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Introduction

In recent studies (Keidel, Tirsch, & Péppl, 1987; Rensing, An der Heiden, &
Mackey, 1987), it has been pointed out that the bioelectrical activity of the cen-
tral nervous system (CNS) is not maintained in a steady state but shows oscilla-
tions, exhibiting a well-ordered change of activity and synergy in time. Cyclic
alterations of the spontaneously active human nervous “network” are respon-
sible for these rthythms and oscillations with various period lengths (Brenner &
Schaul, 1990; Koepchen, Hilton, & Trzebski, 1980; Scheuler, Rappelsberger, &
Schmatz, 1988). Numerous mathematical models have been developed in the
last years for the interpretation of the self-organized rhythmical behavior of
biological (Mackey & Glass, 1977; Carpenter, 1983) and social systems (Brun-
ner & Tschacher, 1991). Here some of the deterministic nonlinear models will
be considered.

A detailed review of the mathematical approaches in brain dynamics is
given by Dvorak and Holden (1990). Nonlinear models for analyzing the com-
plex time structure of CNS signals could enlarge our insight into the functioning
of the brain, especially the mutual interaction of various brain subsystems. In
contrast, classical linear models which are based on stationary processes, study
brain dynamics merely from a stochastic framework. Spectral analysis provides
a good example of the classical model; the analysis is based on the assumption
that the EEG is generated by the superposition of an infinite number of har-
monic and linear periodic oscillators. It will be illustrated in the sequel that
interesting aspects of CNs functioning are lost by adopting a linear stochastic
framework.

By applying methods of nonlinear dynamical system theory, it will be
attempted to model the underlying dynamical system (Farmer; 1982; Mayer-
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Kress & Holzfuss, 1987; Nicolis, 1987). The solution of the basic question
how many equations are needed to describe the observed process, amounts
to the estimation of the dimensionality of the underlying dynamical system.
Dimensionality can be estimated under the assumption that the investigated
one-dimensional time series is derived from synergetic systems and is showing
a deterministic chaotic_behavior. The estimation of the dimension provides
information about the number of active coherent modes modulating the cor-
responding physiological processes in the brain. These variables may also be
related to behavioral and personality variables. This nonlinear model may
be described by a system of several nonlinear coupled differential equations in
which different system states depend on the choice of system parameters. This
approach may lead to a better interpretation of the EEG signal, as the gen-
eration of certain signal structures is performed by means of selected modes
and system parameters. The introduction of such mathematical models of
time order in bioelectrical activities would enrich our knowledge about the
CNS considerably and possibly present a new basis for the assessment of brain
dysfunctions.

Nonlinear dynamical analysis has found an important application do-
main in the bioelectrical activity of the brain; this gave rise to statements as
“the EEG may be more than white noise,” and “the EEG reflects deterministic
chaos” (Basar, 1990). This new approach in brain research makes an essential
contribution to our knowledge about the functioning of the brain. As a one-
dimensional projection of a high-dimensional complex dynamical system, the
EEG signal may play a causal role in the excitation of the brain via sensory
organs or internal arousal, and in information processing and storage in the
brain (Adey, 1966, 1974; Landfield, 1976). The introduction of ‘he “running”
dimensional analysis makes it possible to disclose temporal alterations (non-
stationarities) in the signal’s complexity and to discern transitions from low- to
high-dimensional brain chaos. The modeling of the observed cyclic alterations
in the dynamics of the signal may be performed by the interaction of two or
more nonlinear oscillators functioning as interrelated partners in an overlaying
system. A model of such a central pattern generator has been proposed by
Bay and Hemami (1987).

The goals of the present paper are (a) to demonstrate a temporal order
in the main frequency range of two prominent CNS oscillators such as EEG
and tremor; (b) to present a systematic relationship between cyclic alterations
of spectral density and dimensional complexity of the EEG; (c) to propose a
neural approach which may explain the observed correlations; and (d) to gain
insight into the functioning of the CNs by nonlinear modeling.
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Figure 4.1
22-s section of a 4-min record of EEG activity and physiological finger tremor
(from Tirsch, Keidel, & Poppl, 1988)

Materials and Methods

Eight healthy students in an awaked state with eyes closed were investigated.
Simultaneous unipolar scalp-EEG recordings were obtained from left and right
motor cortex (C3/C4), from mid-frontal (Fz) and mid-occipital regions (Oz)
corresponding to the 10/20 system and referred to linked earlobes. Simul-
taneous recordings of physiological finger tremor were made by gripping an
accelerometer between the right thumb and forefinger with maximal force. All
signals were continuously recorded for 4 minutes and A/D converted using a
sampling rate of 500 Hz.

When visually inspecting the temporal structure of the recordings, only
vague information about short-term fluctuations in the bioelectrical activity
can be established (see Figure 4.1). Underlying systematic oscillatory changes
in neuronal activity are quite below the perception thresholds of the human
cognitive system and can only be detected by appropriate computer-assisted
procedures.

Linear Spectral Analysis

As a classical method of time series analysis, spectral analysis was applied to
10-s periods taken from a 4-min epoch of CNS signals. After low-pass filtering
of 50 Hz and elimination of linear trends, each segment of 2.56 s duration
overlapping each other by 1.28 s was subjected to Fast Fourier Transforma-
tion. The segmental spectra were averaged according to the segmentation al-
gorithm of Welch (1967). Frequency resolution was 0.391 Hz, upper frequency
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limit 31.28 Hz. In a subsequent analysis the band-related spectral power was
computed in the following frequency bands: subdelta (0.4-1.5 Hz), delta (1.5
3.5 Hz), theta (3.5-7.4 Hz), alpha (7.4-12.5 Hz), betal (12.5-19.5 Hz) an(
beta2 (19.5-25 Hz).

Nonlinear Dynamical Analysis
Geometrical Reconstruction of “Strange Attractors”

In contrast to the preceding analysis which describes the spectral properties
of the signal and is based on the superposition of harmonic and linear per;.
odic oscillators, procedures and measures were introduced that characterize
the local structure of the posttransient phase-space orbits, i.e., the so-called
“strange attractors.”

The dynamical approach described here expresses the measured time
series of the CNS signal as trajectories in a multidimensional phase-space. \
trajectory is a mathematical description of a sequence of values derived from a
state variable of a dynamical system which can be described by state equations.
Hence, starting from some initial conditions, an orbit is generated on which the
system’s trajectories move and tend to terminate in an attractor. In the most
simple case, this can be a limit cycle with a very regular structure; in other
cases, when the activity of the system appears to be random but is actually
deterministic, a strange (or chaotic) attractor with a more complicated and
rather highly fractured structure may be obtained.

Based on a geometrical view of the underlying dynamical process, a tech-
nique was developed by which a single scalar time series can be interpreted as
the one-dimensional projection of a multidimensional phase-space trajectory
of an (unknown) nonlinear dynamical system. This technique of geometrical
reconstruction (Packardt, Crutchfield, Farmer, & Shaw, 1982; Takens, 1931
is a basic tool for the characterization of a dynamical chaotic system.

Let the variable y(t;) with i = 1,..., N represent the time series of the
bioelectrical activity of the CNS, e.g., the EEG signal derived from one lead on
the scalp. Under the assumption that the metric properties of the original and
reconstructed attractor will be the same and that the dynamics of the signal
may be described by a set of d variables which are obtained from the time
series by introducing a time lag 7, one can reconstruct a phase-space vector of
the “embedding” dimension d. The general form of such a phase-space vector
is given by:

glts) = {y(t),y(ti + 7),y(ti +27), - y(ti + (d = 1)7)).

It can be derived from the equation that the instantaneous state of the
system is represented by a point in the multidimensional phase-space. Wit
increasing discrete time index from 1 to N, the consecutive data points de-
scribe a geometrical object on which the trajectories of the system move. The
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reconstructed phase trajectories, the “attractors” from the time series, can be
drawn as phase portraits in different projections. Their shape corresponds to
the dynamics of the system and depends markedly on the time lag 7. Various
values of 7 are possible in practical applications. In order to find a suitable
time delay, the mutual information content of the time series js calculated, as
explained in the next subsection.

Mutual Information Content

Several procedures have been proposed to estimate time delays in nonlinear
systems. In addition to functions of autocorrelations, the mutual informa-
tion content has been calculated frequently. The measure describes the re-
lation between input and output of nonlinear systems, providing the amount
of information about a random vector coupled with another vector. Based
on Shannon’s information theory (Shannon & Weaver, 1948) and on Shaw’s
(1985) idea to predict a time series vector at time ¢ + 7 if the measurement
at time ¢ is known, a procedure was developed which computes the average
amount of mutual information (Fraser & Swinney, 1986; Mars & Van Arragon,
1982). For the four-dimensional discrete case, this measure is given by:

M
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in which
F3(z;) is the relative frequency of realization z; derived from time series x(t);
Fy(y;) is the relative frequency of realization y; derived from time series
z(t+71);

F.(z¢) is the relative frequency of realization 2z derived from time series
z(t + 27);

Fy(ve) is the relative frequency of realization v; derived from time series
z(t + 37);

Fryzy is the joint relative frequency of (z;,y;, 2, Ve);

M is the total number of cells.

When constructing an “attractor” from limited time series, the method
enables us to determine the optimal time delay. The latter value is obtained
when the mutual prediction reaches the first minimum; for this optimal time
delay, the phase-space coordinates are approximately uncorrelated and inde-
pendent.

oS he Gy

T

i

e s e B




60 Tirsch, Keidel, & Sommer

Spectral density [uv2.5)
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Figure 4.2
Pseudo-3D spectrogram of “running” auto-power derived from a 4—n?in 'ep(wli
of EEG Oz. The spectral frequency in 77 increments of 0.4 Hz is indicated
on the abscissa. The time or the number of shifts in seconds is drawn on the

Z-axis




Brain Chaos
Dimensional Analysis

The basic idea for the characterization of chaotic dynamical systems is to cal-
culate the dimension of their attractors measuring their self-similar structure.
[nitial reports on this subject were published by Farmer (1983). The mea-
sure is widely used in the field of nonlinear dynamical analysis to estimate
the number of independent variables needed to model the dynamical process.
The dimensionality is also a measure of complexity related to the number of
active coherent modes modulating the process, and enables to discriminate
between deterministic and random activity. To compute the dimensionality
of an attractor, the procedure of Grassberger and Procaccia (1983) was ap-
plied utilizing the scaling structure of the attractor. It can be quantified by
measuring the spatial correlation between pairs of random points (%;,y;) on
the attractor. This requires the introduction of an additional concept: the
correlation integral, representing the number of pairs of phase-space vectors
separated by distances less than a prior defined value. The general form of

this integral is:

1 N N
Cry=572 > OC-Im—al,
1=1 j=1,7#t

in which
N is the number of sample points;
O is the Heaviside function:
O(z)=0if z <0
O(z)=1ifz > 0;
r is the distance;
y; is the phase—space vector.

First, we choose a refcrence point §; in the phase-space. Next, all possible
distances |7; — 7;| from the remaining N — 1 points are computed. By means
of the Heaviside function, all the data points within a given distance r from
the reference point are counted. By repeated application of this procedure to
all data points, the correlation integral is determined. For a large number N
of data points and for small distances r, this function has the following scaling
property which is due to the exponential divergence of trajectories:

C(r) ~rP,

in which D is the correlation dimension.
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One can show that the correlation exponent is a useful measure of the
local structure of a strange attractor (Grassberger & Procaccia, 1983). The
correlation dimension D is obtained as the slope of a regression line fitteq
through the scatter diagram of the two logarithmic variables C' and T, using
the region with relevant scaling behavior. The whole procedure is performed
by considering successively higher values of the embedding dimension. For 4
sufficiently large value the dimension of the attractor will be obtained as the
saturation value of this procedure. Following the theorem of Takens (1981).
the embedding dimension should be greater than 2D + 1].

This approximation method, which is routinely used in several fields. is
limited by the finite precision of the fitting procedures and the finite length
of the time series. Because biosignals are almost never completely stationary
over a long time, care must be taken in selecting the appropriate number of
data points. Although analysis of long-term series requires much computation
time, the evaluation of small data sets can result in underestimation of the
dimensionality.

“Running” Analysis

In contrast to conventional analysis techniques consisting in the consecutive
evaluation of defined periods, we introduced the ‘running” technique. This
technique by which systematic oscillatory changes in the signal’s activity can be
detected more clearly was developed in analogy to earlier described “running”
computations of, among other things, correlation coefficients (described by
Keidel, 1976). It enables a sliding shifting of a defined period like a “running”
analysis window over the whole record length, using a selected time shift At.
An extensive description of this procedure as applied to spectral analysis is
given by Tirsch et al. (1988).

Results

“Running” Spectral Analysis versus Dimensional Anal-
ysis Derived from EEG Data

Applying the “running” technique to spectral analysis of a 4-min EEG epoch
with a window length of 10 s and time shifts of 1 s produces 230 spectral
densities. After smoothing with an autoregressive low-pass filter, the result-
ing spectra are drawn as chronospectrograms as shown in Figure 4.2. The
dominant power in the alpha-range and the pronounced rhythmic variations
in power densities with periods of about 30-40 s appearing during the analysis
of 4 minutes are easily observed.

Analogous to the “running” spectral analysis (Tirsch et al., 1988), a
“running” computation of dimensional complexity was introduced as reported
earlier (Keidel, Tirsch, & Péppl, 1990b). In the upper graph of Figure 4.3.




Brain Chaos 63

£1101_108_112 AOR

COMPLEXITY PRARAMETER

5.00 T T T
a 30 60 9 é i_:..'C 180 210
WINDOW NUMBER
12.00
$
% 9.00 //\ 1
=z / A
,
w J
= / & \ /
= 6.00 | \/\/ 1
a :
x 2
& :
g H
T 3.00 15
o E
B 2
L2l =
g
0.00 T T T - " - . 5
0 30 60 30 120 150 180 210
WINDOW NUMBER
Figure 4.3
Synopsis of “running” dimensional and spectral analysis derived from the same i
3
EEG epoch as in Figure 4.2 :

Explanation:

Upper graph: Smoothed time courses of complexity over 230 windows with embed-
ding dimension from 11 up to 20. Time delay is 24 ms. Length of analysis window
is 10 s using time shifts of 1 s.

Lower graph: Time series of spectral amplitude in the alpha-band (7.5-13.5 Hz).
Note the reciprocal behavior of the two graphs indicating that an increase of com-
plexity causes a decrease of spectral density, and vice versa.
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Figure 4.4
Relationship between “‘running” dimensional and spectral analysis derived
from the same EEG recording as in Figure 4.2
Explanation:
Upper graph: Normalized time series of complexity (embedding dimension = 16.
7 = 24 ms) and inverted spectral density in the alpha-band (dashed line).
Lower graph: Time series of 74 positive and 31 negative coefficients describing the
similarity between the two graphs at each time increment. Note the high degree of
correlation between the two methods of analysis.
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the results of applying the “running” technique to dimensional analysis are
illustrated for the same 4-min EEG epoch as above. The window number for
each of the 230 sliding computations of dimensional complexity is drawn on
the abscissa (time shift is 1 s; window length is 10 s; 5000 data points are
used). The embedding dimension increases from 11 up to 20. The numeric
range of complexity is comparable with specific EEG findings in recent literature
(Mayer-Kress & Layne, 1987b; Mayer-Kress, Yates, Benton, Keidel, Tirsch, &
Psppl, 1988). In contrast to consecutive analysis, the rhythmic variation of
complexity is more distinct (upper graph of Figure 4.3).

The time course of the band-related spectral density in the alpha-band
Jerived from the same EEG data is shown below. Comparing the cyclic struc-
ture of the two graphs, a relationship between dimensional complexity and
spectral density is evident. This correlation is demonstrated more clearly in
Figure 4.4. For this purpose the time courses of the complexity according
{0 the embedding dimension of 16 and of the inverted spectral density were
normalized between -1 and +1 and superimposed (upper graph).

The inverted spectral density, represented by the dotted line, clearly fol-
lows the cyclic alterations of the dimensionality. In order to quantify the
similarity of the two graphs, a simple procedure was introduced which is based
on the quotient of slopes of the two regression lines fitted along the two curves.
The result of this technique is shown in the lower diagram, where the derived
similarity coefficients are represented by columns. The number of positive sim-
larities indicates a high degree of correlation between dimensional complexity
and inverted spectral density. The high degree of congruence between the two
graphs can also be confirmed by the application of a sine wave fitting technique
that considers the temporal order of systematic cyclic changes in complexity
and inverse spectral density. The optimal fit which represents the endogenous
auto-rhythm within the time series was determined by a least-square proce-
dure which minimizes the residual variance matching various sine functions
with stepwise increasing period lengths (Tirsch et al., 1988).

In Figure 4.5a the time series corresponding to an embedding dimension
of 16 is drawn together with the optimal sine waves that correspond to the
fits of first and second order; in the same way the time series of noninverted
spectral density in the alpha-band is presented (see Figure 4.5b). Comparing
the results of sine wave fitting derived from the two methods of analysis, the
period durations of either the first or second fit are nearly identical, indicating
a 40 or 41 s periodicity and a nearly identical temporal order of the two time
series.

To determine whether the observed conformity in temporal order is also
valid for other data sets, the procedure as described before was applied to the
EEG data of 7 subjects corresponding to the same mid-occipital derivation as
in the previous case. In Table 4.1 the period lengths corresponding to the time
series of complexity and spectral density are illustrated. A matched paired
t-test was applied to the data sets of the Table, indicating a nonsignificant
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Figure 4.5

Results of sine wave fitting technique

Explanation:

(a) Left upper graph: Time series of complexity (d=16) derived from the same EEG

recording as in Figure 4.2.

Left lower graph: Optimal fit of sine waves of first (7 = 40 s) and second order

(T = 32 s, dashed line).

(b) Right upper graph: Time series of spectral density.
Right lower graph: Optimal fit of first (7' = 25 s) and second order (7" = 41 s,
dashed line). Note that period durations derived from complexity are nearly identical

to those from spectral density.
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Table 4.1
Comparison of Period Lengths Derived from Sine Wave Fitting Technique
Applied to the Time Series of Complexity and Spectral Density

Period length derived from:
(a) complexity (b) alpha-power
(wave fitting)  (7.5-13.7 Hz)
Subject T (s) T, (s)
1 42 41
2 31 32
3 32 34
4 44 40
5 40 40
6 38 45
7 39 42
Averages 38.0 39.14

difference between the two sets of period lengths.

Tremor Data

To obtain long lasting recordings of oscillations of physiological finger tremor
the subjects were lying in a supine position; their right arm was supported.
The chronospectrogram shows the widely described frequency dominance of
tremor oscillations in the alpha range (7.5-13.7 Hz), as can be verified in
Figure 4.6. As demonstrated for EEG data previously, the time course of the
chronospectrogram is well structured with “slow” oscillations of about 30-40 s
in the same range.

Figure 4.7 demonstrates the relationship between complexity and spec-
tral density. Despite various discordances between 30 and 60 s, a high degree
of correlation between the two graphs is revealed. Moreover, the observed
correlation can be confirmed by the sine wave fitting technique shown in Fig-
ure 4.8. The agreement is also apparent when the corresponding endogenous
rhythms represented by 3 fits with period lengths ranging from 29 to 74 s are
considered.

Discussion

The approach of a “running” spectral analysis of long-term recordings of hu-
man CNS signals enabled us to detect rhythmic variations in neuronal activity
and to demonstrate that the CNS is not maintained on a static level but op-
erates in an oscillatory mode. Period lengths ranging from 20 s to 70 s, most
frequently of 40 s, were observed. Various other investigations have reported
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Spectral density [uV?.s]
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Figure 4.6
Pseudo-3D spectrogram of “running” auto-power derived from a 4-min epoch
of finger tremor. Note the rhythmic variations in power densities with periods
of approximately 30-40 s during an analysis of 4 min

similar periodicities of approximately one minute (Lips, Schultz, & Pichmayr.
1987; Scheuler, Rappelsberger, Schmatz, Pastelak-Price, Petsche, & Kubicki,
1990; Terzano, Parrino, & Spaggiari, 1988).

In earlier investigations (Keidel, 1990; Keidel, Tirsch, & Péppl, 1989a:
Keidel, Tirsch, Péppl, & Radmacher, 1990; Keidel, Czettritz, Tirsch, Wein-
mann, Bax, & Eckardt, 1990; Tirsch et al., 1988), we demonstrated that these
periodicities play an important role in the cortical (EEG) and spinal output of
the brain corresponding to muscle and finger tremor as mechanical correlates
of the motoneuronal activity. The introduction of a sliding or “running” analy-
sis of long-term recordings of such signals enabled us to disclose a well-ordered
temporal pattern of rhythmic change in the spectral density and coherence
of neurobiological signals. We assumed that a power increase in the main
frequency range may be due to an underlying increase in synchronization or
coupling strength of neuronal elements generating the derived signals. Con-
sequently, the “network” of the CNS may be more ordered and hence, less
complex in case of high spectral density, and vice versa. Thus, we hypothesize
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Fxgure 4.7
Relationship between “running” dimensional and spectral analysis derived
from the same tremor recording as in Figure 4.6
Explanation:
Upper graph: Normalized time series of complexity (embedding dimension = 16,
=16 ms) and inverted spectral density in the alpha-band (dashed line).
Lower graph: Time series of 81 positive and 27 negative similarity coefficients. Note
the high degree of correlation between the two methods.
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Figure 4.8
Results of sine wave fitting technique

Explanation:
(a) Left upper graph: Time series of complexity (d = 16) derived from the same
EEG recording as in Figure 4.7

Left lower graph: Optimal fit of sine waves of first (T =74 s), second (T = 44 s.
dashed line) and third order (T = 29 s, dashed line).
(b) Right upper graph: Time series of spectral density.

Right lower graph: Optimal fit of first (T = 66 s), second (T' = 425, dashed
line) and third order (7' = 30 s, dashed line). Note that period durations derived
from complexity are nearly identical to those from the spectral density.
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Decrease of dimensional complexity implies:
—increase of order of the underlying system
—increased neuronal synchronization
—increase of in-phase coherent oscillators (subsystems)
—increase of spectral density and coherence

Increase of dimensional complexity implies:
_decrease of order of the underlying dynamical system
—increased neuronal desynchronization
~increase of out-of-phase incoherent oscillators
—decrease of spectral density and coherence

Figure 4.9
\lodel of interpretation according to the observed inverse covariation between
Jimensional complexity and spectral density of human neurobiological signals

an inverse relationship between cyclic dynamics of dimensional complexity and
spectral density or coherence during long-term analysis of such recordings.

In an application of the “running” dimensional analysis to the activity
of two prominent neuronal oscillators, such as EEG and tremor, the temporal
pattern of dimensional complexity was found to display an inverse relation-
ship with simultaneously computed spectral power changes. The correlation
is relatively high. A former conventional successive analysis, as reported by
other groups, failed to elucidate this correlation. The results indicate that the
band-related dominant spectral density of the signal increases with decreas-
ing dimensionality or increasing order of the dynamical system. This may
be caused by an enhanced neuronal synchronization or subsystem coherence
causing a lower complexity of the CNs (see Figure 4.9).

These observations agree with the conclusions of Farmer, Ott, and Yorke
(1983) who suggested that the dimensionality of a dynamical system is related
{0 the number of active coherent modes modulating the underlying physical
process. Similarly, Mayer-Kress et al. (1988) concluded that an increase in di-
mensionality could correspond to an increase in the number of independently or
incoherently oscillating subsystems or modes. This number may correspond to
the number of independent frequencies in the spectrum quantified by spectral
analysis in the area of linear systems. On the other hand, the reduced dimen-
sionality could reflect an enhanced “synergetic self-organization,” described
by Haken (1977), which synchronizes some of the subsystems and leads to
transitions from “high-dimensional” to “low-dimensional” chaos (Babloyantz
& Destexhe, 1986; Basar, 1983; Keidel, Tirsch, P6ppl, & Radmacher, 1990).
The existence of such transients seems to be an intrinsic property of the CNs
which might be necessary for information processing (Basar, Basar-Eroglu,
Réschke, & Schutt, 1989). It could be argued that, analogous to computer
technology, the brain switches from a parallel processing mode (with high EEG
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complexity, but low spectral density and low coherence of the desynchronized
EEG) to a central processing mode (with lower complexity resulting in a fairly
low dimensionality, but higher spectral density and coherence within the syn-
chronized EEG). These aspects and their psychophysiological relevance are
discussed by Keidel, Tirsch, and Poppl (1989b).

The fact that two basically different methods of analysis applied to the
same data sets of both EEG and tremor reveal an identical order in temporal
oscillations may support the hypothesis that there exists an oscillatory neu-
ronal structure such as the “common brainstem system” with its “dynamic
specificity.” This system is represented by the “formatio reticularis” as an
arousal system (Langhorst, Schulz, Lambertz, Schulz, & Camerer, 1980) which
functions as a central “master network.” Similar ideas with respect to faster
oscillating mechanism in the short period range like the alpha rhythm are
described in the thalamic pacemaker model (Nicolis, 1987) and the model of
an “internal clock” (Treisman, 1984). Studies by Moruzzi (1964; Moruzzi &
Magoun, 1949) have shown that the reticular formation of the brainstem has
the ability to modulate the global level of cortical excitability. Following his
considerations it could be argued that the reticular formation operates as an
ascending (to the cortex) and descending (to the spinal cord) activation con-
troller, involving various other oscillating structures. This system of ascending
and descending influences may simultaneously drive cortical (EEG) and spinal
(tremor) neuronal assemblies which will then become coupled oscillators with
their own rhythms (Basar, 1983), thereby causing the observed cyclic tran-
sients in dimensionality and spectral density in the circa 1-min range. As an
alternative explanation, the possibility of a self-generating rhythmicity caused
by a nonlinear coupling of different oscillators in the brain and spinal cord
could be considered. Similar models for EEG and EP activity are described by
Achimowicz (1990).

Conclusions and Prospects

The introduction of a sliding or “running” analysis of long-term recordings
of CNs signals enabled us to disclose a temporal order of systematic changes
in spectral density and dimensional complexity of CNs signals and thus to
gain insight into the functioning of the CNS. The results indicate that the
CNs periodically alters the level of activity, complexity, and degree of synergy
between different processing structures and subsystems.

The functional significance of the observed periodicities in the brain's
activity is not yet elucidated completely. Various hypotheses could be put
forward to explain the periodicities. Besides some reset or gating mechanisn.
a continuous tuning of the responsiveness of the CNS to external (or internal)
stimuli may lead to the maintenance of a certain mid-level of excitability by
avoiding habituation of sensory evoked or motor induced alterations in the




Brain Chaos 73

cNs complexity; especially as sensory evoked excitation may be encoded in
interneuronal coupling strength, as the studies of Engel and Singer (1990)
lave shown. A general neural model of attention processes was formulated by
\entriglia (1990).

The transient periods of high complexity of the brain and low coherence
hetween different brain areas may allow a (fast) parallel information process-
ing. e.g., in different sensory channels, because numerous cognitive processes
would be executed simultaneously. Intermediate short periods of a central
information processing mode with a high coupling strength between different
brain structures (including hemispheres and subcortical-cortical cornections)
resembling a lower complexity of the brain may facilitate the data transfer to
(and retrieval from) “higher” association areas or between the hemispheres.

As our results demonstrate an inverse covariation between EEG power
and EEG complexity, it can be expected that in psychophysiological studies
an event-related desynchronization or synchronization may be accompanied
by an increase or decrease of the correlation dimension. Because of the re-
vealed ordered nonstationarity within the spontaneous EEG activity, the va-
lidity of event-related studies can be increased if the evoked single trial data
are acquired time locked to identical complexity levels and are averaged selec-
tively. Bearing this approach in mind, it might turn out in future research of
long-term monitoring that various psychological functions such as cognition,
vigilance, attention, perception, and motor performance demonstrate an oscil-
latory behavior which is related to the endogenous circa 1-minute rhythm of
the transients in the brain’s complexity.

The modeling of the functioning of the CNS with respect to its oscilla-
tory behavior may have some practical aspects, e.g., in the field of bionics and
neurocomputing, or in computer-modeling of neuronal networks. Recently,
the role of neuronal oscillations in primate visual systems took on a prominent
place in modeling visual perception and cognition (Eckhorn, Reitboeck, Arndt,
& Dicke, 1990; Engel, Konig, Gray, & Singer, 1990; Van Essen, Anderson, &
Felleman, 1992). Thus, the implementation of such a synergetic strategy which
causes an ordered cyclic change in coupling strength between single elements
or subsystems, may enhance the efficacy of the overall function of the entire
network. Moreover, the nonlinear modeling of CNS signals suggests a promi-
nent role in determining nonlinear characteristics which are closely related to
different physiological or patho-physiological states and which cannot be dis-
closed by conventional analyses. An additional important aspect is that the
study of time order of CNS signals may help to disclose temporal “dynamic”
disorders related to CNS dysfunctions in many diseases. In the neurological and
psychiatric field these diseases may be caused, for example, by disconnections
syndromes, by altered states of consciousness, or by mental disturbances such
as psychoses.

Finally, in clinical applications of the procedures described here, it may
appear that “lesions” in time become evident earlier than “lesions” in structure
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or substrate which at present form the common basis of current diagnostic an
therapy concepts. Thus, the new approach of nonlinear modeling and studying
the time order of CNS signals may present a powerful tool in brain diagnostic.
in the future.
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