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t. A new method for des
ribing the equivalen
e of 
atadiop-tri
 and stereographi
 proje
tions is presented. This method produ
es asimple proje
tion usable in all 
entral 
atadioptri
 systems. A proje
tivemodel for the sphere is 
onstru
ted in su
h a way that it allows the e�e
-tive use of Cli�ord algebra in the des
ription of the geometri
al entitieson the spheri
al surfa
e.1 Introdu
tionCatadioptri
 
ameras allow for a very large �eld of vision. This, in 
omparison topinhole 
ameras, enables the system to per
eive more visual information with onesingle image. The non-Eu
lidean geometry of the image enables more e�
ientself-
alibration of the 
amera and redu
es the 
omplexity of algorithms neededto 
omplete this task [5℄.The mathemati
s used to model 
atadioptri
 
ameras is slightly more 
ompli-
ated than for pinhole 
ameras. The main problem in the appli
ation of Cli�ordalgebra to this modeling task is the lo
al nature of the ve
tor spa
e stru
ture ona 
urved manifold. This problem is solved in the following se
tions for 
entral(single viewpoint) 
atadioptri
 systems, i.e. 
ameras with mirrors whose 
ross-se
tions are 
oni
 se
tions [1℄. A proje
tive model for paraboli
, hyperboli
 andellipti
 mirrors is 
onstru
ted taking the sphere as the unifying geometry. Thismodel allows us to develop mathemati
al tools using Cli�ord algebra that areappli
able to all these mirror geometries and works as a basis for our futureresear
h.Cli�ord algebra has proven to be a powerfull tool in 2D-3D pose estimation(for example in [11℄,[12℄). Using the model presented in this paper we hope thesebene�ts gained in the Eu
lidean 
ase of pinhole 
ameras will also be available inthe omnidire
tional vision using 
atadioptri
 
ameras.2 Uni�ed mirror geometriesIn [5℄ Geyer and Daniilidis present a uni�ed model for single viewpoint 
atadiop-tri
 systems. In this model the world is �rst proje
ted to the surfa
e of a sphere
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with proje
tive lines emerging from the 
enter of the sphere. Stereographi
 pro-je
tion from this spheri
al surfa
e 
orresponds to the orthogonal proje
tion froma paraboli
 mirror. Moving the proje
tion point from the north pole of the sphereone may present perspe
tive proje
tions from the surfa
es of ellipti
al and hy-berboli
al mirrors. Following the elegant des
ription for the equivalen
e of thestereographi
 proje
tion and orthogonal proje
tion from a parabola by Penroseand Rindler [9℄, the uni�ed model for single viewpoint 
atadioptri
 systems isre
onstru
ted using a di�erent mathemati
al method. This leads to simple pro-je
tions for the di�erent mirror geometries with a 
lear 
orresponden
e to thepoints on the sphere.2.1 Modi�ed Stereographi
 Proje
tionThe stereographi
 proje
tion is a one-to-one mapping between a sphere and aplane. Usually the sphere is de�ned along with the 
on
ept of ball:De�nition 1. A n-ball of radius r 
entered at the origin is the set B(0; r) =
{x ∈ R

n+1 | x2 ≤ r2}.The surfa
e S2 = {x ∈ IRn+1 | x2 = 1} of the unit 2-ball, is 
alled the sphere.Instead of using this more 
ommon 
on
ept of sphere as a subset of IR3 thesphere is now formed in the 4-dimensional Minkowski spa
e IR3,1, i.e. ve
torspa
e with the signature (-,+,+,+). This is done in order to stay 
onsistent withthe referen
e [9℄ and it o�ers the possibility to indu
e movement of points onthe sphere by using Lorentz transformations whi
h are known to be lo
ally anglepreserving.The ve
tors x ∈ IR3,1 with x2 = 0 form a 
one 
alled the null 
one. Letthe ve
tors in IR3,1 have the 
oordinates (t,x,y,z). The interse
tion of the null
one and the plane t = 1 forms a sphere. In stereographi
 proje
tion a point
P (1, x, y, z) on this surfa
e is proje
ted to a plane T with z = 0 and t = 1 (see�gure 1). The proje
tive line is the line passing thru the north pole N and thepoint P . The interse
tion of this line and the plane T gives the 
oordinates ofthe proje
ted point. To avoid in
onsisten
ies in the proje
tion of the point Nthe plane T has to be 
omplex. This also enables the des
ription of the proje
tedpoint with just two parameters. Point A in �gure 1 
orresponds to the 
omplexnumber x + iy. The x and y 
oordinates tell the position of the point P ′ in the
omplex plane and this is des
ribed by the 
omplex number ζ = x′ + iy′. As thephase angle of the 
omplex number ζ = x′ + iy′ is the azimuthal angle of thepoint (P ′ has the same dire
tion from point C as point A) P (1, x, y, z) on thesphere one has

A = hP ′ i.e x + iy = hζ, (1)where h is a real 
oe�
ient. The value of h is by geometri
 dedu
tion (see �gure1)
h =

CA

CP ′
=

NP

NP ′
=

NB

NC
= 1 − z. (2)



Using spheri
al 
oordinates (0 ≤ φ ≤ 2π, 0 < θ, π) to parameterise the sphereone gets
ζ =

x + iy

1 − z
= eiφ cot

θ

2
. (3)As in the model by Geyer and Daniilidis the 
onne
tion of di�erent mirrorgeometries and the sphere is a
hieved by the movement of the proje
tion point

N . We start by moving the proje
tion point N along the z dire
tion whi
h
hanges equation (2) to
h =

CA

CP ′
=

NP

NP ′
=

NB

NC
=

β − z

β
= 1 − β−1z, (4)and equation (3) to

ζ =
x + iy

1 − αz
= eiφ sin θ

1 − α cos θ
, where α = β−1. (5)

Fig. 1. Stereographi
 proje
tion from sphere S to plane T . Only half of the Sphere Sis drawn.2.2 Conne
tion to Coni
 Se
tionsThis movement of the proje
tion point is related to di�erent 
oni
 se
tions inthe following way. Let a null 
one in IR3,1 be interse
ted by the plane t− z = 1.This interse
tion forms a parabola. Let Q be a point of interse
tion of that planeand a line from the vertex of the 
one to the point P given by q = up, where
0 ≤ u ≤ 1, q is the ve
tor pointing at the point Q and p is the ve
tor pointingat P (this is illustrated in the right part of �gure 2). Solving the interse
tion of



the line de�ned by p and the plane t − z = 1 gives u = 1

1−z
. Thus point Q hasthe 
oordinates

Q =

(

1

1 − z
,

x

1 − z
,

y

1 − z
,

z

1 − z

)

, (6)from whi
h the 
oordinates in the x − y-plane given by orthogonal proje
tionare
P ′(X ′, Y ′) =

(

x

1 − z
,

y

1 − z

)

. (7)Labeling the points in the (x − y)-plane with 
omplex numbers the point Q isproje
ted to a point ζ = x+iy
1−z

as in (3). This equivalen
y of the stereographi
proje
tion from a sphere and the orthogonal proje
tion from a parabola 
an beshown by interse
ting planes. Let plane t = 1 interse
t the null 
one with vertex
O. This interse
tion is the spheri
al surfa
e S2. Let the north pole N of thesphere be at (1, 0, 0, 1) and point Q be the interse
tion of the null line from O to
P and the plane t − z = 1. The points O, Q, P, P ′ and N are 
oplanar and thepoints P, P ′ and N are 
ollinear [9℄. Thus the point P ′ is also the stereographi
proje
tion from the sphere S to the (x − y)-plane (see �gure 2 representing thesituation in one dimensional 
ase).

Fig. 2. Orthogonal proje
tion from parabola and stereographi
 proje
tion from 
ir
le.The parabola is formed by the interse
tion of the 
one and the (non-transparent)
t − z = 1 plane.Tilting the t − z = 1 plane to the plane t − αz = 1 
hanges the 
oordinatesof Q to

Q =

(

1

1 − αz
,

x

1 − αz
,

y

1 − αz
,

z

1 − αz

)

, (8)and the 
oordinates of the proje
ted point to
P ′(X ′, Y ′) =

(

x

1 − αz
,

y

1 − αz

)

, (9)



where α is the e

entri
ity of the 
oni
 se
tion. Exa
tly as in (1) the proje
tedpoint has the 
oordinates
ζ =

x + iy

1 − αz
. (10)Moving the proje
tion point N in the x dire
tion in the stereographi
 proje
tion
orresponds to keeping the points O, P, P ′, Q and N 
oplanar. This is illustratedin �gure 3.

Fig. 3. Moving the point N keeps the points O, P, P ′, Q and N 
oplanar for di�erent
oni
 se
tions (
enter of the 
oni
 O not seen in image). The image on left shows thehyberboli
 
ase and the image on right the ellipti
 
ase.In order to use the equation (10) in ellipti
 and hyperboli
 
ases the orthog-onal proje
tion has to be 
hanged to a perspe
tive proje
tion [2℄. Let c be thedistan
e between the fo
i and d the distan
e of the image plane from the se
ondfo
al point. Then the point ζ will be proje
ted to the point
ζ′ = −

d

c
ζ (11)in the hyperboli
 
ase and

ζ′ =
d

c
ζ (12)in the ellipti
 
ase.With this 
onstru
tion the proje
tions from di�erent 
oni
 se
tions have sim-ple equations whi
h are easy to implement in appli
ations.3 Spheri
al spa
e and Cli�ord algebraIn this se
tion a proje
tive model for the sphere is 
onstru
ted in su
h a way thatit allows the des
ription of geometri
al entities on the sphere with simple alge-brai
 expressions. In 
ontrast to the previous se
tion the sphere is now embeddedto IR3 as usual. This means that we 
onsider only the subspa
e (1, x, y, z) of IM4



and this subspa
e has the same stru
ture as IR3. In this subspa
e the sphere 
anbe des
ribed with the set of ve
tors r(θ, φ) = sin(θ) cos(φ)e1 + sin(θ) sin(φ)e2 +
cos(θ)e3.3.1 Cli�ord algebra in parameter spa
eLet (V, g) be a ve
tor spa
e V equipped with a symmetri
 bilinear form (i.e. innerprodu
t) g. Algebra A over a ring R is 
ompatible with the inner produ
t spa
e
(V, g) if V is a subspa
e of A and for ea
h x ∈ V , x2 = g(x, x). Cli�ord algebra
Gp,q,r is the 
ompatible algebra for IRp,q,r [8℄, where p, q, r are the numbers ofunit ve
tors with positive, negative and null signature.Let {e1, e2, . . . , en} be an orthonormal basis for IRn. Then the Cli�ord al-gebra Gn has dimension 2n and basis {eǫ1

1 eǫ2
2 . . . eǫn

n |ǫi = 0, 1}. For example theCli�ord algebra G3 of IR3 has the basis {1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3}In pra
ti
e it is useful to separate the geometri
 produ
t of Cli�ord algebrain it's symmetri
 and antisymmetri
 parts: xy = 1

2
(xy + yx) + 1

2
(xy − yx) =

x·y+x∧y, where (·) is the inner produ
t and (∧) is the outer produ
t ([6℄ 
ontainsa good introdu
tion to the geometri
 produ
t from a pra
ti
al viewpoint).Cli�ord algebra has proven to be a helpful tool in many appli
ations withstrong relation to geometry. Geometri
 transformations 
an be presented withsimple geometri
 produ
ts and the inner and outer produ
t null spa
es are asimple way to present geometri
 entities of any dimension [10℄.With the usual de�nition 1 of the sphere these bene�ts are lost as the innerand outer produ
t null spa
es des
ribe the geometri
al entities of the embeddingspa
e instead of the sphere itself. For example a line in IRn has at most two points
ommon with the sphere. A 
onformal model for spheri
al geometry applyingthis kind of embedding 
an be found in [7℄. Another possibility would be to usethe Cli�ord algebra in the tangent spa
es of S2, whi
h is rather useless be
auseit 
an only des
ribe in�nitesimal entities on the manifold.A sphere 
an be parameterized in a number of ways. Parameterization withthe least amount of ambiguities is the stereographi
 proje
tion to the 
omplexplane des
ribed in the previous se
tion. In this proje
tion the geodesi
 
urves aremapped to 
urves in the 
omplex plane, a fa
t whi
h 
ompli
ates their des
rip-tion with Cli�ord algebra. Instead, using the parameterization with azimuthaland polar angles (φ, θ), 0 ≤ φ < 2π, 0 < θ < π the geodesi
 lines have a simpledes
ription. Re
tangular obje
ts in proje
tion on to the sphere 
an be des
ribedwith lines in the (φ, θ) spa
e and thus retain the 're
tangularity'. Figure 4 showshow the image 
aptured with a paraboli
 mirror is transformed to the V (θ, φ)spa
e using (3).To remove the periodi
ity in φ and θ on the image the following s
aling isused:
φ′ =

φ

2π − φ
and θ′ =

θ

π − θ
. (13)The ve
tor spa
e V (θ′, φ′) equipped with the Eu
lidean inner produ
t is 
learlyisomorphi
 to IR2. Using the Eu
lidean inner produ
t in V (θ′, φ′) areas 
al
u-lated in parameter spa
e di�er from areas on the sphere. When needed a s
aling



Fig. 4. Image 
aptured with a paraboli
al mirror and its mapping to V (φ, θ).between these areas 
an be 
al
ulated. Frequently used angular size ∆α of anobje
t is, for example, given by ∆α =
√

(φ2 − φ1)2 + (θ2 − θ1)2. Instead of usingjust the parameter spa
e V (φ′, θ′) a proje
tive model is de�ned.3.2 Cli�ord Algebra in the Proje
tive ModelDe�nition 2. The proje
tive model of the sphere is the spa
e SP = V (φ′, θ′) ×
{IR\0} equipped with the Eu
lidean inner produ
t. The basis of SP is {eφ′ , eθ′, ep}.The 
orresponding Cli�ord algebra G(SP ) ∼= G(IR3) has the basis

{1, eφ′, eθ′ , ep, eφ′eθ′ , eφ′ep, eθ′ep, eφ′eθ′ep}. (14)A ve
tor in x ∈ V (φ′, θ′) is embedded in SP with the mapping
P : x ∈ V (φ′, θ′) 7→ x + ep ∈ SP . (15)The inverse of P is

P−1 : A ∈ SP 7→
1

A · ep

[(A · eφ′) eφ′ + (A · eθ′) eθ′ ] (16)In this proje
tive model Eu
lidean inner and outer produ
t null spa
es, NIE and
N⋊E , give a simple des
ription for points, lines and planes on the parameterspa
e V (φ′, θ′). As an example let A, B, C ∈ SP . Now

NO(A ∧ B) = {C ∈ SP | A ∧ B ∧ C = 0} . (17)As only the perpendi
ular 
omponent of C 
ontributes to (17) one gets
NO(A ∧ B) = {C ∈ SP | A ∧ B ∧ C⊥ = 0} , (18)i.e. C lies in the plane spanned by A and B. The 
orresponding eu
lidian outerprodu
t null spa
e is given by the proje
tion of the plane A ∧ B to V (φ′, θ′):

NOE (A ∧ B) = P−1 (NO(A ∧ B)) =

P−1 (αA + βB) = P−1 (αA − αB + αB + βB) =

P−1 [α(A − B) + (α + β)B] = b +
α

α + β
(a − b)

= b + t(a − b), t ∈ IR, (19)



whi
h is a line in through points a and b in V (φ′, θ′). In a similar manner
NOE(A) = a.In order to 
onsider also the radial position of obje
ts in the enviromentof the 
amera one has to add also the radial dimension er to the model. Thisaddition does not have any other e�e
t on the model than the addition of oneextra dimension.4 Con
lusionIn this paper a simple method for unifying 
entral 
atadioptri
 systems waspresented. Using Cli�ord algebra on the parameter spa
e of the sphere allowsan e�
ient method for des
ribing re
tangular obje
ts that are also mapped tore
tangular obje
ts in the parameter spa
e. This has not been possible in theprevious models using Cli�ord algebra [3℄,[4℄.Using the parameter spa
e of the sphere the distan
e ∆φ between points onthe geodesi
s of the sphere have the simple form ∆φ =

2πφ′

2

φ′

2
+1

−
2πφ′

1

φ′

1
+1

= φ2 − φ1.One 
an also 
al
ul
ate the distan
es between points on a line in the parameterspa
e using basi
 algebra instead of using line integrals on the surfa
e of thesphere (whi
h lead in many 
ases to in
omplete ellipti
 integrals).In the parameter spa
e the rotation of the sphere is a
hieved with the trans-lation operator T (x) = x + t. In order to linearise the translation operator theparameter spa
e has to be embedded to a 
onfromal spa
e. This 
onformal modelis in
luded in our ongoing resear
h as is the movement of the sensor in the en-viroment. Using Cli�ord algebra on suitably embedded parameter spa
e allowsthe des
ription of the geometri
 entities and the 
amera movement.Referen
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