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1 Introduction

In recent years, robot vision became an attractive scientific discipline. From a tech-
nological point of view, its aim is to endow robots with visual capabilities comparable
to those of human beings. Although there is considerable endeavour, the progress is
only slowly proceeding, especially in comparison to the level of behavior of human
beings in natural environments. This has its reason in lacking insight into the orga-
nization principles of cognitive systems. Therefore, from a scientific point of view,
robot vision is a test bed for understanding more on cognitive architectures and the
mutual support of vision and action in cognitive systems. While in natural systems
self-organization of structures and data flow is responsible for their success, in case
of technical systems, the designer has to model cognitive systems. Modeling needs a
theoretical base which is rooted in the state-of-art knowledge in science, mathematics
and engineering.

The most difficult problem to be solved is the design of a useful cognitive archi-
tecture. This concerns e.g. the gathering and use of world knowledge, controlling
the interplay of perception and action, the representation of equivalence classes, in-
variants and concepts. Besides, hard real-time requirements have to be considered.
The most attractive approach to the design of a cognitive architecture is the frame-
work of behavior-based systems (Sommer, 1997). A behavior is represented by a
perception-action cycle. Remarkable features of such architecture are the tight cou-
pling of perception and action, and learning the required competences (Pauli, 2001)
from experience.

Another problem to be coped with in designing robot vision systems is the diversity of
contributing disciplines. These are signal theory and image processing, pattern recog-
nition including learning theory, robotics, computer vision and computing science.
Because these disciplines developed separately, they are using different mathematical
languages as modeling frameworks. Besides, their modeling capabilities are limited.
These limitations are caused to a large extend by the dominant use of vector alge-
bra. Fortunately, geometric algebras (GA) as the geometrically interpreted version of
Clifford algebras (CA) (Hestenes & Sobczyk, 1984) deliver a reasonable alternative
to vector algebra.



The aim of this contribution is to promote the use of geometric algebra in robot vision
systems based on own successful experience over one decade of research. The appli-
cation of GA within a behavior based design of cognitive systems is the long-term
research topic of the Kiel Cognitive Systems Group (Sommer, 1999). Such a coherent
system has to be an embodiment of the geometry and the stochastic nature of the
external world. That is, it should enable both internal processes converging at reason-
able interpretations of the world and performing useful actions in the environment.
We will report on some novel results achieved within the last years which extend the
survey papers (Sommer, 2004; Sommer, 2005).

Our main contributions to applications of geometric algebra in robot vision are fo-
cussing on the following problems:

• Development of a signal theory for local analysis of multi-dimensional signals
(Sommer & Zang, 2005)

• Formulation of computer vision in the framework of conformal geometry (Rosen-
hahn & Sommer, 2005a and 2005b)

• Knowledge based neural learning by using algebraic constraints (Buchholz &
Sommer, 2006)

• Higher-order statistics (Buchholz & Le Bihan, 2006) and estimations (Perwass
et al., 2006) in GA.

More details of the results contributed by the Kiel Cognitive Systems Group can be
found in the publications and reports on the website http://www.ks.informatik.

uni-kiel.de. Here we will report from an engineer’s point of view. But the reader
should be aware that GA constitutes a framework which has to be adapted to the
problem at hand. Therefore, the system designer has to shape this mathematical
language in a task related manner. This is both a challenge and a chance at the same
time.
In section 2, we will present a bird’s eye view on geometric algebra and will also
motivate its use in robot vision. Special emphasis will be on the conformal geomet-
ric algebra (CGA). A novel approach to local image analysis based on embedding
the curvature tensor of differential geometry into a Clifford analysis setting will be
presented in section 3. Sections 4 and 5 are dedicated to our recent progress on
estimations from uncertain data in CGA. We will handle uncertainty for geometric
entities and kinematic operations as well. Parameter estimation methods, based on
the principle of least squares adjustment, will be used for evaluating multi-vectors and
their respective uncertainties. Also, in section 5 we will focus on the problem of pose
estimation in case of uncertain omnidirectional vision. In addition, we will present
a novel generalized camera model, the so-called inversion camera model. Again, we
will take advantage of the representation power of CGA.



2 A Bird’s-eye View on Geometric Algebra

In this section we will sketch the basic features of a geometric algebra representation and

compare it with a vector space representation. Special emphasis is laid on the conformal

geometric algebra. In addition, we introduce the key ideas of the tensor notation of GA

representations and the coupling of the conformal embedding and stochastic concepts.

2.1 Comparison of Vector Algebra and Geometric Algebra

As mentioned in the introduction, the limited modeling capabilities within the disciplines

contributing to robot vision are caused to a large extend by the use of vector algebra. That

statement has to be justified. First, a vector space is a completely unstructured algebraic

framework whose entities, that is the vectors, are directed numbers. This is a richer repre-

sentation than having only scalars at hand. But the product of vectors, the scalar product,

destroys the direction information originally represented in the pair of vectors by mapping

them to a scalar. Second, we are mostly interested in vector spaces with Euclidean norm.

The basic geometric entities of Euclidean spaces are points. A Euclidean vector space can

thus be interpreted as an infinite set of points. There is no possibility of formulating use-

ful subspace concepts in the vector space but set based ones. Third, a cognitive system

is reasoning and acting on global geometric entities, like a tea pot. It makes no sense to

decompose the world phenomena into point-like entities. Fourth, the most important trans-

formation in robot vision, that is rigid body motion (RBM), has no linear representation

in Euclidian space. Instead, if we are interested in describing RBM of points, we have to

take advantages of an algebraic trick as extending the dimension of the space for remaining

in terms of linear operations. There is no general way for generalizing this trick within the

vector space concept to other geometric entities (as a pair of points or a line). Therefore,

most of the basic disciplines of robot vision are getting stuck in non-linearities. The resulting

iterative solutions are intractable in real-time applications. Finally, besides translation, all

other operational entities acting on a vector are not itself elements of the algebra. This

makes the description of actions based on certain transformation groups a difficult task.

Geometric algebra enables to overcome most of those problems, at least to a certain extend.

In fact, if not specified, the term geometric algebra represents a whole family of geometric

algebras. The designer has to select the right one for the problem at hand or has to design

a special one with the desired features. Hence, its use enables a knowledge based system

design in an algebraic framework which can represent the geometry of interest. Representing

geometry in an algebraic framework means thinking in a Kleinian sense (Brannan et al.,

1999). Any GA has the following features:

1) It is a linear space, which can be mapped to a vector space again. Its elements are

multi-vectors, that is directed numbers of mixed grade. It has a rich subspace structure

with each subspace having algebraic properties and interpretations in a geometric or

operational sense of representing entities of a certain grade, e.g. of higher order.

2) It represents a geometry of interest. That means, it models geometric spaces equipped

with basic geometric entities and a range of higher order geometric entities with useful



algebraic properties. Besides, it represents a Clifford group the elements of which are

linear operational entities. This makes non-linear operations in vector spaces to linear

ones in the chosen GA. That is, both geometric and operational entities are elements

of the algebra.

3) A geometric algebra is equipped with a geometric product the action of which on

multi-vectors not only enables mappings into certain subspaces but from which also

incidence algebraic operations between subspaces can be derived.

This as a whole makes GA a powerful tool for modeling in robot vision and beyond.

2.2 Basic Structure of Geometric Algebra

Here we will only present a sketch of the rich structure represented by a geometric algebra.

For more details see (Hestenes & Sobczyk, 1984) or the introduction paper (Hestenes et al.,

2001), respectively the tutorial report (Perwass & Hildenbrand, 2003).

A geometric algebra Rp,q,r is a linear space of dimension 2n constructed from a vector space

Rp,q,r with signature (p, q, r), n = p+q+r, which we denote Rp,q,r = G(Rp,q,r). The algebra

is built by applying the geometric product to the basis vectors ei of Rp,q,r, i = 1, . . . , n,

eiej =

8
>>>>><
>>>>>:

1 for i = j ∈ {1, . . . , p}
−1 for i = j ∈ {p + 1, . . . , p + q}

0 for i = j ∈ {p + q + 1, . . . , p + q + r = n}
−ejei ≡ eij for i 6= j

(1)

The GA Rp,q,r is called Euclidean for n = p and pseudo-Euclidean for n = p + q. In the

case of r 6= 0, its metric is degenerate. The signature (p, q, r) is the key for selecting certain

geometric properties of the GA. The geometric product is linear and associative but not

commutative. The linear space of a GA is split into a rich subspace structure represented

by a set of blades Bk of grade k. Given k independent vectors1 ai, i = 1, . . . , k, a k-blade is

defined for k = 1, . . . , n by

Bk = a1 a2 . . . ak = a1 ∧ a2 ∧ . . . ∧ ak . (2)

Here (∧) indicates the outer product. There are lk = (n
k ) different k-blades, each having its

own direction given by Ik = ei1 ∧ ei2 ∧ . . . ∧ eik . Hence, k-blades constitute directed linear

subspaces of Rp,q,r. In figure 1 we visualize the blade structure of R3, that is the GA of R3.

By considering next the simple example of the geometric product of two vectors a, b ∈
〈Rp,q,r〉1 we will get an inductive access to the construction rule of multi-vectors as the

algebraic entities of a geometric algebra. Here 〈·〉k means the grade-operator which indicates

1We use lower case letters, as a, for algebra vectors or for vector space elements.



Fig. 1: Blade structure of R3.

the separation of the linear space Rp,q,r into grade-k entities. Obviously, vectors are of grade

one and 〈Rp,q,r〉1 ≡ Rp,q,r. Then we get with

A = a b = a · b + a ∧ b (3)

a separation of the geometric product into the sum of the inner product

a · b =
1

2
(a b + b a) = 〈a b〉0 (4)

and the outer product

a ∧ b =
1

2
(a b− b a) = 〈a b〉2 . (5)

The geometric product, a b, results in the sum of a scalar, 〈a b〉0, and a bivector, 〈a b〉2.
In contrast to the scalar product of vector algebra, the geometric product of geometric

algebra is both grade-decreasing and grade-increasing. In general the multi-vector A is a

mixture of k-vectors, Ak,

A =

nX

k=0

Ak (6)

with

Ak = 〈A〉k =

l∗X
j=1

βBkj , (7)

l∗ ≤ lk. For the geometric product of homogeneous multi-vectors of grades s and r we get a

multi-vector C with a certain spectrum of different k-vectors,

C = ArBs = 〈ArBs〉|r−s| + 〈ArBs〉|r−s|+2 + . . . + 〈ArBs〉r+s (8)

with the pure inner product Ar ·Bs = 〈ArBs〉|r−s| and the pure outer product Ar ∧Bs =

〈ArBs〉r+s. Hence, the other components result from mixing the inner and outer product.



The blades of grade n are called pseudoscalar, P ,

P = λI (9)

with I being the unit pseudoscalar with I2 = ±1 if r = 0 and λ being a scalar which equals

the determinant of matrix algebra. Because I = IkIn−k, a blade Bk is related to its dual

one, Bn−k, by

B∗
k = Bn−k = BkI−1. (10)

This is a useful operation for switching between different representations of a multi-vector.

There are several main algebra involutions in GA, like in case of complex numbers the only

existing one is conjugation. Let us mention as an example the reversion. If Ak ∈ 〈Rp,q〉k is

a k-vector, then its reverse is defined as

eAk = ak ∧ ak−1 ∧ . . . ∧ a1 (11)

and the reserve of a multi-vector A ∈ Rp,q is defined as

eA =

nX

k=0

(−1)
k(k−1)

2 Ak. (12)

The reverse of a k-vector is needed for computing its magnitude,

|Ak| =
q

Ak · eAk (13)

and its inverse,

A−1
k =

eAk

|Ak|2 (14)

Besides, it should be mentioned that any GA may be decomposed by

Rn = R−n +R+
n (15)

into two partial spaces with R−n representing the odd grade blades and R+
n representing the

even grade blades and R+
n being a GA itself again.

There exist several isomorphisms of algebras. The most important statement is the exis-

tence of a certain matrix algebra for every GA (Porteous, 1995). In addition, the following

isomorphisms are of practical importance:

Rp+1,q ' Rq+1,p (16)

and

R+
p,q ' Rq,p−1. (17)

Examples of the last one are C ' R0,1 ' R+
2,0 and H ' R0,2 ' R+

3,0 with C being the

algebra of complex numbers and H being the quaternion algebra.



2.3 Geometric Algebra and its Tensor Notation

We take a look beyond the symbolic level and question how we can realize the structure of

geometric algebra numerically. We show a way that makes direct use of the tensor represen-

tation inherent in GA.

If {E1..2n } denotes the 2n-dimensional algebra basis of Rn, then a multi-vector A ∈ Rn can

be written as A = ai Ei, where ai denotes the ith component of a vector2 a ∈ R2n

and a

sum over the repeated index i is implied. We use this Einstein summation convention also

in the following. If B = bi Ei and C = ci Ei, then the components of C in the algebra

equation C = A ◦B can be evaluated via ck = ai bj Gk
ij . Here ◦ is a placeholder for the

algebra product and Gk
ij ∈ R2n×2n×2n

is a tensor encoding this product (we use sans serif

letters as a, g or G to denote vectors, matrices, tensors or generally any regular arrangement

of numbers). If we define the matrices U, V ∈ R2n×2n

as U(a) := ai Gk
ij and V(b) := bj Gk

ij ,

then c = U(a) b = V(b) a. This perfectly reveals the bilinearity of algebra products.

We define a mapping Φ and can then write Φ(A) = a, Φ(A◦) = U, Φ(A ◦B) = ai bj Gk
ij

or if a = aiei is an element of a Euclidian vector space, Φ(a) = a as well. Note that

we reduce the complexity of equations considerably by only mapping those components of

multi-vectors that are actually needed. As an example, a vector in Rn can have at least

n non-zero components. Also, the outer product of two vectors will not produce 3-vector

components, which can thus be disregarded. In the following we assume that Φ maps to the

minimum number of components necessary.

2.4 Conformal Geometric Algebra

Recently it has been shown (Rosenhahn & Sommer, 2005a and 2005b) that the conformal

geometry (Needham, 1997) is very attractive for most of the problems in robot vision, which

are related to shape modeling, projective geometry and kinematic. Conformal geometric

algebra (CGA) delivers a non-linear representation of a Euclidean space with remarkable

features:

First, CGA constitutes a unique framework for affine, projective and Euclidean geometry.

Because the special Euclidean transformation (RBM) is a special affine transformation, we

can handle either kinematic, projective or metric aspects of the problem at hand in the same

algebraic frame. Second, the basic geometric entities of conformal geometry are spheres

of dimension n. Other geometric entities as points, planes, lines, circles,. . . may be easily

constructed. These entities are no longer set concepts of a vector space but elements of CGA.

Third, the special Euclidean group is a subgroup of the conformal group, which is in CGA an

orthogonal group. Therefore, its action on the above mentioned geometric entities will be a

linear operation. Fourth, the inversion operation is another subgroup of the conformal group

which can be advantageously used in robot vision. Fifth, CGA generalizes the incidence

algebra of projective geometry with respect to the above mentioned geometric entities.

Before we enlighten the structure and features of CGA in more detail, we will have a short

look on R3, the geometric algebra of the Euclidean 3D-space R3. This will be the starting

2At least numerically, there is no other way than representing multi-vectors as vectors.



point for the mentioned non-linear representation in CGA. Additionally, R3 is the embedding

framework for image analysis, which will be described in section 3. The basis of its 8-

dimensional space is given by

basis(R3) : {e0, e1, e2, e3, e23, e31, e12, e123} (18)

with e0 ≡ 1 and ei being the basis vectors of R3 with e2
0 = e2

i = 1. Here the ei constitute

the unit 1-blades and the eij constitute the unit 2-blades with e2
ij = −1, see figure 1. The

unit pseudoscalar e123 ≡ IE squares according to e2
123 = −1.

The even subalgebra R+
3 is isomorphic to the quaternion algebra H according to equation

(17). Its dimension is four and the basis is given by

basis(R+
3 ) : {e0, e23, e31, e12} ' {1, i, j,−k} , (19)

where i, j, k are the imaginary unit vectors of a quaternion.

The conformal geometric algebra R4,1 of R3 is built by extending R3 with a so-called

Minkowski plane R1,1, resulting in R4,1. Originally, this construction of the CGA of a

pseudo-Euclidean space Rp,q which results in Rp+1,q+1, was proposed and analyzed by (An-

gles, 1980). Only the work of (Li et al., 2001a) has been recognized by the robot vision

community as valuable access to the interesting phenomena in a unique framework. The

same authors presented also a CGA for spherical geometry (Li et al., 2001b) and a further

generalization to cope with Euclidean, spherical and hyperbolic geometry (Li et al., 2001c).

But the last two cases have not yet been studied in robot vision.

The basis of the Euclidean CGA R4,1 is of dimension 32. That one of the extended space

R4,1 contains as additional basis vectors e+ and e− with e2
+ = 1, e2

− = −1, e+ · e− = 0.

Both basis vectors constitute the so-called orthonormal basis of the Minkowski plane. More

attractive is to switch to the so-called null-basis {eo, e∞} with e2
∞ = e2

o = 0 and e∞ ·eo = −1.

This has two reasons. First, both the origin of R3, represented by eo = 1
2
(e−−e+), and the

point at infinity, represented by e∞ = e− + e+, are explicitly accessible. Second, a point x

of the Euclidian 3D-vector space R3 is mapped to a conformal point (null vector) X ∈ R4,1,

with X2 = 0 and X · e∞ = −1, by the embedding function

K : x 7−→ X := x + 1
2

x2 e∞ + eo . (20)

We denote these special vectors by capital letters as well. The mapping K builds a homoge-

neous representation of a stereographically projected point (Rosenhahn & Sommer, 2005a).

As a grade-1 entity, a point is a special sphere, S, (also of grade one) with radius zero. The

dual representation of a sphere

S∗ = A ∧B ∧C ∧D (21)

is of grade four and is defined by the outer product of four points. A circle as a 2-dimensional

sphere, Z ∈ 〈R4,1〉2 or Z∗ ∈ 〈R4,1〉3 is defined by

Z = S1 ∧ S2 , Z∗ = A ∧B ∧C . (22)



By replacing one point in the defining equations (21) or (22) by the point at infinity, e∞, a

plane, a line or a point pair (a one-dimensional sphere) may be derived.

Most interesting for robot vision is the orthogonal representation in R4,1 of the elements of

the conformal group C(3). All transformations belonging to the conformal group are linear

ones and the null cone, that is the set of all null vectors, is invariant with respect to them.

Let G ∈ R4,1 be an element of the conformal group and U ∈ R4,1 any entity which has to

be transformed by G to U ′ ∈ R4,1. Then

U ′ = G U eG (23)

describes this transformation as a (bi-)linear mapping. In general, all algebraic entities with

such sandwich product are called versors (Hestens et al., 2001). Given some conditions,

certain versors are called spinors (representing rotation and dilation) and normalized spinors

are called rotors (representing pure rotation). Interestingly, also translation has a rotor

representation (called translator) in CGA. But the most interesting transformation belonging

to the conformal group is inversion, see (Needham, 1997), because all other transformations

can be derived from it. Let S = eo − 1
2
e∞ = −e+ be a unit sphere located at the origin eo,

then the inversion of any conformal point X ∈ 〈R4,1〉1 in the unit sphere is written

X ′ = S X S . (24)

The elements of the rigid body motion in CGA are called motors, M ∈ R+
4,1. They connect

rotation, represented by a rotor R, and translation, represented by a translator T , in a

multiplicative way,

M = T R eT (25)

and can be interpreted as a general rotation (Rosenhahn & Sommer, 2005a). As all versors,

they are concatenated multiplicatively. Let M = M2M1 be a sequence of two motors, then

U ′′ = M U fM = M2 U ′ fM2 = M2 M1 U fM1
fM2 (26)

for all U ∈ R4,1. Another important feature of linear operations in GA also applies for

versors in CGA. It is the preservation of the outer product under linear transformation,

which is called outermorphism (Heestens, 1991). Let S1, S2 ∈ 〈R4,1〉1 be two spheres and

Z ∈ 〈R4,1〉2 a circle. Then according to equations (22) and (23) the circle transforms under

the action of a motor M ∈ R+
4,1 as

Z′ = MZ fM = M(S1 ∧ S2)fM = 〈M(S1S2) fM 〉2
= 〈MS1

fMMS2
fM〉2 = MS1

fM ∧MS2
fM = S′1 ∧ S′2 . (27)

These last features of CGA turn out to be very important for robot vision applications as

pose estimation, see (Rosenhahn & Sommer, 2005b) and (Gebken et al., 2006). Another

important feature of CGA is the stratification of spaces according to (Faugeras, 1995) in one

algebraic framework. Because

R4,1 ⊃ R3,1 ⊃ R3,0 (28)

with R3,1 being one possible representation of the projective space in GA, the change of the

representations with the respective geometric aspects is a simple task, see (Rosenhahn &

Sommer, 2005a).



2.5 Conformal Embedding - the Stochastic Supplement

We have to obey the rules of error propagation when we embed points by means of function

K, equation (20). Assume that point x is a random vector with a Gaussian distribution and

x̄ is its mean value. Furthermore, we denote the 3×3 covariance matrix of x by Σx. Let

E denote the expectation value operator, such that E [x] = x̄. The uncertain representative

in conformal space, i.e. the stochastic supplement for X = K(x̄), is determined by a sphere

with imaginary radius

E
h
K(x)

i
= x̄ + 1

2
x̄2 e∞ + eo + 1

2
trace

“
Σx

”
e∞ (29)

rather than the pure conformal point K
“
E [x]

”
. However, observing that K

“
E [x]

”
≈

E
h
K(x)

i
shows why our algorithms do not noticeably differ in the output when using an

exact embedding or its approximation. We evaluate the corresponding 5×5 covariance matrix

ΣX for X = K(x̄) by means of error propagation and find

ΣX = JK(x̄) Σx JT
K(x̄) , (30)

where we used the Jacobian of K

JK(x̄) :=
∂K
∂X

=

2
666666664

1 0 0

0 1 0

0 0 1

x̄1 x̄2 x̄3

0 0 0

3
777777775

. (31)

3 Monogenic Curvature Tensor as Image Representation

In this section we will describe how the embedding of local image analysis into a geometric

algebra extends the representation in such a way that a rich set of local features will emerge.

3.1 Overview: Local Spectral Representations

Image analysis is a central task of robot vision systems. It is to a main portion local

analysis. Image analysis based on local spectral representations (Granlund & Knutsson,

1995), that is amplitude and phase, has been a well-known method of signal processing for

years. The aim is to assign a structural or/and geometric interpretation to an image point.

That task of computing is called split of identity. In practice, a set of oriented bandpass

operators are applied, each consisting of a pair of quadrature filters. The most well-known

representative is the complex valued Gabor filter (Gabor, 1946). It delivers a complex

valued signal representation, the analytic signal, from which for each chosen orientation at

position x ∈ R2 a local amplitude and a local phase can be derived. The local amplitude

can be considered as a confidence measure of estimates of the local parity symmetry of the

signal derived from local phase. Parity symmetry is a measure, which describes the type of



structure. The method can be used for detecting lines and edges, analyzing textures, and

with some restrictions for detecting corners and junctions.

Regrettably, the analytic signal is neither rotation invariant nor sensitive to discriminate

intrinsically 1D and 2D (i1D and i2D) structures. This has its reason in the fact that

the analytic signal is indeed only a reasonable complex valued extension of one-dimensional

functions. Therefore, with great endeavour the problems of orientation steerability (Freeman

& Adelson, 1991) and of generalizing the Hilbert transform (Hahn, 1996) have been attacked.

Only the consequent use of Clifford analysis (Brackx et al., 1982) led us to a multi-dimensional

generalization of the analytic signal, called monogenic signal (Felsberg & Sommer, 2001)

which overcomes the missing rotation invariance. But also that representation is incomplete

with respect to represent intrinsically 2D structures, see the survey paper (Sommer & Zang,

2007).

The monogenic curvature tensor (Zang & Sommer, 2007) further generalizes the monogenic

signal. It delivers a local signal representation with the following features:

• It enables classification of intrinsic dimension.

• It delivers two curvature based signal representations which distinctly separate repre-

sent intrinsically 1D and 2D structures. One of these is identical to the monogenic

signal. Two specific but comparable types of local amplitude and phase can be de-

scribed.

• In both cases the local phase constitutes a vector that includes also the orientation as

a geometric feature.

• In case of i2D structures, an angle of intersection can be derived from the derivations

of phase angles.

• Both curvature based signal representations can be embedded in a novel scale-space

concept, the monogenic scale-space (Feldsberg & Sommer, 2004), in which local am-

plitude, phase and orientation become inherent features of a scale-space theory. This

enables scale adaptive local image analysis.

All these efforts have been made because of the advantages of phase based image analysis for

getting access to geometry and because of the illumination invariance of phase information.

3.2 Monogenic Curvature Tensor

The image representation we want to model should have some invariances:

• Invariance with respect to intrinsic dimension: Both i1D and i2D structures can be

modeled. This is possible by the curvature tensor of differential geometry (Koenderink

& van Doorn, 1987).



• Invariance with respect to parity symmetry: Both even and odd symmetric struc-

tures can be represented. This is possible by designing quadrature phase filters, whose

harmonic conjugate component is in quadrature phase relation to the real valued com-

ponent (Sommer & Zang, 2007). The way to get this is applying a (generalized)

holomorphic extension of a real valued multi-dimensional function by a (generalized)

Hilbert transform.

• Invariance with respect to rotation: This becomes possible by specifying the generalized

holomorphic extension by a monogenic extension (Felsberg & Sommer, 2001), whose

operator realization is given by the Riesz transform (Stein & Weiss, 1971).

• Invariance with respect to angle of intersection: Because of the involved differential

geometric model, a local structure model for i2D structures is considered for i1D struc-

tures intersecting at arbitrary angles.

• Invariance with respect to scale: This requires embedding of the image representation,

respective of the operator which derives it into a monogenic scale-space (Felsberg &

Sommer, 2004).

Having these invariances in the image representation, in a second step of analysis the cor-

responding variances can be computed. These are intrinsic dimension, parity symmetry,

rotation angle, angle of intersection and intrinsic scale at which these features exist.

We will interpret a 2D-image as a surface in R3. Let be C the curvature tensor of the second

fundamental theorem of differential geometry. Its Monge patch representation is given by

C(x) =

„
(1 + fx

2 + fy
2)−

1
2 B

«
(x) (32)

with the Hesse matrix

B(x) =

2
4 fxx fxy

fxy fyy

3
5
“
x
”

. (33)

Then the Gaussian curvature, κ(x) = det(B), and the mean curvature, µ(x) = trace(B), are

spanning a basis in which the local signal f(x) can be classified according to its intrinsic

dimension according to table 1.

Type µ (Mean Curvature) κ (Gaussian Curvature)

Elliptic (i2D) κ > 0

Hyperbolic (i2D) κ < 0

Parabolic (i1D) |µ| 6= 0 κ = 0

Planar (i0D) |µ| = 0 κ = 0

Table 1: Surface type classification based on Gaussian and mean curvature.

The signal representation we want to get is a kind of Hesse matrix in a monogenic repre-

sentation. This requires two steps. First, according to (Felsberg & Sommer, 2001) we are



embedding the originally scalar valued signal f(x) as a vector field f(x) with values directed

to the unit vector e3,

f(x) : R2 → R −→ f(x) : R2 → R e3

f(x) = f(x e1 + y e2) = f(x, y) e3 .
(34)

Second, we are switching from the vector space R3 to the Euclidean geometric algebra

R3 ≡ G(R3) and are applying a monogenically extended Hessian operator, hM ∈ M(2,R3),

which is a 2×2 matrix with monogenic elements. The convolution of the signal f with all

elements of the operator matrix results in the monogenic curvature tensor T(x) ∈ M(2,R3)

as signal representation. To be more specific, see (Zang & Sommer, 2007), the monogenic

Hessian operator may be splitted into an even operator, he ∈ M(2,R+
3 ), with spinor valued

elements and an odd operator, ho ∈ M(2,R−3 ), which results from the even operator by

applying the Riesz transform hR,

hM = he + ho = he + hR ∗ he (35)

with

he(x) =

2
4 ∂xx −∂xy e12

∂xy e12 ∂yy

3
5 (x) (36)

and

hR(x) =
x e3

2π|x|3 . (37)

The monogenic Hessian operator may be interpreted as a rotation invariant and parity

symmetry invariant detector of two i1D structures crossing invariant with respect to the angle

of intersection. This involved structure model is the most general that could be developed.

Nevertheless, it is limited by the model of differential geometry which does not consider

derivatives of order higher than two. The structure of the monogenic Hessian operator

reveals if we are going to the Fourier domain, take advantage of the derivative theorem of

Fourier theory, and are modeling the operator in terms of circular harmonics of order n,

Cn ∈ R+
3 , in polar coordinates u = (%, α),

Cn(%, α) = Cn(%) exp(nαe12) . (38)

Then we recognize that our model involves circular harmonics of orders n ∈ {0, 1, 2, 3},

He(u) =
1

2

2
4 C0 + 〈C2〉0 −〈C2〉2

〈C2〉2 C0 − 〈C2〉0

3
5 (u) (39)

Ho(u) =
1

2

2
4 C1(C0 + 〈C2〉0) C1(−〈C2〉2)

C1(〈C2〉2) C1(C0 − 〈C2〉0)

3
5 (u) . (40)

As equations (35) and (40) reveal, the Riesz transform is identic to the first order circular

harmonic,

HR(u) =
u

|u| e
−1
12 ≡ C1(u) . (41)



What remains for fulfilling the scale invariance requirement is embedding the monogenic

Hessian operator into the monogenic scale-space (Felsberg & Sommer, 2004). This is achieved

by replacing the radial component of circular harmonics, Cn(%), by a Difference-of-Poisson

kernel, HDOP,

HDOP(%; s1, s2) = exp(−2π% s1) − exp(−2π% s2) (42)

with s1 < s2 being two different scale parameters. This results in circular harmonic bandpass

functions

Cn(%, α; s1, s2) = HDOP(%; s1, s2) Cn(α) . (43)

Finally, we get the monogenic curvature tensor T(x) as

T(x) = Te(x) + To(x) =

„
(he + ho) ∗ f

«
(x) , (44)

respectively its representation in frequency domain.

3.3 Analysis of the Monogenic Curvature Tensor

Having the monogenic curvature tensor (in a scale-space embedding), it will now be analyzed

with respect to the represented curvature information (Zang & Sommer, 2007).

By computing the trace of T(x), we get the monogenic mean curvature signal, fi1D(x) :

R2 → R3, which is specific with respect to i1D structures. It may be written as a vector

field

fi1D(x) = te(x) + to(x) = trace(Te)(x) + trace(To) e2(x) (45)

= f(x) +

„
hR ∗ f

«
(x) ≡ fM (x) , (46)

which turns out to be identical to the monogenic signal (Felsberg & Sommer, 2001).

By computing the determinant of T(x), we get the generalized monogenic Gaussian curvature

signal, fi2D(x) : R2 → R3, which is specific with respect to i2D structures. In similar way

as fi1D, it may be written as a vector field

fi2d(x) = de(x) + do(x) = detR(Te)e3(x) + e1 detR(To)(x) (47)

= de(x) +

„
e1c2e3 ∗ de

«
(x) ≡ fMC(x) . (48)

We call it ’generalized monogenic’ because its conjugate harmonic part results from the

real part by applying c2 as generalized Hilbert transform with the result that the relations

between de and do are different to those of te and to. Both signal representations can be

interpreted as the result of a spinor valued operator, s, which rotates and scales the original

vector field f(x) = f(x, y) e3 so that it will be supplemented by a conjugate harmonic

component which projects to the plane e1 ∧ e2 and fulfills the conditions t2e = t2o and

d2
e = d2

o. The scaling-rotation is performed in the ’phase plane’ fs(x) ∧ e3 = 〈e3fs(x)〉2
with s(x) = e3fs(x) being the respective spinor and fs ≡ fi1D or fs ≡ fi2D. By evaluating



the exponential representation of s with respect to the R+
3 -logarithm, see (Felsberg, 2002),

the local spectral representations can be computed. These are the local amplitude

a(x) = |fs(x)| = exp(〈log(e3fs(x))〉0) (49)

and the (generalized) monogenic local phase bivector

Φ(x) = arg(fs(x)) = 〈log(e3fs(x))〉2 . (50)

From Φ(x) follow the local phase φ(x) as rotation angle within the phase plane,

φ(x) = |(Φ(x))?| = atan

„ |〈e3fs(x)〉2|
|〈e3fs(x)〉0|

«
, (51)

and the orientation angle θ(x) of the phase plane within the plane e1 ∧ e2,

θ(x) =
〈e3fs(x)〉2
|〈e3fs(x)〉2|

. (52)

In the case of fi1D, θ(x) is indicating the orientation of the i1D structure within the im-

age plane and in the case of fi2D, 2θ(x) represents the local main orientation of the i2D

structure in a double angle representation which results from the eigenvector decomposition

of the structure tensor (Felsberg, 2002). Hence, phase analysis delivers also the orientation

information as a consequence of the monogenic representation of the curvature tensor.

In figure 2, an example signal is analyzed with respect to its local spectral representations.

The monogenic curvature tensor is obviously invariant with respect to rotation. In figure 3,

two patterns of even and odd symmetric structures are analyzed with respect to local am-

plitudes and local phases for fi1D and fi2D, respectively. Clearly can be seen the invariances

of the monogenic curvature tensor with respect to the intrinsic dimension, parity symmetry

and angle of intersection.

We will not discuss in detail the scale-space properties (Zang & Sommer, 2006a). It should

only be mentioned that the embedding of the curvature tensor into a monogenic scale-space

results in an improved corner detection based on a novel two-dimensional phase congruency

method (Zang & Sommer, 2006b) and delivers superior estimates of the optical flow field

based on a phase constrained variational approach (Zang et al., 2007).

4 Parameter Estimation from Uncertain Data

Uncertain data occurs almost invariably, especially in computer vision applications. It is

hence a necessity to develop and use methods, which account for the errors in observational

data. Here, we discuss a parameter estimation from uncertain data in the unified mathe-

matical framework of geometric algebra.

We use conformal geometric algebra (CGA) as introduced in section 2.4. Consequently, the

estimation is applicable to (parameterizations of) geometric entities and geometric operators;

points, lines, planes, circles or spheres can be treated in very much the same way as rotations

or rigid body motions (RBM). In general, our aim is to find multi-vectors that satisfy a



Fig. 2: Top: original image (left), even and odd components of fi2D (middle and right).

Bottom: local amplitude (left), local phase (middle) and local orientation (right).

Fig. 3: From left to right: original images, local amplitudes and local phases of the mono-

genic signal fi1D, local amplitudes and local phases of the generalized monogenic Gaussian

curvature signal fi2D.



particular condition equation, which depends on a set of uncertain measurements. The

specific problem and the type of multi-vector, representing a geometric entity or a geometric

operator, determine the condition. In the language of CGA we obtain succinct expressions

and thanks to the bilinearity of the always involved geometric product, the corresponding

equations are linear or at most quadratic in the multi-vector components. In section 2.3 we

have introduced a simple way to represent geometric algebra operations in terms of a tensor

notation, where the term tensor denotes the classical extension of matrix theory to higher

dimensions. This allows us to use well-tried and efficient algorithms without leaving the

algebra. Moreover, it paves the way for using the stochastic: standard error propagation,

for example, is exact for the geometric product and makes it easily possible to keep track of

the uncertainties while doing operations like an intersection.

The stochastic is one of the fundamental aspects of this section. To account for the uncertain-

ties in observational data we consequently decided on a least squares adjustment parameter

estimation. We use the Gauss-Markov and the Gauss-Helmert method. Each of them pro-

vides an estimate together with a suitable covariance matrix. Hence, further calculations

can be carried out with these uncertain elements, as mentioned above.

This text builds on previous works by (Heuel, 2004) where uncertain points, lines and planes

were treated in a unified manner, but not in GA. The linear estimation of rotation operators

in GA was previously discussed in (Perwass & Sommer, 2002), albeit without taking account

of uncertainty. In (Perwass et al., 2005) the estimation of uncertain general operators was

introduced.

The structure of this section is as follows: first, we explain the underlying parameter esti-

mation methods. We then present two applications. For each, we demonstrate in which way

we profit from the expressiveness of CGA and we explain how our method can be applied

within that framework.

4.1 Stochastic Estimation Method

In the field of parameter estimation one usually parameterizes some physical process P in

terms of a model M and a suitable parameter vector p. The components of p are then to be

estimated from a set of observations originating from P.

Here, we introduce our two parameter estimation methods, the common Gauss-Markov

method and the most generalized case of least squares adjustment, the Gauss-Helmert

method. Both are founded on the respective homonymic linear models, cf. (Koch, 1997). The

word ’adjustment’ puts emphasis on the fact that an estimation has to handle redundancy in

observational data appropriately, i.e. to weight unreliable data to a lesser extend. In order

to overcome the inherent noisiness of measurements one typically introduces a redundancy

by taking much more measurements than necessary to describe the process. Each observa-

tion must have its own covariance matrix describing the corresponding Gaussian probability

density function that is assumed to model the observational error. The determination of

which is inferred from the knowledge of the underlying measurement process. The matrices

serve as weights and thereby introduce a local error metric.



The principle of least squares adjustment, i.e. to minimize the sum of squared weighted

errors ∆yi, is often denoted as

X
i

∆yT
i Σyi

−1∆yi −→ min , (53)

where Σyi is a covariance matrix assessing the confidence of yi.

Let {b1, b2, . . . , bN} be a set of N observations, for which we introduce the abbreviation

{b1..N }. Each observation bi is associated with an appropriate covariance matrix Σbi . An

entity, parameterized by a vector p, is to be fitted to the observational data. Consequently,

we define a condition function g(bi, p) which is supposed to be zero if the observations and

the entity in demand fit algebraically. Besides, it is often inevitable to define constraints

h(p) = 0 on the parameter vector p. This is necessary if there are functional dependencies

within the parameters. Consider, for example, the parameterization of a Euclidian normal

vector n using three variables n = [n1, n2, n3]
T. A constraint nTn = 1 could be avoided

using spherical coordinates θ and φ, i.e. n = [cos θ cos φ, cos θ sin φ, sin θ]T. In the following

sections, we refer to the functions g and h as G-constraint and H-constraint, respectively.

Note that most of the fitting problems in these sections are not linear but quadratic, i.e.

the condition equations require a linearization and estimation becomes an iterative pro-

cess. An important issue is thus the search for an initial estimate (starting point). If we

know an already good estimate p̂, we can make a linearization of the G-constraint yield-

ing (∂p g)(bi,p̂)∆p + g(bi, p̂) ≈ 0. Hence, with Ui = (∂p g)(bi,p̂) and yi = −g(bi, p̂):

Ui∆p = yi + ∆yi, which exactly matches the linear Gauss-Markov model. The minimiza-

tion of equation (53) in conjunction with the Gauss-Markov model leads to the best linear

unbiased estimator. Note that we have to leave the weighting out in equation (53), since

our covariance matrices Σbi do not match the Σyi . Subsequently, we consider a model which

includes the weighting.

If we take our observations as estimates, i.e. {b̂1..N } = {b1..N }, we can make a Taylor series

expansion of first order at (b̂i, p̂) yielding

(∂p g)(b̂i,p̂)∆p + (∂b g)(b̂i,p̂)∆bi + g(b̂i, p̂) ≈ 0 . (54)

Similarly, with Vi = (∂b g)(b̂i,p̂) we obtain Ui∆p + Vi∆bi = yi, which exactly matches the

linear Gauss-Helmert model. Note that the error term ∆yi has been replaced by the linear

combination ∆yi = −Vi∆bi; the Gauss-Helmert differs from the Gauss-Markov model in

that the observations have become random variables and are thus allowed to undergo small

changes ∆bi to compensate for errors. But changes have to be kept minimal, as observations

represent the best available. This is achieved by replacing equation (53) with

X
i

∆bT
i Σbi

−1∆bi −→ min , (55)

where ∆bi is now considered as error vector.

The minimization of (55) subject to the Gauss-Helmert model can be done using Lagrange

multipliers. By introducing ∆b = [∆bT
1 , ∆bT

2 , . . . , ∆bT
N ]T, Σb = diag([Σb1 , Σb2 , . . . , ΣbN ]),



U = [UT
1 , UT

2 , . . . , UT
N ]T, V = diag([V1, V2, . . . , VN ]) and y = [yT

1 , yT
2 , . . . , yT

N ]T the Lagrange

function Ψ, which is now to be minimized, becomes

Ψ(∆p, ∆b, u, v) =
1

2
∆bT Σb

−1 ∆b −
“

U ∆p + V ∆b− y
”T

u +
“

H ∆p − z
”T

v . (56)

The last summand in Ψ corresponds to the linearized H-constraint, where H = (∂ph)(p̂) and

z = − h(p̂) was used. That term can be omitted, if p has no functional dependencies. A

differentiation of Ψ with respect to all variables gives an extensive matrix equation, which

could already be solved. Nevertheless, it can be considerably reduced with the substitutions

N =
P

i UT
i

“
Vi Σbi VT

i

”−1

Ui and zN =
P

i UT
i

“
Vi Σbi VT

i

”−1

y. The resultant matrix

equation is free from ∆b and can be solved for ∆p
2
4 N HT

H 0

3
5
2
4 ∆p

v

3
5 =

2
4 zN

z

3
5 . (57)

For the corrections {∆b1..N }, which are now minimal with respect to the Mahalanobis

distance (55), we compute

∆bi = ΣbiV
T
i

“
ViΣbiV

T
i

”−1 “
yi − Ui ∆p

”
. (58)

It is an important by-product that the (pseudo-) inverse of the quadratic matrix in equation

(57) contains the covariance matrix Σ∆p = Σp belonging to p. The similar solution for the

Gauss-Markov model and the corresponding proofs and derivations can be found in (Koch,

1997). Due to outstanding convergence properties we start iterating with the Gauss-Markov

method. At the optimum we start the slower Gauss-Helmert method, which ultimately

adjusts the estimate according to the uncertainties Σbi .

4.2 Fitting a Circle in 3D

Now we show how the estimation method can be used in CGA to fit a circle in 3D-space to

a set of N data points {b1..N }. Each data point is given with its mean bi and covariance

matrix Σbi . In order to apply the estimation methods as described, we need a G-constraint

and possibly an H-constraint. We therefore give an introduction to circles in CGA.

We represent a circle by the inner product null space X of a 2-blade C. That space consists

of all conformal points X, the inner product of which with the circle C is zero, i.e. X =

{X = K(x) |X · C = 0}. To understand this relationship, consider the inner product

null space of a sphere Sr with radius r and center m. It can be created from a point

S0 = K(m) = m+ 1
2

m2 e∞+ eo by subtracting the term ’ 1
2

r2 e∞’. The sphere is thus given

by Sr = m+ 1
2

(m2−r2) e∞+ eo. For some vector x it can be verified that K(x)·Sr = 0∈R
iff ‖x −m‖2 = r. Now, consider two intersecting spheres S1 and S2. A circle intuitively

consists of all points X lying on S1 and S2. Intersection can be expressed by the outer

product and in fact the circle definition is C = S1∧S2. For a justification examine the inner

product X ·C
X · (S1 ∧ S2) = (X · S1)S2 − (X · S2)S1 . (59)



The terms cannot cancel each other if S1 and S2 are linearly independent, i.e. if they do

not represent the same sphere. The upper equation is therefore zero iff X is located on S1

and S2 as well.

Remarkably, we have found an appropriate G-constraint right from the definition of the

circle’s inner product null space itself. It remains to transfer the inner product expression

X · C to an equivalent matrix expression. As there are ten basis blades of grade two in

R4,1, we have Φ(C) = p ∈ R10. The points {b1..N } are embedded and mapped as follows:

Φ(K(bi) = Bi) = bi ∈ R5. Note that our condition equation (59) yields a vector, being

defined by five components in R4,1. Consequently, we obtain

Φ(Bi ·C) = U(bi) p = V(p) bi = g(bi, p) ∈ R5, (60)

which can be differentiated easily. Thus, the required Jacobians {U1..N } and V follow from

the bilinearity of geometric algebra products in an implicit manner.

Because a circle in 3D-space can be described by a minimum number of six parameters, we

face a functional dependency of grade 4 = 10− 6 within p. As mentioned in section 4.1, we

have to introduce constraints on the parameters, namely the H-constraint h(p). We enforce

C to be a circle by requiring that C ∧C = 0, which can be shown to be sufficient. In almost

the same way as for the G-constraint, the usage of Φ allows us to derive the H-matrix. Being

in the possession of all necessary matrices, we are able to run the estimation in order to solve

for the corrections ∆p and {∆b1..N }.
We remain with this stage and refer the reader to the next estimation example. There, we

explicitly derive the constraint functions in terms of the tensor notation.

As mentioned earlier, our method provides the covariance matrix Σp of the estimated entity p

as well. It shows up to which degree the model fits the observations and how advantageously

they were initially distributed. It does not reflect to which extend the estimate deviates from

a potentially perfect fit, i.e. it is no quality measure for our method. Figure 4 exemplarily

shows the uncertainty of an estimated circle. The surrounding tubes, indicated by slices,

show the standard deviation of the estimates.

4.3 Fitting two Point Clouds in 3D

In this part, we describe how the proposed methods can be used to estimate an RBM; it

extends a rotation, given by a rotor, by a translational component along the axis of rotation.

Hence, we can think of it as a screw motion, cf. (Rosenhahn, 2003). In geometric algebra an

RBM is represented by an operator called motor. In the scope of pose estimation, the pose

is uniquely characterized by an RBM. The estimation of motors is thus a first step towards

the perspective pose estimation problem.

Let {a1..N } and {b1..N } be two sets of N Euclidian points each. The latter represent the

observations for which we have the covariance matrices {Σb1..N }. The set {a1..N } is assumed

to have no uncertainty. Let Ai = K(ai) and Bi = K(bi) denote the conformal embedding

of ai and bi, respectively. We search for the motor M , which best transforms all points

in {A1..N } to the respective points in {B1..N }. The scenario is shown in figure 5. Using



Fig. 4: Fitting a circle: four views of a circle’s uncertainty (standard deviation).

Fig. 5: Fitting two point clouds: the rotation of the motor M is indicated by the partial

disc. The translational part is specified by the arrow attached to it.



geometric algebra, we can easily write MAi
fM = Bi, cf. (Perwass & Sommer, 2002). Note

that a motor is a unitary versor, i.e. it has to satisfy M fM = 1. Exploiting this fact, we

rearrange the previous formula and obtain the G-constraint

(M Ai) − (Bi M) = 0

↓ ↓ ↓ ↓ ↓
pk Gt

kl ai
l − bi

l Gt
lk pk = 0t

, (61)

where we used Φ(Ai) = ai, Φ(Bi) = bi and Φ(M) = p ∈ R8. The tensor G encodes the

geometric product. In order to evaluate the matrices U and V, we differentiate equation

(61) with respect to p and b, respectively. Hence, we get U(bi) = Gt
klai

l − bi
lGt

lk and

V(p) = − pkGt
lk.

Since an RBM is defined by six rather than eight parameters, we need the H-constraint.

We again exploit unitarity and choose h(p) = Φ(M fM − 1) = pk pl Rm
l Gt

km − δt,1. The

tensor R encodes the reverse operation and δt,1 is zero, except for t = 1. Differentiation

∂ph yields H(p) = pl (Rm
l Gt

km + Rm
k Gt

lm). The estimate for M can now be computed by

simply substituting the matrices {U1..N }, V and H into the respective equations given in the

theoretical part.

5 Pose Estimation from Uncertain Omnidirectional Image Data

We present a sophisticated application of the parameter estimation from uncertain data as

depicted in the previous section. It reads ’perspective 2D-3D pose estimation for omnidirec-

tional vision using line-plane correspondences’ and has strong geometrical streaks, which is

why we spend an extra section. In this context, we introduce the ’inversion camera model’,

which has the ability to model a variety of distinct camera systems thereby taking image

distortions into account.

Pose estimation certainly is a well-studied subject, but not in case of an omnidirectional

vision system. Hence, our objective was to develop accurate pose estimation for omnidirec-

tional vision, given imprecise image features, i.e. 2D-sensory data. Note that these features

can readily be detected by the method proposed in section 3.

Comparable to triangulation, the accuracy of an estimated pose benefits when landmarks can

be seen in clearly different directions. But the most significant advantages of omnidirectional

vision are related to navigation, since the objects remain on the image plane under most

camera movements. We consider a single viewpoint catadioptric vision sensor. It combines

a customary camera with a parabolic mirror and provides a panoramical view of 360◦.

We make the assumption to have 3D-models of the interesting objects we observe in the

images. Secondly, we assume to know the one-to-one correspondences between the model

features and the image features. Note that a model consists of 3D-lines, which mostly rep-

resent object edges, which in turn, are likely to generate a line under imaging; consequently,

we have lines as image features. We herewith extend our previous work where we had been

employing point features and point models.



Fig. 6: Fitting a triangle model to the projection planes spanned by R1, R2 and R3.

5.1 Omnidirectional 2D-3D Pose Estimation

Roughly speaking, rigidly moving an object in 3D such that it comes into agreement with

2D-sensory data of a camera is called 2D-3D pose estimation (Grimson, 1990). Specifically,

we estimate an RBM in 3D, such that the model lines come to lie on the projection planes

of the underlying image lines, see figure 6.

The method to be proposed comprises three steps: from those pixels corresponding to visible

model lines, we estimate projection planes with associated uncertainties. In a second step,

a simple algorithm is used to do prior rotation estimation being a first and rough guess at

the rotational part of the desired RBM. As a result the model will be aligned such that its

lines are nearly parallel to the respective projection planes. We finally estimate the entire

pose taking the computed plane uncertainties into account as well.

Before we explain those steps in detail, we give a sketch of catadioptric imaging.

5.2 Omnidirectional Imaging

Consider a camera, focused at infinity, which looks upward at a parabolic mirror centered

on its optical axis. This setup is shown in figure 7. A light ray emitted from world point Pw

that would pass through the focal point F of the parabolic mirror M , is reflected parallel

to the central axis of M , to give point p2 on image plane π2. Now we use the simplification

that a projection to sphere S with a subsequent stereographic projection to π1 produces an

identical image on π1. Accordingly, point Pw maps to PS and further to p1, see figure 7.

Together with the right side of figure 7 it is intuitively clear that infinitely extended lines

form great circles on S. Moreover, a subsequent stereographic projection, being a conformal

mapping, results in circles on the image plane, which then are no more concentric. For

details refer to (Geyer & Daniilidis, 2001).

Our approach exploits that the mapping from a projection ray to an image point is bijective

and therefore invertible. Moreover, given an image line, we can compute its projection plane.



Fig. 7: Left: mapping (cross-section) of a world point Pw: the image planes π1 and π2 are

identical. Right: mapping of line L to Lπ via great circle LS on S. As an example, scattered

image data belonging to Lπ is shown.

5.3 Estimating Projection Planes

We must come up with observations in the form of planes for a line-plane fitting; we compute

a projection plane for each set of image points that corresponds to a visible model line. To

be more specific, we estimate the planes from the stereographically back-projected image

points. Hence, the points have to be moved to the projection sphere S, see figure 7. This is

done by an inversion of the image points in a certain sphere SI . Note that the (uncertain)

image points, initially identically 2D-distributed, thereby obtain distinct 3D-uncertainties,

which reflect the imaging geometry. The uncertainties are computed using error propagation,

where we profit from the inversion being a linear operation in R4,1. The plane estimation

can now be done by restricting the circle estimation, see section 4.2, to the three parameters

describing the circle’s plane. Recall that we obtain a covariance matrix for each estimated

plane.

5.4 Prior Model Alignment

The line-plane pose estimation will prove to be a quadratic problem. In such cases, as

mentioned in section 4.1, the linearization requires an initial estimate. The prior model

alignment provides such a starting point at very low costs. We like to rotate the model such

that the set of unit direction vectors {r̂1..N } of its lines lie on the respective planes. Let

{n̂1..N } denote the set of normal vectors of all planes, which belong to visible model lines.

We search for a rotation matrix R such that (∀i) : n̂T
i R r̂i = 0 ∈ R.

By Rodrigues’s formula (1840) we know that the rotation matrix R regarding a rotation of

angle θ around unit vector â = [a1, a2, a3]
T can be expressed by an exponential map of A =

[[0, a3,−a2]
T[−a3, 0, a1]

T[a2,−a1, 0]T]: R = exp(θA) which is R = I3 + sin θ A + (1− cos θ)A2,

where I3 denotes the 3×3 identity matrix. For small angles we obtain R = I3 + θA. With

this relation and due to the skew symmetric structure of A′ = θA it is possible to solve



for a′ = [θa1, θa2, θa3]
T, where each line-plane pair gives one line n̂T

i A′ r̂i = −n̂T
i r̂i in an

overdetermined system of linear equations. Every run of this procedure yields a rotation

matrix, the concatenation of which gives the desired rotation matrix R. Once, the rotated

lines are close enough to the planes w.r.t. some threshold the procedure can be stopped.

5.5 Perspective Line-Plane Pose Estimation

Here we derive geometric constraint equations for the stochastic estimation methods pre-

sented in the previous section.

Let P be a projection plane, see section 5.3. For any line L lying on P , we have P ∧L = 0 ∈
R4,1. A model line L′ is transformed by an RBM represented by M , say, via the operation

M L′ fM . Therefore, if we have estimated the correct M , a model line L′ with corresponding

projection plane P has to satisfy P ∧ (M L′ fM) = 0.

Using Φ from section 2.3, we can identify our elements P , L′ and M with particular vectors

n ∈ R3, l′ ∈ R6 and p ∈ R8. For example, n simply denotes the normal vector of the plane

represented by P . We contract all constituent product tensors to one tensor Q and obtain

condition function g for one line-plane pair

gt(n, p, l′) =
X

i,j,k,l

pi pj nk l′
l
Qt

ijkl = 0 , t ∈ {1, . . . , 4} . (62)

Algebraically, the constraint P ∧L may only be non-zero in four of its 25 = 32 components,

which is why we have t ∈ {1, . . . , 4}. The observations and parameters are n and p, re-

spectively. Hence, differentiating would yield the matrices {U1..N } and {V1..N } required in

section 4.1. The eight components of M are an overparameterization, again, such that we

need to include the H-constraint M fM = 1 from section 4.3.

5.6 Inversion Camera Model

The inversion camera model can be used for image rectification. Besides, it can readily be

incorporated into the previously presented pose estimation methods as inversion embodies

the main CGA operation. We briefly discuss both applications.

We go on from section 5.2 in which we dealt with imaging. The considerations were limited

to the special case of a parabolic catadioptric imaging system: a stereographic projection

had been replaced by an inversion of the projection sphere S in a inversion sphere SI . This

is one case of what the inversion camera model, which was proposed by (Perwass & Sommer,

2006), can handle. It basically expresses a projective mapping in terms of an inversion. It

enables a continuous transition between different geometries of imaging, as fisheye optics

or the classic pinhole camera, merely by changing two parameters. These determine the

constellation of suitable spheres S and SI in respect to the focal point F . In addition to

the left side of figure 7, which illustrates a parabolic catadioptric imaging system, figure 8

depicts two further interesting constellations. To demonstrate the versatility of the inversion

camera model, recall the imaging principle described in section 5.2. It can equally be applied



Fig. 8: Mapping schemes (cross-section) in terms of the inversion camera model. Left: setup

reflecting a pinhole camera. Right: setup modeling a real lens by taking radial distortions

into account. Namings are in concordance with figure 7; C denotes the center of SI .

to the left side of figure 8, where the same operations describe a completely different camera

system: ’point Pw maps to PS and further to p’.

The aim of image rectification is to undo distortions which originate from a variety of optical

imperfections. The right side of figure 8 shows the problem. The ray belonging to world

point Pw was subjected to distortion which lead to the ray Rdev that eventually produced p.

However, Rdev deviates from the geometrically true ray R in a non-linear manner depending

on the angle to the optical axis. Hence a mapping has to be found that corrects the position

of point p, within the image plane, such that it comes to lie on its projection ray R again.

We denote the rectified point prect. In (Perwass & Sommer, 2006), the authors discovered

that moving off the inversion sphere SI from F , which distinguishes the mapping schemes

in figure 8, results in a mapping suitable to model distortions. It consists of two parts. First

a versor K, which essentially does the inversion of the image point p, is applied. Next, the

corresponding ray R is constructed and intersected with image plane π to give prect.

Our subsequent considerations require a right handed coordinate system. The e3-axis denotes

the optical axis. It points upwards and is incident with F . The e1-axis points to the right

and is aligned with the image plane. Hence, all image points lie on the e1-e2-plane.

The inversion sphere SI of radius r is defined by SI = s1e3 + 1
2
s2e∞ + eo, where we used

the abbreviation s2 = s2
1 − r2. One of the simplest forms K can take on is K = SID. In

order to handle scaling and for numerically well-balanced equations, the inversion in SI is

preceded by the dilator D (isotropic scaling operator). The dilation operator D for a scaling

by a factor d ∈ R is given by D = 1+ γ E, where we defined γ = (d− 1)/(d+1). The image

point transformation operator K is then given by

K = SID = k1e3 + k2e∞ + k3 eo + k4e3E , (63)

with k1 := s1, k2 := 1
2
(1 − γ) s2, k3 := 1 + γ and k4 := −γ s1. Let P = K(p) be the

embedding of an image point p. Similar to figure 8, we denote PS = K P fK the point

transformed by K. For determining the rectified point prect, as intended, it remains to



intersect the projection ray R, now given by

R = PS ∧ F ∧ e∞ =
“
K P fK

”
∧ F ∧ e∞ , (64)

with the image plane π. The intersection is an elementary operation in CGA and yields the

conformal point Prect = K(prect). Computing prect = K−1(Prect) yields

prect =
β

1 + αp2
p , (65)

with the two parameters

α :=
1− s1

s1(s1 − s2)
and β :=

r2d

s1(s1 − s2)
. (66)

It is noteworthy that prect/β is the respective expression produced by the so-called division

model. It was proposed by (Fitzgibbon, 2001) and can be considered equivalent to the

camera inversion model. The division model itself was shown in (Claus & Fitzgibbon, 2005)

to have a rectification quality comparable to a fourth order radial polynomial approach. The

camera inversion model is thus a sufficiently good approximation of lens distortion for many

applications.

In (Perwass & Sommer, 2006), the estimation of lens distortion was successfully combined

with pose estimation by means of the estimation methods presented in this text. Specifically,

the pose, the focal length and the lens distortion were estimated at the same time. For

example, in case of a point-line fitting a model point P ′ is to be transformed by an RBM

M such that it comes to lie on the corresponding rectified projection ray R. In analogy to

section 5.5 and with the help of equation (64) it is required for image point P = K(p) that

““
K P fK

”
∧ F ∧ e∞

”
∧ (MP ′M) = 0 . (67)

A respective tensor representation can be derived easily, and the necessary constraints fol-

low from differentiation. With this impressive example of the unifying nature of geometric

algebra we conclude this chapter.
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