
A new Selforganizing Neural Network using Geometric AlgebraEduardo Bayro-Corrochano, Sven Buchholz, Gerald SommerComputer Science Institute, Cognitive Systems Group,Christian-Albrechts University, Kiel, GermanyE-mail: edb,sbh,gs@informatik.uni-kiel.d400.deAbstractThis paper presents a new selforganizing type RBFneural network and introduces the Geometric Algebraframework in the neurocomputing �eld. Real valuedneural nets for function approximation require featureenhancement, dilation and rotation operations and arelimited by the Euclidean metric. The authors believethat more general and exible neural networks shouldbe designed in order to capture important geometriccharacteristics of the manifolds. This is an importantgoal overlooked ever since. Geometric algebra is a sys-tem which allows the design of neural networks in acoordinate-free framework to process patterns betweenlayers using di�erent dimensions and desired metric.The potential of such nets working in a Cli�ord alge-bra C(Vp;q) is shown by a simple application of framecoordination in robotics.1 IntroductionGeometric algebra is a coordinate-free approach togeometry based on the algebras of Grassmann and Clif-ford [2] and has already been successfully applied tomany areas of mathematical physics and engineering[2, 3, 4]. This paper shows that general and more ex-ible neural networks can be designed in the Geometricalgebra framework to process patterns between layersusing di�erent dimensions and desired metric.An outline of the algebra will be given in the nextsection and the reader is referred to [2] for more de-tails. The third section involves a discussion on themetric in neural computing. The new architecture andits learning procedure is presented in the fourth sec-tion. Finally experimental results of the robotics �eldand the conclusion sections follow.

2 An Outline of Cli�ord AlgebraCli�ord algebras are well-known to pure mathemati-cians [1]. In this work it will be used an interpretationcalled geometric algebra [2] which is a coordinate-freeapproach to geometry. In geometric algebra the ele-ments are coordinate-independent objects called mul-tivectors which can be multiplied together using a ge-ometric product. It is thus very di�erent to standardvector calculus.
2.1 The Geometric Product and MultivectorsThe geometric or Cli�ord product of two vectors aand b is written ab and de�ned asab = a�b+ a^b: (1)Where the outer product, ^, of two vectors forms abivector which is interpreted as a directed area. Thegeometric product ab is therefore the sum of a scalar,a �b, and a bivector, a^b. In 3 dimensions the thetrivector (a^b)^c is an oriented 3-dimensional volumeobtained by sweeping the bivector a b̂ along the vectorc. In a space of dimension n there are multivectors ofgrade 0 (scalars), grade 1 (vectors), grade 2 (bivec-tors), grade 3 (trivectors), etc... up to grade n. Anytwo such multivectors can be multiplied using the geo-metric product. Consider two multivectors Ar and Bsof grades r and s respectively. The geometric productof Ar and Bs can be written asArBs = hABir+s+hABir+s�2+: : :+hABijr�sj (2)where hM it is used to denote the t-grade part of mul-tivector M , e.g. habi = habi0 + habi2 = a � b+ a ^ b.In the following sections expressions of grade 0 will bewritten ignoring their subindex, i.e. habi0 = habi =a � b.



2.2 Geometric Algebra and RotorsFor an n-dimensional space it can be introduced anorthonormal basis of vectors f�ig i = 1; :::; n such that�i ��j = �ij . This leads to a basis for the entire algebra:1; f�ig; f�i^�jg; f�i^�j^�kg;: : : ; �1^�2^: : :^�n (3)Note that it shall not be used bold symbols for thesebasis vectors. The highest grade element is called thepseudoscalar of the space. Any multivector can be ex-pressed in terms of this basis, and while it is often usefulto do so, it can be stressed that the main strength of ge-ometric algebra is the ability to carry out operations ina basis-free manner. The 23-dimensional Pauli-Algebrahas the following basis:1|{z}scalar; f�1; �2; �3g| {z }vectors ; f�1�2; �2�3; �3�1g| {z }bivectors ; f�1�2�3g � i| {z }trivector :(4)By straightforward multiplication it can be easilyseen that the three bivectors can also be written as�2�3 = i�1 = i; �1�3 = �i�2 = j;�1�2 = i�3 = k: (5)Using these simple bivectors it can be proved that thequaternion algebra of Hamilton is a subset of the ge-ometric algebra of space. If a quaternion A is repre-sented by [a0; a1; a2; a3], then there exists a one-to-onemapping between quaternions and rotors given byA = [a0; a1; a2; a3]$ a0 + a1(i�1) + a2(i�2) + a3(i�3)(6)In order to �nd out more about rotors in the geomet-ric algebra we note that any rotation can be repre-sented by a pair of reections. It can be easily shownthat the result of reecting a vector a in the planeperpendicular to a unit vector n is a? � ak = �nanwhere a? and ak respectively denote parts of a per-pendicular and parallel to n. Thus, a reection ofa in the plane perpendicular to n, followed by a re-ection in the plane perpendicular to m results ina new vector �m(�nan)m = (mn)a(nm) = Ra~R.The multivector R = mn is called a rotor. It con-tains only even-grade elements and satis�es R~R = 1.In the 3-D space we use the term `rotor' for thoseeven elements of the space that represent rotations.Any rotor can be written in the form R = �eB=2,where B is a bivector. In particular, in 3-D we writeR = e(�i �2n) = cos �2 � in sin �2 which represents a ro-tation of � radians anticlockwise about an axis parallelto the unit vector n.

A potentially very useful expression for the rotationoperator R of a m-dimensional multivector x isy = Rx~R = e�B=2xeB=2 (7)where nowB is a m-bladed bivector. This equation canbe further decomposed into a sequence of rotations byangles j�2kj in particular i2k-planesy = RmRm�1:::R1x~R1:::~Rm�1~Rm: (8)where Rk = e�B2k=2 and ~Rk = eB2k=2.3 Metric and Cli�ord Neural NetworksClassic neural network models and their training al-gorithms are essentially dependent of the metric, scalarproduct and norm. It is important to remark that allthese mathematical characteristics are only related tothe base of the vector space of the algebra and there-fore fully independent of the attributed algebraic struc-ture. In other words the metric is exclusively de�nedby the space modelling using a particular vector ba-sis. The quality of a neural network design in an alge-braic framework depends of the modelling of the spaceinvolving a particular metric and the relation of thismodelling with its associated algebraic product.Recently Person et al [5] extended the complex Per-ceptron developed by Georgiou and Koutsougeras [6]in the Cli�ord algebra framework. The approach ofPearson is unfortunately also limited to the Euclideanmetric. This uses as net inputsW � �X , net outputs oi =W �X� jWXj and as learning rule Wk+1 = Wk + �k �Xk,where �Xk is the conjugate vector. Common rules ofcomplex conjugation are not automaticallypreserved inthe Cli�ord algebra. A di�erence between a more gen-eral Cli�ord Algebra and complex numbers is shown bythe equation x�x = (jxj; 0; s3; :::; sn) where si 6=0 standsfor the resultant multivector of grade i. One operationwhich is similar is xy = �y�x 8x;y multivectors.Pearson et al [5] used the same transfer functionu(z) = zc+ 1r jzj (where z is any multivector) as the oneused by Georgiou et al which is based in the Euclideannorm in terms of the algebra jxj = �PA [x]2A�1=2 [2].Georgiou et al [6] used for the prove of the learning ruleof the complex perceptron explicitly special character-istics of the complex numbers like the Euler's functionei� = cos� + i sin�. Due the noncommutative mul-tiplication of the geometric product Pearson et al [5]had to prove their learning rule in a di�erent way. Af-ter tests using the simulated Cli�ord backpropagationmulti-layer perceptron of Pearson, the authors of thispaper believe that the network using the norm of the



Figure 1.a Dynamic node coding.Euclidean space behaves actually as a simple real val-ued backpropagation neural network and it has alsoconvergence problems. As a result one can a�rm thatthe design of the architecture and learning rule of theCli�ord type neural networks is still an open question.The previous brief analysis shows that one shouldlook for more exible structures which also allow theprocessing with non-Euclidean metrics. In this paperthe authors present a neural network which can be for-mated in any Cli�ord Algebra C(Vp;q). Therefore thenetwork can process signals in any desired metric. Theselforganization phase is implemented in terms of basicconcepts of the resonance theory and in the supervisedphase Cli�ord outstars are tuned. The design guar-anties that the neural network is able to capture im-portant characteristics of the geometric structure of thedata. The authors believe that is the main motivationfor geometric algebra applications in neural computing.This important scienti�c goal has been overlooked eversince.4 Net Architecture and Training Algo-rithmThe learning procedure for the cases of the previoussection has to minimize an error function E(~p) where~p is the vector (not a multivector) which comprises alladjustable parameters.In the Pearson's implementation [5], the vector ~p(weights and activation values) can be adjusted usingthe Cli�ord back propagation training rule. This proce-dure is unfortunately limited to the Euclidean metric.In contrast the selforganizing Cli�ord network allowsaccording to the task, if necessary, a di�erent metric.The learning procedure of the net consists basically inthe �rst phase of an unsupervised method for the hid-den layer, i.e. a multivector clustering algorithm, and asupervised one for the output layer. The second phaseof learning is supervised and if it is still necessary helpsto �netune all the net parameters. These phases andthe recall mode are explained separately in the nextsubsections.

Figure 1.b Outstars labeling.
4.1 Unsupervised LearningFigure 1.a depicts the evolution of the net architec-ture during selfsorganization. This process is in someaspects similar to the adaptive resonance theory selfor-ganization [7]. At the very beginning the waiting mem-ory and the long term memory have virgin nodes. Theinput patterns give information of di�erent events andcan resonate with a corresponding existing node. Thiscapability of the net is implemented by a resonancedetector and control mechanism using a task depen-dent metric and competitive learning. Note that thegeometric algebra approach allows the use of a speci�cmetric for a particular task. When a winner node is se-lected its weights are smoothly further adjusted. Dur-ing the coding of a new pattern the control mechanismupdates the weights of a resonant node which could beeither in the long term memory or in the waiting stage.A candidate node resides in the waiting stage until itsurpasses an evidence threshold, then it will be shiftedto the long term memory. After the net is stable theparameters of the radial basis functions for each nodeare computed. These will be used for computing theresonance grade or membership grade (�j) of an inputmultivector with the jth-nodes. This factor will playan important role in the inhibition e�ect of the non-resonant nodes (winner-takes-all) during the trainingof the next layer and during the recall mode.
4.2 Supervised learningIn this stage of the training the multivector weightsof the output layer have to be adjusted, see �gure 1.b .Passing again the training patterns, the weights of theoutstar of the resonant nodes are adapted using the



following simple rulew2ji(k + 1) = w2ji(k) + �j�(k)(odi � JXj=1 �jw2ji (k))(9)where i is the multivector connection to the ith-output,�j is a constant and indicates the degree of the partic-ipation of the node j, �(k) is a gain factor and odithe desired i � th output multivector. All multiplica-tions are geometric products and each output oi sup-plies a multivector. Each output multivector could becomposed as the geometric product of two multivectorsoi = eiyi where ei could be set to a projective split vec-tor [2] or to the scalar unity, i.e. ei = 1, for the case ofa simple multivector association. The projective splitcan be used to connect the input and output spacesof di�erent dimensions and metric. The multivector yicould be set to w1i or any other. As a result the invari-ant properties of the input patterns can be enhancedand made more observables for the net and in somecases the nonlinearity in one space can be easily trans-formed to a linear one in the representation of the otherspace. Here we can also appreciate the coordinate-freeadvantages of the geometric algebra. Once an initialsolution is found after the �rst training phase, a super-vised learning method can be additionally used in orderto �ne-tune all the network parameters. According toan error function E(~p) the vector ~p, which comprisesw1i w2ji will be adjusted after each input and i � thoutput values xk; fi(xk) using the descend gradient ofthe functionale(~p;xk; f(xk)) = 12 joi~p(xk)� fi(xk)j2 (10)as follows~pk = ~pk�1 � �k�r[c(~pk�1;xk; fi(xk))]� (11)This requires partial derivatives with respect to multi-vectors [2].
4.3 Recall modeIn the recall mode the outputs of the radial basisfunctions moderate the participation of the resonantnodes at the output energy level. This is captured bya simple equation oi = JXj=1 �jw2ji (12)where oi is the ith output, J is the amount of hiddennodes, �j is the degree of the participation of node jand is computed from the radial basis functions.

Figure 2. Mapping between two motion space.
Figure 3. Combined structure for fuzzy clustering.5 Experimental ResultsThe motions of reference frames of joints in roboticscan be nicely represented using screws or dual quater-nions. Figure 2 depicts the geometric abstraction ofthe problem.For this experiment the range of movementswas lim-ited to a practical narrow area. For the approximationof this mapping a combined structure using two Clif-ford selforganizing neural networks was implemented.This is presented in Figures 3.The two neural networks were set up in the Clif-ford algebra C(V0;3) [2] accordingly and applied to ap-proximate the mapping between the screw motions ofsystems A and B. After the selforganization of eachnetwork one has recognized a reduced number of longterm nodes I and J, i.e clusters of the real and dual partof the dual quaternions. Here we used in fast learning[7] a moderate categorization threshold �. In the su-pervised phase the radial basis functions are tuned andthen the Cli�ord outstarts are adjusted. The structureis full connected and the weights of the outstars arealso quaternions, see Figure 3. Note that the amountof the outputs is automatically de�ned by the bigger



number of clusters of the nets, i.e L=MAX(I,J). Aftersupervised training the net was recalled with previouslyunseen patterns and due to its nice capability of fuzzyoutputs the net was able to follow the deviation of themain classes as expected. Some pattern examples arepresented below. The ideal dual quaternions at theoutput are presented in Table I. The outputs in termsof dual quaternions for each category (Cat.) and its�I�MAX and �J�MAX of the hidden layers are pre-sented in the Table II for a combined structure withI=J=L=5. The combined network with I=J=5 has abetter performance than a combined with I=5>J, be-cause it has more nodes dedicated for clustering. Whena lower � is used as in the case I=5>J, the coding ofthe dual element is more rough a�ecting the overallperformance. For space reasons we can not includecomparative experiments for this case. It may be pos-sible for other application that a combined structurewith I6=J su�ces. Therefore in general it is better thatthe left and the right modules should use independent�'s.Cat:L b0 b1 b2 b3 b00 b01 b02 b31 0.998 0.023 0.031 0.046 -0.061 0.411 0.508 0.7542 0.927 0.143 0.191 0.287 -0.374 0.528 0.460 0.6353 0.979 0.076 0.102 0.153 -0.199 0.468 0.494 0.7114 0.874 0.186 0.248 0.372 -0.484 0.559 0.429 0.5725 0.771 0.244 0.325 0.488 -0.636 0.589 0.370 0.462Table I: Expected dual quaternions at the output.Cat: b0 b1 b2 b3 b00 b01 b02 b3 �I�MAX �J�MAX1.1 +0.998 +0.023 +0.031 +0.046 -0.060 +0.411 +0.509 +0.754 0.987 0.7931.2 +0.999 +0.018 +0.024 +0.036 -0.047 +0.405 +0.510 +0.758 0.764 0.7132.1 +0.927 +0.144 +0.192 +0.288 -0.374 +0.529 +0.460 +0.636 0.531 0.9992.2 +0.936 +0.136 +0.181 +0.271 -0.353 +0.522 +0.466 +0.646 0.940 0.6973.1 +0.981 +0.075 +0.100 +0.150 -0.195 +0.466 +0.495 +0.714 0.976 0.88503.2 +0.982 +0.073 +0.097 +0.146 -0.190 +0.465 +0.495 +0.715 0.952 0.7084.1 +0.877 +0.184 +0.246 +0.369 -0.480 +0.558 +0.431 +0.576 0.988 0.9794.2 +0.878 +0.184 +0.245 +0.368 -0.479 +0.558 +0.431 +0.576 0.987 0.9755.1 +0.793 +0.234 +0.312 +0.468 -0.609 +0.585 +0.383 +0.485 0.950 0.7905.2 +0.795 +0.233 +0.310 +0.466 -0.606 +0.585 +0.384 +0.487 0.945 0.787Table II: Dual quaternions at the output structurewith I=J=L=5.6 ConclusionThis paper presents a novel selforganizing type RBFnetwork using the Cli�ord algebra framework. The au-thors have shown that the use of geometric algebrahelps enormously to improve the potential of networkstructures and to simplify the learning algorithms. Inthe network a new type of embedded processing calledprojective split can be added for feature enhancementand better invariants recognition. This type of neu-ral networks can be also cascaded in order to processpatterns using di�erent space dimension and metric,the latter being possibly only due the projective split.
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