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Abstract. A new method for describing the equivalence of catadiop-
tric and stereographic projections is presented. This method produces a
simple projection usable in all central catadioptric systems. A projective
model for the sphere is constructed in such a way that it allows the effec-
tive use of Clifford algebra in the description of the geometrical entities
on the spherical surface.

1 Introduction

Catadioptric cameras allow for a very large field of vision. This, in comparison to
pinhole cameras, enables the system to perceive more visual information with one
single image. The non-Euclidean geometry of the image enables more efficient
self-calibration of the camera and reduces the complexity of algorithms needed
to complete this task [5].

The mathematics used to model catadioptric cameras is slightly more compli-
cated than for pinhole cameras. The main problem in the application of Clifford
algebra to this modeling task is the local nature of the vector space structure on
a curved manifold. This problem is solved in the following sections for central
(single viewpoint) catadioptric systems, i.e. cameras with mirrors whose cross-
sections are conic sections [1]. A projective model for parabolic, hyperbolic and
elliptic mirrors is constructed taking the sphere as the unifying geometry. This
model allows us to develop mathematical tools using Clifford algebra that are
applicable to all these mirror geometries and works as a basis for our future
research.

Clifford algebra has proven to be a powerfull tool in 2D-3D pose estimation
(for example in [11],[12]). Using the model presented in this paper we hope these
benefits gained in the Euclidean case of pinhole cameras will also be available in
the omnidirectional vision using catadioptric cameras.

2 Unified mirror geometries

In [5] Geyer and Daniilidis present a unified model for single viewpoint catadiop-
tric systems. In this model the world is first projected to the surface of a sphere
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with projective lines emerging from the center of the sphere. Stereographic pro-
jection from this spherical surface corresponds to the orthogonal projection from
a parabolic mirror. Moving the projection point from the north pole of the sphere
one may present perspective projections from the surfaces of elliptical and hy-
berbolical mirrors. Following the elegant description for the equivalence of the
stereographic projection and orthogonal projection from a parabola by Penrose
and Rindler [9], the unified model for single viewpoint catadioptric systems is
reconstructed using a different mathematical method. This leads to simple pro-
jections for the different mirror geometries with a clear correspondence to the
points on the sphere.

2.1 Modified Stereographic Projection

The stereographic projection is a one-to-one mapping between a sphere and a
plane. Usually the sphere is defined along with the concept of ball:

Definition 1. A n-ball of radius r centered at the origin is the set B(0;r) =
{x e R*TL | 22 <2}

The surface S? = {z € R™ | 22 = 1} of the unit 2-ball, is called the sphere.

Instead of using this more common concept of sphere as a subset of R? the
sphere is now formed in the 4-dimensional Minkowski space IR*!, i.e. vector
space with the signature (-,+,+,+). This is done in order to stay consistent with
the reference [9] and it offers the possibility to induce movement of points on
the sphere by using Lorentz transformations which are known to be locally angle
preserving.

The vectors x € R*! with x2 = 0 form a cone called the null cone. Let
the vectors in IR** have the coordinates (t,x,y,z). The intersection of the null
cone and the plane ¢ = 1 forms a sphere. In stereographic projection a point
P(1,x,y,2) on this surface is projected to a plane T with z =0 and t = 1 (see
figure 1). The projective line is the line passing thru the north pole N and the
point P. The intersection of this line and the plane T gives the coordinates of
the projected point. To avoid inconsistencies in the projection of the point N
the plane T has to be complex. This also enables the description of the projected
point with just two parameters. Point A in figure 1 corresponds to the complex
number x + iy. The z and y coordinates tell the position of the point P’ in the
complex plane and this is described by the complex number ¢ = 2’ +¢y’. As the
phase angle of the complex number ¢ = 2’ + iy’ is the azimuthal angle of the
point (P’ has the same direction from point C as point A) P(1,x,y, z) on the
sphere one has

A=hP ie x+iy=h(, (1)

where h is a real coefficient. The value of h is by geometric deduction (see figure
1)
CA NP NB

—_— — = —— = — Z. 2
cP NP NC L TF (2)



Using spherical coordinates (0 < ¢ < 27,0 < 0, 7) to parameterise the sphere
one gets
T+ 1y o 0
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As in the model by Geyer and Daniilidis the connection of different mirror

geometries and the sphere is achieved by the movement of the projection point

N. We start by moving the projection point N along the z direction which
changes equation (2) to
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and equation (3) to
(= rTrW _ e’ sin where a = 7. (5)
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Fig. 1. Stereographic projection from sphere S to plane 7. Only half of the Sphere S
is drawn.

2.2 Connection to Conic Sections

This movement of the projection point is related to different conic sections in
the following way. Let a null cone in IR*! be intersected by the plane t — z = 1.
This intersection forms a parabola. Let @ be a point of intersection of that plane
and a line from the vertex of the cone to the point P given by q = up, where
0 <wu <1, qis the vector pointing at the point () and p is the vector pointing
at P (this is illustrated in the right part of figure 2). Solving the intersection of



the line defined by p and the plane ¢t — z = 1 gives u = 1le Thus point @) has

the coordinates
1 T Y z
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from which the coordinates in the x — y-plane given by orthogonal projection

h P’(X’,Y’)z( < L) (7)
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Labeling the points in the (x — y)-plane with complex numbers the point @ is
projected to a point { = % as in (3). This equivalency of the stereographic
projection from a sphere and the orthogonal projection from a parabola can be
shown by intersecting planes. Let plane ¢t = 1 intersect the null cone with vertex
O. This intersection is the spherical surface S?. Let the north pole N of the
sphere be at (1,0,0, 1) and point @ be the intersection of the null line from O to
P and the plane t — z = 1. The points O, Q, P, P’ and N are coplanar and the
points P, P' and N are collinear [9]. Thus the point P’ is also the stereographic
projection from the sphere S to the (z — y)-plane (see figure 2 representing the
situation in one dimensional case).

Fig. 2. Orthogonal projection from parabola and stereographic projection from circle.
The parabola is formed by the intersection of the cone and the (non-transparent)
t — z =1 plane.

Tilting the t — z = 1 plane to the plane t — az = 1 changes the coordinates

of Q to
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and the coordinates of the projected point to
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where « is the eccentricity of the conic section. Exactly as in (1) the projected

point has the coordinates
T 41y
=27 10
1—-az (10)
Moving the projection point NV in the = direction in the stereographic projection
corresponds to keeping the points O, P, P’, Q and N coplanar. This is illustrated

in figure 3.

Fig. 3. Moving the point N keeps the points O, P, P’,Q and N coplanar for different
conic sections (center of the conic O not seen in image). The image on left shows the
hyberbolic case and the image on right the elliptic case.

In order to use the equation (10) in elliptic and hyperbolic cases the orthog-
onal projection has to be changed to a perspective projection [2]. Let ¢ be the
distance between the foci and d the distance of the image plane from the second
focal point. Then the point ¢ will be projected to the point

d
== 11
¢=-5¢ (1)
in the hyperbolic case and
d
== 12
¢=%¢ (12

in the elliptic case.
With this construction the projections from different conic sections have sim-
ple equations which are easy to implement in applications.

3 Spherical space and Clifford algebra

In this section a projective model for the sphere is constructed in such a way that
it allows the description of geometrical entities on the sphere with simple alge-
braic expressions. In contrast to the previous section the sphere is now embedded
to IR® as usual. This means that we consider only the subspace (1, z,y, z) of IM*



and this subspace has the same structure as IR®. In this subspace the sphere can
be described with the set of vectors r(6, ¢) = sin(8) cos(¢p)e; + sin(6) sin(¢p)es +
cos(f)es.

3.1 Clifford algebra in parameter space

Let (V, g) be a vector space V equipped with a symmetric bilinear form (i.e. inner
product) g. Algebra A over a ring R is compatible with the inner product space
(V,g) if V is a subspace of A and for each x € V, 2% = g(x, ). Clifford algebra
Gp,q,r is the compatible algebra for IR”*¢" [8], where p,q,r are the numbers of
unit vectors with positive, negative and null signature.

Let {e1,es,...,e,} be an orthonormal basis for IR". Then the Clifford al-
gebra G,, has dimension 2™ and basis {ej*e5?...e5"|e; = 0,1}. For example the
Clifford algebra G3 of IR? has the basis {1,e1,e2,e3,e1e2, €13, €203, €1€2€3 }

In practice it is useful to separate the geometric product of Clifford algebra
in it’s symmetric and antisymmetric parts: zy = % (zy + yz) + 3 (2y — yz) =
x-y+xAy, where (+) is the inner product and (A) is the outer product (|6] contains
a good introduction to the geometric product from a practical viewpoint).

Clifford algebra has proven to be a helpful tool in many applications with
strong relation to geometry. Geometric transformations can be presented with
simple geometric products and the inner and outer product null spaces are a
simple way to present geometric entities of any dimension [10].

With the usual definition 1 of the sphere these benefits are lost as the inner
and outer product null spaces describe the geometrical entities of the embedding
space instead of the sphere itself. For example a line in IR™ has at most two points
common with the sphere. A conformal model for spherical geometry applying
this kind of embedding can be found in [7]. Another possibility would be to use
the Clifford algebra in the tangent spaces of S?, which is rather useless because
it can only describe infinitesimal entities on the manifold.

A sphere can be parameterized in a number of ways. Parameterization with
the least amount of ambiguities is the stereographic projection to the complex
plane described in the previous section. In this projection the geodesic curves are
mapped to curves in the complex plane, a fact which complicates their descrip-
tion with Clifford algebra. Instead, using the parameterization with azimuthal
and polar angles (¢,0),0 < ¢ < 27,0 < § < 7 the geodesic lines have a simple
description. Rectangular objects in projection on to the sphere can be described
with lines in the (¢, #) space and thus retain the 'rectangularity’. Figure 4 shows
how the image captured with a parabolic mirror is transformed to the V' (8, ¢)
space using (3).

To remove the periodicity in ¢ and 6 on the image the following scaling is
used:

) 0

/ /
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The vector space V (¢, ¢’) equipped with the Euclidean inner product is clearly
isomorphic to IR?. Using the Euclidean inner product in V(¢/,¢') areas calcu-
lated in parameter space differ from areas on the sphere. When needed a scaling

(13)



Fig. 4. Image captured with a parabolical mirror and its mapping to V (¢, 0).

between these areas can be calculated. Frequently used angular size Aa of an
object is, for example, given by Aa = /(¢2 — $1)% + (62 — 61)2. Instead of using
just the parameter space V(¢',0’) a projective model is defined.

3.2 Clifford Algebra in the Projective Model

Definition 2. The projective model of the sphere is the space Sp =V (¢',0") x
{IR\O} equipped with the Euclidean inner product. The basis of Sp is {ey,€g:,ep}.

The corresponding Clifford algebra G(Sp) 2 G(IR?) has the basis
{1,e4,€0/,€p,€p€0,€45€p,€00€p, €p€0 €} (14)
A vector in x € V(¢',0') is embedded in Sp with the mapping
P:xeV(¢,0)—x+e, € Sp. (15)

The inverse of P is

1
P l:AeSp— o (Areg)es + (A e)ey] (16)

.ep

In this projective model Euclidean inner and outer product null spaces, NI and
Nx g, give a simple description for points, lines and planes on the parameter
space V(¢',0"). As an example let A, B,C € Sp. Now

NO(AAB)={CeSp | ANBANC =0}. (17)
As only the perpendicular component of C' contributes to (17) one gets
NOAAB)={CeSp | ANBANCL =0}, (18)

i.e. C lies in the plane spanned by A and B. The corresponding euclidian outer
product null space is given by the projection of the plane A A B to V(¢',6'):
NOg (AAB) =P ' (NO(AAB)) =
P! (aA+BB) =P ' (aA—aB+aB+3B) =

p-1 [a(A—B)+(a+ﬂ)B]:b+aiﬁ(a—b)

— bita-b)teRR, (19)




which is a line in through points a and b in V(¢',6). In a similar manner
NOg(A) = a.

In order to consider also the radial position of objects in the enviroment
of the camera one has to add also the radial dimension e, to the model. This
addition does not have any other effect on the model than the addition of one
extra dimension.

4 Conclusion

In this paper a simple method for unifying central catadioptric systems was
presented. Using Clifford algebra on the parameter space of the sphere allows
an efficient method for describing rectangular objects that are also mapped to
rectangular objects in the parameter space. This has not been possible in the
previous models using Clifford algebra [3],[4].

Using the parameter space of the sphere the distance A¢ between points on

the geodesics of the sphere have the simple form A¢ = ;Zﬁ — ;?ﬁ = g — P1.
One can also calculcate the distances between points on a line in the parameter
space using basic algebra instead of using line integrals on the surface of the
sphere (which lead in many cases to incomplete elliptic integrals).

In the parameter space the rotation of the sphere is achieved with the trans-
lation operator T'(x) = x + t. In order to linearise the translation operator the
parameter space has to be embedded to a confromal space. This conformal model
is included in our ongoing research as is the movement of the sensor in the en-
viroment. Using Clifford algebra on suitably embedded parameter space allows
the description of the geometric entities and the camera movement.
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