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Abstract. In this paper a new method for analyzing the intrinsic di-

mensionality (ID) of low dimensional manifolds in high dimensional fea-

ture spaces is presented. The basic idea is to first extract a low-dimensional
representation that captures the intrinsic topological structure of the in-

put data and then to analyze this representation, i.e. to estimate the

intrinsic dimensionality. Compared to previous approaches based on lo-

cal PCA the method has a number of important advantages: First, it can

be shown to have only linear time complexity w.r.t. the dimensionality of
the input space (in contrast to the cubic complexity of the conventional

approach) and hence becomes applicable even for very high dimensional

input spaces. Second, it is less sensitive to noise than former approaches,

and, finally, the extracted representation can be directly used for further

data processing tasks including auto-association and classification.

The presented method for ID estimation is illustrated on a synthetic data

set. It has also been successfully applied to ID estimation of full scale

image sequences, see [BS97].

1 Introduction

Adopting the classification in [JD&8], there are two primary approaches for es-
timating the intrinsic dimensionality'. The first one is the global approach in
which the swarm of patterns is unfolded or flattened in the d-dimensional space.
Benett’s algorithm [Ben69] and its successors as well as variants of MDSCAL
[Kru64] for intrinsic dimensionality estimation belong to this category. The sec-
ond approach is a local one and tries to estimate the intrinsic dimensionality
directly from information in the neighborhood of patterns without generating
configurations of points or projecting the pattterns to a lower dimensional space.
Pettis’ [PBJD79], Fukunaga and Olsen’s [FOT1] as well as Trunk’s [Tru76] and
Verveer and Duin’s method [VD95] belong to this category.

Our approach belongs to the second category as well and is based on opti-
mally topology preserving maps (OTPMs) and local principal component anal-
ysis (PCA) using a number of evenly distributed pointers in the manifold. Tt is

! The intrinsic, or topological, dimensionality of N patterns in an n-dimensional space
refers to the minimum number of “free” parameters needed to generate the patterns
[JD8S8]. It essentially determines whether the n-dimensional patterns can be described
adequately in a subspace (submanifold) of dimensionality m < n.



conceptually similar to that of Fukunaga and Olsen, [FOT71], using local PCA
as well, but by utilizing OTPMs can be shown to better scale with high dimen-
sional input spaces (linear instead of cubic) and to be more robust against noise.
The local subspaces as revealed by local our PCA can be directly used for data
modeling, as e.g. in [KL94].

2 Foundations

In this section we want to make the reader familiar with the basic ingredients
of our algorithm for ID estimation to be presented in the next section. We fist
introduce OT PMs, the underlying representation, and then turn to efficient
PCA for m < n points, the underlying method used for analyzing the OT PM,
and finally comment on the problem of estimating the ID by local PCA, the
general approach of our algorithm.

2.1 Constructing Optimally Topollogy Preserving Maps

Optimally Topology Preserving Maps (OT P Ms) are closely related to Martinetz’
Perfectly Topology Preserving Maps (PTPMs) [MS94] and are constructed in
just the same way. The only reason to introduce them separatly is that in order
to form a PTFM the pointers must be “dense” in the manifold M. Without prior
knowledge this assumption cannot be checked, and in practice it will rarely be
valid. OT' PMs emerge if just the construction method for PTFMs 1s applied
without checking for the density condition. Only in favourable cases one will
obtain a PTFM (probably without noticing). OT P Ms are nevertheless optimal
in the sense of the topographic function introduced by Villmann in [VDM94]:
In order to measure the degree of topology preservation of a graph GG with an
associated set of pointers S, Villmann effectively constructs the OTPM of S
and compares G with the OT PM . By construction, the topographic function
just indicates the highest (optimal) degree of topology preservation if GG is an
OTPM.

Definition1 OTPM. Let p(x) be a probability distribution on the input space
R* M = {x € R"|p(x) # 0} a manifold of feature vectors, T'C M a training
set of feature vectors and S = {¢; € M|i =1,..., N} aset of pointers in M.

We call the undirected graph G = (V| E), |V| = N, an optimally topology
preserving map of S given the training set T, OT P My (S), if

(1,j) € B & Fw e TVh e V\{i,j}: max{||ci —x|[,[[ ¢; —z [[} <[] cx — 2 ||
Corolary 1 If T'= M and if S is dense in M then OTPMr(S) is a PTPM.

Note that the definition of the OT PM is constructive: For calculating the
OTPMrp(S) simply pick # € T according pp(x), calculate the best and second
best matching pointers, ¢pmy and cgp,y, and connect bmu with smu. If repeated



infinitely often, G will converge to OT P My (S) with probability one. This pro-
cedure is just the essence of Martinetz” Hebbian learning rule.

For use in intrinsic dimensionality estimation and elsewhere, OT P Mp(S)
has two important properties. First, it does indeed only depend on the intrinsic
dimensionality of 7', i.e. it is independent of the dimensionality of the input
space. Embedding T into some higher dimensional space does not alter the graph.
Second, it is invariant against scaling and rigid transformations (translations and
rotations). Just by definition it is the representation that optimally reflects the
intrinsic (topological) structure of the data.

2.2 Efficient PCA for fewer points than dimensions

With S = {¢; € R*")i = 1,...,N} and AT = [¢; — ¢,...,en — €] the basic
trick from linear algebra for N < n is to calculate the PCA of D = AAT
instead of a PCA of the original covariance matrix X = AT A. The eigenvalues
of X, p1, ..., pun, are then identical to the eigenvalues vy, ..., vy of X and the
eigenvectors of X' w1, ..., un, can be calculated from the eigenvectors vy, ..., vy
of ¥ by setting u; = AT v;. This can be simply checked by

S = viv; & AAT v = viv; & ATAAT v = ; ATy & (AT v) = v ATy,

Since the PCA of the N x N matrix 5 can be calculated in O(N?), [PTVF8§],
and ¥ = AAT clearly can be computed in time O(N2n), it takes only time
O(N?n + N3) instead of O(n?) to calculate the PCA of the covariance matrix
of S.

2.3 On the problem of ID estimation with local PCA

We assume the data points & € T' to be noisy samples of a vector valued function
f+ R —R"?
z=[f(k)+7n (1)

where k = [k, ..., k] is an r-dimensional parameter vector and 7 denotes the
noise. The function f can be imagined to describe an r-dimensional hypersurface
S in n-dimensional space. The effect of noise is to render the surface not infinitely
thin (see [VD95]). Within a small region a linear approximation of the data set
(such as provided by the eigenvectors of local PCAs) is only valid if the largest
variance in directions n; perpendicular to S is much smaller than the smallest
variance in directions s; of S, i.e.

min; Var(s;) S 1 2)

max; Var(n;)
Here, Var(s;), the intra-surface variance, depends on the size of the local re-
gion and Var(n;) depends on the variance caused by the noise and the fact
that S cannot be exactly represented as a linear surface. This leads to a basic
dilemma for any ID estimation algorithm based on local PCA: If the region is



too large, Var(n;) might be high due to the non-linear nature of S. If, on the
other hand, the region is too small, the noise is still there and will eventually
dominate Var(s;). The solution is to search for the region size that gives the
best compromise.

Closely related to the problem of noise is the problem of having available
only a limited set of data. In order to make local PCA approaches work, the
data set has to be large enough to represent the non-linearities and to allow for
filtering out the noise.

3 Dimensionality Analysis with OT PMs

The basic procedure for intrinsic dimensionality analysis with OT P Ms works as
follows: To find a set S of NV pointers which reflects the distribution of T" we first
employs a clustering algorithm for 7" whose output are N cluster centers. Then
we calculate the graph GG as the optimal topology preserving map of S given T'.
The final step is to perform for each node v; a principal component analysis of
the correlation matrix of the difference vectors c; —c¢; of the pointers c; associated
with the nodes v; adjacent to v; in GG. The result of this analysis, i.e. eigenvalues
and vectors for each node, 1s the output of the procedure and subjected to further
analysis. Provided the complexity of the clustering algorithm is independent of
the intrinsic dimensionality d, the serial time complexity is O(n + m(d, T, S)3),
where m(d, T, S) is the maximum number of direct neighbors of a node in the
OTPM as depending on the intrinsic dimensionality, the training set 7" and
the set of pointers S. Bounds on m(d, T, S) or even a functional form are hard
to derive, yet m stays constant for constant ID, is independent of the input
dimension n, and experiments confirm that it is indeed small for small IDs.

In the rest of this section we will first comment on the use of clustering
algorithms and then extend the procedure to derive our actual ID estimation
method.

3.1 Clustering in TPCA

The reason for clustering the data prior to construction of the OT' PM and not
just drawing N pointers randomly from 7' is twofold: First the distribution of
the pointers should reflect the underlying distribution pr(z) as accurately as
possible and second we would like to eliminate noise on the data. Any vector
quantization algorithm which aims at minimizing the (normalized) quantization

error
| N
J = 52/‘/ | = — ¢ ||* p(x)de, (3)
i=1 3

where V; denotes the Voronoi cell of ¢;, is a good choice since by minimizing
the total variance it will preferably place the pointers within the manifold M
and filter out orthogonal noise. This holds because as long as criterion (2) is
fulfilled placing pointers within the surface and hence reducing the intra-surface



variance causes the largest decrease in J. From information theory it is known
that it also produces a distribution of pointers which reflects the probability
density, e.g. [Zad82].

3.2 The ID estimation procedure

Eventuallywe must decide how many dominant eigenvalues exist in each local
region, i.e. what size an eigenvalue as obtained by each local PCA must exceed
to indicate an associated intra-surface eigenvector. This amounts to determining
a threshold. We adopted the Da criterion from Fukunaga et. al. [FO71] which
regards an eigenvalue y; as significant if

s %, (4)
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If no prior knowledge is available, different values of o have to be tested. Oth-
erwise, knowledge of the largest noise component can be used to calculate «.

A second problem is that due to the noise/non-linearity dilemma mentioned
in section 2.3 we do not know the optimal local region sizes in advance and,
in particular, do not know the optimal number of pointers N. Monitoring the
development of the local eigenvalues for a growing number of pointers (N =
1,...) and searching for characteristic transitions is the most natural way to
proceed. In this case, one does not want to cluster all the N + 1 pointers from
scratch but rather would like to incrementally build on the existing N clusters,
i.e. just add one new cluster and modify the existing ones if necessary. Using the
LBG vector quantization algorithm, [LBG80], we start with N = 1 and add a new
pointer by first searching the cluster with highest intra cluster variance. In this
cluster we then search for the training sample & with the highest quantization
error, add a new pointer at x, take this configuration of N 4 1 pointers as the
new starting configuration for the LBG algorithm and run ¢pea for the N 4 1th
round. This procedure of first searching for the worst quantized cluster helps to
alleviate problems with outliers which could lead to multiple insertions at the
same point if only the worst quantized example was considered.

Finally, if we have reason to believe that the data set has constant intrinsic
dimensionality (i.e. has been generated by one function and not by a mixture
of functions) our estimate of the intrinsic dimensionality will be the average
of all local ID estimates together with its standard deviation. The ID estimate
and its standard deviation is then plotted versus the number of pointers N,
with different plots resulting from different choices of a. In the next section we
will demonstrate that these plots actually do give very fine and characteristic
hints on the ID of the data set. Qur estimation procedure is interactive because
the user has to choose a set of thresholds a and the final decision on the ID
depends on his inspection of the ID plots. Yet for reasons already indicated and
further illustrated in the next section, without prior knowledge a fully automated
procedure based on local PCA which outputs the ID estimate given the data set
does not make sense.



4 Experimental Results

In order to provide an impression of the characteristics of our ID estimation
procedure we here apply it to a mixture of noisy data sets of different intrinsic
structure and dimensionality. The data set is descibed and illustrated in figure

1.

Fig. 1. Two views of the Square-Line-Circle data set. The 3d data set consists of 5000
random dots within a circle, a line and a square in the xy-plane with uniform noise in
the z-direction. The noise has a variance of 1/12. The data density is approximately
uniform over the data set. Left: View on the xy-plane, Right: Rotation of 60° around
x-axis

Figure 2 shows the ID estimation procedure in progress for a growing number
of pointers on the D10 level. From top to bottom, left to right with 5, 10, 20, 35,
45, and 70 nodes in the OT' P M . Dark circles indicate a local ID estimate of one,
medium dark circles an estimate of two and light circles of three (D10 criterion).
For only five nodes the OT P M indicates a one dimensional connection structure
for the circle and the line and a two dimensional one for the square, identical
to the ID estimates (by local PCA of the OTPM). For 10 nodes the OTPM
has already grasped the intrinsic structure of the data set. For 20 nodes we also
get the correct local ID estimates for the line-data and the square but the ID
estimate of the circle data is still two instead of one. This is due to the curvature
(non-linearity) of the circle. From 35 to 45 nodes even the true ID of the circle
is revealed because the number of pointers has now become large enough for a
linear approximation of the circle on the D10 level. For even higher numbers
of pointers the distribution of pointers as obtained by the LBG algorithm will
eventually approximate the noise, i.e. leave the surface. From now on (see figure
2 for 70 nodes) the ID will be overestimated.

The mean squared quantization error for the Square-Line-Circle data set

mse:%ZZHl‘—Cin (5)

i=1 zeV;

for e.g. N = 45 nodes is 0.29 which is only about three times the variance
of the noise. Subtracting the noise variance, only two times the noise variance
remains for the average local intra-surface variance. Clearly, a simple local PCA
approach as e.g. that of Fukunaga et al. (taking the unfiltered data as input to



the local PCA) would not yield the correct local ID estimates on a D10 level
for that local region size but would detect the noise variance as a second or
third most significant eigenvalue on any level. This is what we refer to as the
increased robustness against noise and the increased discrimination ability of
our procedure.
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Fig. 2. Local ID estimation for the Square-Line-Circle data set for a growing number
of pointers (nodes in the OT'PM) on the D10 level. From top to bottom, left to right:
5, 10, 20, 35, 45, 70 nodes. Dark circles indicate a local 1D estimate of one, medium
dark circles an estimate of two and light circles of three dimensions.

Further applications of our ID estimation technique, including ID estimation
of a sequence of full scale images, can be found in [BS97]. Due to limited space
they had to be omitted here.

5 Conclusion

We have presented an algorithm for estimating the intrinsic dimensionality of
low dimensional submanifolds embedded in high dimensional feature spaces. The
algorithm belongs to the category of local ID-estimation procedures, is based on
local PCA and directly extends and improves its predecessor, the algorithm of
Fukunaga and Olsen, [FO71], in terms of computational complexity and noise
sensitivity. The main ideas are first to cluster the data, second to construct an
OTPM and third to use the OT'PM and not the data itself for local PCA.
Besides tests on an illustrative artificial data set (this article) the procedure
has been successfully applied to ID-estimation of image sequences with image



resolutions of up to 256 x 256 pixels, [BS97]. Such application is out of reach for
conventional ID-estimation procedures based on local PCA and to the best of
our knowledge has not been tackled before.

OT P Ms together with eigenvectors and eigenvalues returned by local PCA
are not only useful for ID estimation but can be used for linear approximation
of the data and construction of auto-associators in quite an obvious way. Such
associators will work by projecting new data to the local subspaces spanned by
the eigenvectors, i.e. by projecting to a linear approximation of the manifold.
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