattern.Noise is added to the image points before line �tting. Computation of the vanishingpoints and the conic coe�cients is carried out as described in the previous section. Wepresent the results only in the computation of x0 and sx from a rotation around the y-axis.The computation of y0 and sy using synthetic data is exactly symmetric.We compare our approach with the two-step approach in (Li, 1994). In this approachthe image center (x0; y0) is computed from the intersection of the radial point trajectoriesarising from a varying focal length (zooming). Then, the scaling factors (sx; sy) areestimated from three vanishing points arising from three mutually orthogonal sets ofparallel lines. Of course we expect that this approach exhibits a much better performancethan ours since three sets of parallel lines and over twenty zoom point trajectories areexploited.We �rst inspect the sensitivity to the noise level in the image line parameters. Therotation amount is 120 degrees around the y-axis. We observe (Fig. 3) that the relativeerror in the image center (x-coordinate x0) is an order of magnitude lower than the errorin the scaling factor sx.To better explain the sensitivity behavior we proceed by varying the most importantfactor of our approach: the total amount of rotation. We see in Fig. 4(a-b) the distributionof the vanishing points for rotation amounts of 120 and 20 degrees. As expected therelative error in the intrinsics (Fig 4 (c,d)) decreases with growing rotation amount. Thereason is that when the region expanded by the same number of points grows the hyperbolato be �tted is more constrained. Again we observe an order of magnitude di�erencebetween error in the image center and the scaling factor.We next inspect how the position of the vanishing points on the hyperbola a�ectsthe computation. This factor called symmetry index is determined by the median angleduring the rotational course. Symmetry index 0 means rotating from -40 to 40 degrees10
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f)Figure 8. The left column describes a pan-rotation around the y-axis from left to right.Images (a) and (b) are the �rst and the last in the sequence, respectively. The regarded setof parallel lines is the set with vanishing point on the upper right of image (a). Fig. (c)shows the vanishing points moving from right to left and the �tted hyperbolae. In the rightcolumn we show the tilt-rotation around the x-axis from bottom to top. Images (d) and(e) are the �rst and the last in the sequence, respectively. The regarded set of parallel linesis the set with vanishing point on the left of image (d). The vanishing point in Fig. (f) ismoving from top to bottom.
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