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Abstract

During a camera motion with arbitrary translation and fixed axis rotation a van-
ishing point traverses a conic section on the image plane. The intrinsic parameters
of the camera can be obtained from the coefficients of the conic. Special care is given
to the propagation of the error covariances and the elimination of the statistical bias
in conic fitting.
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1 Introduction

The intrinsic parameters of a camera fix the relation between image pixel coordinates and
ray directions in the 3D camera coordinate system. In the nineties many approaches (see
(Faugeras, 1992)) were proposed that solve visual tasks without knowledge of the intrinsic
parameters. However, any visual capability involving metric information necessitates the
mapping between image plane and ray directions. The transition between absent and
complete knowledge of the intrinsic parameters has been formalized in geometric terms
in the exposition (Faugeras, 1995).

We are interested here in calibration procedures suitable for active camera systems
mounted on mobile robots. The use of the degrees of freedom of the camera introduces
additional information compared to static camera systems. However, the use of an active
camera on a mobile robot poses some requirements which might not be met by traditional
calibration as used for 3D-measurement tasks in a static environment. This implies the
need to get rid of special calibration objects like plates and cubes with known geome-
try in world coordinates. Second, the camera should be able to be calibrated without
interruption of the robot’s motion. Third, calibration should use image features that
allow accurate image position estimation and robust matching among multiple views.
Fourth, calibration of the intrinsic parameters should be decoupled from the computa-
tion of the extrinsic parameters which relate a fixed world coordinate system with the
camera coordinate system. Of course, we do not expect to achieve the same precision as
well established techniques like Tsai’s (1986) which use hundreds of points with exactly
known world coordinates as well as data from the camera specification. According to the
described requirements we present in this paper a new approach for the computation of
the intrinsic parameters making following two assumptions:

1. The only assumption on the world is the existence of one set of parallel lines.

2. The active camera should be able to rotate around the two axes of the camera
coordinate system (tilt and pan).

Lines are image features with parameters that can be estimated robustly. Hough transform
techniques exist (Lutton et al., 1994; Palmer et al., 1993) that group lines into sets of
projections of parallel lines. If the line direction is not parallel to the image plane the
projections of parallel lines intersect at the vanishing point. When a camera is arbitrarily
moving the vanishing points change their position only due to camera rotation. In practice,
large rotation angles are required to obtain accurate estimates of the intrinsic parameters.
The family of parallel lines should thus subtend a wide visual angle. However, this
requirement can be attenuated by allowing the camera to translate since translation does
not affect the vanishing points. A further advantage regarding active systems is that
intrinsic calibration can be carried out before sensor-effector calibration since a deviation
of the projection center from the rotation axes introduces just a translation. However,
the camera axes should be adjusted to be parallel to the rotation axes of the mounting
platform.

If the rotation axis remains fixed the projection of the trajectory of a point is a
conic section. The coefficients of the conic section contain information on the axis and
the intrinsic parameters. We illustrate in Fig. (1) such a hyperbola in the image plane
produced by a rotation of the camera around the vertical axis. If the rotation is around



the z- or y- axis the solution for the intrinsic parameters is in closed form but only a
subset of the parameters can be computed from every conic section. Using both rotations
we are able to obtain all the intrinsic parameters in closed form.
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Figure 1. A rotation of the camera around the vertical Ys-axis is equivalent to the rota-
tion of a point about this axis. The circular cone including the point trajectory intersects
the image plane in a hyperbola.

No iterative minimization is needed in any of the algorithmic steps. We put special
emphasis on the propagation of the error through covariances in the intermediate esti-
mates. Using the methodology proposed by Kanatani (1993) we eliminate the bias in the
computation of the coefficients of the conic section.

We will show in the experiments that the image centers can be computed more reliably
than the scaling factors. This fact can be geometrically interpreted by means of the point
distribution constraining the conic to be fitted which in our case will be shown to be a
hyperbola. The recovery of the image center depends on the feasibility of the symmetry
axes estimation whereas the recovery of the scaling factors depends on the slopes of the
asymptotes. In fact, the limited span of the point distribution allows only the reliable



estimation of the hyperbola symmetry axis but not of the asymptotes, hence the more
accurate estimation of the image centers.

The main factor affecting accuracy is the amount of rotation carried out by the camera.
We test the sensitivity of the approach to error in the line parameters. We compare our
results to results obtained by the implementation of another active calibration approach
that uses point trajectories under varying zoom to compute the image center and orthog-
onal sets of parallel lines (conjugate vanishing points) to estimate the scaling factors (Li,
1994).

We begin with a review of approaches which avoid using the world coordinates of
calibration points. We continue with the mathematical description of the algorithm.
Then we delve into the statistics of conic fitting. We finish by describing our experimental
results both on synthetic as well as real data.

2 Related Work

Considering related work we will refer only to approaches that use motion in order to
calibrate the intrinsic parameters without knowledge of world points or angles. We just
mention that a couple of approaches (Caprile & Torre, 1990; Echigo, 1990) exist using
vanishing points and stationary cameras but they assume knowledge of the angles between
the representative parallels. Neither of them can compute all the intrinsics parameters.

Since the seminal paper by Maybank and Faugeras (1992) it is known that intrin-
sic parameters encoded in the image of the absolute conic can be obtained from point
correspondences in four views. Later it was proven (Luong & Vieville, 1994) that the
image of the absolute conic can also be obtained from point correspondences of three
views if they are projections from points on the plane at infinity. For projections of points
with finite depth this is equivalent to three views arising from two pure rotations of the
camera (Hartley, 1994). Although the computation of the intrinsics is in principle linear
according to the latter approaches a non-linear refinement step is applied to increase ac-
curacy. Dron’s work (1993) can be classified in the same framework of absent or known
translation, however, it uses only linear least squares techniques.

We proceed with approaches using point correspondences and known rotation angles.
Du and Brady (1993) as well as Basu (1995) use the optical flow arising from small
rotations. Basu applies two independent rotations (pan and tilt), uses contours instead
of points, and makes an initial hypothesis on the location of the image center. Du and
Brady use the conic sections from the trajectories of points to obtain a more accurate
image center estimate. Stein (1995) and Vieville (1994) solve the nonlinear equations of
motion arising from a rotation around a fixed axis using known rotation angles. Vieville
gives also a solution for the unknown but constant rotation axis.

The most closely related work to ours is the approach by Beardsley et al. (1992).
They use the trajectories of the vanishing points arising from the fixed axis rotation of
parallel lines on a turntable. Since they can produce a full cycle rotation they obtain a
full ellipse on the image. As they do not know the rotation axis one trajectory is not
enough to recover the intrinsic parameters. From three ellipses the aspect ratio as well as
the image center - intersection of the major axes - can be obtained. The focal length is
then computed from the locus of vertices of circular cones that could give rise to the given
ellipse. Our approach avoids the use of a special apparatus (turntable) by producing the
trajectories with camera rotations. We gain in the sense that the fixed axis is then known



but we pay in accuracy since the arising hyperbolic arcs are of limited extend due to the
small amount of feasible rotation.

3 From parallel lines to conic sections

To describe the camera model we introduce three coordinate systems: The standard
coordinate system (z,,ys, 2z5) with origin at the projection center (or optical center or
nodal point) and z,-axis parallel to the optical axis of the camera, the normalized camera
coordinate system (x,,y,) on the plane z; = 1 with origin at (0,0,1) of the standard
coordinate system, and the image coordinate system (x,,y,) where the image data are
measured in pixel units. The perspective projection from a point (z, ys, z5) in space to
a point (x,,y,) in the plane z, = 1 is given by z, = x,/z, and vy, = ys/z,. Thus, a
point (x,,y,) in the normalized system defines the ray A(z,,y,, 1) through the point in
space. The mapping from the normalized to the image coordinate system is an affine
transformation
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The task of intrinsic calibration is to correspond ray directions to pixel positions. Since a
ray direction is given by a point in the normalized coordinate system intrinsic calibration
means recovering the affine transformation defined above. The parameter pair (zg, yo) is
the image center (or principal point) defined as the intersection of the optical axis with
the image plane in image coordinates (pixel units). The parameter s, is equal to the focal
length divided by the vertical dimension of a cell in the CCD chip. The parameter s, is
equal to the focal length divided by the horizontal dimension of a cell and multiplied by
the sampling ratio between the digitizer and the CCD-signal. The parameter s,, counts
for non-orthogonality of the pixel grid and will be regarded as negligible (see (Faugeras,
1995) for its interpretation). Furthermore, we do not consider in this study non-linear
radial distortions that appear in case of wide-angle lenses.

The description given above is not sufficient to model projections of points or lines at
infinity, therefore we introduce homogeneous coordinates (7, ¥, Zy, W) in P? for the stan-
dard coordinate system, &,, = (Zn, Un, W,) in P? for the normalized, and &, = (T, Gy, W)
also in P? for the image coordinate system. We obtain always the inhomogeneous co-
ordinates by dividing by the last homogeneous coordinate if the latter is not zero. The
equations w, = 0 and w, = 0 define the plane at infinity in P? and the line at infinity
in P2, respectively. As a 2D affine transformation leaves the line at infinity invariant its
mapping on the image coordinate system is also w, = 0. We introduce now the projection
equation for homogeneous coordinates:
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A set of parallel lines with direction (l,,1,,[,) in projective space meet at the point of
the plane at infinity (I,,[,,1,,0). The projection of this point on the image plane is the
vanishing point - the intersection of the projections of the parallel lines. Its normalized
homogeneous coordinates are (l,,1,,1,) (easily derived from (2)) and its position on the
image plane is at infinity if [, = 0.

Suppose now that a camera moves from pose 1 to pose 2 with translation vector T
and a rotation matrix R :

L1 js?
Ysi | _ R T Yso
Za | ( 00 0 1 ) Zy 2)
UN)sl UN}52

We can see that if a point lies at infinity then only the rotation affects the new position of
the point. By applying (2) and ws; = ws = 0 we obtain the transformation of the point
in normalized

inl — Ring (3)
as well as image coordinates
&, = SRS 'z,,. (4)

Both transformations are invertible, hence they are collineations in P2. They express the
transformation of an image point in case of pure rotation and finite 3D-point depth or
in case of arbitrary motion and a 3D-point at infinity. The second equation in (4) gives
two constraints in inhomogeneous coordinates used by all approaches (see for example
(Hartley, 1994; Vieville, 1994)) for estimation of intrinsic parameters from rotations.

Let us suppose that the camera rotates around a fixed axis N (|| N|| = 1). Then the
trajectory of the 3D-point in the standard coordinate system is a circle. The resulted
cone in the standard coordinate system with vertex at the optical center (Fig. 1) and axis
N reads

(N'z,)* = g*||2,|’ (5)

with 1" = (x,,y,, 2,) and g equal to the cosine of the opening angle of the cone. Since
x, = (1/zs)x, the equation in normalized coordinates reads

(N"z,)* = g*[|a ] (6)
and after rearranging terms and transforming to image coordinates
! ST (NN - ¢°1)S '@, =0 (7)

which is as expected the equation of a conic section in R2.

There are two degenerate cases for this conic section. We will describe them for our
application where the conic sections are trajectories of vanishing points. The first appears
when the parallel lines giving rise to the vanishing point are perpendicular to the rotation
axis. The cone degenerates to a plane and the trajectory of the vanishing point is a line
in the image plane. The second degenerate case is when the direction of the parallel lines



is parallel to the rotation axis. The cone degenerates to a line and the conic section to a
point at infinity.

The five coefficients of the conic section depend on the two parameters of the rotation
axis, the four intrinsic parameters, and the parameter ¢ which depends on which point
is tracked in the scene. As already shown (Beardsley et al., 1992) more than one conic
section arising from a different rotation axis is needed to recover the intrinsic parameters.
Instead, we will study here the special cases where the rotation axis is known. Using one
camera of the binocular head in Fig. 2 we perform one rotation about the tilt axis x and
one rotation about the vergence axis y - we will call pan axis y.
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Figure 2. The camera is rotated with angle ¢ about the tilt azis x and with angle 0
about the vergence axis y.

For the rotation about the z-axis we set N* = (1,0,0) in (7) and obtain
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The center of the hyperbola coincides with the center of the image and the length of
the semi-axis in y-direction is equal the scale factor s, - see also Fig. 8f. The scaling
factor s, is coupled with the cosine of the cone’s opening angle and cannot recovered from
(8). The ordinate gy, of the center gives the symmetry axis of the hyperbola whereas z
and s, fix the position and the slope of the asymptotes, respectively. It will turn out in
the experiments that the abscissa zy of the center of the hyperbola cannot be reliably
recovered since the position of the asymptotes can not be sufficiently constrained.
For the rotation about the y-axis we set N7 = (0,1,0) in (7) and obtain
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Similar to the z-axis rotation (zo, yo) is the center of the hyperbola - see also Fig. 8c- and
only zo and s, can be estimated reliably.
The algorithm is broken into two steps:

1. Rotate around the z-axis and fit a conic to the data points. From the coefficients
of the conic and (8) obtain y, and s,.

2. Rotate around the y-axis and fit a conic to the data points. From the coefficients
of the conic compute center and the axes of the hyperbola to recover xy and s, (9).



4 Statistical estimation

The computation of the intersection of lines in the image and in particular the fitting of
a conic need special care regarding error treatment (see also (Kanatani, 1993)).

Let x,cosn; + y,sinn, — d; = 0 be the equation of the i-th line in the image. The
line parameters (n,d) are obtained with the Hough-Transform. To compute the line
intersection point we apply Maximum-Likelihood estimation which maximizes the density
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and o? is the error variance approximately equal to the variance o3 of the distance from
the origin to the line according to the applied resolution of the Hough space. The MLE
yields a least squares minimization of the linear system

(cosni sinm)(fr”):di i=1...N.
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The covariance matrix of the estimate reads
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We observe that the largest eigenvalue increases with decreasing deviation between the
line directions and becomes infinite when all lines are parallel. Line directions tend to
be parallel when the effective field of view is small and the intersection point is far away
from the center. The eigenvector of the covariance matrix corresponding to the largest
eigenvalue gives the direction of maximal uncertainty. It can be shown for the case of
two lines that this direction is parallel to the angle bisector of the lines which can be
intuitively generalized to the average direction in case of N lines. This covariance matrix
is propagated to the next step of the conic fitting.

The equation of the conic (7) can be written as a quadratic form .rZA.rp = 0 where A
is a symmetric matrix with A;5 = Ay; = 0 because the rotation axis N in (7) is either
(1,0,0) or (0,1,0). Decoupling the vanishing point coordinates from the unknowns we
obtain d’a = 0 with

dT:(xZ Yp o Ty Yp 1) (11)
and
a’ = ( A Ay 2A13 2453 Agg ) (12)
which leads to the weighted least squares minimization of

o~ _(dia)®

; Var[d, a]’ (13)



If we exactly compute the variance Var[d’ a] we will obtain a nonlinear minimization
problem because the unknown a will appear in the denominator of every summation
term. Therefore, we apply approximate weights equal to the trace ¢r(3;) of the covariance
matrix of the i-th vanishing point.

As the vector of unknowns a can be computed up to a scaling factor we have to
introduce a constraint if we do not use the exact weightings in (13) where the coefficients
appear in the denominators. As Kanatani (1993) argues minimizing with respect to
translation and rotation invariance - constraint A3, + A3, = 1 - does not apply in the case
of points with anisotropic noise and unequal weightings. He proposes the usual constraint
lla|| = 1 leading to the minimization

.7 : <N T
Hrélulill a Ca with C 2221 ) dd, . (14)
The solution is the eigenvector of C' corresponding to the smallest eigenvalue.

The matrix C is corrupted by noise §C' since it contains the noisy measurements of the
vanishing points (x,,y,). Assuming that the noise (dx,,dy,) in the points is anisotropic
Gaussian with zero mean and covariance matrix ¥ given in (10) the expectation of C'+§C
reads

M
E[C+6C) =D E[C; +4C;].
i=1
To compute FE[C; + 6C;] for one point we temporarily omit the index ¢ in the point
coordinates as well as the point variances
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After computation of the joint moments up to fourth order of dx, and dy, the expec-
tation E[0C;] reads
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From the perturbation theorem for eigenvectors (Kanatani, 1993; Golub & van Loan,
1989) of symmetric matrices we can derive the bias of the solution a as

A
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where ();,u;) are the four remaining eigenvalue-eigenvector pairs. We observe that the
bias is equal zero only if the expectation of 6C' vanishes. Unfortunately, the expectation
E[6C] is the sum of the matrices E[dC;] equal for every point to the second term of (15)
and does not vanish. Hence, to eliminate the bias we have to subtract the expectation
E[6C;] in (15) from every data matrix C;.
The final minimization that yields an unbiased estimate reads
Moo

min ' (; e - E[(SCZ-]> a. (17)

As simulation tests by (Fitzgibbon & Fisher, 1995) showed the Kanatani procedure is
superior for data from small portions of the conic. The same authors experimentally
showed that this algorithm does not always detect the desired conic kind - here hyperbola
- for high noise levels. However, such estimates were observed in our experiments in a
much smaller extent than the one given in (Fitzgibbon & Fisher, 1995). In this section
we described how the covariance matrix of the estimated vanishing points is introduced
in the conic fitting step in order to properly weigh the data as well as to eliminate the
bias in the estimates of the conic coefficients.

5 Experiments

We begin with experimental results on synthetic data. The image lines used are noise
corrupted images of the lines on a cube covered with a checker-board similar pattern.
Noise is added to the image points before line fitting. Computation of the vanishing
points and the conic coefficients is carried out as described in the previous section. We
present the results only in the computation of 2y and s, from a rotation around the y-axis.
The computation of 3y and s, using synthetic data is exactly symmetric.

We compare our approach with the two-step approach in (Li, 1994). In this approach
the image center (zg, yp) is computed from the intersection of the radial point trajectories
arising from a varying focal length (zooming). Then, the scaling factors (s,,s,) are
estimated from three vanishing points arising from three mutually orthogonal sets of
parallel lines. Of course we expect that this approach exhibits a much better performance
than ours since three sets of parallel lines and over twenty zoom point trajectories are
exploited.

We first inspect the sensitivity to the noise level in the image line parameters. The
rotation amount is 120 degrees around the y-axis. We observe (Fig. 3) that the relative
error in the image center (x-coordinate zg) is an order of magnitude lower than the error
in the scaling factor s,.

To better explain the sensitivity behavior we proceed by varying the most important
factor of our approach: the total amount of rotation. We see in Fig. 4(a-b) the distribution
of the vanishing points for rotation amounts of 120 and 20 degrees. As expected the
relative error in the intrinsics (Fig 4 (c,d)) decreases with growing rotation amount. The
reason is that when the region expanded by the same number of points grows the hyperbola
to be fitted is more constrained. Again we observe an order of magnitude difference
between error in the image center and the scaling factor.

We next inspect how the position of the vanishing points on the hyperbola affects
the computation. This factor called symmetry index is determined by the median angle
during the rotational course. Symmetry index () means rotating from -40 to 40 degrees
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Figure 3. The relative error in xy (a) and in s, (b) as a function of the standard
deviation of noise in the line parameters. The amount of rotation was 120 degrees. The
lower curve shows the error of the zoom-vanishing point algorithm.

whereas symmetry index 45 means moving from 5 to 85 degrees. We see the two extremal
distributions in Fig. 5 (a) and (b). The total amount of rotation in this experiment is 80
degrees. The relative error in the x-coordinate of the image center increases if symmetry
is violated. Since xy gives the position of the transverse symmetry axis of the hyperbola
it is expected that asymmetric distribution destabilizes the transverse axis. On the other
hand, the error in the scaling factor s, decreases (Fig. 5 (d)) as more points lie laterally
on the hyperbola because the slope of the asymptote is constrained.

In the fourth experiment we tested the behavior of the algorithm between the two
degenerate cases. The relative errors are illustrated in Fig. 6 as functions of the angle
between rotation axes and parallel line directions. At the two extremes the hyperbola is
a line (angle = () and a point in infinity (angle = 90), respectively. The error decreases
while the degenerate line becomes a conic and then it grows with increasing angle after
45 degrees because the vanishing points go even further away from the image.

In the fifth experiment we tested the behavior under weak perspective. The relative
errors in Fig. 7 are plotted as functions of the distance to a given set of parallel lines on
an object. When the object moves away the vanishing point remains in the same position.
However, its computation becomes unstable because the images of the parallel lines span
a very small visual angle so that the uncertainty in the intersection point increases.

In all the experiments our algorithm could never compete with the zoom-vanishing
points approach (Li, 1994) due to the much less amount of information used here. We
tested both steps of our algorithm with two sequences of the image of a wall obtained with
one of the cameras of an active binocular camera mount. The left column in Fig. 8 shows
a pan movement and the right column a tilt movement. The image lines were detected
using the Hough-transform applied on the edge image. In Fig. 8 (c¢) and (f) we see the
trajectories of the vanishing points arising from a 120 degrees rotation. Ground truth for
the camera is not known but the approach (Li, 1994) applied before the experiment using
a calibration cube serves as a reference. The relative error with respect to this reference
was 5.0% for zg, 9.8% for yo, 2.7% for s,, and 5.3% for s,. With respect to the data used
and the fact that the rotation was not 360 degrees like in other approaches the results are
more than satisfactory.
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Figure 4. Vanishing points and fitted hyperbolae for a rotation amount of 120 degrees
(a) and 20 degrees (b), respectively. The rectangle is the image boarder drawn to illustrate
the relative position of the vanishing points. The relative error in xo (¢) and s, (d) as a
function of the rotation amount. The dashed line is the error in the zoom-vanishing point
approach which does not use rotations.

6 Conclusion

We presented an approach for estimating the intrinsic parameters of a camera able to
rotate around the tilt and pan axes. The intrinsic parameters can be obtained from the
coefficients of two conic sections. No calibration pattern was used. The use of vanishing
points instead of image point matches enables calibration during translation of the ob-
server. Detection of parallel lines is more stable then image feature detection and tracking
although the recognition of a group of parallels in a cluttered scene necessitates a priori
knowledge on the scene.

The intuition and the experimental tests show that the most critical factors of our
calibration are the amount of rotation and the symmetry of the distribution of the points
along the hyperbola. Synthetic experiments show that the relative position of the optical
axis, the rotation axis, and the direction of parallel lines affects the estimation accuracy.
A method should be elaborated that a priory finds the optimal pose of the camera system
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Figure 5. The vanishing points and the fitting conics for symmetry index 0 degrees (a)
and 45 degrees (b). The relative error in xy (¢) and s, (d) as a function of the symmetry
index. As the symmetry index varies from 0 to 45 degrees the set of vanishing points is
shifted to the left of the hyperbola. For comparison is shown the constant error in the
zoom-vanishing point approach (dashed line).

during rotation.
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Figure 8. The left column describes a pan-rotation around the y-axis from left to right.
Images (a) and (b) are the first and the last in the sequence, respectively. The regarded set
of parallel lines is the set with vanishing point on the upper right of image (a). Fig. (c)
shows the vanishing points moving from right to left and the fitted hyperbolae. In the right
column we show the tilt-rotation around the x-axis from bottom to top. Images (d) and
(e) are the first and the last in the sequence, respectively. The regarded set of parallel lines
is the set with vanishing point on the left of image (d). The vanishing point in Fig. (f) is
mowving from top to bottom.
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