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Abstract. In this paper a new method for analyzing the intrinsic di-mensionality (ID) of low dimensional manifolds in high dimensional fea-ture spaces is presented. The basic idea is to �rst extract a low-dimensionalrepresentation that captures the intrinsic topological structure of the in-put data and then to analyze this representation, i.e. to estimate theintrinsic dimensionality. Compared to previous approaches based on lo-cal PCA the method has a number of important advantages: First, it canbe shown to have only linear time complexityw.r.t. the dimensionality ofthe input space (in contrast to the cubic complexity of the conventionalapproach) and hence becomes applicable even for very high dimensionalinput spaces. Second, it is less sensitive to noise than former approaches,and, �nally, the extracted representation can be directly used for furtherdata processing tasks including auto-association and classi�cation.The presented method for ID estimation is illustrated on a synthetic dataset. It has also been successfully applied to ID estimation of full scaleimage sequences, see [BS97].1 IntroductionAdopting the classi�cation in [JD88], there are two primary approaches for es-timating the intrinsic dimensionality1. The �rst one is the global approach inwhich the swarm of patterns is unfolded or 
attened in the d-dimensional space.Benett's algorithm [Ben69] and its successors as well as variants of MDSCAL[Kru64] for intrinsic dimensionality estimation belong to this category. The sec-ond approach is a local one and tries to estimate the intrinsic dimensionalitydirectly from information in the neighborhood of patterns without generatingcon�gurations of points or projecting the pattterns to a lower dimensional space.Pettis' [PBJD79], Fukunaga and Olsen's [FO71] as well as Trunk's [Tru76] andVerveer and Duin's method [VD95] belong to this category.Our approach belongs to the second category as well and is based on opti-mally topology preserving maps (OTPMs) and local principal component anal-ysis (PCA) using a number of evenly distributed pointers in the manifold. It is1 The intrinsic, or topological, dimensionality of N patterns in an n-dimensional spacerefers to the minimum number of \free" parameters needed to generate the patterns[JD88]. It essentially determines whether the n-dimensional patterns can be describedadequately in a subspace (submanifold) of dimensionality m < n.



conceptually similar to that of Fukunaga and Olsen, [FO71], using local PCAas well, but by utilizing OTPMs can be shown to better scale with high dimen-sional input spaces (linear instead of cubic) and to be more robust against noise.The local subspaces as revealed by local our PCA can be directly used for datamodeling, as e.g. in [KL94].2 FoundationsIn this section we want to make the reader familiar with the basic ingredientsof our algorithm for ID estimation to be presented in the next section. We �stintroduce OTPM s, the underlying representation, and then turn to e�cientPCA for m < n points, the underlying method used for analyzing the OTPM ,and �nally comment on the problem of estimating the ID by local PCA, thegeneral approach of our algorithm.2.1 Constructing Optimally Topollogy Preserving MapsOptimallyTopology Preserving Maps (OTPM s) are closely related to Martinetz'Perfectly Topology Preserving Maps (PTPMs) [MS94] and are constructed injust the same way. The only reason to introduce them separatly is that in orderto form a PTFM the pointers must be \dense" in the manifoldM . Without priorknowledge this assumption cannot be checked, and in practice it will rarely bevalid. OTPM s emerge if just the construction method for PTFMs is appliedwithout checking for the density condition. Only in favourable cases one willobtain a PTFM (probably without noticing). OTPM s are nevertheless optimalin the sense of the topographic function introduced by Villmann in [VDM94]:In order to measure the degree of topology preservation of a graph G with anassociated set of pointers S, Villmann e�ectively constructs the OTPM of Sand compares G with the OTPM . By construction, the topographic functionjust indicates the highest (optimal) degree of topology preservation if G is anOTPM .De�nition1 OTPM. Let p(x) be a probability distribution on the input spaceRn, M = fx 2 Rnjp(x) 6= 0g a manifold of feature vectors, T � M a trainingset of feature vectors and S = fci 2M ji = 1; : : : ; Ng a set of pointers in M .We call the undirected graph G = (V;E), jV j = N , an optimally topologypreserving map of S given the training set T , OTPMT (S), if(i; j) 2 E , 9x 2 T 8k 2 V nfi; jg : maxfk ci � x k; k cj � x kg �k ck � x kCorolary 1 If T = M and if S is dense in M then OTPMT (S) is a PTPM.Note that the de�nition of the OTPM is constructive: For calculating theOTPMT (S) simply pick x 2 T according pT (x), calculate the best and secondbest matching pointers, cbmu and csmu, and connect bmu with smu. If repeated



in�nitely often, G will converge to OTPMT (S) with probability one. This pro-cedure is just the essence of Martinetz' Hebbian learning rule.For use in intrinsic dimensionality estimation and elsewhere, OTPMT (S)has two important properties. First, it does indeed only depend on the intrinsicdimensionality of T , i.e. it is independent of the dimensionality of the inputspace. Embedding T into some higher dimensional space does not alter the graph.Second, it is invariant against scaling and rigid transformations (translations androtations). Just by de�nition it is the representation that optimally re
ects theintrinsic (topological) structure of the data.2.2 E�cient PCA for fewer points than dimensionsWith S = fci 2 Rnji = 1; : : : ; Ng and AT = [c1 � �c; : : : ; cN � �c] the basictrick from linear algebra for N < n is to calculate the PCA of �̂ = AATinstead of a PCA of the original covariance matrix � = ATA. The eigenvaluesof �, �1; : : : ; �N , are then identical to the eigenvalues �1; : : : ; �N of �̂ and theeigenvectors of �, u1; : : : ; uN , can be calculated from the eigenvectors v1; : : : ; vNof �̂ by setting ui = AT vi. This can be simply checked by�̂vi = �ivi , AAT vi = �ivi , ATAATvi = �iAT vi , �(AT vi) = �iATviSince the PCA of the N�N matrix �̂ can be calculated in O(N3), [PTVF88],and �̂ = AAT clearly can be computed in time O(N2n), it takes only timeO(N2n + N3) instead of O(n3) to calculate the PCA of the covariance matrixof S.2.3 On the problem of ID estimation with local PCAWe assume the data points x 2 T to be noisy samples of a vector valued functionf : Rr ! Rn x = f(k) + � (1)where k = [k1; : : : ; kr] is an r-dimensional parameter vector and � denotes thenoise. The function f can be imagined to describe an r-dimensional hypersurfaceS in n-dimensional space. The e�ect of noise is to render the surface not in�nitelythin (see [VD95]). Within a small region a linear approximation of the data set(such as provided by the eigenvectors of local PCAs) is only valid if the largestvariance in directions nj perpendicular to S is much smaller than the smallestvariance in directions si of S, i.e.mini V ar(si)maxj V ar(nj) � 1: (2)Here, V ar(si), the intra-surface variance, depends on the size of the local re-gion and V ar(nj) depends on the variance caused by the noise and the factthat S cannot be exactly represented as a linear surface. This leads to a basicdilemma for any ID estimation algorithm based on local PCA: If the region is



too large, V ar(nj) might be high due to the non-linear nature of S. If, on theother hand, the region is too small, the noise is still there and will eventuallydominate V ar(si). The solution is to search for the region size that gives thebest compromise.Closely related to the problem of noise is the problem of having availableonly a limited set of data. In order to make local PCA approaches work, thedata set has to be large enough to represent the non-linearities and to allow for�ltering out the noise.3 Dimensionality Analysis with OTPMsThe basic procedure for intrinsic dimensionality analysis with OTPM s works asfollows: To �nd a set S of N pointers which re
ects the distribution of T we �rstemploys a clustering algorithm for T whose output are N cluster centers. Thenwe calculate the graph G as the optimal topology preserving map of S given T .The �nal step is to perform for each node vi a principal component analysis ofthe correlation matrix of the di�erence vectors cj�ci of the pointers cj associatedwith the nodes vj adjacent to vi in G. The result of this analysis, i.e. eigenvaluesand vectors for each node, is the output of the procedure and subjected to furtheranalysis. Provided the complexity of the clustering algorithm is independent ofthe intrinsic dimensionality d, the serial time complexity is O(n+m(d; T; S)3),where m(d; T; S) is the maximum number of direct neighbors of a node in theOTPM as depending on the intrinsic dimensionality, the training set T andthe set of pointers S. Bounds on m(d; T; S) or even a functional form are hardto derive, yet m stays constant for constant ID, is independent of the inputdimension n, and experiments con�rm that it is indeed small for small IDs.In the rest of this section we will �rst comment on the use of clusteringalgorithms and then extend the procedure to derive our actual ID estimationmethod.3.1 Clustering in TPCAThe reason for clustering the data prior to construction of the OTPM and notjust drawing N pointers randomly from T is twofold: First the distribution ofthe pointers should re
ect the underlying distribution pT (x) as accurately aspossible and second we would like to eliminate noise on the data. Any vectorquantization algorithm which aims at minimizing the (normalized) quantizationerror J = 1n NXi=1 ZVi k x� ci k2 p(x)dx; (3)where Vi denotes the Voronoi cell of ci, is a good choice since by minimizingthe total variance it will preferably place the pointers within the manifold Mand �lter out orthogonal noise. This holds because as long as criterion (2) isful�lled placing pointers within the surface and hence reducing the intra-surface



variance causes the largest decrease in J . From information theory it is knownthat it also produces a distribution of pointers which re
ects the probabilitydensity, e.g. [Zad82].3.2 The ID estimation procedureEventuallywe must decide how many dominant eigenvalues exist in each localregion, i.e. what size an eigenvalue as obtained by each local PCA must exceedto indicate an associated intra-surface eigenvector. This amounts to determininga threshold. We adopted the D� criterion from Fukunaga et. al. [FO71] whichregards an eigenvalue �i as signi�cant if�imaxj �j > �%: (4)If no prior knowledge is available, di�erent values of � have to be tested. Oth-erwise, knowledge of the largest noise component can be used to calculate �.A second problem is that due to the noise/non-linearity dilemma mentionedin section 2.3 we do not know the optimal local region sizes in advance and,in particular, do not know the optimal number of pointers N . Monitoring thedevelopment of the local eigenvalues for a growing number of pointers (N =1; : : :) and searching for characteristic transitions is the most natural way toproceed. In this case, one does not want to cluster all the N + 1 pointers fromscratch but rather would like to incrementally build on the existing N clusters,i.e. just add one new cluster and modify the existing ones if necessary. Using theLBG vector quantization algorithm, [LBG80], we start withN = 1 and add a newpointer by �rst searching the cluster with highest intra cluster variance. In thiscluster we then search for the training sample x with the highest quantizationerror, add a new pointer at x, take this con�guration of N + 1 pointers as thenew starting con�guration for the LBG algorithm and run tpca for the N + 1thround. This procedure of �rst searching for the worst quantized cluster helps toalleviate problems with outliers which could lead to multiple insertions at thesame point if only the worst quantized example was considered.Finally, if we have reason to believe that the data set has constant intrinsicdimensionality (i.e. has been generated by one function and not by a mixtureof functions) our estimate of the intrinsic dimensionality will be the averageof all local ID estimates together with its standard deviation. The ID estimateand its standard deviation is then plotted versus the number of pointers N ,with di�erent plots resulting from di�erent choices of �. In the next section wewill demonstrate that these plots actually do give very �ne and characteristichints on the ID of the data set. Our estimation procedure is interactive becausethe user has to choose a set of thresholds � and the �nal decision on the IDdepends on his inspection of the ID plots. Yet for reasons already indicated andfurther illustrated in the next section, without prior knowledge a fully automatedprocedure based on local PCA which outputs the ID estimate given the data setdoes not make sense.



4 Experimental ResultsIn order to provide an impression of the characteristics of our ID estimationprocedure we here apply it to a mixture of noisy data sets of di�erent intrinsicstructure and dimensionality. The data set is descibed and illustrated in �gure1.Fig. 1. Two views of the Square-Line-Circle data set. The 3d data set consists of 5000random dots within a circle, a line and a square in the xy-plane with uniform noise inthe z-direction. The noise has a variance of 1=12. The data density is approximatelyuniform over the data set. Left: View on the xy-plane, Right: Rotation of 60� aroundx-axisFigure 2 shows the ID estimation procedure in progress for a growing numberof pointers on the D10 level. From top to bottom, left to right with 5, 10, 20, 35,45, and 70 nodes in the OTPM . Dark circles indicate a local ID estimate of one,medium dark circles an estimate of two and light circles of three (D10 criterion).For only �ve nodes the OTPM indicates a one dimensional connection structurefor the circle and the line and a two dimensional one for the square, identicalto the ID estimates (by local PCA of the OTPM ). For 10 nodes the OTPMhas already grasped the intrinsic structure of the data set. For 20 nodes we alsoget the correct local ID estimates for the line-data and the square but the IDestimate of the circle data is still two instead of one. This is due to the curvature(non-linearity) of the circle. From 35 to 45 nodes even the true ID of the circleis revealed because the number of pointers has now become large enough for alinear approximation of the circle on the D10 level. For even higher numbersof pointers the distribution of pointers as obtained by the LBG algorithm willeventually approximate the noise, i.e. leave the surface. From now on (see �gure2 for 70 nodes) the ID will be overestimated.The mean squared quantization error for the Square-Line-Circle data setmse = 1jT j NXi=1 Xx2Vi k x� ci k2 (5)for e.g. N = 45 nodes is 0:29 which is only about three times the varianceof the noise. Subtracting the noise variance, only two times the noise varianceremains for the average local intra-surface variance. Clearly, a simple local PCAapproach as e.g. that of Fukunaga et al. (taking the un�ltered data as input to



the local PCA) would not yield the correct local ID estimates on a D10 levelfor that local region size but would detect the noise variance as a second orthird most signi�cant eigenvalue on any level. This is what we refer to as theincreased robustness against noise and the increased discrimination ability ofour procedure.
Fig. 2. Local ID estimation for the Square-Line-Circle data set for a growing numberof pointers (nodes in the OTPM) on the D10 level. From top to bottom, left to right:5, 10, 20, 35, 45, 70 nodes. Dark circles indicate a local ID estimate of one, mediumdark circles an estimate of two and light circles of three dimensions.Further applications of our ID estimation technique, including ID estimationof a sequence of full scale images, can be found in [BS97]. Due to limited spacethey had to be omitted here.5 ConclusionWe have presented an algorithm for estimating the intrinsic dimensionality oflow dimensional submanifolds embedded in high dimensional feature spaces. Thealgorithm belongs to the category of local ID-estimation procedures, is based onlocal PCA and directly extends and improves its predecessor, the algorithm ofFukunaga and Olsen, [FO71], in terms of computational complexity and noisesensitivity. The main ideas are �rst to cluster the data, second to construct anOTPM and third to use the OTPM and not the data itself for local PCA.Besides tests on an illustrative arti�cial data set (this article) the procedurehas been successfully applied to ID-estimation of image sequences with image



resolutions of up to 256� 256 pixels, [BS97]. Such application is out of reach forconventional ID-estimation procedures based on local PCA and to the best ofour knowledge has not been tackled before.OTPM s together with eigenvectors and eigenvalues returned by local PCAare not only useful for ID estimation but can be used for linear approximationof the data and construction of auto-associators in quite an obvious way. Suchassociators will work by projecting new data to the local subspaces spanned bythe eigenvectors, i.e. by projecting to a linear approximation of the manifold.References[Ben69] R. S. Bennett. The intrinsic dimensionality of signal collections. IEEETransactions on Information Theory, 15:517{525, 1969.[BS97] J. Bruske and G. Sommer. Intrinsic dimensionality estimation with opti-mally topology preserving maps. Technical Report 9703, Inst. f. Inf. u.Prakt. Math. Christian-Albrechts-Universitaet zu Kiel, 1997.[FO71] K. Fukunaga and D. R. Olsen. An algorithm for �nding intrinsic dimension-ality of data. IEEE Transactions on Computers, 20(2):176{183, 1971.[JD88] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall,1988.[KL94] N. Kambhatla and T.K. Leen. Fast non-linear dimension reduction. InAdvances in Neural Information Processing Systems, NIPS 6, pages 152{159, 1994.[Kru64] J. B. Kruskal. Multidimensional scaling by optimizing goodness of �t to anonmetric hypothesis. Psychometrika, 29:1{27, 1964.[LBG80] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design.IEEE Transaction on Communications, 28(1):84{95, 1980.[MS94] T. Martinetz and K. Schulten. Topology representing networks. In NeuralNetworks, volume 7, pages 505{522, 1994.[PBJD79] K. Pettis, T. Bailey, T. Jain, and R. Dubes. An intrinsic dimensionalityestimator from near-neighbor information. IEEE Transactions on PatternAnalysis and Machine Intelligence PAMI, 1:25{37, 1979.[PTVF88] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. NumericalRecipes in C - The Art of Scienti�c Computing. Cambridge University Press,1988.[Tru76] G. V. Trunk. Statistical estimation of the intrinsic dimensionality of a noisysignal collection. IEEE Transactions on Computers, 25:165{171, 1976.[VD95] P. J. Verveer and R. P.W. Duin. An evaluation of intrinsic dimensionalityestimators. IEEE Transactions on Pattern Analysis and Machine Intelli-gence PAMI, 17(1):81{86, 1995.[VDM94] T. Villmann, R. Der, and T. Martinetz. A novel approach to measure thetopology preservation of feature maps. ICANN, pages 289{301, 1994.[Zad82] P. L. Zador. Asymptotic quantization error of continuous signals andthe quantization dimension. IEEE Transactions on Information Theory,28(2):139{149, 1982.This article was processed using the LATEX macro package with LLNCS style


