
PAKCS 1.15.0
The Portland Aachen Kiel Curry System

User Manual
Version of 2018-10-09

Michael Hanus1 [editor]

Additional Contributors:

Sergio Antoy2

Bernd Braßel3

Martin Engelke4

Klaus Höppner5

Johannes Koj6

Philipp Niederau7

Björn Peemöller8

Ramin Sadre9

Frank Steiner10

(1) University of Kiel, Germany, mh@informatik.uni-kiel.de
(2) Portland State University, USA, antoy@cs.pdx.edu

(3) University of Kiel, Germany, bbr@informatik.uni-kiel.de
(4) University of Kiel, Germany, men@informatik.uni-kiel.de
(5) University of Kiel, Germany, klh@informatik.uni-kiel.de

(6) RWTH Aachen, Germany, johannes.koj@sdm.de
(7) RWTH Aachen, Germany, philipp@navigium.de

(8) University of Kiel, Germany, bjp@informatik.uni-kiel.de
(9) RWTH Aachen, Germany, ramin@lvs.informatik.rwth-aachen.de
(10) LMU Munich, Germany, fst@bio.informatik.uni-muenchen.de

Contents

Preface 6

1 Overview of PAKCS 7
1.1 General Use . 7
1.2 Restrictions . 7
1.3 Modules in PAKCS . 8

2 PAKCS: An Interactive Curry Development System 9
2.1 Invoking PAKCS . 9
2.2 Commands of PAKCS . 10
2.3 Options of PAKCS . 13
2.4 Using PAKCS in Batch Mode . 16
2.5 Command Line Editing . 16
2.6 Customization . 16
2.7 Emacs Interface . 16

3 Extensions 17
3.1 Recursive Variable Bindings . 17
3.2 Functional Patterns . 17
3.3 Order of Pattern Matching . 19

4 Recognized Syntax of Curry 21
4.1 Notational Conventions . 21
4.2 Lexicon . 21

4.2.1 Comments . 21
4.2.2 Identifiers and Keywords . 21
4.2.3 Numeric and Character Literals . 22

4.3 Layout . 23
4.4 Context-Free Grammar . 23

5 Optimization of Curry Programs 27

6 cypm: The Curry Package Manager 28

7 curry check: A Tool for Testing Properties of Curry Programs 29
7.1 Testing Properties . 29
7.2 Generating Test Data . 32
7.3 Checking Contracts and Specifications . 35
7.4 Checking Usage of Specific Operations . 36

8 CurryBrowser: A Tool for Analyzing and Browsing Curry Programs 38
8.1 Installation . 38
8.2 Basic Usage . 38

1

9 curry-doc: A Documentation Generator for Curry Programs 41
9.1 Installation . 41
9.2 Documentation Comments . 41
9.3 Generating Documentation . 43

10 curry-style: A Style Checker for Curry Programs 44
10.1 Installation . 44
10.2 Basic Usage . 44
10.3 Configuration . 44

11 CurryVerify: A Tool to Support the Verification of Curry Programs 45
11.1 Installation . 45
11.2 Basic Usage . 45
11.3 Options . 47

12 CurryPP: A Preprocessor for Curry Programs 49
12.1 Installation . 49
12.2 Basic Usage . 49
12.3 Integrated Code . 50

12.3.1 Regular Expressions . 50
12.3.2 Format Specifications . 51
12.3.3 HTML Code . 51
12.3.4 XML Expressions . 52

12.4 SQL Statements . 53
12.4.1 ER Specifications . 53
12.4.2 SQL Statements as Integrated Code . 56

12.5 Default Rules . 57
12.6 Contracts . 58

13 runcurry: Running Curry Programs 61
13.1 Installation . 61
13.2 Using runcurry . 61

14 CASS: A Generic Curry Analysis Server System 64
14.1 Installation . 64
14.2 Using CASS to Analyze Programs . 64

14.2.1 Batch Mode . 65
14.2.2 API Mode . 65
14.2.3 Server Mode . 66

14.3 Implementing Program Analyses . 68

15 ERD2Curry: A Tool to Generate Programs from ER Specifications 71
15.1 Installation . 71
15.2 Basic Usage . 71

2

16 Spicey: An ER-based Web Framework 73
16.1 Installation . 73
16.2 Usage . 73

17 curry-peval: A Partial Evaluator for Curry 75
17.1 Installation . 75
17.2 Basic Usage . 75
17.3 Options . 77

18 Preprocessing FlatCurry Files 79

19 Technical Problems 81
19.1 SWI-Prolog . 81
19.2 Distributed Programming and Sockets . 81
19.3 Contact for Help . 82

Bibliography 83

A Libraries of the PAKCS Distribution 86
A.1 Constraints, Ports, Meta-Programming . 86

A.1.1 Arithmetic Constraints . 86
A.1.2 Finite Domain Constraints . 87
A.1.3 Ports: Distributed Programming in Curry . 89
A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry 90

A.2 General Libraries . 91
A.2.1 Library AllSolutions . 91
A.2.2 Library Assertion . 92
A.2.3 Library Char . 94
A.2.4 Library CLP.FD . 96
A.2.5 Library CLPFD . 101
A.2.6 Library CLPR . 105
A.2.7 Library Combinatorial . 106
A.2.8 Library CPNS . 107
A.2.9 Library CSV . 108
A.2.10 Library Debug . 109
A.2.11 Library Directory . 109
A.2.12 Library Distribution . 111
A.2.13 Library Either . 116
A.2.14 Library ErrorState . 116
A.2.15 Library FileGoodies . 118
A.2.16 Library FilePath . 119
A.2.17 Library Findall . 122
A.2.18 Library Float . 125
A.2.19 Library Function . 127
A.2.20 Library FunctionInversion . 127

3

A.2.21 Library GetOpt . 128
A.2.22 Library Global . 129
A.2.23 Library GlobalVariable . 130
A.2.24 Library Integer . 131
A.2.25 Library IO . 133
A.2.26 Library IOExts . 135
A.2.27 Library List . 137
A.2.28 Library Maybe . 141
A.2.29 Library NamedSocket . 142
A.2.30 Library Nat . 143
A.2.31 Library Parser . 144
A.2.32 Library Ports . 145
A.2.33 Library Pretty . 148
A.2.34 Library Profile . 161
A.2.35 Library PropertyFile . 163
A.2.36 Library Read . 163
A.2.37 Library ReadNumeric . 164
A.2.38 Library ReadShowTerm . 165
A.2.39 Library SetFunctions . 166
A.2.40 Library Socket . 169
A.2.41 Library State . 170
A.2.42 Library System . 171
A.2.43 Library Time . 173
A.2.44 Library Unsafe . 175
A.2.45 Library Test.EasyCheck . 178
A.2.46 Library Test.Prop . 182

A.3 Data Structures and Algorithms . 185
A.3.1 Library Array . 185
A.3.2 Library Dequeue . 186
A.3.3 Library FiniteMap . 188
A.3.4 Library Random . 191
A.3.5 Library RedBlackTree . 192
A.3.6 Library SCC . 193
A.3.7 Library SearchTree . 193
A.3.8 Library SearchTreeTraversal . 196
A.3.9 Library SetRBT . 196
A.3.10 Library Sort . 197
A.3.11 Library TableRBT . 199
A.3.12 Library Traversal . 200
A.3.13 Library ValueSequence . 202

4

B Markdown Syntax 204
B.1 Paragraphs and Basic Formatting . 204
B.2 Lists and Block Formatting . 205
B.3 Headers . 207

C SQL Syntax Supported by CurryPP 208

D Overview of the PAKCS Distribution 213

E Auxiliary Files 215

F External Functions 216

Index 220

5

Preface

This document describes PAKCS (formerly called “PACS”), an implementation of the multi-
paradigm language Curry, jointly developed at the University of Kiel, the Technical University
of Aachen and Portland State University. Curry is a universal programming language aiming at
the amalgamation of the most important declarative programming paradigms, namely functional
programming and logic programming. Curry combines in a seamless way features from functional
programming (nested expressions, lazy evaluation, higher-order functions), logic programming (log-
ical variables, partial data structures, built-in search), and concurrent programming (concurrent
evaluation of constraints with synchronization on logical variables). Moreover, the PAKCS im-
plementation of Curry also supports constraint programming over various constraint domains, the
high-level implementation of distributed applications, graphical user interfaces, and web services
(as described in more detail in [18, 19, 20]). Since PAKCS compiles Curry programs into Prolog
programs, the availability of some of these features might depend on the underlying Prolog system.

We assume familiarity with the ideas and features of Curry as described in the Curry language
definition [27]. Therefore, this document only explains the use of the different components of PAKCS
and the differences and restrictions of PAKCS (see Section 1.2) compared with the language Curry
(Version 0.9.0).

Acknowledgements

This work has been supported in part by the DAAD/NSF grant INT-9981317, the NSF grants
CCR-0110496 and CCR-0218224, the Acción Integrada hispano-alemana HA1997-0073, and the
DFG grants Ha 2457/1-2, Ha 2457/5-1, and Ha 2457/5-2.

Many thanks to the users of PAKCS for bug reports, bug fixes, and improvements, in particular,
to Marco Comini, Sebastian Fischer, Massimo Forni, Carsten Heine, Stefan Junge, Frank Huch,
Parissa Sadeghi.

6

1 Overview of PAKCS

1.1 General Use

This version of PAKCS has been tested on Sun Solaris, Linux, and Mac OS X systems. In principle,
it should be also executable on other platforms on which a Prolog system like SICStus-Prolog
or SWI-Prolog exists (see the file INSTALL.html in the PAKCS directory for a description of the
necessary software to install PAKCS).

All executable files required to use the different components of PAKCS are stored in
the directory pakcshome /bin (where pakcshome is the installation directory of the complete
PAKCS installation). You should add this directory to your path (e.g., by the bash command
“export PATH=pakcshome /bin:$PATH”).

The source code of the Curry program must be stored in a file with the suffix “.curry”, e.g.,
prog.curry. Literate programs must be stored in files with the extension “.lcurry”.

Since the translation of Curry programs with PAKCS creates some auxiliary files (see Section E
for details), you need write permission in the directory where you have stored your Curry programs.
The auxiliary files for all Curry programs in the current directory can be deleted by the command

cleancurry

(this is a shell script stored in the bin directory of the PAKCS installation, see above). The command

cleancurry -r

also deletes the auxiliary files in all subdirectories.

1.2 Restrictions

There are a few minor restrictions on Curry programs when they are processed with PAKCS:

• Singleton pattern variables, i.e., variables that occur only once in a rule, should be denoted
as an anonymous variable “_”, otherwise the parser will print a warning since this is a typical
source of programming errors.

• PAKCS translates all local declarations into global functions with additional arguments
(“lambda lifting”, see Appendix D of the Curry language report). Thus, in the compiled
target code, the definition of functions with local declarations look different from their origi-
nal definition (in order to see the result of this transformation, you can use the CurryBrowser,
see Section 8).

• Tabulator stops instead of blank spaces in source files are interpreted as stops at columns 9,
17, 25, 33, and so on. In general, tabulator stops should be avoided in source programs.

• Since PAKCS compiles Curry programs into Prolog programs, non-deterministic computations
are treated as in Prolog by a backtracking strategy, which is known to be incomplete. Thus,
the order of rules could influence the ability to find solutions for a given goal.

• Threads created by a concurrent conjunction are not executed in a fair manner (usually,
threads corresponding to leftmost constraints are executed with higher priority).

7

• Encapsulated search: In order to allow the integration of non-deterministic computations in
programs performing I/O at the top-level, PAKCS supports the search operators findall and
findfirst. These and some other operators are available in the library Findall (i.e., they are
not part of the standard prelude). In contrast to the general definition of encapsulated search
[26], the current implementation suspends the evaluation of findall and findfirst until the
argument does not contain unbound global variables. Moreover, the evaluation of findall is
strict, i.e., it computes all solutions before returning the complete list of solutions.

Since it is known that the result of these search operators might depend on the evaluation
strategy due to the combination of sharing and lazy evaluation (see [13] for a detailed dis-
cussion), it is recommended to use set functions [7] as a strategy-independent encapsulation
of non-deterministic computations. Set functions compute the set of all results of a defined
function but do not encapsulate non-determinism occurring in the actual arguments. See the
library SetFunctions (Section A.2.39) for more details.

• There is currently no general connection to external constraint solvers. However, the PAKCS
compiler provides constraint solvers for arithmetic and finite domain constraints (see Ap-
pendix A).

1.3 Modules in PAKCS

PAKCS searches for imported modules in various directories. By default, imported modules are
searched in the directory of the main program and the system module directory “pakcshome /lib”.
This search path can be extended by setting the environment variable CURRYPATH (which can be also
set in a PAKCS session by the option “:set path”, see below) to a list of directory names separated
by colons (“:”). In addition, a local standard search path can be defined in the “.pakcsrc” file (see
Section 2.6). Thus, modules to be loaded are searched in the following directories (in this order,
i.e., the first occurrence of a module file in this search path is imported):

1. Current working directory (“.”) or directory prefix of the main module (e.g., directory
“/home/joe/curryprogs” if one loads the Curry program “/home/joe/curryprogs/main”).

2. The directories enumerated in the environment variable CURRYPATH.

3. The directories enumerated in the “.pakcsrc” variable “libraries”.

4. The directory “pakcshome /lib”.

The same strategy also applies to modules with a hierarchical module name with the only difference
that the hierarchy prefix of a module name corresponds to a directory prefix of the module. For
instance, if the main module is stored in directory MAINDIR and imports the module Test.Func, then
the module stored in MAINDIR/Test/Func.curry is imported (without setting any additional import
path) according to the module search strategy described above.

Note that the standard prelude (pakcshome /lib/Prelude.curry) will be always implicitly im-
ported to all modules if a module does not contain an explicit import declaration for the module
Prelude.

8

2 PAKCS: An Interactive Curry Development System

PAKCS is an interactive system to develop applications written in Curry. It is implemented in
Prolog and compiles Curry programs into Prolog programs. It contains various tools, a source-level
debugger, solvers for arithmetic constraints over real numbers and finite domain constraints, etc.
The compilation process and the execution of compiled programs is fairly efficient if a good Prolog
implementation like SICStus-Prolog is used.

2.1 Invoking PAKCS

To start PAKCS, execute the command “pakcs” or “curry” (these are shell scripts stored in
pakcshome /bin where pakcshome is the installation directory of PAKCS). When the system is ready
(i.e., when the prompt “Prelude>” occurs), the prelude (pakcshome /lib/Prelude.curry) is already
loaded, i.e., all definitions in the prelude are accessible. Now you can type various commands (see
next section) or an expression to be evaluated.

One can also invoke PAKCS with parameters. These parameters are usual a sequence of com-
mands (see next section) that are executed before the user interaction starts. For instance, the
invocation

pakcs :load Mod :add List

starts PAKCS, loads the main module Mod, and adds the additional module List. The invocation

pakcs :load Mod :eval config

starts PAKCS, loads the main module Mod, and evaluates the operation config before the user
interaction starts. As a final example, the invocation

pakcs :load Mod :save :quit

starts PAKCS, loads the main module Mod, creates an executable, and terminates PAKCS. This
invocation could be useful in “make” files for systems implemented in Curry.

There are also some additional options that can be used when invoking PAKCS:

-h or --help : Print only a help message.

-V or --version : Print the version information of PAKCS and quit.

--compiler-name : Print just the compiler name (pakcs) and quit.

--numeric-version : Print just the version number and quit.

--noreadline : Do not use input line editing (see Section 2.5).

-Dname=val (these options must come before any PAKCS command): Overwrite values defined
in the configuration file “.pakcsrc” (see Section 2.6), where name is a property defined in the
configuration file and val its new value.

-q or --quiet : With this option, PAKCS works silently, i.e., the initial banner and the input
prompt are not shown. The output of other information is determined by the options “verbose”
and “vn” (see Section 2.3).

9

One can also invoke PAKCS with some run-time arguments that can be accessed inside a Curry
program by the I/O operation getArgs (see library System (Section A.2.42). These run-time ar-
guments must be written at the end after the separator “--”. For instance, if PAKCS is invoked
by

pakcs :load Mod -- first and second

then a call to the I/O operation getArgs returns the list value

["first","and","second"]

2.2 Commands of PAKCS

The most important commands of PAKCS are (it is sufficient to type a unique prefix of a
command if it is unique, e.g., one can type “:r” instead of “:reload”):

:help Show a list of all available commands.

:load prog Compile and load the program stored in prog.curry together with all its imported
modules. If this file does not exist, the system looks for a FlatCurry file prog.fcy and compiles
from this intermediate representation.

:reload Recompile all currently loaded modules.

:add m1 . . .mn Add modules m1, . . . ,mn to the set of currently loaded modules so that their
exported entities are available in the top-level environment.

expr Evaluate the expression expr to normal form and show the computed results. Since PAKCS
compiles Curry programs into Prolog programs, non-deterministic computations are imple-
mented by backtracking. Therefore, computed results are shown one after the other. In the
interactive mode (which can be set in the configuration file “.pakcsrc” or by setting the option
interactive, see below), you will be asked after each computed result whether you want to
see the next alternative result or all alternative results. The default answer value for this
question can be defined in the configuration file “.pakcsrc” file (see Section 2.6).

Free variables in initial expressions must be declared as in Curry programs (if the free
variable mode is not turned on, see option “+free” below). Thus, in order to see the results of
their bindings, they must be introduced by a “where...free” declaration. For instance, one
can write

not b where b free

in order to obtain the following bindings and results:

{b = True} False
{b = False} True

Without these declarations, an error is reported in order to avoid the unintended introduction
of free variables in initial expressions by typos.

10

:eval expr Same as expr. This command might be useful when putting commands as arguments
when invoking pakcs.

:define x=expr Define the identifier x as an abbreviation for the expression expr which can
be used in subsequent expressions. The identifier x is visible until the next load or reload

command.

:quit Exit the system.

There are also a number of further commands that are often useful:

:type expr Show the type of the expression expr.

:browse Start the CurryBrowser to analyze the currently loaded module together with all its
imported modules (see Section 8 for more details).

:edit Load the source code of the current main module into a text editor. If the variable
editcommand is set in the configuration file “.pakcsrc” (see Section 2.6), its value is used
as an editor command, otherwise the environment variable “EDITOR” or a default editor (e.g.,
“vi”) is used.

:edit m Load the source text of module m (which must be accessible via the current load path if
no path specification is given) into a text editor which is defined as in the command “:edit”.

:interface Show the interface of the currently loaded module, i.e., show the names of all imported
modules, the fixity declarations of all exported operators, the exported datatypes declarations
and the types of all exported functions.

:interface prog Similar to “:interface” but shows the interface of the module “prog.curry”. If
this module does not exist, this command looks in the system library directory of PAKCS for
a module with this name, e.g., the command “:interface FlatCurry” shows the interface of
the system module FlatCurry for meta-programming (see Appendix A.1.4).

:usedimports Show all calls to imported functions in the currently loaded module. This might be
useful to see which import declarations are really necessary.

:modules Show the list of all currently loaded modules.

:programs Show the list of all Curry programs that are available in the load path.

:set option Set or turn on/off a specific option of the PAKCS environment (see 2.3 for a description
of all options). Options are turned on by the prefix “+” and off by the prefix “-”. Options that
can only be set (e.g., printdepth) must not contain a prefix.

:set Show a help text on the possible options together with the current values of all options.

:show Show the source text of the currently loaded Curry program. If the variable showcommand

is set in the configuration file “.pakcsrc” (see Section 2.6), its value is used as a command
to show the source text, otherwise the environment variable PAGER or the standard command

11

“cat” is used. If the source text is not available (since the program has been directly compiled
from a FlatCurry file), the loaded program is decompiled and the decompiled Curry program
text is shown.

:show m Show the source text of module m which must be accessible via the current load path.

:source f Show the source code of function f (which must be visible in the currently loaded
module) in a separate window.

:source m.f Show the source code of function f defined in module m in a separate window.

:cd dir Change the current working directory to dir.

:dir Show the names of all Curry programs in the current working directory.

:!cmd Shell escape: execute cmd in a Unix shell.

:save Save the currently loaded program as an executable evaluating the main expression “main”.
The executable is stored in the file Mod if Mod is the name of the currently loaded main module.

:save expr Similar as “:save” but the expression expr (typically: a call to the main function) will
be evaluated by the executable.

:fork expr The expression expr, which must be of type “IO ()”, is evaluated in an independent
process which runs in parallel to the current PAKCS process. All output and error messages
from this new process are suppressed. This command is useful to test distributed Curry
programs (see Appendix A.1.3) where one can start a new server process by this command.
The new process will be terminated when the evaluation of the expression expr is finished.

:coosy Start the Curry Object Observation System COOSy, a tool to observe the execution of
Curry programs. This commands starts a graphical user interface to show the observation
results and adds to the load path the directory containing the modules that must be imported
in order to annotate a program with observation points. Details about the use of COOSy can
be found in the COOSy interface (under the “Info” button), and details about the general idea
of observation debugging and the implementation of COOSy can be found in [12].

:peval Translate the currently loaded program module into an equivalent program where some
subexpressions are partially evaluated so that these subexpressions are (hopefully) more ef-
ficiently executed. An expression e to be partially evaluated must be marked in the source
program by (PEVAL e) (where PEVAL is defined as the identity function in the prelude so that
it has no semantical meaning).

The partial evaluator translates a source program prog.curry into the partially evaluated
program in intermediate representation stored in prog_pe.fcy. The latter program is implicitly
loaded by the peval command so that the partially evaluated program is directly available.
The corresponding source program can be shown by the show command (see above).

The current partial evaluator is an experimental prototype (so it might not work on all pro-
grams) based on the ideas described in [1, 2, 3, 4].

12

2.3 Options of PAKCS

The following options (which can be set by the command “:set”) are currently supported:

+/-debug Debug mode. In the debug mode, one can trace the evaluation of an expression, setting
spy points (break points) etc. (see the commands for the debug mode described below).

+/-free Free variable mode. If the free variable mode is off (default), then free variables occur-
ring in initial expressions entered in the PAKCS environment must always be declared by
“where...free”. This avoids the introduction of free variables in initial expressions by typos
(which might lead to the exploration of infinite search spaces). If the free variable mode is on,
each undefined symbol occurring in an initial expression is considered as a free variable. In
this case, the syntax of accepted initial expressions is more restricted. In particular, lambda
abstractions, lets and list comprehensions are not allowed if the free variable mode is on.

+/-printfail Print failures. If this option is set, failures occurring during evaluation (i.e., non-
reducible demanded subexpressions) are printed. This is useful to see failed reductions due
to partially defined functions or failed unifications. Inside encapsulated search (e.g., inside
evaluations of findall and findfirst), failures are not printed (since they are a typical pro-
gramming technique there). Note that this option causes some overhead in execution time
and memory so that it could not be used in larger applications.

+/-allfails If this option is set, all failures (i.e., also failures on backtracking and failures of
enclosing functions that fail due to the failure of an argument evaluation) are printed if
the option printfail is set. Otherwise, only the first failure (i.e., the first non-reducible
subexpression) is printed.

+/-consfail Print constructor failures. If this option is set, failures due to application of functions
with non-exhaustive pattern matching or failures during unification (application of “=:=”) are
shown. Inside encapsulated search (e.g., inside evaluations of findall and findfirst), failures
are not printed (since they are a typical programming technique there). In contrast to the
option printfail, this option creates only a small overhead in execution time and memory
use.

+consfail all Similarly to “+consfail”, but the complete trace of all active (and just failed)
function calls from the main function to the failed function are shown.

+consfail file:f Similarly to “+consfail all”, but the complete fail trace is stored in the file f .
This option is useful in non-interactive program executions like web scripts.

+consfail int Similarly to “+consfail all”, but after each failure occurrence, an interactive mode
for exploring the fail trace is started (see help information in this interactive mode). When
the interactive mode is finished, the program execution proceeds with a failure.

+/-compact Reduce the size of target programs by using the parser option “--compact” (see Sec-
tion 18 for details about this option).

13

+/-interactive Turn on/off the interactive mode. In the interactive mode, the next non-
deterministic value is computed only when the user requests it. Thus, one has also the
possibility to terminate the enumeration of all values after having seen some values. The
default value for this option can be set in the configuration file “.pakcsrc” (initially, the
interactive mode is turned off).

+/-first Turn on/off the first-only mode. In the first-only mode, only the first value of the main
expression is printed (instead of all values).

+/-profile Profile mode. If the profile mode is on, then information about the number of calls,
failures, exits etc. are collected for each function during the debug mode (see above) and
shown after the complete execution (additionaly, the result is stored in the file prog.profile
where prog is the current main program). The profile mode has no effect outside the debug
mode.

+/-suspend Suspend mode (initially, it is off). If the suspend mode is on, all suspended expressions
(if there are any) are shown (in their internal representation) at the end of a computation.

+/-time Time mode. If the time mode is on, the cpu time and the elapsed time of the computation
is always printed together with the result of an evaluation.

+/-verbose Verbose mode (initially, it is off). If the verbose mode is on, the initial expression of
a computation is printed before it is evaluated. If the verbose mode is on and the verbosity
level (see below) is non-zero, the type of the initial expression is also printed and the output
of the evaluation is more detailed.

+/-warn Parser warnings. If the parser warnings are turned on (default), the parser will print
warnings about variables that occur only once in a program rule (see Section 1.2) or locally
declared names that shadow the definition of globally declared names. If the parser warnings
are switched off, these warnings are not printed during the reading of a Curry program.

path path Set the additional search path for loading modules to path. Note that this search path is
only used for loading modules inside this invocation of PAKCS, i.e., the environment variable
“CURRYPATH” (see also Section 1.3) is set to path in this invocation of PAKCS.

The path is a list of directories separated by “:”. The prefix “~” is replaced by the home
directory as in the following example:

:set path aux:~/tests

Relative directory names are replaced by absolute ones so that the path is independent of
later changes of the current working directory.

printdepth n Set the depth for printing terms to the value n (initially: 0). In this case subterms
with a depth greater than n are abbreviated by dots when they are printed as a result of a
computation or during debugging. A value of 0 means infinite depth so that the complete
terms are printed.

vn Set the verbosity level to n. The following values are allowed for n:

14

n = 0: Do not show any messages (except for errors).

n = 1: Show only messages of the front-end, like loading of modules.

n = 2: Show also messages of the back end, like loading intermediate files or generating Prolog
target files.

n = 3: Show also messages related to loading Prolog files and libraries into the run-time
systems and other intermediate messages and results.

safe Turn on the safe execution mode. In the safe execution mode, the initial goal is not allowed
to be of type IO and the program should not import the module Unsafe. Furthermore, the
allowed commands are eval, load, quit, and reload. This mode is useful to use PAKCS in
uncontrolled environments, like a computation service in a web page, where PAKCS could be
invoked by

pakcs :set safe

parser opts Define additional options passed to the front end of PAKCS, i.e., the parser program
pakcshome /bin/pakcs-frontend. For instance, setting the option

:set parser -F --pgmF=transcurry

has the effect that each Curry module to be compiled is transformed by the preprocessor
command transcurry into a new Curry program which is actually compiled.

args arguments Define run-time arguments for the evaluation of the main expression. For in-
stance, setting the option

:set args first second

has the effect that the I/O operation getArgs (see library System (Section A.2.42) returns the
value ["first","second"].

PAKCS can also execute programs in the debug mode. The debug mode is switched on by setting
the debug option with the command “:set +debug”. In order to switch back to normal evaluation
of the program, one has to execute the command “:set -debug”.

In the debug mode, PAKCS offers the following additional options:

+/-single Turn on/off single mode for debugging. If the single mode is on, the evaluation of an
expression is stopped after each step and the user is asked how to proceed (see the options
there).

+/-trace Turn on/off trace mode for debugging. If the trace mode is on, all intermediate expres-
sions occurring during the evaluation of an expressions are shown.

spy f Set a spy point (break point) on the function f . In the single mode, you can “leap” from
spy point to spy point (see the options shown in the single mode).

+/-spy Turn on/off spy mode for debugging. If the spy mode is on, the single mode is automatically
activated when a spy point is reached.

15

2.4 Using PAKCS in Batch Mode

Although PAKCS is primarily designed as an interactive system, it can also be used to process data
in batch mode. For example, consider a Curry program, say myprocessor, that reads argument
strings from the command line and processes them. Suppose the entry point is a function called
just_doit that takes no arguments. Such a processor can be invoked from the shell as follows:

> pakcs :set args string1 string2 :load myprocessor.curry :eval just_doit :quit

The “:quit” directive in necessary to avoid PAKCS going into interactive mode after the excution
of the expression being evaluated. The actual run-time arguments (string1, string2) are defined
by setting the option args (see above).

Here is an example to use PAKCS in this way:

> pakcs :set args Hello World :add System :eval "getArgs >>= putStrLn . unwords" :quit
Hello World
>

2.5 Command Line Editing

In order to have support for line editing or history functionality in the command line of PAKCS
(as often supported by the readline library), you should have the Unix command rlwrap installed
on your local machine. If rlwrap is installed, it is used by PAKCS if called on a terminal. If it
should not be used (e.g., because it is executed in an editor with readline functionality), one can
call PAKCS with the parameter “--noreadline”.

2.6 Customization

In order to customize the behavior of PAKCS to your own preferences, there is a configuration file
which is read by PAKCS when it is invoked. When you start PAKCS for the first time, a standard
version of this configuration file is copied with the name “.pakcsrc” into your home directory. The
file contains definitions of various settings, e.g., about showing warnings, progress messages etc.
After you have started PAKCS for the first time, look into this file and adapt it to your own
preferences.

2.7 Emacs Interface

Emacs is a powerful programmable editor suitable for program development. It is freely available for
many platforms (see http://www.emacs.org). The distribution of PAKCS contains also a special
Curry mode that supports the development of Curry programs in the Emacs environment. This
mode includes support for syntax highlighting, finding declarations in the current buffer, and loading
Curry programs into PAKCS in an Emacs shell.

The Curry mode has been adapted from a similar mode for Haskell programs. Its installation is
described in the file README in directory “pakcshome /tools/emacs” which also contains the sources
of the Curry mode and a short description about the use of this mode.

16

http://www.emacs.org

3 Extensions

PAKCS supports some extensions in Curry programs that are not (yet) part of the definition of
Curry. These extensions are described below.

3.1 Recursive Variable Bindings

Local variable declarations (introduced by let or where) can be (mutually) recursive in PAKCS.
For instance, the declaration

ones5 = let ones = 1 : ones
in take 5 ones

introduces the local variable ones which is bound to a cyclic structure representing an infinite list
of 1’s. Similarly, the definition

onetwo n = take n one2
where

one2 = 1 : two1
two1 = 2 : one2

introduces a local variables one2 that represents an infinite list of alternating 1’s and 2’s so that the
expression (onetwo 6) evaluates to [1,2,1,2,1,2].

3.2 Functional Patterns

Functional patterns [6] are a useful extension to implement operations in a more readable way.
Furthermore, defining operations with functional patterns avoids problems caused by strict equality
(“=:=”) and leads to programs that are potentially more efficient.

Consider the definition of an operation to compute the last element of a list xs based on the
prelude operation “++” for list concatenation:

last xs | _++[y] =:= xs = y where y free

Since the equality constraint “=:=” evaluates both sides to a constructor term, all elements of the
list xs are fully evaluated in order to satisfy the constraint.

Functional patterns can help to improve this computational behavior. A functional pattern is a
function call at a pattern position. With functional patterns, we can define the operation last as
follows:

last (_++[y]) = y

This definition is not only more compact but also avoids the complete evaluation of the list elements:
since a functional pattern is considered as an abbreviation for the set of constructor terms obtained
by all evaluations of the functional pattern to normal form (see [6] for an exact definition), the
previous definition is conceptually equivalent to the set of rules

last [y] = y
last [_,y] = y
last [_,_,y] = y
. . .

17

which shows that the evaluation of the list elements is not demanded by the functional pattern.
In general, a pattern of the form (f t1...tn) for n > 0 (or of the qualified form (M.f t1...tn)

for n ≥ 0) is interpreted as a functional pattern if f is not a visible constructor but a defined
function that is visible in the scope of the pattern. Furthermore, for a functional pattern to be well
defined, there are two additional requirements to be satisfied:

1. If a function f is defined by means of a functional pattern fp, then the evaluation of fp must
not depend on f , i.e., the semantics of a function defined using functional patterns must not
(transitively) depend on its own definition. This excludes definitions such as

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

and is necessary to assign a semantics to funtions employing functional patterns (see [6] for
more details).

2. Only functions that are globally defined may occur inside a functional pattern. This restriction
ensures that no local variable might occur in the value of a functional pattern, which might
lead to an non-intuitive semantics. Consider, for instance, the following (complicated) equality
operation

eq :: a → a → Bool
eq x y = h y
where
g True = x
h (g a) = a

where the locally defined function g occurs in the functional pattern (g a) of h. Since (g a)

evaluates to the value of x whereas a is instantiated to True, the call h y now evaluates to
True if the value of y equals the value of x. In order to check this equality condition, a strict
unification between x and y is required so that an equivalent definition without functional
patterns would be:

eq :: a → a → Bool
eq x y = h y
where
h x1 | x =:= x1 = True

However, this implies that variables occuring in the value of a functional pattern imply a strict
unification if they are defined in an outer scope, whereas variables defined inside a functional
pattern behave like pattern variables. In consequence, the occurrence of variables from an
outer scope inside a functional pattern might lead to an non-intuitive behavior. To avoid such
problems, locally defined functions are excluded as functional patterns. Note that this does
not exclude a functional pattern inside a local function, which is still perfectly reasonable.

It is also possible to combine functional patterns with as-patterns. Similarly to the meaning of
as-patterns in standard constructor patterns, as-patterns in functional patterns are interpreted as
a sequence of pattern matching where the variable of the as-pattern is matched before the given
pattern is matched. This process can be described by introducing an auxiliary operation for this
two-level pattern matching process. For instance, the definition

18

f (_ ++ x@[(42,_)] ++ _) = x

is considered as syntactic sugar for the expanded definition

f (_ ++ x ++ _) = f’ x
where
f’ [(42,_)] = x

However, as-patterns are usually implemented in a more efficient way without introducing auxiliary
operations.

Optimization of programs containing functional patterns. Since functions patterns can
evaluate to non-linear constructor terms, they are dynamically checked for multiple occurrences of
variables which are, if present, replaced by equality constraints so that the constructor term is always
linear (see [6] for details). Since these dynamic checks are costly and not necessary for functional
patterns that are guaranteed to evaluate to linear terms, there is an optimizer for functional patterns
that checks for occurrences of functional patterns that evaluate always to linear constructor terms
and replace such occurrences with a more efficient implementation. This optimizer can be enabled
by the following possibilities:

• Set the environment variable FCYPP to “--fpopt” before starting PAKCS, e.g., by the shell
command

export FCYPP="--fpopt"

Then the functional pattern optimization is applied if programs are compiled and loaded in
PAKCS.

• Put an option into the source code: If the source code of a program contains a line with a
comment of the form (the comment must start at the beginning of the line)

{-# PAKCS_OPTION_FCYPP --fpopt #-}

then the functional pattern optimization is applied if this program is compiled and loaded in
PAKCS.

The optimizer also report errors in case of wrong uses of functional patterns (i.e., in case of a
function f defined with functional patterns that recursively depend on f).

3.3 Order of Pattern Matching

Curry allows multiple occurrences of pattern variables in standard patterns. These are an abbrevi-
ation of equational constraints between pattern variables. Functional patterns might also contain
multiple occurrences of pattern variables. For instance, the operation

f (_++[x]++_++[x]++_) = x

returns all elements with at least two occurrences in a list.
If functional patterns as well as multiple occurrences of pattern variables occur in a pattern

defining an operation, there are various orders to match an expression against such an operation.
In the current implementation, the order is as follows:

19

1. Standard pattern matching: First, it is checked whether the constructor patterns match.
Thus, functional patterns and multiple occurrences of pattern variables are ignored.

2. Functional pattern matching: In the next phase, functional patterns are matched but occur-
rences of standard pattern variables in the functional patterns are ignored.

3. Non-linear patterns: If standard and functional pattern matching is successful, the equational
constraints which correspond to multiple occurrences pattern variables are solved.

4. Guards: Finally, the guards supplied by the programmer are checked.

The order of pattern matching should not influence the computed result. However, it might have
some influence on the termination behavior of programs, i.e., a program might not terminate instead
of finitely failing. In such cases, it could be necessary to consider the influence of the order of pattern
matching. Note that other orders of pattern matching can be obtained using auxiliary operations.

20

4 Recognized Syntax of Curry

The PAKCS Curry compiler accepts a slightly extended version of the grammar specified in the
Curry Report [27]. Furthermore, the syntax recognized by PAKCS differs from that specified in the
Curry Report regarding numeric or character literals. We therefore present the complete description
of the syntax below, whereas syntactic extensions are highlighted.

4.1 Notational Conventions

The syntax is given in extended Backus-Naur-Form (eBNF), using the following notation:

NonTerm ::= α production
NonTerm nonterminal symbol

Term terminal symbol
[α] optional
{α} zero or more repetitions
(α) grouping

α | β alternative
α〈β〉 difference – elements generated by α

without those generated by β

The Curry files are expected to be encoded in UTF8. However, source programs are biased
towards ASCII for compatibility reasons.

4.2 Lexicon

4.2.1 Comments

Comments either begin with “--” and terminate at the end of the line, or begin with “{-” and
terminate with a matching “-}”, i.e., the delimiters “{-” and “-}” act as parentheses and can be
nested.

4.2.2 Identifiers and Keywords

The case of identifiers is important, i.e., the identifier “abc” is different from “ABC”. Although the
Curry Report specifies four different case modes (Prolog, Gödel, Haskell, free), the PAKCS only
supports the free mode which puts no constraints on the case of identifiers in certain language
constructs.

Letter ::= any ASCII letter
Dashes ::= -- {-}

Ident ::= (Letter {Letter | Digit | _ | ’})〈ReservedID〉
Symbol ::= ~ | ! | @ | # | $ | % | ^ | & | * | + | - | = | < | > | ? | . | / | | | \ | :

ModuleID ::= {Ident .} Ident
TypeConstrID ::= Ident

TypeVarID ::= Ident | _
DataConstrID ::= Ident

21

InfixOpID ::= (Symbol {Symbol})〈Dashes | ReservedSym〉
FunctionID ::= Ident
VariableID ::= Ident

LabelID ::= Ident

QTypeConstrID ::= [ModuleID .] TypeConstrID
QDataConstrID ::= [ModuleID .] DataConstrID

QInfixOpID ::= [ModuleID .] InfixOpID
QFunctionID ::= [ModuleID .] FunctionID

QLabelID ::= [ModuleID .] LabelID

The following identifiers are recognized as keywords and cannot be used as regular identifiers.

ReservedID ::= case | data | do | else | external | fcase | foreign
| free | if | import | in | infix | infixl | infixr
| let | module | newtype | of | then | type | where

Note that the identifiers as, hiding and qualified are no keywords. They have only a special
meaning in module headers and can thus be used as ordinary identifiers elsewhere. The following
symbols also have a special meaning and cannot be used as an infix operator identifier.

ReservedSym ::= .. | : | :: | = | \ | | | <- | -> | @ | ~

4.2.3 Numeric and Character Literals

In contrast to the Curry Report, PAKCS adopts Haskell’s notation of literals for both numeric as
well as character and string literals, extended with the ability to denote binary integer literals.

Int ::= Decimal
| 0b Binary | 0B Binary
| 0o Octal | 0O Octal
| 0x Hexadecimal | 0X Hexadecimal

Float ::= Decimal . Decimal [Exponent]
| Decimal Exponent

Exponent ::= (e | E) [+ | -] Decimal

Decimal ::= Digit {Digit}
Binary ::= Binit {Binit}
Octal ::= Octit {Octit}

Hexadecimal ::= Hexit {Hexit}

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Binit ::= 0 | 1
Octit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
Hexit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | a | b | c | d | e | f

For character and string literals, the syntax is as follows:

Char ::= ’ (Graphic〈\〉 | Space | Escape〈\&〉) ’
String ::= " { Graphic〈" | \〉 | Space | Escape | Gap } "
Escape ::= \ (CharEsc | AsciiEsc | Decimal | o Octal | x Hexadecimal)

CharEsc ::= a | b | f | n | r | t | v | \ | " | ’ | &
AsciiEsc ::= ^ Cntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK

22

| BEL | BS | HT | LF | VT | FF | CR | SO | SI | DLE
| DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN
| EM | SUB | ESC | FS | GS | RS | US | SP | DEL

Cntrl ::= A | . . . | Z | @ | [| \ |] | ^ | _
Gap ::= \ WhiteChar {WhiteChar} \

Graphic ::= any graphical character
WhiteChar ::= any whitespace character

4.3 Layout

Similarly to Haskell, a Curry programmer can use layout information to define the structure of
blocks. For this purpose, we define the indentation of a symbol as the column number indicating
the start of this symbol, and the indentation of a line is the indentation of its first symbol.1

The layout (or “off-side”) rule applies to lists of syntactic entities after the keywords let, where,
do, or of. In the subsequent context-free syntax, these lists are enclosed with curly braces ({ }) and
the single entities are separated by semicolons (;). Instead of using the curly braces and semicolons
of the context-free syntax, a Curry programmer can also specify these lists by indentation: the
indentation of a list of syntactic entities after let, where, do, or of is the indentation of the next
symbol following the let, where, do, of. Any item of this list starts with the same indentation
as the list. Lines with only whitespaces or an indentation greater than the indentation of the list
continue the item in the previous line. Lines with an indentation less than the indentation of the
list terminate the entire list. Moreover, a list started by let is terminated by the keyword in. Thus,
the sentence

f x = h x where { g y = y + 1 ; h z = (g z) * 2 }

which is valid w.r.t. the context-free syntax, can be written with the layout rules as

f x = h x
where g y = y + 1

h z = (g z) * 2

or also as

f x = h x where
g y = y + 1
h z = (g z)

* 2

To avoid an indentation of top-level declarations, the keyword module and the end-of-file token are
assumed to start in column 0.

4.4 Context-Free Grammar

Module ::= module ModuleID [Exports] where Block
| Block

Block ::= { [ImportDecls ;] BlockDecl1 ; . . . ; BlockDecln } (no fixity declarations here, n ≥ 0)

1In order to determine the exact column number, we assume a fixed-width font with tab stops at each 8th column.

23

Exports ::= (Export1 , . . . , Exportn) (n ≥ 0)

Export ::= QFunction
| QTypeConstrID [(ConsLabel1 , . . . , ConsLabeln)] (n ≥ 0)

| QTypeConstrID (..)
| module ModuleID

ConsLabel ::= DataConstr | Label

ImportDecls ::= ImportDecl1 ; . . . ; ImportDecln (n ≥ 1)

ImportDecl ::= import [qualified] ModuleID [as ModuleID] [ImportSpec]
ImportSpec ::= (Import1 , . . . , Importn) (n ≥ 0)

| hiding (Import1 , . . . , Importn) (n ≥ 0)

Import ::= Function
| TypeConstrID [(ConsLabel1 , . . . , ConsLabeln)] (n ≥ 0)

| TypeConstrID (..)

BlockDecl ::= TypeSynDecl
| DataDecl
| NewtypeDecl
| FixityDecl
| FunctionDecl

TypeSynDecl ::= type SimpleType = TypeExpr
SimpleType ::= TypeConstrID TypeVarID1 . . . TypeVarIDn (n ≥ 0)

DataDecl ::= data SimpleType (external data type)
| data SimpleType = ConstrDecl1 | . . . | ConstrDecln (n ≥ 1)

ConstrDecl ::= DataConstr SimpleTypeExpr1 . . . SimpleTypeExprn (n ≥ 0)

| TypeConsExpr ConOp TypeConsExpr (infix data constructor)
| DataConstr { FieldDecl1 , . . . , FieldDecln } (n ≥ 0)

FieldDecl ::= Label1 , . . . , Labeln :: TypeExpr (n ≥ 1)

NewtypeDecl ::= newtype SimpleType = NewConstrDecl
NewConstrDecl ::= DataConstr SimpleTypeExpr

| DataConstr { Label :: TypeExpr }

TypeExpr ::= TypeConsExpr [-> TypeExpr]
TypeConsExpr ::= QTypeConstrID SimpleTypeExpr1 . . . SimpleTypeExprn (n ≥ 1)

| SimpleTypeExpr
SimpleTypeExpr ::= TypeVarID

| QTypeConstrID
| () (unit type)
| (TypeExpr1 , . . . , TypeExprn) (tuple type, n ≥ 2)

| [TypeExpr] (list type)
| (TypeExpr) (parenthesized type)

FixityDecl ::= Fixity [Int] Op1 , . . . , Opn (n ≥ 1)

Fixity ::= infixl | infixr | infix

FunctionDecl ::= Signature | ExternalDecl | Equation
Signature ::= Functions :: TypeExpr

ExternalDecl ::= Functions external (externally defined functions)
Functions ::= Function1 , . . . , Functionn (n ≥ 1)

Equation ::= FunLhs Rhs
FunLhs ::= Function SimplePat1 . . . SimplePatn (n ≥ 0)

24

| ConsPattern FunOp ConsPattern
| (FunLhs) SimplePat1 . . . SimplePatn (n ≥ 1)

Rhs ::= = Expr [where LocalDecls]
| CondExprs [where LocalDecls]

CondExprs ::= | InfixExpr = Expr [CondExprs]

LocalDecls ::= { LocalDecl1 ; . . . ; LocalDecln } (n ≥ 0)

LocalDecl ::= FunctionDecl
| PatternDecl
| Variable1 , . . . , Variablen free (n ≥ 1)

| FixityDecl
PatternDecl ::= Pattern Rhs

Pattern ::= ConsPattern [QConOp Pattern] (infix constructor pattern)
ConsPattern ::= GDataConstr SimplePat1 . . . SimplePatn (constructor pattern, n ≥ 1)

| - Int (negative integer pattern)
| -. Float (negative float pattern)
| SimplePat

SimplePat ::= Variable
| _ (wildcard)
| GDataConstr (constructor)
| Literal (literal)
| (Pattern) (parenthesized pattern)
| (Pattern1 , . . . , Patternn) (tuple pattern, n ≥ 2)

| [Pattern1 , . . . , Patternn] (list pattern, n ≥ 1)

| Variable @ SimplePat (as-pattern)
| ~ SimplePat (irrefutable pattern)
| (QFunction SimplePat1 . . . SimplePatn) (functional pattern, n ≥ 1)

| (ConsPattern QFunOp Pattern) (infix functional pattern)
| QDataConstr { FieldPat1 , . . . , FieldPatn } (labeled pattern, n ≥ 0)

FieldPat ::= QLabel = Pattern

Expr ::= InfixExpr :: TypeExpr (expression with type signature)
| InfixExpr

InfixExpr ::= NoOpExpr QOp InfixExpr (infix operator application)
| - InfixExpr (unary int minus)
| -. InfixExpr (unary float minus)
| NoOpExpr

NoOpExpr ::= \ SimplePat1 . . . SimplePatn -> Expr (lambda expression, n ≥ 1)

| let LocalDecls in Expr (let expression)
| if Expr then Expr else Expr (conditional)
| case Expr of { Alt1 ; . . . ; Altn } (case expression, n ≥ 1)

| fcase Expr of { Alt1 ; . . . ; Altn } (fcase expression, n ≥ 1)

| do { Stmt1 ; . . . ; Stmtn ; Expr } (do expression, n ≥ 0)

| FuncExpr
FuncExpr ::= [FuncExpr] BasicExpr (application)
BasicExpr ::= Variable (variable)

| _ (anonymous free variable)
| QFunction (qualified function)
| GDataConstr (general constructor)
| Literal (literal)

25

| (Expr) (parenthesized expression)
| (Expr1 , . . . , Exprn) (tuple, n ≥ 2)

| [Expr1 , . . . , Exprn] (finite list, n ≥ 1)

| [Expr [, Expr] .. [Expr]] (arithmetic sequence)
| [Expr | Qual1 , . . . , Qualn] (list comprehension, n ≥ 1)

| (InfixExpr QOp) (left section)
| (QOp〈-, -.〉 InfixExpr) (right section)
| QDataConstr { FBind1 , . . . , FBindn } (record construction, n ≥ 0)

| BasicExpr〈QDataConstr〉 { FBind1 , . . . , FBindn } (record update, n ≥ 1)

Alt ::= Pattern -> Expr [where LocalDecls]
| Pattern GdAlts [where LocalDecls]

GdAlts ::= | InfixExpr -> Expr [GdAlts]

FBind ::= QLabel = Expr

Qual ::= Pattern <- Expr (generator)
| let LocalDecls (local declarations)
| Expr (guard)

Stmt ::= Pattern <- Expr
| let LocalDecls
| Expr

Literal ::= Int | Float | Char | String

GDataConstr ::= () (unit)
| [] (empty list)
| (,{,}) (tuple)
| QDataConstr

Variable ::= VariableID | (InfixOpID) (variable)
Function ::= FunctionID | (InfixOpID) (function)

QFunction ::= QFunctionID | (QInfixOpID) (qualified function)
DataConstr ::= DataConstrID | (InfixOpID) (constructor)

QDataConstr ::= QDataConstrID | (QInfixOpID) (qualified constructor)
Label ::= LabelID | (InfixOpID) (label)

QLabel ::= QLabelID | (QInfixOpID) (qualified label)

VarOp ::= InfixOpID | ` VariableID ` (variable operator)
FunOp ::= InfixOpID | ` FunctionID ` (function operator)

QFunOp ::= QInfixOpID | ` QFunctionID ` (qualified function operator)
ConOp ::= InfixOpID | ` DataConstrID ` (constructor operator)

QConOp ::= GConSym | ` QDataConstrID ` (qualified constructor operator)
LabelOp ::= InfixOpID | ` LabelID ` (label operator)

QLabelOp ::= QInfixOpID | ` QLabelID ` (qualified label operator)

Op ::= FunOp | ConOp | LabelOp (operator)
QOp ::= VarOp | QFunOp | QConOp | QLabelOp (qualified operator)

GConSym ::= : | QInfixOpID (general constructor symbol)

26

5 Optimization of Curry Programs

After the invocation of the Curry front end, which parses a Curry program and translates it into
the intermediate FlatCurry representation, PAKCS applies a transformation to optimize Boolean
equalities occurring in the Curry program. The ideas and details of this optimization are described
in [9]. Therefore, we sketch only some basic ideas and options to influence this optimization.

Consider the following definition of the operation last to extract the last element in list:

last xs | xs == _++[x]
= x

where x free

In order to evaluate the condition “xs == ++[x]”, the Boolean equality is evaluated to True or
False by instantiating the free variables and x. However, since we know that a condition must
be evaluated to True only and all evaluations to False can be ignored, we can use the constrained
equality to obtain a more efficient program:

last xs | xs =:= _++[x]
= x

where x free

Since the selection of the appropriate equality operator is not obvious and might be tedious, PAKCS
encourages programmers to use only the Boolean equality operator “==” in programs. The constraint
equality operator “=:=” can be considered as an optimization of “==” if it is ensured that only positive
results are required, e.g., in conditions of program rules.

To support this programming style, PAKCS has a built-in optimization phase on FlatCurry
files. For this purpose, the optimizer analyzes the FlatCurry programs for occurrences of “==” and
replaces them by “=:=” whenever the result False is not required. The usage of the optimizer can
be influenced by setting the property flag bindingoptimization in the configuration file .pakcsrc.
The following values are recognized for this flag:

no: Do not apply this transformation.

fast: This is the default value. The transformation is based on pre-computed values for the prelude
operations in order to decide whether the value False is not required as a result of a Boolean
equality. Hence, the transformation can be efficiently performed without any complex analysis.

full: Perform a complete “required values” analysis of the program (see [9]) and use this information
to optimize programs. In most cases, this does not yield better results so that the fast mode
is sufficient.

Hence, to turn off this optimization, one can either modify the flag bindingoptimization in the
configuration file .pakcsrc or dynamically pass this change to the invocation of PAKCS by

. . . -Dbindingoptimization=no . . .

27

6 cypm: The Curry Package Manager

The Curry package manager (CPM) is a tool to distribute and install Curry libraries and applications
and manage version dependencies between these libraries. Since CPM offers a lot of functionality,
there is a separate manual available.2 Therefore, we describe here only some basic CPM commands.

The executable cypm is located in the bin directory of PAKCS. Hence, if you have this directory
in your path, you can start CPM by cloning a copy of the central package index repository:

> cypm update

Now you can show a short list of all packages in this index by

> cypm list
Name Synopsis Version
---- -------- -------
addtypes A tool to add missing type signatures in a Curry 0.0.1

program
binint Libraries with a binary representation of natural 0.0.1

and integers
. . .

The command

> cypm info PACKAGE

can be used to show more information about the package with name PACKAGE.
Some packages do not contain only useful libraries but also tools with some binary. In order to

install such tools, one can use the command

> cypm install PACKAGE

This command checks out the package in some internal directory ($HOME/.cpm/app_packages) and
installs the binary of the tool provided by the package in $HOME/.cpm/bin. Hence it is recommended
to add this directory to your path.

For instance, the most recent version of CPM can be installed by the following commands:

> cypm update
. . .

> cypm install cpm
. . . Package ’cpm-xxx’ checked out . . .

. . .

INFO Installing executable ’cypm’ into ’/home/joe/.cpm/bin’

Now, the binary cypm of the most recent CPM version can be used if $HOME/.cpm/bin is in your path
(before pakcshome /bin!).

A detailed description how to write your own packages with the use of other packages can be
found in the manual of CPM.

2http://curry-language.org/tools/cpm

28

http://curry-language.org/tools/cpm

7 curry check: A Tool for Testing Properties of Curry Programs

CurryCheck is a tool that supports the automation of testing Curry programs. The tests to be
executed can be unit tests as well as property tests parameterized over some arguments. The
tests can be part of any Curry source program and, thus, they are also useful to document the
code. CurryCheck is based on EasyCheck [15]. Actually, the properties to be tested are written
by combinators proposed for EasyCheck, which are actually influenced by QuickCheck [16] but
extended to the demands of functional logic programming.

7.1 Testing Properties

To start with a concrete example, consider the following naive definition of reversing a list:

rev :: [a] → [a]
rev [] = []
rev (x:xs) = rev xs ++ [x]

To get some confidence in the code, we add some unit tests, i.e., test with concrete test data:

revNull = rev [] -=- []
rev123 = rev [1,2,3] -=- [3,2,1]

The operator “-=-” specifies a test where both sides must have a single identical value. Since this
operator (as many more, see below) are defined in the library Test.Prop,3 we also have to import
this library. Apart from unit tests, which are often tedious to write, we can also write a property,
i.e., a test parameterized over some arguments. For instance, an interesting property of reversing a
list is the fact that reversing a list two times provides the input list:

revRevIsId xs = rev (rev xs) -=- xs

Note that each property is defined as a Curry operation where the arguments are the parameters
of the property. Altogether, our program is as follows:

module Rev(rev) where

import Test.Prop

rev :: [a] → [a]
rev [] = []
rev (x:xs) = rev xs ++ [x]

revNull = rev [] -=- []
rev123 = rev [1,2,3] -=- [3,2,1]

revRevIsId xs = rev (rev xs) -=- xs

3The library Test.Prop is a clone of the library Test.EasyCheck which defines only the interface but not the
actual test implementations. Thus, the library Test.Prop has less import dependencies. When CurryCheck generates
programs to execute the tests, it automatically replaces references to Test.Prop by references to Test.EasyCheck
in the generated programs.

29

Now we can run all tests by invoking the CurryCheck tool. If our program is stored in the file
Rev.curry, we can execute the tests as follows:

> curry check Rev
...
Executing all tests...
revNull (module Rev, line 7):
Passed 1 test.

rev123 (module Rev, line 8):
Passed 1 test.

revRevIsId_ON_BASETYPE (module Rev, line 10):
OK, passed 100 tests.

Since the operation rev is polymorphic, the property revRevIsId is also polymorphic in its argument.
In order to select concrete values to test this property, CurryCheck replaces such polymorphic tests
by defaulting the type variable to prelude type Ordering (the actual default type can also be set
by a command-line flag). If we want to test this property on integers numbers, we can explicitly
provide a type signature, where Prop denotes the type of a test:

revRevIsId :: [Int] → Prop
revRevIsId xs = rev (rev xs) -=- xs

The command curry check has some options to influence the output, like “-q” for a quiet execution
(only errors and failed tests are reported) or “-v” for a verbose execution where all generated test
cases are shown. Moreover, the return code of curry check is 0 in case of successful tests, otherwise,
it is 1. Hence, CurryCheck can be easily integrated in tool chains for automatic testing.

In order to support the inclusion of properties in the source code, the operations defined the
properties do not have to be exported, as show in the module Rev above. Hence, one can add
properties to any library and export only library-relevant operations. To test these properties,
CurryCheck creates a copy of the library where all operations are public, i.e., CurryCheck requires
write permission on the directory where the source code is stored.

The library Test.Prop defines many combinators to construct properties. In particular, there
are a couple of combinators for dealing with non-deterministic operations (note that this list is
incomplete):

• The combinator “<~>” is satisfied if the set of values of both sides are equal.

• The property x ~> y is satisfied if x evaluates to every value of y. Thus, the set of values of
y must be a subset of the set of values of x.

• The property x <~y is satisfied if y evaluates to every value of x, i.e., the set of values of x
must be a subset of the set of values of y.

• The combinator “<~~>” is satisfied if the multi-set of values of both sides are equal. Hence,
this operator can be used to compare the number of computed solutions of two expressions.

• The property always x is satisfied if all values of x are true.

• The property eventually x is satisfied if some value of x is true.

30

• The property failing x is satisfied if x has no value, i.e., its evaluation fails.

• The property x # n is satisfied if x has n different values.

For instance, consider the insertion of an element at an arbitrary position in a list:

insert :: a → [a] → [a]
insert x xs = x : xs
insert x (y:ys) = y : insert x ys

The following property states that the element is inserted (at least) at the beginning or the end of
the list:

insertAsFirstOrLast :: Int → [Int] → Prop
insertAsFirstOrLast x xs = insert x xs ~> (x:xs ? xs++[x])

A well-known application of insert is to use it to define a permutation of a list:

perm :: [a] → [a]
perm [] = []
perm (x:xs) = insert x (perm xs)

We can check whether the length of a permuted lists is unchanged:

permLength :: [Int] → Prop
permLength xs = length (perm xs) <~> length xs

Note that the use of “<~>” is relevant since we compare non-deterministic values. Actually, the left
argument evaluates to many (identical) values.

One might also want to check whether perm computes the correct number of solutions. Since we
know that a list of length n has n! permutations, we write the following property:

permCount :: [Int] → Prop
permCount xs = perm xs # fac (length xs)

where fac is the factorial function. However, this test will be falsified with the argument [1,1].
Actually, this list has only one permuted value since the two possible permutations are identical
and the combinator “#” counts the number of different values. The property would be correct if all
elements in the input list xs are different. This can be expressed by a conditional property: the
property b ==> p is satisfied if p is satisfied for all values where b evaluates to True. Therefore, if
we define a predicate allDifferent by

allDifferent [] = True
allDifferent (x:xs) = x ‘notElem‘ xs && allDifferent xs

then we can reformulate our property as follows:

permCount xs = allDifferent xs ==> perm xs # fac (length xs)

Now consider a predicate to check whether a list is sorted:

sorted :: [Int] → Bool
sorted [] = True
sorted [_] = True
sorted (x:y:zs) = x<=y && sorted (y:zs)

31

This predicate is useful to test whether there are also sorted permutations:

permIsEventuallySorted :: [Int] → Prop
permIsEventuallySorted xs = eventually $ sorted (perm xs)

The previous operations can be exploited to provide a high-level specification of sorting a list:

psort :: [Int] → [Int}
psort xs | sorted ys = ys
where ys = perm xs

Again, we can write some properties:

psortIsAlwaysSorted xs = always $ sorted (psort xs)

psortKeepsLength xs = length (psort xs) <~> length xs

Of course, the sort specification via permutations is not useful in practice. However, it can be used
as an oracle to test more efficient sorting algorithms like quicksort:

qsort :: [Int] → [Int]
qsort [] = []
qsort (x:l) = qsort (filter (<x) l) ++ x : qsort (filter (>x) l)

The following property specifies the correctness of quicksort:

qsortIsSorting xs = qsort xs <~> psort xs

Actually, if we test this property, we obtain a failure:

> curry check ExampleTests
...
qsortIsSorting (module ExampleTests, line 53) failed
Falsified by third test.
Arguments:
[1,1]
Results:
[1]

The result shows that, for the given argument [1,1], an element has been dropped in the result.
Hence, we correct our implementation, e.g., by replacing (>x) with (>=x), and obtain a successful
test execution.

For I/O operations, it is difficult to execute them with random data. Hence, CurryCheck only
supports specific I/O unit tests:

• a ‘returns‘ x is satisfied if the I/O action a returns the value x.

• a ‘sameReturns‘ b is satisfied if the I/O actions a and b return identical values.

Since CurryCheck executes the tests written in a source program in their textual order, one can
write several I/O tests that are executed in a well-defined order.

7.2 Generating Test Data

CurryCheck test properties by enumerating test data and checking a given property with these
values. Since these values are generated in a systematic way, one can even prove a property if the

32

number of test cases is finite. For instance, consider the following property from Boolean logic:

neg_or b1 b2 = not (b1 || b2) -=- not b1 && not b2

This property is validated by checking it with all possible values:

> curry check -v ExampleTests
...
0:
False
False
1:
False
True
2:
True
False
3:
True
True
neg_or (module ExampleTests, line 67):
Passed 4 tests.

However, if the test data is infinite, like lists of integers, CurryCheck stops checking after a given
limit for all tests. As a default, the limit is 100 tests but it can be changed by the command-line
flag “-m”. For instance, to test each property with 200 tests, CurryCheck can be invoked by

> curry check -m 200 ExampleTests

For a given type, CurryCheck automatically enumerates all values of this type (except for function
types). In KiCS2, this is done by exploiting the functional logic features of Curry, i.e., by simply
collecting all values of a free variable. For instance, the library Test.EasyCheck defines an operation

valuesOf :: a → [a]

which computes the list of all values of the given argument according to a fixed strategy (in the
current implementation: randomized level diagonalization [15]). For instance, we can get 20 values
for a list of integers by

Test.EasyCheck> take 20 (valuesOf (_::[Int]))
[[],[-1],[-3],[0],[1],[-1,0],[-2],[0,0],[3],[-1,1],[-3,0],[0,1],[2],
[-1,-1],[-5],[0,-1],[5],[-1,2],[-9],[0,2]]

Since the features of PAKCS for search space exploration are more limited, PAKCS uses in
CurryCheck explicit generators for search tree structures which are defined in the module
SearchTreeGenerators. For instance, the operations

genInt :: SearchTree Int

genList :: SearchTree a → SearchTree [a]

generates (infinite) trees of integer and lists values. To extract all values in a search tree, the library
Test.EasyCheck also defines an operation

33

valuesOfSearchTree :: SearchTree a → [a]

so that we obtain 20 values for a list of integers in PAKCS by

...> take 20 (valuesOfSearchTree (genList genInt))
[[],[1],[1,1],[1,-1],[2],[6],[3],[5],[0],[0,1],[0,0],[-1],[-1,0],[-2],
[-3],[1,5],[1,0],[2,-1],[4],[3,-1]]

Apart from the different implementations, CurryCheck can test properties on predefined types,
as already shown, as well as on user-defined types. For instance, we can define our own Peano
representation of natural numbers with an addition operation and two properties as follows:

data Nat = Z | S Nat

add :: Nat → Nat → Nat
add Z n = n
add (S m) n = S(add m n)

addIsCommutative x y = add x y -=- add y x

addIsAssociative x y z = add (add x y) z -=- add x (add y z)

Properties can also be defined for polymorphic types. For instance, we can define general polymor-
phic trees, operations to compute the leaves of a tree and mirroring a tree as follows:

data Tree a = Leaf a | Node [Tree a]

leaves (Leaf x) = [x]
leaves (Node ts) = concatMap leaves ts

mirror (Leaf x) = Leaf x
mirror (Node ts) = Node (reverse (map mirror ts))

Then we can state and check two properties on mirroring:

doubleMirror t = mirror (mirror t) -=- t

leavesOfMirrorAreReversed t = leaves t -=- reverse (leaves (mirror t))

In some cases, it might be desirable to define own test data since the generated structures are
not appropriate for testing (e.g., balanced trees to check algorithms that require work on balanced
trees). Of course, one could drop undesired values by an explicit condition. For instance, consider
the following operation that adds all numbers from 0 to a given limit:

sumUp n = if n==0 then 0 else n + sumUp (n-1)

Since there is also a simple formula to compute this sum, we can check it:

sumUpIsCorrect n = n>=0 ==> sumUp n -=- n * (n+1) ‘div‘ 2

Note that the condition is important since sumUp diverges on negative numbers. CurryCheck tests
this property by enumerating integers, i.e., also many negative numbers which are dropped for the
tests. In order to generate only valid test data, we define our own generator for a search tree
containing only valid data:

genInt = genCons0 0 ||| genCons1 (+1) genInt

34

The combinator genCons0 constructs a search tree containing only this value, whereas genCons1

constructs from a given search tree a new tree where the function given in the first argument is
applied to all values. Similarly, there are also combinators genCons2, genCons3 etc. for more than
one argument. The combinator “|||” combines two search trees.

If the Curry program containing properties defines a generator operation with the name genτ ,
then CurryCheck uses this generator to test properties with argument type τ . Hence, if we put
the definition of genInt in the Curry program where sumUpIsCorrect is defined, the values to check
this property are only non-negative integers. Since these integers are slowly increasing, i.e., the
search tree is actually degenerated to a list, we can also use the following definition to obtain a
more balanced search tree:

genInt = genCons0 0 ||| genCons1 (\n → 2*(n+1)) genInt
||| genCons1 (\n → 2*n+1) genInt

The library SearchTree defines the structure of search trees as well as operations on search trees, like
limiting the depth of a search tree (limitSearchTree) or showing a search tree (showSearchTree).
For instance, to structure of the generated search tree up to some depth can be visualized as follows:

...SearchTree> putStr (showSearchTree (limitSearchTree 6 genInt))

If we want to use our own generator only for specific properties, we can do so by introducing a
new data type and defining a generator for this data type. For instance, to test only the operation
sumUpIsCorrect with non-negative integers, we do not define a generator genInt as above, but define
a wrapper type for non-negative integers and a generator for this type:

data NonNeg = NonNeg { nonNeg :: Int }

genNonNeg = genCons1 NonNeg genNN
where

genNN = genCons0 0 ||| genCons1 (\n → 2*(n+1)) genNN
||| genCons1 (\n → 2*n+1) genNN

Now we can either redefine sumUpIsCorrect on this type

sumUpIsCorrectOnNonNeg (NonNeg n) = sumUp n -=- n * (n+1) ‘div‘ 2

or we simply reuse the old definition by

sumUpIsCorrectOnNonNeg = sumUpIsCorrect . nonNeg

7.3 Checking Contracts and Specifications

The expressive power of Curry supports writing high-level specifications as well as efficient im-
plementations for a given problem in the same programming language, as discussed in [8]. If a
specification or contract is provided for some function, then CurryCheck automatically generates
properties to test this specification or contract.

Following the notation proposed in [8], a specification for an operation f is an operation f’spec
of the same type as f . A contract consists of a pre- and a postcondition, where the precondition
could be omitted. A precondition for an operation f of type τ → τ ′ is an operation

f’pre :: τ → Bool

35

whereas a postcondition for f is an operation

f’post :: τ → τ ′ → Bool

which relates input and output values (the generalization to operations with more than one argument
is straightforward).

As a concrete example, consider again the problem of sorting a list. We can write a postcondition
and a specification for a sort operation sort and an implementation via quicksort as follows (where
sorted and perm are defined as above):

-- Postcondition: input and output lists should have the same length
sort’post xs ys = length xs == length ys

-- Specification:
-- A correct result is a permutation of the input which is sorted.
sort’spec :: [Int] → [Int]
sort’spec xs | ys == perm xs && sorted ys = ys where ys free

-- An implementation of sort with quicksort:
sort :: [Int] → [Int]
sort [] = []
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>=x) xs)

If we process this program with CurryCheck, properties to check the specification and postcondition
are automatically generated. For instance, a specification is satisfied if it yields the same values as
the implementation, and a postcondition is satisfied if each value computed for some input satisfies
the postcondition relation between input and output. For our example, CurryCheck generates the
following properties (if there are also preconditions for some operation, these preconditions are used
to restrict the test cases via the condition operater “==>”):

sortSatisfiesPostCondition :: [Int] → Prop
sortSatisfiesPostCondition x =

let r = sort x
in (r == r) ==> always (sort’post x r)

sortSatisfiesSpecification :: [Int] → Prop
sortSatisfiesSpecification x = sort x <~> sort’spec x

7.4 Checking Usage of Specific Operations

In addition to testing dynamic properties of programs, CurryCheck also examines the source code
of the given program for unintended uses of specific operations (these checks can be omitted via the
option “--nosource”). Currently, the following source code checks are performed:

• The prelude operation “=:<=” is used to implement functional patterns [6]. It should not be
used in source programs to avoid unintended uses. Hence, CurryCheck reports such unin-
tended uses.

• Set functions [7] are used to encapsulate all non-deterministic results of some function in a set
structure. Hence, for each top-level function f of arity n, the corresponding set function can

36

be expressed in Curry (via operations defined in the module SetFunctions, see Section A.2.39)
by the application “setn f” (this application is used in order to extend the syntax of Curry
with a specific notation for set functions). However, it is not intended to apply the operator
“setn” to lambda abstractions, locally defined operations or operations with an arity different
from n. Hence, CurryCheck reports such unintended uses of set functions.

37

8 CurryBrowser: A Tool for Analyzing and Browsing Curry Pro-
grams

CurryBrowser is a tool to browse through the modules and operations of a Curry application, show
them in various formats, and analyze their properties.4 Moreover, it is constructed in a way so that
new analyzers can easily be connected to CurryBrowser. A detailed description of the ideas behind
this tool can be found in [21, 22].

8.1 Installation

The current implementation of CurryBrowser is a package managed by the Curry Package Manager
CPM (see also Section 6). Thus, to install the newest version of CurryBrowser, use the following
commands:

> cypm update
> cypm install currybrowse

This downloads the newest package, compiles it, and places the executable curry-browse into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute CurryBrowser as described below.

8.2 Basic Usage

When CurryBrowser is installed as described above, it can be started in two ways:

• In the PAKCS environment after loading the module mod and typing the command “:browse”.

• As a shell command (provided that $HOME/.cpm/bin is in your path): curry-browse mod

Here, “mod” is the name of the main module of a Curry application. After the start, CurryBrowser
loads the interfaces of the main module and all imported modules before a GUI is created for
interactive browsing.

To get an impression of the use of CurryBrowser, Figure 1 shows a snapshot of its use on
a particular application (here: the implementation of CurryBrowser). The upper list box in the
left column shows the modules and their imports in order to browse through the modules of an
application. Similarly to directory browsers, the list of imported modules of a module can be
opened or closed by clicking. After selecting a module in the list of modules, its source code,
interface, or various other formats of the module can be shown in the main (right) text area. For
instance, one can show pretty-printed versions of the intermediate flat programs (see below) in order
to see how local function definitions are translated by lambda lifting [28] or pattern matching is
translated into case expressions [17, 33]. Since Curry is a language with parametric polymorphism
and type inference, programmers often omit the type signatures when defining functions. Therefore,
one can also view (and store) the selected module as source code where missing type signatures are
added.

4Although CurryBrowser is implemented in Curry, some functionalities of it require an installed graph visualization
tool (dot http://www.graphviz.org/), otherwise they have no effect.

38

http://www.graphviz.org/

Figure 1: Snapshot of the main window of CurryBrowser

Below the list box for selecting modules, there is a menu (“Analyze selected module”) to analyze
all functions of the currently selected module at once. This is useful to spot some functions of a
module that could be problematic in some application contexts, like functions that are impure (i.e.,
the result depends on the evaluation time) or partially defined (i.e., not evaluable on all ground
terms). If such an analysis is selected, the names of all functions are shown in the lower list box of the
left column (the “function list”) with prefixes indicating the properties of the individual functions.

The function list box can be also filled with functions via the menu “Select functions”. For
instance, all functions or only the exported functions defined in the currently selected module can
be shown there, or all functions from different modules that are directly or indirectly called from a
currently selected function. This list box is central to focus on a function in the source code of some
module or to analyze some function, i.e., showing their properties. In order to focus on a function,
it is sufficient to check the “focus on code” button. To analyze an individually selected function,
one can select an analysis from the list of available program analyses (through the menu “Select
analysis”). In this case, the analysis results are either shown in the text box below the main text
area or visualized by separate tools, e.g., by a graph drawing tool for visualizing call graphs. Some
analyses are local, i.e., they need only to consider the local definition of this function (e.g., “Calls

39

directly,” “Overlapping rules,” “Pattern completeness”), where other analyses are global, i.e., they
consider the definitions of all functions directly or indirectly called by this function (e.g., “Depends
on,” “Solution complete,” “Set-valued”). Finally, there are a few additional tools integrated into
CurryBrowser, for instance, to visualize the import relation between all modules as a dependency
graph. These tools are available through the “Tools” menu.

More details about the use of CurryBrowser and all built-in analyses are available through the
“Help” menu of CurryBrowser.

40

9 curry-doc: A Documentation Generator for Curry Programs

CurryDoc is a tool in the PAKCS distribution that generates the documentation for a Curry program
(i.e., the main module and all its imported modules) in HTML format. The generated HTML
pages contain information about all data types and functions exported by a module as well as
links between the different entities. Furthermore, some information about the definitional status
of functions (like rigid, flexible, external, complete, or overlapping definitions) are provided and
combined with documentation comments provided by the programmer.

9.1 Installation

The current implementation of CurryDoc is a package managed by the Curry Package Manager
CPM (see also Section 6). Thus, to install the newest version of CurryDoc, use the following
commands:

> cypm update
> cypm install currydoc

This downloads the newest package, compiles it, and places the executable curry-doc into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute CurryDoc as described below.

9.2 Documentation Comments

A documentation comment starts at the beginning of a line with “--- ” (also in literate programs!).
All documentation comments immediately before a definition of a datatype or (top-level) function
are kept together.5 The documentation comments for the complete module occur before the first
“module” or “import” line in the module. The comments can also contain several special tags. These
tags must be the first thing on its line (in the documentation comment) and continues until the
next tag is encountered or until the end of the comment. The following tags are recognized:

@author comment
Specifies the author of a module (only reasonable in module comments).

@version comment
Specifies the version of a module (only reasonable in module comments).

@cons id comment
A comment for the constructor id of a datatype (only reasonable in datatype comments).

@param id comment
A comment for function parameter id (only reasonable in function comments). Due to pattern
matching, this need not be the name of a parameter given in the declaration of the function
but all parameters for this functions must be commented in left-to-right order (if they are
commented at all).

5The documentation tool recognizes this association from the first identifier in a program line. If one wants to
add a documentation comment to the definition of a function which is an infix operator, the first line of the operator
definition should be a type definition, otherwise the documentation comment is not recognized.

41

@return comment
A comment for the return value of a function (only reasonable in function comments).

The comment of a documented entity can be any string in Markdown’s syntax (the currently sup-
ported set of elements is described in detail in the appendix). For instance, it can contain Markdown
annotations for emphasizing elements (e.g., _verb_), strong elements (e.g., **important**), code
elements (e.g., ‘3+4‘), code blocks (lines prefixed by four blanks), unordered lists (lines prefixed
by “ * ”), ordered lists (lines prefixed by blanks followed by a digit and a dot), quotations (lines
prefixed by “> ”), and web links of the form “<http://...>” or “[link text](http://...)”. If the
Markdown syntax should not be used, one could run CurryDoc with the parameter “--nomarkdown”.

The comments can also contain markups in HTML format so that special characters like “<” must
be quoted (e.g., “<”). However, header tags like <h1> should not be used since the structuring is
generated by CurryDoc. In addition to Markdown or HTML markups, one can also mark references
to names of operations or data types in Curry programs which are translated into links inside
the generated HTML documentation. Such references have to be enclosed in single quotes. For
instance, the text ’conc’ refers to the Curry operation conc inside the current module whereas the
text ’Prelude.reverse’ refers to the operation reverse of the module Prelude. If one wants to
write single quotes without this specific meaning, one can escape them with a backslash:

--- This is a comment without a \’reference\’.

To simplify the writing of documentation comments, such escaping is only necessary for single words,
i.e., if the text inside quotes has not the syntax of an identifier, the escaping can be omitted, as in

--- This isn’t a reference.

The following example text shows a Curry program with some documentation comments:

--- This is an
--- example module.
--- @author Michael Hanus
--- @version 0.1

module Example where

--- The function ‘conc‘ concatenates two lists.
--- @param xs - the first list
--- @param ys - the second list
--- @return a list containing all elements of ‘xs‘ and ‘ys‘
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys
-- this comment will not be included in the documentation

--- The function ‘last‘ computes the last element of a given list.
--- It is based on the operation ’conc’ to concatenate two lists.
--- @param xs - the given input list
--- @return last element of the input list
last xs | conc ys [x] =:= xs = x where x,ys free

--- This data type defines _polymorphic_ trees.

42

http://en.wikipedia.org/wiki/Markdown

--- @cons Leaf - a leaf of the tree
--- @cons Node - an inner node of the tree
data Tree a = Leaf a | Node [Tree a]

9.3 Generating Documentation

To generate the documentation, execute the command

curry-doc Example

This command creates the directory DOC_Example (if it does not exist) and puts all HTML docu-
mentation files for the main program module Example and all its imported modules in this directory
together with a main index file index.html. If one prefers another directory for the documentation
files, one can also execute the command

curry-doc docdir Example

where docdir is the directory for the documentation files.
In order to generate the common documentation for large collections of Curry modules (e.g., the

libraries contained in the PAKCS distribution), one can call curry-doc with the following options:

curry-doc --noindexhtml docdir Mod : This command generates the documentation for module Mod
in the directory docdir without the index pages (i.e., main index page and index pages for all
functions and constructors defined in Mod and its imported modules).

curry-doc --onlyindexhtml docdir Mod1 Mod2 ...Modn : This command generates only the index
pages (i.e., a main index page and index pages for all functions and constructors defined in
the modules Mod1, Mod2,. . . ,Modn and their imported modules) in the directory docdir.

43

10 curry-style: A Style Checker for Curry Programs

CASC is a tool to check the formatting style of Curry programs. The preferred style for writing
Curry programs, which is partially checked by this tool, is described in a separate web page6

Currently, CASC only checks a few formatting rules, like line lengths or indentation of if-then-else,
but the kind of checks performed by CASC will be extended in the future.

10.1 Installation

The current implementation of CASC is a package managed by the Curry Package Manager CPM
(see also Section 6). Thus, to install the newest version of CASC, use the following commands:

> cypm update
> cypm install casc

This downloads the newest package, compiles it, and places the executable curry-style into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute CASC as described below.

10.2 Basic Usage

To check the style of some Curry program stored in the file prog.curry, one can invoke the style
checker by the command

curry-style prog

After processing the program, a list of all positions with stylistic errors is printed.

10.3 Configuration

CASC can be configured so that not all stylistic rules are checked. For this purpose, one should copy
the global configuration file cascrc of CASC, which is stored in the main directory of the package,7

into the home directory under the name “.cascrc”. Then one can configure this file according to
your own preferences, which are described in this file.

6http://www.informatik.uni-kiel.de/~pakcs/CurryStyleGuide.html
7If you installed CASC as described above, the downloaded package is located in the directory

$HOME/.cpm/bin_packages/casc.

44

http://www.informatik.uni-kiel.de/~pakcs/CurryStyleGuide.html

11 CurryVerify: A Tool to Support the Verification of Curry Pro-
grams

CurryVerify is a tool that supports the verification of Curry programs with the help of other theo-
rem provers or proof assistants. Basically, CurryVerify extends CurryCheck (see Section 7), which
tests given properties of a program, by the possibility to verify these properties. For this purpose,
CurryVerify translates properties into the input language of other theorem provers or proof assis-
tants. This is done by collecting all operations directly or indirectly involved in a given property
and translating them together with the given property.

Currently, only Agda [31] is supported as a target language for verification (but more target
languages may be supported in future releases). The basic schemes to translate Curry programs
into Agda programs are presented in [11]. That paper also describes the limitations of this ap-
proach. Since Curry is a quite rich programming language, not all constructs of Curry are currently
supported in the translation process (e.g., no case expressions, local definitions, list comprehen-
sions, do notations, etc). Only a kernel language, where the involved rules correspond to a term
rewriting system, are translated into Agda. However, these limitations might be relaxed in future
releases. Hence, the current tool should be considered as a first prototypical approach to support
the verification of Curry programs.

11.1 Installation

The current implementation of CurryVerify is a package managed by the Curry Package Manager
CPM (see also Section 6). Thus, to install the newest version of CurryVerify, use the following
commands:

> cypm update
> cypm install verify

This downloads the newest package, compiles it, and places the executable curry-verify into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute CurryVerify as described below.

11.2 Basic Usage

To translate the properties of a Curry program stored in the file prog.curry into Agda, one can
invoke the command

curry-verify prog

This generates for each property p in module prog an Agda program “TO-PROVE-p.agda”. If one
completes the proof obligation in this file, the completed file should be renamed into “PROOF-p.agda”.
This has the effect that CurryCheck does not test this property again but trusts the proof and use
this knowledge to simplify other tests.

As a concrete example, consider the following Curry module Double, shown in Figure 2, which
uses the Peano representation of natural numbers (module Nat) to define an operation to double the
value of a number, a non-deterministic operation coin which returns its argument or its incremented

45

module Double(double,coin,even) where

import Nat
import Test.Prop

double x = add x x

coin x = x ? S x

even Z = True
even (S Z) = False
even (S (S n)) = even n

evendoublecoin x = always (even (double (coin x)))

Figure 2: Curry program Double.curry

argument, and a predicate to test whether a number is even. Furthermore, it contains a property
specifying that doubling the coin of a number is always even.

In order to prove the correctness of this property, we translate it into an Agda program by
executing

> curry-verify Double
. . .

Agda module ’TO-PROVE-evendoublecoin.agda’ written.
If you completed the proof, rename it to ’PROOF-evendoublecoin.agda’.

The Curry program is translated with the default scheme (see further options below) based on the
“planned choice” scheme, described in [11]. The result of this translation is shown in Figure 3.

The Agda program contains all operations involved in the property and the property itself.
Non-deterministic operations, like coin, have an additional additional argument of the abstract
type Choice that represents the plan to execute some non-deterministic branch of the program. By
proving the property for all possible branches as correct, it universally holds.

In our example, the proof is quite easy. First, we prove that the addition of a number to itself
is always even (lemma even-add-x-x, which uses an auxiliary lemma add-suc). Then, the property
is an immediate consequence of this lemma:

add-suc : ∀ (x y : N) → add x (suc y) ≡ suc (add x y)
add-suc zero y = refl
add-suc (suc x) y rewrite add-suc x y = refl

even-add-x-x : ∀ (x : N) → even (add x x) ≡ tt
even-add-x-x zero = refl
even-add-x-x (suc x) rewrite add-suc x x | even-add-x-x x = refl

evendoublecoin : (c1 : Choice) → (x : N) → (even (double (coin c1 x))) ≡ tt
evendoublecoin c1 x rewrite even-add-x-x (coin c1 x) = refl

46

As the proof is complete, we rename this Agda program into PROOF-evendoublecoin.agda so that
the proof can be used by further invocations of CurryCheck.

11.3 Options

The command curry-verify can be parameterized with various options. The available options can
also be shown by executing

curry-verify --help

The options are briefly described in the following.

-h, -?, --help These options trigger the output of usage information.

-q, --quiet Run quietly and produce no informative output. However, the exit code will be
non-zero if some translation error occurs.

-v[n], --verbosity[=n] Set the verbosity level to an optional value. The verbosity level 0 is the
same as option -q. The default verbosity level 1 shows the translation progress. The verbosity
level 2 (which is the same as omitting the level) shows also the generated (Agda) program.
The verbosity level 3 shows also more details about the translation process.

-n, --nostore Do not store the translated program in a file but show it only.

-p p, --property=p As a default, all properties occurring in the source program are translated. If
this option is provided, only property p is translated.

-t t, --target=t Define the target language of the translation. Currently, only t = Agda is sup-
ported, which is also the default.

-s s, --scheme=s Define the translation scheme used to represent Curry programs in the target
language.

For the target Agda, the following schemes are supported:

choice Use the “planned choice” scheme, see [11] (this is the default). In this scheme, the
choices made in a non-deterministic computation are abstracted by passing a parameter
for these choices.

nondet Use the “set of values” scheme, see [11], where non-deterministic values are represented
in a tree structure.

47

-- Agda program using the Iowa Agda library

open import bool

module TO-PROVE-evendoublecoin
(Choice : Set)
(choose : Choice → B)
(lchoice : Choice → Choice)
(rchoice : Choice → Choice)
where

open import eq
open import nat
open import list
open import maybe

-- Translated Curry operations:

add : N → N → N
add zero x = x
add (suc y) z = suc (add y z)

coin : Choice → N → N
coin c1 x = if choose c1 then x else suc x

double : N → N
double x = add x x

even : N → B
even zero = tt
even (suc zero) = ff
even (suc (suc x)) = even x

evendoublecoin : (c1 : Choice) → (x : N) → (even (double (coin c1 x))) ≡ tt
evendoublecoin c1 x = ?

Figure 3: Agda program TO-PROVE-evendoublecoin.agda

48

12 CurryPP: A Preprocessor for Curry Programs

The Curry preprocessor “currypp” implements various transformations on Curry source programs.
It supports some experimental language extensions that might become part of the standard parser
of Curry in some future version.

Currently, the Curry preprocessor supports the following extensions that will be described below
in more detail:

Integrated code: This extension allows to integrate code written in some other language into
Curry programs, like regular expressions, format specifications (“printf”), HTML and XML
code.

Default rules: If this feature is used, one can add a default rule to operations defined in a Curry
module. This provides a similar power than sequential rules but with a better operational
behavior. The idea of default rules is described in [10].

Contracts: If this feature is used, the Curry preprocessor looks for contracts (i.e., specification,
pre- and postconditions) occurring in a Curry module and adds them as assertions that are
checked during the execution of the program. Currently, only strict assertion checking is
supported which might change the operational behavior of the program. The idea and usage
of contracts is described in [8].

12.1 Installation

The current implementation of Curry preprocessor is a package managed by the Curry Package
Manager CPM (see also Section 6). Thus, to install the newest version of currypp, use the following
commands:

> cypm update
> cypm install currypp

This downloads the newest package, compiles it, and places the executable currypp into the direc-
tory $HOME/.cpm/bin. Hence one should add this directory to the path in order to use the Curry
preprocessor as described below.

12.2 Basic Usage

In order to apply the preprocessor when loading a Curry source program into PAKCS, one has to
add an option line at the beginning of the source program. For instance, in order to use default
rules in a Curry program, one has to put the line

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

at the beginning of the program. This option tells the PAKCS front end to process the Curry source
program with the program currypp before actually parsing the source text.

The option “defaultrules” has to be replaced by “contracts” to enable dynamic contract check-
ing. To support integrated code, one has to set the option “foreigncode” (which can also be com-
bined with “defaultrules”). If one wants to see the result of the transformation, one can also

49

set the option “-o”. This has the effect that the transformed source program is stored in the file
Prog.curry.CURRYPP if the name of the original program is Prog.curry.

For instance, in order to use integrated code and default rules in a module and store the trans-
formed program, one has to put the line

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode --optF=defaultrules --optF=-o #-}

at the beginning of the program. If the options about the kind of preprocessing is omitted, all kinds
of preprocessing are applied. Thus, the preprocessor directive

{-# OPTIONS_CYMAKE -F --pgmF=currypp #-}

is equivalent to

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode --optF=defaultrules --optF=contracts #-}

12.3 Integrated Code

Integrated code is enclosed in at least two back ticks and ticks in a Curry program. The number
of starting back ticks and ending ticks must always be identical. After the initial back ticks, there
must be an identifier specifying the kind of integrated code, e.g., regex or html (see below). For
instance, if one uses regular expressions (see below for more details), the following expressions are
valid in source programs:

match ‘‘regex (a|(bc*))+’’
match ‘‘‘‘regex aba*c’’’’

The Curry preprocessor transforms these code pieces into regular Curry expressions. For this
purpose, the program containing this code must start with the preprocessing directive

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

The next sections describe the currently supported foreign languages.

12.3.1 Regular Expressions

In order to match strings against regular expressions, i.e., to check whether a string is contained in
the language generated by a regular expression, one can specify regular expression similar to POSIX.
The foreign regular expression code must be marked by “regex”. Since this code is transformed into
operations of the PAKCS library RegExp, this library must be imported.

For instance, the following module defines a predicate to check whether a string is a valid
identifier:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import RegExp

isID :: String → Bool
isID = match ‘‘regex [a-zA-Z][a-zA-Z0-9_’]*’’

50

12.3.2 Format Specifications

In order to format numerical and other data as strings, one can specify the desired format with
foreign code marked by “format”. In this case, one can write a format specification, similarly to the
printf statement of C, followed by a comma-separated list of arguments. This format specification
is transformed into operations of the PAKCS library Format so that it must be imported. For
instance, the following program defines an operation that formats a string, an integer (with leading
sign and zeros), and a float with leading sign and precision 3:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import Format

showSIF :: String → Int → Float → String
showSIF s i f = ‘‘format "Name: %s | %+.5i | %+6.3f",s,i,f’’

main = putStrLn $ showSIF "Curry" 42 3.14159

Thus, the execution of main will print the line

Name: Curry | +00042 | +3.142

Instead of “format”, one can also write a format specification with printf. In this case, the
formatted string is printed with putStr. Hence, we can rewrite our previous definitions as follows:

showSIF :: String → Int → Float → IO ()
showSIF s i f = ‘‘printf "Name: %s | %+.5i | %+6.3f\n",s,i,f’’

main = showSIF "Curry" 42 3.14159

12.3.3 HTML Code

The foreign language tag “html” introduces a notation for HTML expressions (see PAKCS library
HTML) with the standard HTML syntax extended by a layout rule so that closing tags can be omitted.
In order to include strings computed by Curry expressions into these HTML syntax, these Curry
expressions must be enclosed in curly brackets. The following example program shows its use:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import HTML

htmlPage :: String → [HtmlExp]
htmlPage name = ‘‘html
<html>

<head>
<title>Simple Test

<body>
<h1>Hello {name}!</h1>
<p>

51

Bye!
<p>Bye!

<h2>{reverse name}
Bye!’’

If a Curry expression computes an HTML expression, i.e., it is of type HtmlExp instead of String, it
can be integrated into the HTML syntax by double curly brackets. The following simple example,
taken from [20], shows the use of this feature:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import HTML

main :: IO HtmlForm
main = return $ form "Question" $

‘‘html
Enter a string: {{textfield tref ""}}
<hr>
{{button "Reverse string" revhandler}}
{{button "Duplicate string" duphandler}}’’

where
tref free

revhandler env = return $ form "Answer"
‘‘html <h1>Reversed input: {reverse (env tref)}’’

duphandler env = return $ form "Answer"
‘‘html

<h1>
Duplicated input:
{env tref ++ env tref}’’

12.3.4 XML Expressions

The foreign language tag “xml” introduces a notation for XML expressions (see PAKCS library XML).
The syntax is similar to the language tag “html”, i.e., the use of the layout rule avoids closing tags
and Curry expressions evaluating to strings (String) and XML expressions (XmlExp) can be included
by enclosing them in curly and double curly brackets, respectively. The following example program
shows its use:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import HTML

import XML

main :: IO ()
main = putStrLn $ showXmlDoc $ head ‘‘xml

52

<contact>
<entry>
<phone>+49-431-8807271
<name>Hanus
<first>Michael
<email>mh@informatik.uni-kiel.de
<email>hanus@email.uni-kiel.de

<entry>
<name>Smith
<first>Bill
<phone>+1-987-742-9388

’’

12.4 SQL Statements

The Curry preprocessor also supports SQL statements in their standard syntax as integrated code.
In order to ensure a type-safe integration of SQL statements in Curry programs, SQL queries are
type-checked in order to determine their result type and ensure that the entities used in the queries
are type correct with the underlying relational database. For this purpose, SQL statements are
integrated code require a specification of the database model in form of entity-relationship (ER)
model. From this description, a set of Curry data types are generated which are used to represent
entities in the Curry program (see Section 12.4.1). The Curry preprocessor uses this information to
type check the SQL statements and replace them by type-safe access methods to the database. In
the following, we sketch the use of SQL statements as integrated code. A detailed description of the
ideas behind this technique can be found in [24]. Currently, only SQLite databases are supported.

12.4.1 ER Specifications

The structure of the data stored in underlying database must be described as an entity-relationship
model. Such a description consists of

1. a list of entities where each entity has attributes,

2. a list of relationships between entities which have cardinality constraints that must be satisfied
in each valid state of the database.

Entity-relationships models are often visualized as entity-relationship diagrams (ERDs). Figure 4
shows an ERD which we use in the following examples.

Instead of requiring the use of soem graphical ER modeling tool, ERDs must be specified in
textual form as a Curry data term, see also [14]. In this representation, an ERD has a name, which
is also used as the module name of the generated Curry code, lists of entities and relationships:

data ERD = ERD String [Entity] [Relationship]

Each entity consists of a name and a list of attributes, where each attribute has a name, a domain,
and specifications about its key and null value property:

53

(1,1)

(0..n)

Taking

+has_a

+belongs_to

Student

Name
Firstname
MatNum
Email
Age

Result

Attempt
Grade
Points

Lecture

Title
Topic

Lecturer

Name
Firstname

Exam

GradeAverage

Place

Street
StrNr
RoomNr

Time

Time

Participation

+participated_by +participated

(0..n) (0..n)

Teaching

+teaches

+taught_by

(1,1)

(1,1)

(0..n)+belongs_to

Resulting

+results_in

+result_of

(0..n)

(1,1)

Belonging

(0..n)
+has_a ExamPlace

ExamTime

+taking_place
(0..n)

(1,1)
+in

+ taking_place +at

(0..n) (1,1)

Figure 4: A simple entity-relationship diagram for university lectures [24]

data Entity = Entity String [Attribute]

data Attribute = Attribute String Domain Key Null

data Key = NoKey | PKey | Unique

type Null = Bool

data Domain = IntDom (Maybe Int)
| FloatDom (Maybe Float)
| CharDom (Maybe Char)
| StringDom (Maybe String)
| BoolDom (Maybe Bool)
| DateDom (Maybe ClockTime)
| UserDefined String (Maybe String)
| KeyDom String -- later used for foreign keys

54

Thus, each attribute is part of a primary key (PKey), unique (Unique), or not a key (NoKey). Fur-
thermore, it is allowed that specific attributes can have null values, i.e., can be undefined. The
domain of each attribute is one of the standard domains or some user-defined type. In the latter
case, the first argument of the constructor UserDefined is the qualified type name used in the Curry
application program. For each kind of domain, one can also have a default value (modeled by the
Maybe type). The constructor KeyDom is not necessary to represent ERDs but it is internally used to
transform complex ERDs into relational database schemas.

Finally, each relationship has a name and a list of connections to entities (REnd), where each
connection has the name of the connected entity, the role name of this connection, and its cardinality
as arguments:

data Relationship = Relationship String [REnd]

data REnd = REnd String String Cardinality

data Cardinality = Exactly Int | Between Int MaxValue

data MaxValue = Max Int | Infinite

The cardinality is either a fixed integer or a range between two integers (where Infinite as the upper
bound represents an arbitrary cardinality). For instance, the simple-complex (1:n) relationship
Teaching in Fig.4 can be represented by the term

Relationship "Teaching"
[REnd "Lecturer" "taught_by" (Exactly 1),
REnd "Lecture" "teaches" (Between 0 Infinite)]

The PAKCS library Database.ERD contains the ER datatypes described above. Thus, the specifica-
tion of the conceptual database model must be a data term of type Database.ERD.ERD. Figure 5 on
(page 60) shows the complete ER data term specification corresponding to the ERD of Fig. 4.

Such a data term specification should be stored in Curry program file as an (exported!) top-level
operation type ERD. If our example term is defined as a constant in the Curry program UniERD.curry,
then one has to use the tool “erd2curry” (see Sect. 15) to process the ER model so that it can be used
in SQL statements. This tool is invoked with the parameter “--cdbi”, the (preferably absolute) file
name of the SQLite database, and the name of the Curry program containing the ER specification.
If the SQLite database file does not exist, it will be initialized by the tool. In our example, we
execute the following command (provided that the tool erd2curry is already installed, see Sect. 15):

> erd2curry --db ‘pwd‘/Uni.db --cdbi UniERD.curry

This initializes the SQLite database Uni.db and performs the following steps:

1. The ER model is transformed into tables of a relational database, i.e., the relations of the
ER model are either represented by adding foreign keys to entities (in case of (0/1:1) or
(0/1:n) relations) or by new entities with the corresponding relations (in case of complex
(n:m) relations).

2. A new Curry module Uni CDBI is generated. It contains the definitions of entities and rela-
tionships as Curry data types. Since entities are uniquely identified via a database key, each

55

entity definition has, in addition to its attributes, this key as the first argument. For instance,
the following definitions are generated for our university ERD (among many others):

data StudentID = StudentID Int

data Student = Student StudentID String String Int String Int

-- Representation of n:m relationship Participation:
data Participation = Participation StudentID LectureID

Note that the two typed foreign key columns (StudentID, LectureID) ensures a type-safe
handling of foreign-key constraints. These entity descriptions are relevant for SQL queries
since some queries (e.g., those that do not project on particular database columns) return lists
of such entities. Moreover, the generated module contains useful getter and setter functions
for each entity. Other generated operations, like entity description and definitions of their
columns, are not relevant for the programming but only used for the translation of SQL
statements.

3. Finally, an info file Uni SQLCODE.info is created. It contains information about all entities,
attributes and their types, and relationships. This file is used by the SQL parser and translator
of the Curry preprocessor to type check the SQL statements and generate appropriate Curry
library calls.

12.4.2 SQL Statements as Integrated Code

After specifying and processing the ER model of the database, one can write SQL statement in their
standard syntax as integrated code (marked by the prefix “sql”) in Curry programs. For instance,
to retrieve all students from the database, one can define the following SQL query:

allStudents :: IO (SQLResult [Student])
allStudents = ‘‘sql Select * From Student;’’

Since database accesses might produce errors, the result of SQL statements is always of
type “SQLResult τ ”, where SQLResult is a type synonym defined in the PAKCS library
Database.CDBI.Connection:

type SQLResult a = Either DBError a

This library defines also an operation

fromSQLResult :: SQLResult a → a

which returns the retrieved database value or raises a run-time error. Hence, if one does not want to
check the occurrence of database errors immediately, one can also define the above query as follows:

allStudents :: IO [Student]
allStudents = liftIO fromSQLResult ‘‘sql Select * From Student;’’

In order to select students with an age between 20 and 25, one can put a condition as usual:

youngStudents :: IO (SQLResult [Student])
youngStudents = ‘‘sql Select * From Student

Where Age between 18 and 21;’’

56

Usually, one wants to parameterize queries over some values computed by the context of the Curry
program. Therefore, one can embed Curry expressions instead of concrete values in SQL statements
by enclosing them in curly brackets:

studAgeBetween :: Int → Int → IO (SQLResult [Student])
studAgeBetween min max =

‘‘sql Select * From Student
Where Age between {min} and {max};’’

Instead of retrieving complete entities (database tables), one can also project on some attributes
(database columns) and one can also order them with the usual “Order By” clause:

studAgeBetween :: Int → Int → IO (SQLResult [(String,Int)])
studAgeBetween min max =

‘‘sql Select Name, Age
From Student Where Age between {min} and {max}
Order By Name Desc;’’

In addition to the usual SQL syntax, one can also write conditions on relationships between entities.
For instance, the following code will be accepted:

studGoodGrades :: IO (SQLResult [(String, Float])
studGoodGrades = ‘‘sql Select Distinct s.Name, r.Grade

From Student as s, Result as r
Where Satisfies s has_a r And r.Grade < 2.0;’’

This query retrieves a list of pairs containing the names and grades of students having a grade
better than 2.0. This query is beyond pure SQL since it also includes a condition on the relation
has a specified in the ER model (“Satisfies s has a r”).

The complete SQL syntax supported by the Curry preprocessor is shown in Appendix C. More
details about the implementation of this SQL translator can be found in [24, 29].

12.5 Default Rules

An alternative to sequential rules are default rules, i.e., these two options cannot be simultaneously
used. Default rules are activated by the preprocessor option “defaultrules”. In this case, one can
add to each operation a default rule. A default rule for a function f is defined as a rule defining the
operation “f’default” (this mechanism avoids any language extension for default rules). A default
rule is applied only if no “standard” rule is applicable, either because the left-hand sides’ pattern
do not match or the conditions are not satisfiable. The idea and detailed semantics of default rules
are described in [10].

Default rules are preferable over the sequential rule selection strategy since they have a better
operational behavior. This is due to the fact that the test for the application of default rules is
done with the same (sometimes optimal) strategy than the selection of standard rules. Moreover,
default rules provide a similar power than sequential rules, i.e., they can be applied if the standard
rules have complex (functional) patterns or complex conditions.

As a simple example, we show the implementation of the previous example for sequential rules
with a default rule:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

57

mlookup key (_ ++ [(key,value)] ++ _) = Just value
mlookup’default _ _ = Nothing

Default rules are often a good replacement for “negation as failure” used in logic programming. For
instance, the following program defines a solution to the n-queens puzzle, where the default rule is
useful since it is easier to characterize the unsafe positions of the queens on the chessboard (see the
first rule of safe):

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

import Combinatorial(permute)
import Integer(abs)

-- A placement is safe if two queens are not in a same diagonal:
safe (_++[x]++ys++[z]++_) | abs (x-z) == length ys + 1 = failed
safe’default xs = xs

-- A solution to the n-queens puzzle is a safe permutation:
queens :: Int → [Int]
queens n = safe (permute [1..n])

12.6 Contracts

Contracts are annotations in Curry program to specify the intended meaning and use of operations
by other operations or predicates expressed in Curry. The idea of using contracts for the devel-
opment of reliable software is discussed in [8]. The Curry preprocessor supports dynamic contract
checking by transforming contracts, i.e., specifications and pre-/postconditions, into assertions that
are checked during the execution of a program. If some contract is violated, the program terminates
with an error.

The transformation of contracts into assertions is described in [8]. Note that only strict asser-
tion checking is supported at the moment. Strict assertion checking might change the operational
behavior of the program. The notation of contracts has been shortly introduced in Section 7.3. To
transform such contracts into assertions, one has to use the option “contracts” for the preprocessor.

As a concrete example, consider an implementation of quicksort with a postcondition and a
specification as shown in Section 7.3 (where the code for sorted and perm is not shown here):

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=contracts #-}

. . .

-- Trivial precondition:
sort’pre xs = length xs >= 0

-- Postcondition: input and output lists should have the same length
sort’post xs ys = length xs == length ys

-- Specification:

58

-- A correct result is a permutation of the input which is sorted.
sort’spec :: [Int] → [Int]
sort’spec xs | ys == perm xs && sorted ys = ys where ys free

-- A buggy implementation of quicksort:
sort :: [Int] → [Int]
sort [] = []
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>x) xs)

If this program is executed, the generated assertions report a contract violation for some inputs:

Quicksort> sort [3,1,4,2,1]
Postcondition of ’sort’ (module Quicksort, line 27) violated for:
[1,2,1] → [1,2]

ERROR: Execution aborted due to contract violation!

59

ERD "Uni"
[Entity "Student"

[Attribute "Name" (StringDom Nothing) NoKey False,
Attribute "Firstname" (StringDom Nothing) NoKey False,
Attribute "MatNum" (IntDom Nothing) Unique False,
Attribute "Email" (StringDom Nothing) Unique False,
Attribute "Age" (IntDom Nothing) NoKey True],

Entity "Lecture"
[Attribute "Title" (StringDom Nothing) NoKey False,
Attribute "Topic" (StringDom Nothing) NoKey True],

Entity "Lecturer"
[Attribute "Name" (StringDom Nothing) NoKey False,
Attribute "Firstname" (StringDom Nothing) NoKey False],

Entity "Place"
[Attribute "Street" (StringDom Nothing) NoKey False,
Attribute "StrNr" (IntDom Nothing) NoKey False,
Attribute "RoomNr" (IntDom Nothing) NoKey False],

Entity "Time"
[Attribute "Time" (DateDom Nothing) Unique False],

Entity "Exam"
[Attribute "GradeAverage" (FloatDom Nothing) NoKey True],

Entity "Result"
[Attribute "Attempt" (IntDom Nothing) NoKey False,
Attribute "Grade" (FloatDom Nothing) NoKey True,
Attribute "Points" (IntDom Nothing) NoKey True]]

[Relationship "Teaching"
[REnd "Lecturer" "taught_by" (Exactly 1),
REnd "Lecture" "teaches" (Between 0 Infinite)],

Relationship "Participation"
[REnd "Student" "participated_by" (Between 0 Infinite),
REnd "Lecture" "participates" (Between 0 Infinite)],

Relationship "Taking"
[REnd "Result" "has_a" (Between 0 Infinite),
REnd "Student" "belongs_to" (Exactly 1)],

Relationship "Resulting"
[REnd "Exam" "result_of" (Exactly 1),
REnd "Result" "results_in" (Between 0 Infinite)],

Relationship "Belonging"
[REnd "Exam" "has_a" (Between 0 Infinite),
REnd "Lecture" "belongs_to" (Exactly 1)],

Relationship "ExamDate"
[REnd "Exam" "taking_place" (Between 0 Infinite),
REnd "Time" "at" (Exactly 1)],

Relationship "ExamPlace"
[REnd "Exam" "taking_place" (Between 0 Infinite),
REnd "Place" "in" (Exactly 1)]]

Figure 5: The ER data term specification of Fig. 4

60

13 runcurry: Running Curry Programs

runcurry is a simple tool to support the execution of Curry programs without explicitly invoking
the interactive environment. Hence, it can be useful to write short scripts in Curry intended for
direct execution. The Curry program must always contain the definition of an operation main of
type IO (). The execution of the program consists of the evaluation of this operation.

13.1 Installation

The implementation of runcurry is a package managed by the Curry Package Manager CPM. Thus,
to install the newest version of runcurry, use the following commands:

> cypm update
> cypm install runcurry

This downloads the newest package, compiles it, and places the executable runcurry into the direc-
tory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to use
runcurry as described below.

13.2 Using runcurry

Basically, the command runcurry supports three modes of operation:

• One can execute a Curry program whose file name is provided as an argument when runcurry is
called. In this case, the suffix (“.curry” or “.lcurry”) must be present and cannot be dropped.
One can write additional commands for the interactive environment, typically settings of some
options, before the Curry program name. All arguments after the Curry program name are
passed as run-time arguments. For instance, consider the following program stored in the file
ShowArgs.curry:

import System(getArgs)

main = getArgs >>= print

This program can be executed by the shell command

> runcurry ShowArgs.curry Hello World!

which produces the output

["Hello","World!"]

• One can also execute a Curry program whose program text comes from the standard input.
Thus, one can either “pipe” the program text into this command or type the program text on
the keyboard. For instance, if we type

> runcurry
main = putStr . unlines . map show . take 8 $ [1..]

(followed by the end-of-file marker Ctrl-D), the output

61

1
2
3
4
5
6
7
8

is produced.

• One can also write the program text in a script file to be executed like a shell script. In this
case, the script must start with the line

#!/usr/bin/env runcurry

followed by the source text of the Curry program. For instance, we can write a simple Curry
script to count the number of code lines in a Curry program by removing all blank and
comment lines and counting the remaining lines:

#!/usr/bin/env runcurry

import Char(isSpace)
import System(getArgs)

-- count number of program lines in a file:
countCLines :: String → IO Int
countCLines f =

readFile f >>=
return . length . filter (not . isEmptyLine) . map stripSpaces . lines

where
stripSpaces = reverse . dropWhile isSpace . reverse . dropWhile isSpace

isEmptyLine [] = True
isEmptyLine [_] = False
isEmptyLine (c1:c2:_) = c1==’-’ && c2==’-’

-- The main program reads Curry file names from arguments:
main = do

args <- getArgs
mapIO_ (\f → do ls <- countCLines f

putStrLn $ "Stripped lines of file "++f++": " ++ show ls)
args

If this script is stored in the (executable) file “codelines.sh”, we can count the code lines of
the file Prog.curry by the shell command

> ./codelines.sh Prog.curry

When this command is executed, the command runcurry compiles the program and evaluates
the expression main. Since the compilation might take some time in more complex scripts,

62

one can also save the result of the compilation in a binary file. To obtain this behavior, one
has to insert the line

#jit

in the script file, e.g., in the second line. With this option, a binary of the compiled program
is saved (in the same directory as the script). Now, when the same script is executed the next
time, the stored binary file is executed (provided that it is still newer than the script file itself,
otherwise it will be recompiled). This feature combines easy scripting with Curry together
with fast execution.

63

14 CASS: A Generic Curry Analysis Server System

CASS (Curry Analysis Server System) is a tool for the analysis of Curry programs. CASS is generic
so that various kinds of analyses (e.g., groundness, non-determinism, demanded arguments) can be
easily integrated into CASS. In order to analyze larger applications consisting of dozens or hundreds
of modules, CASS supports a modular and incremental analysis of programs. Moreover, it can be
used by different programming tools, like documentation generators, analysis environments, program
optimizers, as well as Eclipse-based development environments. For this purpose, CASS can also
be invoked as a server system to get a language-independent access to its functionality. CASS is
completely implemented Curry as a master/worker architecture to exploit parallel or distributed
execution environments. The general design and architecture of CASS is described in [25]. In the
following, CASS is presented from a perspective of a programmer who is interested to analyze Curry
programs.

14.1 Installation

The current implementation of CASS is a package managed by the Curry Package Manager CPM.
Thus, to install the newest version of CASS, use the following commands:

> cypm update
> cypm install cass

This downloads the newest package, compiles it, and places the executable cass into the directory
$HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to execute
CASS as described below.

14.2 Using CASS to Analyze Programs

CASS is intended to analyze various operational properties of Curry programs. Currently, it contains
more than a dozen program analyses for various properties. Since most of these analyses are based
on abstract interpretations, they usually approximate program properties. To see the list of all
available analyses, use the help option of CASS:

> cass -h
Usage: . . .
...
Registered analyses names:
. . .

Demand : Demanded arguments
Deterministic : Deterministic operations
...

More information about the meaning of the various analyses can be obtained by adding the short
name of the analysis:

> cass -h Deterministic
. . .

For instance, consider the following Curry module Rev.curry:

64

append :: [a] → [a] → [a]
append [] ys = ys
append (x:xs) ys = x : append xs ys

rev :: [a] → [a]
rev [] = []
rev (x:xs) = append (rev xs) [x]

main :: Int → Int → [Int]
main x y = rev [x .. y]

CASS supports three different usage modes to analyze this program.

14.2.1 Batch Mode

In the batch mode, CASS is started as a separate application via the shell command cass, where
the analysis name and the name of the module to be analyzed must be provided:8

> cass Demand Rev
append : demanded arguments: 1
main : demanded arguments: 1,2
rev : demanded arguments: 1

The Demand analysis shows the list of argument positions (e.g., 1 for the first argument) which are
demanded in order to reduce an application of the operation to some constructor-rooted value. Here
we can see that both arguments of main are demanded whereas only the first argument of append
is demanded. This information could be used in a Curry compiler to produce more efficient target
code.

The batch mode is useful to test a new analysis and get the information in human-readable form
so that one can experiment with different abstractions or analysis methods.

14.2.2 API Mode

The API mode is intended to use analysis information in some application implemented in Curry.
Since CASS is implemented in Curry, one can import the modules of the CASS implementation and
use the CASS interface operations to start an analysis and use the computed results. For instance,
CASS provides an operation (defined in the module AnalysisServer)

analyzeGeneric :: Analysis a → String → IO (Either (ProgInfo a) String)

to apply an analysis (first argument) to some module (whose name is given in the second argument).
The result is either the analysis information computed for this module or an error message in case
of some execution error.

The modules of the CASS implementation are stored in the directory
pakcshome /currytools/CASS and the modules implementing the various program analyses are
stored in pakcshome /currytools/analysis. Hence, one should add these directories to the Curry
load path when using CASS in API mode.

8More output is generated when the parameter debugLevel is changed in the configuration file
.curryanalysisrc which is installed in the user’s home directory when CASS is started for the first time.

65

The CASS module GenericProgInfo contains operations to access the analysis information com-
puted by CASS. For instance, the operation

lookupProgInfo:: QName → ProgInfo a → Maybe a

returns the information about a given qualified name in the analysis information, if it exists. As a
simple example, consider the demand analysis which is implemented in the module Demandedness

by the following operation:

demandAnalysis :: Analysis DemandedArgs

DemendedArgs is just a type synonym for [Int]. We can use this analysis in the following simple
program:

import AnalysisServer (analyzeGeneric)
import GenericProgInfo (lookupProgInfo)
import Demandedness (demandAnalysis)

demandedArgumentsOf :: String → String → IO [Int]
demandedArgumentsOf modname fname = do

deminfo <- analyzeGeneric demandAnalysis modname >>= return . either id error
return $ maybe [] id (lookupProgInfo (modname,fname) deminfo)

Of course, in a realistic program, the program analysis is performed only once and the computed
information deminfo is passed around to access it several times. Nevertheless, we can use this simple
program to compute the demanded arguments of Rev.main:

. . .> demandedArgumentsOf "Rev" "main"
[1,2]

14.2.3 Server Mode

The server mode of CASS can be used in an application implemented in some language that does not
have a direct interface to Curry. In this case, one can connect to CASS via some socket using a simple
communication protocol that is specified in the file pakcshome /currytools/CASS/Protocol.txt and
sketched below.

To start CASS in the server mode, one has to execute the command

> cass --server [-p <port>]

where an optional port number for the communication can be provided. Otherwise, a free port
number is chosen and shown. In the server mode, CASS understands the following commands:

GetAnalysis
SetCurryPath <dir1>:<dir2>:...
AnalyzeModule <analysis name> <output type> <module name>
AnalyzeInterface <analysis name> <output type> <module name>
AnalyzeFunction <analysis name> <output type> <module name> <function name>
AnalyzeDataConstructor <analysis name> <output type> <module name> <constructor name>
AnalyzeTypeConstructor <analysis name> <output type> <module name> <type name>
StopServer

66

The output type can be Text, CurryTerm, or XML. The answer to each request can have two formats:

error <error message>

if an execution error occured, or

ok <n>
<result text>

where <n> is the number of lines of the result text. For instance, the answer to the command
GetAnalysis is a list of all available analyses. The list has the form

<analysis name> <output type>

For instance, a communication could be:

> GetAnalysis
< ok 5
< Deterministic CurryTerm
< Deterministic Text
< Deterministic XML
< HigherOrder CurryTerm
< DependsOn CurryTerm

The command SetCurryPath instructs CASS to use the given directories to search for modules to
be analyzed. This is necessary since the CASS server might be started in a different location than
its client.

Complete modules are analyzed by AnalyzeModule, whereas AnalyzeInterface returns only the
analysis information of exported entities. Furthermore, the analysis results of individual functions,
data or type constructors are returned with the remaining analysis commands. Finally, StopServer
terminates the CASS server.

For instance, if we start CASS by

> cass --server -p 12345

we can communicate with CASS as follows (user inputs are prefixed by “>”);

> telnet localhost 12345
Connected to localhost.
> GetAnalysis
ok 57
Overlapping XML
Overlapping CurryTerm
Overlapping Text
Deterministic XML
...
> AnalyzeModule Demand Text Rev
ok 3
append : demanded arguments: 1
main : demanded arguments: 1,2
rev : demanded arguments: 1
> AnalyzeModule Demand CurryTerm Rev
ok 1

67

[(("Rev","append"),"demanded arguments: 1"),(("Rev","main"),"demanded arguments: 1,2"),(("Rev","rev"),"demanded arguments: 1")]
> AnalyzeModule Demand XML Rev
ok 19
<?xml version="1.0" standalone="yes"?>

<results>
<operation>

<module>Rev</module>
<name>append</name>
<result>demanded arguments: 1</result>

</operation>
<operation>

<module>Rev</module>
<name>main</name>
<result>demanded arguments: 1,2</result>

</operation>
<operation>

<module>Rev</module>
<name>rev</name>
<result>demanded arguments: 1</result>

</operation>
</results>
> StopServer
ok 0
Connection closed by foreign host.

14.3 Implementing Program Analyses

Each program analysis accessible by CASS must be registered in the CASS module Registry. The
registered analysis must contain an operation of type

Analysis a

where a denotes the type of analysis results. For instance, the Overlapping analysis is implemented
as a function

overlapAnalysis :: Analysis Bool

where the Boolean analysis result indicates whether a Curry operation is defined by overlapping
rules.

In order to add a new analysis to CASS, one has to implement a corresponding analysis operation,
registering it in the module Registry (in the constant registeredAnalysis) and compile the modified
CASS implementation.

An analysis is implemented as a mapping from Curry programs represented in FlatCurry into
the analysis result. Hence, to implement the Overlapping analysis, we define the following operation
on function declarations in FlatCurry format:

import FlatCurry.Types
. . .

isOverlappingFunction :: FuncDecl → Bool

68

isOverlappingFunction (Func _ _ _ _ (Rule _ e)) = orInExpr e
isOverlappingFunction (Func f _ _ _ (External _)) = f==("Prelude","?")

-- Check an expression for occurrences of Or:
orInExpr :: Expr → Bool
orInExpr (Var _) = False
orInExpr (Lit _) = False
orInExpr (Comb _ f es) = f==(pre "?") || any orInExpr es
orInExpr (Free _ e) = orInExpr e
orInExpr (Let bs e) = any orInExpr (map snd bs) || orInExpr e
orInExpr (Or _ _) = True
orInExpr (Case _ e bs) = orInExpr e || any orInBranch bs

where orInBranch (Branch _ be) = orInExpr be
orInExpr (Typed e _) = orInExpr e

In order to enable the inclusion of different analyses in CASS, CASS offers several constructor
operations for the abstract type “Analysis a” (defined in the CASS module Analysis). Each analysis
has a name provided as a first argument to these constructors. The name is used to store the analysis
information persistently and to pass specific analysis tasks to analysis workers. For instance, a simple
function analysis which depends only on a given function definition can be defined by the analysis
constructor

simpleFuncAnalysis :: String → (FuncDecl → a) → Analysis a

The arguments are the analysis name and the actual analysis function. Hence, the “overlapping
rules” analysis can be specified as

import Analysis
. . .

overlapAnalysis :: Analysis Bool
overlapAnalysis = simpleFuncAnalysis "Overlapping" isOverlappingFunction

Another analysis constructor supports the definition of a function analysis with dependencies (which
is implemented via a fixpoint computation):

dependencyFuncAnalysis :: String → a → (FuncDecl → [(QName,a)] → a)
→ Analysis a

Here, the second argument specifies the start value of the fixpoint analysis, i.e., the bottom element
of the abstract domain.

For instance, a determinism analysis could be based on an abstract domain described by the
data type

data Deterministic = NDet | Det

Here, Det is interpreted as “the operation always evaluates in a deterministic manner on ground
constructor terms.” However, NDet is interpreted as “the operation might evaluate in different ways
for given ground constructor terms.” The apparent imprecision is due to the approximation of the
analysis. For instance, if the function f is defined by overlapping rules and the function g might
call f, then g is judged as non-deterministic (since it is generally undecidable whether f is actually
called by g in some run of the program).

69

The determinism analysis requires to examine the current function as well as all directly or
indirectly called functions for overlapping rules. Due to recursive function definitions, this analysis
cannot be done in one shot—it requires a fixpoint computation. CASS provides such fixpoint
computations and requires only the implementation of an operation of type

FuncDecl → [(QName,a)] → a

where “a” denotes the type of abstract values. The second argument of type [(QName,a)] represents
the currently known analysis values for the functions directly used in this function declaration.

In our example, the determinism analysis can be implemented by the following operation:

detFunc :: FuncDecl → [(QName,Deterministic)] → Deterministic
detFunc (Func f _ _ _ (Rule _ e)) calledFuncs =

if orInExpr e || freeVarInExpr e || any (==NDet) (map snd calledFuncs)
then NDet
else Det

Thus, it computes the abstract value NDet if the function itself is defined by overlapping rules
or contains free variables that might cause non-deterministic guessing (we omit the definition of
freeVarInExpr since it is quite similar to orInExpr), or if it depends on some non-deterministic
function.

The complete determinism analysis can be specified as

detAnalysis :: Analysis Deterministic
detAnalysis = dependencyFuncAnalysis "Deterministic" Det detFunc

This definition is sufficient to execute the analysis with CASS since the analysis system takes care
of computing fixpoints, calling the analysis functions with appropriate values, analyzing imported
modules, etc. Nevertheless, the analysis must be defined so that the fixpoint computation always
terminates. This can be achieved by using an abstract domain with finitely many values and
ensuring that the analysis function is monotone w.r.t. some ordering on the values.

70

15 ERD2Curry: A Tool to Generate Programs from ER Specifica-
tions

ERD2Curry is a tool to generate Curry code to access and manipulate data persistently stored in
relational databases. The Curry code is generated from a description of the logical model of the
database in form of an entity relationship diagram. The idea of this tool is described in detail in
[14]. Thus, we describe only the basic steps to use this tool.

15.1 Installation

The current implementation of ERD2Curry is a package managed by the Curry Package Manager
CPM (see also Section 6). Thus, to install the newest version of ERD2Curry, use the following
commands:

> cypm update
> cypm install ertools

This downloads the newest package, compiles it, and places the executable erd2curry into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute ERD2Curry as described below.

15.2 Basic Usage

If one creates an entity relationship diagram (ERD) with the Umbrello UML Modeller, one has to
store its XML description in XMI format (as offered by Umbrello) in a file, e.g., “myerd.xmi”. This
description can be compiled into a Curry program by the command

erd2curry -x myerd.xmi

If MyData is the name of the ERD, the Curry program file “MyData.curry” is generated containing all
the necessary database access code as described in [14]. In addition to the generated Curry program
file, two auxiliary program files ERDGeneric.curry and KeyDatabase.curry are created in the same
directory.

If one does not want to use the Umbrello UML Modeller, which might be the preferred method
since the interface to the Umbrello UML Modeller is no longer actively supported, one can also
define an ERD in a Curry program as a (exported!) top-level operation of type ERD (w.r.t. the type
definition given in the library pakcshome /lib/Database/ERD.curry). The directory examples in the
package ertools9 contains two examples for such ERD program files:

BlogERD.curry: This is a simple ERD model for a blog with entries, comments, and tags.

UniERD.curry: This is an ERD model for university lectures as presented in the paper [14].

Figure 6 shows the ER specification stored in the Curry program file “BlogERD.curry”. This ER
specification can be compiled into a Curry program by the command

erd2curry BlogERD.curry

9If you installed ERD2Curry as described above, the downloaded ertools package is located in the directory
$HOME/.cpm/bin_packages/ertools.

71

import Database.ERD

blogERD :: ERD
blogERD =
ERD "Blog"

[Entity "Entry"
[Attribute "Title" (StringDom Nothing) Unique False,
Attribute "Text" (StringDom Nothing) NoKey False,
Attribute "Author" (StringDom Nothing) NoKey False,
Attribute "Date" (DateDom Nothing) NoKey False],

Entity "Comment"
[Attribute "Text" (StringDom Nothing) NoKey False,
Attribute "Author" (StringDom Nothing) NoKey False,
Attribute "Date" (DateDom Nothing) NoKey False],

Entity "Tag"
[Attribute "Name" (StringDom Nothing) Unique False]

]
[Relationship "Commenting"

[REnd "Entry" "commentsOn" (Exactly 1),
REnd "Comment" "isCommentedBy" (Between 0 Infinite)],

Relationship "Tagging"
[REnd "Entry" "tags" (Between 0 Infinite),
REnd "Tag" "tagged" (Between 0 Infinite)]

]

Figure 6: The Curry program BlogERD.curry

There is also the possibility to visualize an ER specification as a graph with the graph visualization
program dotty (for this purpose, it might be necessary to adapt the definition of dotviewcommand in
your “.pakcsrc” file, see Section 2.6, according to your local environment). The visualization can
be performed by the command

erd2curry -v BlogERD.curry

72

16 Spicey: An ER-based Web Framework

Spicey is a framework to support the implementation of web-based systems in Curry. Spicey gener-
ates an initial implementation from an entity-relationship (ER) description of the underlying data.
The generated implementation contains operations to create and manipulate entities of the data
model, supports authentication, authorization, session handling, and the composition of individ-
ual operations to user processes. Furthermore, the implementation ensures the consistency of the
database w.r.t. the data dependencies specified in the ER model, i.e., updates initiated by the user
cannot lead to an inconsistent state of the database.

16.1 Installation

The actual implementation of Spicey is a package managed by the Curry Package Manager CPM
(see also Section 6). Thus, to install the newest version of Spicey, use the following commands:

> cypm update
> cypm install spicey

This downloads the newest package, compiles it, and places the executable spiceup into the directory
$HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to execute
Spicey as described below.

16.2 Usage

The idea of this tool, which is part of the distribution of PAKCS, is described in detail in [23].
Thus, we summarize only the basic steps to use this tool in order to generate a web application.

First, one has to create a textual description of the entity-relationship model in a Curry program
file as an (exported!) top-level operation type ERD (w.r.t. the type definitions given in the system
library Database.ERD) and store it in some program file, e.g., “MyERD.curry”. The directory examples

in the package spicey10 contains two examples for such ERD program files:

BlogERD.curry: This is a simple ER model for a blog with entries, comments, and tags, as presented
in the paper [23].

UniERD.curry: This is an ER model for university lectures as presented in the paper [14].

Then change to the directory in which you want to create the project sources. Execute the command

spiceup .../MyERD.curry

with the path to the ERD program as a parameter You can also provide a file name for the SQLite3
database used by the application generated by Spicey, e.g.,

spiceup --db MyData.db .../MyERD.curry

If the parameter “--db DBFILE” is not provided, then DBDFILE is set to the default name “ERD.db”
(where ERD is the name of the specified ER model). Since this specification will be used in the
generated web programs, a relative database file name will be relative to the place where the web

10If you installed Spicey as described above, the downloaded spicey package is located in the directory
$HOME/.cpm/bin_packages/spicey.

73

programs are stored. In order to avoid such confusion, it might be better to specify an absolute
path name for the database file.

After the generation of this project (see the generated file README.txt for information about the
generated project structure), one can compile the generated programs by

make compile

In order to generate the executable web application, configure the generated Makefile by adapting
the variable WEBSERVERDIR to the location where the compiled cgi programs should be stored, and
run

make deploy

After the successful compilation and deployment of all files, the application is executable in a web
browser by selecting the URL <URL of web dir>/spicey.cgi.

74

17 curry-peval: A Partial Evaluator for Curry

peval is a tool for the partial evaluation of Curry programs. It operates on the FlatCurry represen-
tation and can thus easily be incorporated into the normal compilation chain. The essence of partial
evaluation is to anticipate at compile time (or partial evaluation time) some of the computations
normally performed at run time. Typically, partial evaluation is worthwhile for functions or opera-
tions where some of the input arguments are already known at compile time, or operations built by
the composition of multiple other ones. The theoretical foundations, design and implementation of
the partial evaluator is described in detail in [32].

17.1 Installation

The current implementation of the partial evaluator is a package managed by the Curry Package
Manager CPM (see also Section 6). Thus, to install the newest version of the partial evaluator, use
the following commands:

> cypm update
> cypm install peval

This downloads the newest package, compiles it, and places the executable curry-peval into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
use the partial evaluator as described below.

17.2 Basic Usage

The partial evaluator is supplied as a binary that can be invoked for a single or multiple modules
that should be partially evaluated. In each module, the partially evaluator assumes the parts of the
program that should be partially evaluated to be annotated by the function

PEVAL :: a
PEVAL x = x

predefined in the module Prelude, such that the user can choose the parts to be considered.
To give an example, we consider the following module which is assumed to be placed in the file

Examples/power4.curry:

square x = x * x
even x = mod x 2 == 0
power n x = if n <= 0 then 1

else if (even n) then power (div n 2) (square x)
else x * (power (n - 1) x)

power4 x = PEVAL (power 4 x)

By the call to PEVAL, the expression power 4 x is marked for partial evaluation, such that the
function power will be improved w.r.t. the arguments 4 andx. Since the first argument is known
in this case, the partial evalautor is able to remove the case distinctions in the implementation of
power, and we invoke it via

$ curry-peval Examples/power4.curry
Curry Partial Evaluator

75

Version 0.1 of 12/09/2016
CAU Kiel

Annotated Expressions

power4.power 4 v1

Final Partial Evaluation

power4._pe0 :: Prelude.Int → Prelude.Int
power4._pe0 v1 = let { v2 = v1 * v1 } in v2 * v2

Writing specialized program into file ’Examples/.curry/power4_pe.fcy’.

Note that the partial evaluator successfully removed the case distinction, such that the opera-
tion power4 can be expected to run reasonably faster. The new auxiliary function power4._pe0 is
integrated into the existing module such that only the implementation of power4 is changed, which
becomes visible if we increase the level of verbosity:

$ curry-peval -v2 Examples/power4.curry
Curry Partial Evaluator
Version 0.1 of 12/09/2016
CAU Kiel

Annotated Expressions

power4.power 4 v1

... (skipped output)

Resulting program

module power4 (power4.square, power4.even, power4.power, power4.power4) where

import Prelude

power4.square :: Prelude.Int → Prelude.Int
power4.square v1 = v1 * v1

power4.even :: Prelude.Int → Prelude.Bool
power4.even v1 = (Prelude.mod v1 2) == 0

power4.power :: Prelude.Int → Prelude.Int → Prelude.Int
power4.power v1 v2 = case (v1 <= 0) of

Prelude.True → 1
Prelude.False → case (power4.even v1) of

Prelude.True → power4.power (Prelude.div v1 2) (power4.square v2)
Prelude.False → v2 * (power4.power (v1 - 1) v2)

power4.power4 :: Prelude.Int → Prelude.Int

76

power4.power4 v1 = power4._pe0 v1

power4._pe0 :: Prelude.Int → Prelude.Int
power4._pe0 v1 = let { v2 = v1 * v1 } in v2 * v2

17.3 Options

The partial evaluator can be parametrized using a number of options, which can also be shown
using --help.

-h, -?, --help These options trigger the output of usage information.

-V, --version These options trigger the output of the version information of the partial evaluator.

-d, --debug This flag is intended for development and testing issues only, and necessary to print
the resulting program to the standard output stream even if the verbosity is set to zero.

--assert, --closed These flags enable some internal assertions which are reasonable during devel-
opment of the partial evaluator.

--no-funpats Normally, functions defined using functional patterns are automatically considered
for partial evaluation, since their annotation using PEVAL is a little bit cumbersome. However,
this automatic consideration can be disabled using this flag.

-v n, --verbosity=n Set the verbosity level to n, see above for the explanation of the different
levels.

--color=mode, --colour=mode Set the coloring mode to mode, see above for the explanation of the
different modes.

-S semantics, --semantics=semantics Allows the use to choose a semantics used during partial
evaluation. Note that only the natural semantics can be considered correct for non-confluent
programs, which is why it is the default semantics [32]. However, the rlnt calculus can also be
chosen which is based on term rewriting, thus implementing a run-time choice semantics [4].
The letrw semantics is currently not fully supported, but implements the gist of let-rewriting
[30].

-A mode, --abstract=mode During partial evaluation, all expressions that may potentially occur in
the evaluation of an annotated expression are considered and evaluated, in order to ensure that
all these expressions are also defined in the resulting program. Unfortunately, this imposes
the risk of non-termination, which is why similar expressions are generalized according to the
abstraction criterion. While the none criterion avoids generalizations and thus may lead to
non-termination of the partial evaluator, the criteria wqo and wfo both ensure termination.
In general, the criterion wqo seems to be a good compromise of ensured termination and the
quality of the computed result program.

-P mode, --proceed=mode While the abstraction mode is responsible to limit the number of different
expressions to be considered, the proceed mode limits the number of function calls to be

77

evaluated during the evaluation of a single expressions. While the mode one only allows a
single function call to be evaluated, the mode each allows a single call of each single function,
while all puts no restrictions on the number of function calls to be evaluated. Clearly, the
last alternative also imposes a risk of non-termination.

--suffix=SUFFIX Set the suffix appended to the file name to compute the output file. If the suffix
is set to the empty string, then the original FlatCurry file will be replaced.

78

18 Preprocessing FlatCurry Files

After the invocation of the Curry front end to parse Curry programs and translate them into the
intermediate FlatCurry representation, one can apply transformations on the FlatCurry files before
they are passed to the back end which translates the FlatCurry files into Prolog code. These
transformations are invoked by the FlatCurry preprocessor pakcs/bin/fycpp. Currently, only the
FlatCurry file corresponding to the main module can be transformed.

A transformation can be specified as follows:

1. Options to pakcs/bin/fcypp:

--fpopt Apply functional pattern optimization (see pakcs/tools/optimize/NonStrictOpt.curry
for details).

--compact Apply code compactification after parsing, i.e., transform the main module and
all its imported into one module and delete all non-accessible functions.

--compactexport Similar to --compact but delete all functions that are not accessible from
the exported functions of the main module.

--compactmain:f Similar to --compact but delete all functions that are not accessible from
the function “f” of the main module.

--fcypp cmd Apply command cmd to the main module after parsing. This is useful to in-
tegrate your own transformation into the compilation process. Note that the command
“cmd prog” should perform a transformation on the FlatCurry file prog.fcy, i.e., it re-
places the FlatCurry file by a new one.

2. Setting the environment variable FCYPP:
For instance, setting FCYPP by

export FCYPP="--fpopt"

will apply the functional pattern optimization if programs are compiled and loaded in the
PAKCS programming environment.

3. Putting options into the source code:
If the source code contains a line with a comment of the form (the comment must start at the
beginning of the line)

{-# PAKCS_OPTION_FCYPP <options> #-}

then the transformations specified by <options> are applied after translating the source code
into FlatCurry code. For instance, the functional pattern optimization can be set by the
comment

{-# PAKCS_OPTION_FCYPP --fpopt #-}

in the source code. Note that this comment must be in a single line of the source program. If
there are multiple lines containing such comments, only the first one will be considered.

79

Multiple options: Note that an arbitrary number of transformations can be specified by the
methods described above. If several specifications for preprocessing FlatCurry files are used, they
are executed in the following order:

1. all transformations specified by the environemnt variable FCYPP (from left to right)

2. all transformations specified as command line options of fcypp (from left to right)

3. all transformations specified by a comment line in the source code (from left to right)

80

19 Technical Problems

19.1 SWI-Prolog

Using PAKCS with SWI-Prolog as its back end is slower than SICStus-Prolog and might cause
some memory problems, since SWI-Prolog has stronger restrictions on the memory limits for the
different stack areas when executing Prolog programs. For instance, if the compiled Curry program
terminates with an error message like

ERROR: local

the Prolog system runs out of the local stack (although there might be enough memory available
on the host machine).

In such a case, one can modify the script “pakcshome /scripts/makesavedstate” in order to
change the SWI-Prolog default settings for memory limits of generated Curry applications.11 This
can be done by changing the definition of the variable SWILIMITS at the beginning of this script.
For instance, in order to set the maximum limit for the local stack to 2 GB (on 64bit machines, the
default of SWI-Prolog is 1 GB), one change the definition in this script to

SWILIMIT="-L2G -G0 -T0"

and recompile (with the PAKCS command “:save”) the Curry application.

19.2 Distributed Programming and Sockets

Due to the fact that Curry is intended to implement distributed systems (see Appendix A.1.3), it
might be possible that some technical problems arise due to the use of sockets for implementing
these features. Therefore, this section gives some information about the technical requirements of
PAKCS and how to solve problems due to these requirements.

There is one fixed port that is used by the implementation of PAKCS:

Port 8767: This port is used by the Curry Port Name Server (CPNS) to implement symbolic
names for ports in Curry (see Appendix A.1.3). If some other process uses this port on the
machine, the distribution facilities defined in the module Ports (see Appendix A.1.3) cannot
be used.

If these features do not work, you can try to find out whether this port is in use by the shell
command “netstat -a | grep 8767” (or similar).

The CPNS is implemented as a demon listening on its port 8767 in order to serve requests
about registering a new symbolic name for a Curry port or asking the physical port number of a
Curry port. The demon will be automatically started for the first time on a machine when a user
compiles a program using Curry ports. It can also be manually started and terminated by the
scripts pakcshome /currytools/cpns/start and pakcshome /currytools/cpns/stop. If the demon is
already running, the command pakcshome /currytools/cpns/start does nothing (so it can be always
executed before invoking a Curry program using ports).

11Note that this script is generated during the installation of PAKCS. Hence, it might be necessary to redo the
changes after a new installation of PAKCS.

81

19.3 Contact for Help

If you detect any further technical problem, please write to

pakcs@curry-language.org

82

References

[1] E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A partial evaluation framework for Curry pro-
grams. In Proc. of the 6th International Conference on Logic for Programming and Automated
Reasoning (LPAR’99), pages 376–395. Springer LNCS 1705, 1999.

[2] E. Albert, M. Hanus, and G. Vidal. Using an abstract representation to specialize functional
logic programs. In Proc. of the 7th International Conference on Logic for Programming and
Automated Reasoning (LPAR 2000), pages 381–398. Springer LNCS 1955, 2000.

[3] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declara-
tive language. In Proc. of the 5th International Symposium on Functional and Logic Program-
ming (FLOPS 2001), pages 326–342. Springer LNCS 2024, 2001.

[4] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-
ative language. Journal of Functional and Logic Programming, 2002(1), 2002.

[5] S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into Prolog. In Proc.
International Workshop on Frontiers of Combining Systems (FroCoS’2000), pages 171–185.
Springer LNCS 1794, 2000.

[6] S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings
of the International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’05), pages 6–22. Springer LNCS 3901, 2005.

[7] S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’09), pages 73–82. ACM Press, 2009.

[8] S. Antoy and M. Hanus. Contracts and specifications for functional logic programming. In Proc.
of the 14th International Symposium on Practical Aspects of Declarative Languages (PADL
2012), pages 33–47. Springer LNCS 7149, 2012.

[9] S. Antoy and M. Hanus. From boolean equalities to constraints. In Proceedings of the 25th
International Symposium on Logic-based Program Synthesis and Transformation (LOPSTR
2015), pages 73–88. Springer LNCS 9527, 2015.

[10] S. Antoy and M. Hanus. Default rules for Curry. In Proc. of the 18th International Symposium
on Practical Aspects of Declarative Languages (PADL 2016), pages 65–82. Springer LNCS 9585,
2016.

[11] S. Antoy, M. Hanus, and S. Libby. Proving non-deterministic computations in Agda. In Proc. of
the 24th International Workshop on Functional and (Constraint) Logic Programming (WFLP
2016), volume 234 of Electronic Proceedings in Theoretical Computer Science, pages 180–195.
Open Publishing Association, 2017.

[12] B. Braßel, O. Chitil, M. Hanus, and F. Huch. Observing functional logic computations. In Proc.
of the Sixth International Symposium on Practical Aspects of Declarative Languages (PADL’04),
pages 193–208. Springer LNCS 3057, 2004.

83

[13] B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional logic compu-
tations. Journal of Functional and Logic Programming, 2004(6), 2004.

[14] B. Braßel, M. Hanus, and M. Müller. High-level database programming in Curry. In Proc. of
the Tenth International Symposium on Practical Aspects of Declarative Languages (PADL’08),
pages 316–332. Springer LNCS 4902, 2008.

[15] J. Christiansen and S. Fischer. EasyCheck - test data for free. In Proc. of the 9th International
Symposium on Functional and Logic Programming (FLOPS 2008), pages 322–336. Springer
LNCS 4989, 2008.

[16] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for random testing of haskell
programs. In International Conference on Functional Programming (ICFP’00), pages 268–279.
ACM Press, 2000.

[17] M. Hanus. A unified computation model for functional and logic programming. In Proc. of the
24th ACM Symposium on Principles of Programming Languages (Paris), pages 80–93, 1997.

[18] M. Hanus. Distributed programming in a multi-paradigm declarative language. In Proc. of the
International Conference on Principles and Practice of Declarative Programming (PPDP’99),
pages 376–395. Springer LNCS 1702, 1999.

[19] M. Hanus. A functional logic programming approach to graphical user interfaces. In Inter-
national Workshop on Practical Aspects of Declarative Languages (PADL’00), pages 47–62.
Springer LNCS 1753, 2000.

[20] M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third International
Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92. Springer
LNCS 1990, 2001.

[21] M. Hanus. A generic analysis environment for declarative programs. In Proc. of the ACM
SIGPLAN 2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages
43–48. ACM Press, 2005.

[22] M. Hanus. CurryBrowser: A generic analysis environment for Curry programs. In Proc. of
the 16th Workshop on Logic-based Methods in Programming Environments (WLPE’06), pages
61–74, 2006.

[23] M. Hanus and S. Koschnicke. An ER-based framework for declarative web programming.
Theory and Practice of Logic Programming, 14(3):269–291, 2014.

[24] M. Hanus and J. Krone. A typeful integration of SQL into Curry. In Proceedings of the
24th International Workshop on Functional and (Constraint) Logic Programming, volume 234
of Electronic Proceedings in Theoretical Computer Science, pages 104–119. Open Publishing
Association, 2017.

[25] M. Hanus and F. Skrlac. A modular and generic analysis server system for functional logic
programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program
Manipulation (PEPM’14), pages 181–188. ACM Press, 2014.

84

[26] M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-
ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374–390.
Springer LNCS 1490, 1998.

[27] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Available at
http://www.curry-language.org, 2016.

[28] T. Johnsson. Lambda lifting: Transforming programs to recursive functions. In Functional
Programming Languages and Computer Architecture, pages 190–203. Springer LNCS 201, 1985.

[29] J. Krone. Integration of SQL into Curry. Master’s thesis, University of Kiel, 2015.

[30] Francisco Javier López-Fraguas, Juan Rodríguez-Hortalá, and Jaime Sánchez-Hernández. A
simple rewrite notion for call-time choice semantics. In Proceedings of the 9th ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming, PPDP ’07,
pages 197–208, New York, NY, USA, 2007. ACM.

[31] U. Norell. Dependently typed programming in Agda. In Proceedings of the 6th International
Conference on Advanced Functional Programming (AFP’08), pages 230–266. Springer, 2009.

[32] Björn Peemöller. Normalization and Partial Evaluation of Functional Logic Programs. Depart-
ment of Computer Science, Kiel University, 2016. Dissertation, Faculty of Engineering, Kiel
University.

[33] P. Wadler. Efficient compilation of pattern-matching. In S.L. Peyton Jones, editor, The Im-
plementation of Functional Programming Languages, pages 78–103. Prentice Hall, 1987.

85

http://www.curry-language.org

A Libraries of the PAKCS Distribution

The PAKCS distribution comes with an extensive collection of libraries for application program-
ming. The libraries for arithmetic constraints over real numbers, finite domain constraints, ports for
concurrent and distributed programming, and meta-programming by representing Curry programs
in Curry are described in the following subsection in more detail. The complete set of libraries with
all exported types and functions are described in the further subsections. For a more detailed online
documentation of all libraries of PAKCS, see http://www.informatik.uni-kiel.de/~pakcs/lib/
index.html.

A.1 Constraints, Ports, Meta-Programming

A.1.1 Arithmetic Constraints

The primitive entities for the use of arithmetic constraints are defined in the system module CLPR

(cf. Section 1.3), i.e., in order to use them, the program must contain the import declaration

import CLPR

Floating point arithmetic is supported in PAKCS via arithmetic constraints, i.e., the equational
constraint “2.3 +. x =:= 5.5” is solved by binding x to 3.2 (rather than suspending the evaluation
of the addition, as in corresponding constraints on integers like “3+x=:=5”). All operations related
to floating point numbers are suffixed by “.”. The following functions and constraints on floating
point numbers are supported in PAKCS:

(+.) :: Float -> Float -> Float

Addition on floating point numbers.

(-.) :: Float -> Float -> Float

Subtraction on floating point numbers.

(*.) :: Float -> Float -> Float

Multiplication on floating point numbers.

(/.) :: Float -> Float -> Float

Division on floating point numbers.

(<.) :: Float -> Float -> Bool

Comparing two floating point numbers with the “less than” relation.

(>.) :: Float -> Float -> Bool

Comparing two floating point numbers with the “greater than” relation.

(<=.) :: Float -> Float -> Bool

Comparing two floating point numbers with the “less than or equal” relation.

(>=.) :: Float -> Float -> Bool

Comparing two floating point numbers with the “greater than or equal” relation.

86

http://www.informatik.uni-kiel.de/~pakcs/lib/index.html
http://www.informatik.uni-kiel.de/~pakcs/lib/index.html

i2f :: Int -> Float

Converting an integer number into a floating point number.

As an example, consider a constraint mortgage which relates the principal p, the lifetime of the
mortgage in months t, the monthly interest rate ir, the monthly repayment r, and the outstanding
balance at the end of the lifetime b. The financial calculations can be defined by the following two
rules in Curry (the second rule describes the repeated accumulation of the interest):

import CLPR

mortgage p t ir r b | t >. 0.0 \& t <=. 1.0 --lifetime not more than 1 month?
= b =:= p *. (1.0 +. t *. ir) -. t*.r

mortgage p t ir r b | t >. 1.0 --lifetime more than 1 month?
= mortgage (p *. (1.0+.ir)-.r) (t-.1.0) ir r b

Then we can calculate the monthly payment for paying back a loan of $100,000 in 15 years with a
monthly interest rate of 1% by solving the goal

mortgage 100000.0 180.0 0.01 r 0.0

which yields the solution r=1200.17.
Note that only linear arithmetic equalities or inequalities are solved by the constraint solver. Non-
linear constraints like “x *. x =:= 4.0” are suspended until they become linear.

A.1.2 Finite Domain Constraints

Finite domain constraints are constraints where all variables can only take a finite number of
possible values. For simplicity, the domain of finite domain variables are identified with a subset of
the integers, i.e., the type of a finite domain variable is Int. The arithmetic operations related to
finite domain variables are suffixed by “#”. The following functions and constraints for finite domain
constraint solving are currently supported in PAKCS:12

domain :: [Int] -> Int -> Int -> Bool

The constraint “domain [x1, . . . , xn] l u” is satisfied if the domain of all variables xi is the
interval [l, u].

(+#) :: Int -> Int -> Int

Addition on finite domain values.

(-#) :: Int -> Int -> Int

Subtraction on finite domain values.

(*#) :: Int -> Int -> Int

Multiplication on finite domain values.

(=#) :: Int -> Int -> Bool

Equality of finite domain values.
12Note that this library is based on the corresponding library of SICStus-Prolog but does not implement the

complete functionality of the SICStus-Prolog library. However, using the PAKCS interface for external functions (see
Appendix F), it is relatively easy to provide the complete functionality.

87

(/=#) :: Int -> Int -> Bool

Disequality of finite domain values.

(<#) :: Int -> Int -> Bool

“less than” relation on finite domain values.

(<=#) :: Int -> Int -> Bool

“less than or equal” relation on finite domain values.

(>#) :: Int -> Int -> Bool

“greater than” relation on finite domain values.

(>=#) :: Int -> Int -> Bool

“greater than or equal” relation on finite domain values.

sum :: [Int] -> (Int -> Int -> Bool) -> Int -> Bool

The constraint “sum [x1, . . . , xn] op x” is satisfied if all x1 + · · · + xn op x is satisfied, where
op is one of the above finite domain constraint relations (e.g., “=#”).

scalar_product :: [Int] -> [Int] -> (Int -> Int -> Bool) -> Int -> Bool

The constraint “scalar_product [c1, . . . , cn] [x1, . . . , xn] op x” is satisfied if all c1x1 + · · · +
cnxn op x is satisfied, where op is one of the above finite domain constraint relations.

count :: Int -> [Int] -> (Int -> Int -> Bool) -> Int -> Bool

The constraint “count k [x1, . . . , xn] op x” is satisfied if all k op x is satisfied, where n is
the number of the xi that are equal to k and op is one of the above finite domain constraint
relations.

allDifferent :: [Int] -> Bool

The constraint “allDifferent [x1, . . . , xn]” is satisfied if all xi have pairwise different values.

labeling :: [LabelingOption] -> [Int] -> Bool

The constraint “labeling os [x1, . . . , xn]” non-deterministically instantiates all xi to the val-
ues of their domain according to the options os (see the module documentation for further
details about these options).

These entities are defined in the system module CLPFD (cf. Section 1.3), i.e., in order to use it, the
program must contain the import declaration

import CLPFD

As an example, consider the classical “send+more=money” problem where each letter must be replaced
by a different digit such that this equation is valid and there are no leading zeros. The usual way to
solve finite domain constraint problems is to specify the domain of the involved variables followed
by a specification of the constraints and the labeling of the constraint variables in order to start the
search for solutions. Thus, the “send+more=money” problem can be solved as follows:

import CLPFD

smm l =

88

l =:= [s,e,n,d,m,o,r,y] &
domain l 0 9 &
s ># 0 &
m ># 0 &
allDifferent l &

1000 *# s +# 100 *# e +# 10 *# n +# d
+# 1000 *# m +# 100 *# o +# 10 *# r +# e
=# 10000 *# m +# 1000 *# o +# 100 *# n +# 10 *# e +# y &
labeling [FirstFail] l
where s,e,n,d,m,o,r,y free

Then we can solve this problem by evaluating the goal “smm [s,e,n,d,m,o,r,y]” which yields the
unique solution {s=9,e=5,n=6,d=7,m=1,o=0,r=8,y=2}.

A.1.3 Ports: Distributed Programming in Curry

To support the development of concurrent and distributed applications, PAKCS supports internal
and external ports as described in [18]. Since [18] contains a detailed description of this concept
together with various programming examples, we only summarize here the functions and constraints
supported for ports in PAKCS.
The basic datatypes, functions, and constraints for ports are defined in the system module Ports

(cf. Section 1.3), i.e., in order to use ports, the program must contain the import declaration

import Ports

This declaration includes the following entities in the program:

Port a

This is the datatype of a port to which one can send messages of type a.

openPort :: Port a -> [a] -> Bool

The constraint “openPort p s” establishes a new internal port p with an associated message
stream s. p and s must be unbound variables, otherwise the constraint fails (and causes a
runtime error).

send :: a -> Port a -> Bool

The constraint “send m p” is satisfied if p is constrained to contain the message m, i.e., m will
be sent to the port p so that it appears in the corresponding stream.

doSend :: a -> Port a -> IO ()

The I/O action “doSend m p” solves the constraint “send m p” and returns nothing.

openNamedPort :: String -> IO [a]

The I/O action “openNamedPort n” opens a new external port with symbolic name n and
returns the associated stream of messages.

connectPort :: String -> IO (Port a)

The I/O action “connectPort n” returns a port with symbolic name n (i.e., n must have the
form “portname@machine) to which one can send messages by the send constraint. Currently,

89

no dynamic type checking is done for external ports, i.e., sending messages of the wrong type
to a port might lead to a failure of the receiver.

Restrictions: Every expression, possibly containing logical variables, can be sent to a port. How-
ever, as discussed in [18], port communication is strict, i.e., the expression is evaluated to normal
form before sending it by the constraint send. Furthermore, if messages containing logical variables
are sent to external ports, the behavior is as follows:

1. The sender waits until all logical variables in the message have been bound by the receiver.

2. The binding of a logical variable received by a process is sent back to the sender of this logical
variable only if it is bound to a ground term, i.e., as long as the binding contains logical
variables, the sender is not informed about the binding and, therefore, the sender waits.

External ports on local machines: The implementation of external ports assumes that the
host machine running the application is connected to the Internet (i.e., it uses the standard IP
address of the host machine for message sending). If this is not the case and the application should
be tested by using external ports only on the local host without a connection to the Internet, the
environment variable “PAKCS_LOCALHOST” must be set to “yes” before PAKCS is started. In this case,
the IP address 127.0.0.1 and the hostname “localhost” are used for identifying the local machine.

Selection of Unix sockets for external ports: The implementation of ports uses sockets
to communicate messages sent to external ports. Thus, if a Curry program uses the I/O action
openNamedPort to establish an externally visible server, PAKCS selects a Unix socket for the port
communication. Usually, a free socket is selected by the operating system. If the socket number
should be fixed in an application (e.g., because of the use of firewalls that allow only communication
over particular sockets), then one can set the environment variable “PAKCS_SOCKET” to a distinguished
socket number before PAKCS is started. This has the effect that PAKCS uses only this socket
number for communication (even for several external ports used in the same application program).

Debugging: To debug distributed systems, it is sometimes helpful to see all messages sent to
external ports. This is supported by the environment variable “PAKCS_TRACEPORTS”. If this variable
is set to “yes” before PAKCS is started, then all connections to external ports and all messages sent
and received on external ports are printed on the standard error stream.

A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry

To support meta-programming, i.e., the manipulation of Curry programs in Curry, there are system
modules AbstractCurry.Types and FlatCurry.Types which define datatypes for the representation
of Curry programs. AbstractCurry.Types is a more direct representation of a Curry program,
whereas FlatCurry.Types is a simplified representation where local function definitions are replaced
by global definitions (i.e., lambda lifting has been performed) and pattern matching is translated
into explicit case/or expressions. Thus, FlatCurry.Types can be used for more back-end oriented
program manipulations (or, for writing new back ends for Curry), whereas AbstractCurry.Types is
intended for manipulations of programs that are more oriented towards the source program.

90

There are predefined I/O actions to read AbstractCurry and FlatCurry programs:
AbstractCurry.Files.readCurry) and FlatCurry.Files.readFlatCurry). These actions parse the
corresponding source program and return a data term representing this program (according to the
definitions in the modules AbstractCurry.Types and FlatCurry.Types).
Since all datatypes are explained in detail in these modules, we refer to the online documentation13

of these modules.
As an example, consider a program file “test.curry” containing the following two lines:

rev [] = []
rev (x:xs) = (rev xs) ++ [x]

Then the I/O action (FlatCurry.Files.readFlatCurry "test") returns the following term:

(Prog "test"
["Prelude"]
[]
[Func ("test","rev") 1 Public

(FuncType (TCons ("Prelude","[]") [(TVar 0)])
(TCons ("Prelude","[]") [(TVar 0)]))

(Rule [0]
(Case Flex (Var 1)

[Branch (Pattern ("Prelude","[]") [])
(Comb ConsCall ("Prelude","[]") []),

Branch (Pattern ("Prelude",":") [2,3])
(Comb FuncCall ("Prelude","++")

[Comb FuncCall ("test","rev") [Var 3],
Comb ConsCall ("Prelude",":")

[Var 2,Comb ConsCall ("Prelude","[]") []]
])

]))]
[]

)

A.2 General Libraries

A.2.1 Library AllSolutions

This module contains a collection of functions for obtaining lists of solutions to constraints. These
operations are useful to encapsulate non-deterministic operations between I/O actions in order to
connects the worlds of logic and functional programming and to avoid non-determinism failures on
the I/O level.
In contrast the "old" concept of encapsulated search (which could be applied to any subexpression
in a computation), the operations to encapsulate search in this module are I/O actions in order to
avoid some anomalities in the old concept.

13http://www.informatik.uni-kiel.de/~pakcs/lib/FlatCurry.Types.html and http://www.informatik.
uni-kiel.de/~pakcs/lib/AbstractCurry.Types.html

91

http://www.informatik.uni-kiel.de/~pakcs/lib/FlatCurry.Types.html
http://www.informatik.uni-kiel.de/~pakcs/lib/AbstractCurry.Types.html
http://www.informatik.uni-kiel.de/~pakcs/lib/AbstractCurry.Types.html

Exported types:

data SearchTree

A search tree for representing search structures.

Exported constructors:

• SearchBranch :: [(b,SearchTree a b)] → SearchTree a b

• Solutions :: [a] → SearchTree a b

Exported functions:

getAllSolutions :: (a → Bool) → IO [a]

Gets all solutions to a constraint (currently, via an incomplete depth-first left-to-right
strategy). Conceptually, all solutions are computed on a copy of the constraint, i.e.,
the evaluation of the constraint does not share any results. Moreover, this evaluation
suspends if the constraints contain unbound variables. Similar to Prolog’s findall.

getAllValues :: a → IO [a]

Gets all values of an expression. Since this is based on getAllSolutions, it inherits the
same restrictions.

getOneSolution :: (a → Bool) → IO (Maybe a)

Gets one solution to a constraint (currently, via an incomplete left-to-right strategy).
Returns Nothing if the search space is finitely failed.

getOneValue :: a → IO (Maybe a)

Gets one value of an expression (currently, via an incomplete left-to-right strategy).
Returns Nothing if the search space is finitely failed.

getAllFailures :: a → (a → Bool) → IO [a]

Returns a list of values that do not satisfy a given constraint.

getSearchTree :: [a] → (b → Bool) → IO (SearchTree b a)

Computes a tree of solutions where the first argument determines the branching level
of the tree. For each element in the list of the first argument, the search tree contains
a branch node with a child tree for each value of this element. Moreover, evaluations of
elements in the branch list are shared within corresponding subtrees.

A.2.2 Library Assertion

This module defines the datatype and operations for the Curry module tester "currytest".

92

Exported types:

data Assertion

Datatype for defining test cases.

Exported constructors:

data ProtocolMsg

The messages sent to the test GUI. Used by the currytest tool.

Exported constructors:

• TestModule :: String → ProtocolMsg

• TestCase :: String → Bool → ProtocolMsg

• TestFinished :: ProtocolMsg

• TestCompileError :: ProtocolMsg

Exported functions:

assertTrue :: String → Bool → Assertion ()

(assertTrue s b) asserts (with name s) that b must be true.

assertEqual :: String → a → a → Assertion a

(assertEqual s e1 e2) asserts (with name s) that e1 and e2 must be equal (w.r.t.
==).

assertValues :: String → a → [a] → Assertion a

(assertValues s e vs) asserts (with name s) that vs is the multiset of all values of
e. All values of e are compared with the elements in vs w.r.t. ==.

assertSolutions :: String → (a → Bool) → [a] → Assertion a

(assertSolutions s c vs) asserts (with name s) that constraint abstraction c has the
multiset of solutions vs. The solutions of c are compared with the elements in vs w.r.t.
==.

assertIO :: String → IO a → a → Assertion a

(assertIO s a r) asserts (with name s) that I/O action a yields the result value r.

assertEqualIO :: String → IO a → IO a → Assertion a

(assertEqualIO s a1 a2) asserts (with name s) that I/O actions a1 and a2 yield equal
(w.r.t. ==) results.

93

seqStrActions :: IO (String,Bool) → IO (String,Bool) → IO (String,Bool)

Combines two actions and combines their results. Used by the currytest tool.

checkAssertion :: String → ((String,Bool) → IO (String,Bool)) → Assertion a →
IO (String,Bool)

Executes and checks an assertion, and process the result by an I/O action. Used by the
currytest tool.

writeAssertResult :: (String,Bool) → IO Int

Prints the results of assertion checking. If failures occurred, the return code is positive.
Used by the currytest tool.

showTestMod :: Int → String → IO ()

Sends message to GUI for showing test of a module. Used by the currytest tool.

showTestCase :: Int → (String,Bool) → IO (String,Bool)

Sends message to GUI for showing result of executing a test case. Used by the currytest
tool.

showTestEnd :: Int → IO ()

Sends message to GUI for showing end of module test. Used by the currytest tool.

showTestCompileError :: Int → IO ()

Sends message to GUI for showing compilation errors in a module test. Used by the
currytest tool.

A.2.3 Library Char

Library with some useful functions on characters.

Exported functions:

isAscii :: Char → Bool

Returns true if the argument is an ASCII character.

isLatin1 :: Char → Bool

Returns true if the argument is an Latin-1 character.

isAsciiLower :: Char → Bool

Returns true if the argument is an ASCII lowercase letter.

isAsciiUpper :: Char → Bool

Returns true if the argument is an ASCII uppercase letter.

94

isControl :: Char → Bool

Returns true if the argument is a control character.

isUpper :: Char → Bool

Returns true if the argument is an uppercase letter.

isLower :: Char → Bool

Returns true if the argument is an lowercase letter.

isAlpha :: Char → Bool

Returns true if the argument is a letter.

isDigit :: Char → Bool

Returns true if the argument is a decimal digit.

isAlphaNum :: Char → Bool

Returns true if the argument is a letter or digit.

isBinDigit :: Char → Bool

Returns true if the argument is a binary digit.

isOctDigit :: Char → Bool

Returns true if the argument is an octal digit.

isHexDigit :: Char → Bool

Returns true if the argument is a hexadecimal digit.

isSpace :: Char → Bool

Returns true if the argument is a white space.

toUpper :: Char → Char

Converts lowercase into uppercase letters.

toLower :: Char → Char

Converts uppercase into lowercase letters.

digitToInt :: Char → Int

Converts a (hexadecimal) digit character into an integer.

intToDigit :: Int → Char

Converts an integer into a (hexadecimal) digit character.

95

A.2.4 Library CLP.FD

Library for finite domain constraint solving.
An FD problem is specified as an expression of type FDConstr using the constraints and expressions
offered in this library. FD variables are created by the operation domain. An FD problem is solved
by calling solveFD with labeling options, the FD variables whose values should be included in the
output, and a constraint. Hence, the typical program structure to solve an FD problem is as follows:

main :: [Int]
main =

let fdvars = take n (domain u o)
fdmodel = {description of FD problem}

in solveFD {options} fdvars fdmodel

where n are the number of variables and [u..o] is the range of their possible values.

Exported types:

data FDRel

Possible relations between FD values.

Exported constructors:

• Equ :: FDRel

Equ

– Equal

• Neq :: FDRel

Neq

– Not equal

• Lt :: FDRel

Lt

– Less than

• Leq :: FDRel

Leq

– Less than or equal

• Gt :: FDRel

Gt

– Greater than

96

• Geq :: FDRel

Geq

– Greater than or equal

data Option

This datatype defines options to control the instantiation of FD variables in the solver
(solveFD).

Exported constructors:

• LeftMost :: Option

LeftMost

– The leftmost variable is selected for instantiation (default)

• FirstFail :: Option

FirstFail

– The leftmost variable with the smallest domain is selected (also known as first-fail prin-
ciple)

• FirstFailConstrained :: Option

FirstFailConstrained

– The leftmost variable with the smallest domain and the most constraints on it is selected.

• Min :: Option

Min

– The leftmost variable with the smalled lower bound is selected.

• Max :: Option

Max

– The leftmost variable with the greatest upper bound is selected.

• Step :: Option

Step

– Make a binary choice between x=#b and x/=#b for the selected variable x where b is the
lower or upper bound of x (default).

• Enum :: Option

Enum

– Make a multiple choice for the selected variable for all the values in its domain.

97

• Bisect :: Option

Bisect

– Make a binary choice between x<=#m and x>#m for the selected variable x where
m is the midpoint of the domain x (also known as domain splitting).

• Up :: Option

Up

– The domain is explored for instantiation in ascending order (default).

• Down :: Option

Down

– The domain is explored for instantiation in descending order.

• All :: Option

All

– Enumerate all solutions by backtracking (default).

• Minimize :: Int → Option

Minimize v

– Find a solution that minimizes the domain variable v (using a branch-and-bound algo-
rithm).

• Maximize :: Int → Option

Maximize v

– Find a solution that maximizes the domain variable v (using a branch-and-bound algo-
rithm).

• Assumptions :: Int → Option

Assumptions x

– The variable x is unified with the number of choices made by the selected enumeration
strategy when a solution is found.

• RandomVariable :: Int → Option

RandomVariable x

– Select a random variable for instantiation where x is a seed value for the random numbers
(only supported by SWI-Prolog).

• RandomValue :: Int → Option

RandomValue x

98

– Label variables with random integer values where x is a seed value for the random
numbers (only supported by SWI-Prolog).

data FDExpr

Exported constructors:

data FDConstr

Exported constructors:

Exported functions:

domain :: Int → Int → [FDExpr]

Operations to construct basic constraints. Returns infinite list of FDVars with a given
domain.

fd :: Int → FDExpr

Represent an integer value as an FD expression.

(+#) :: FDExpr → FDExpr → FDExpr

Addition of FD expressions.

(-#) :: FDExpr → FDExpr → FDExpr

Subtraction of FD expressions.

(*#) :: FDExpr → FDExpr → FDExpr

Multiplication of FD expressions.

(=#) :: FDExpr → FDExpr → FDConstr

Equality of FD expressions.

(/=#) :: FDExpr → FDExpr → FDConstr

Disequality of FD expressions.

(<#) :: FDExpr → FDExpr → FDConstr

"Less than" constraint on FD expressions.

(<=#) :: FDExpr → FDExpr → FDConstr

"Less than or equal" constraint on FD expressions.

99

(>#) :: FDExpr → FDExpr → FDConstr

"Greater than" constraint on FD expressions.

(>=#) :: FDExpr → FDExpr → FDConstr

"Greater than or equal" constraint on FD expressions.

true :: FDConstr

The always satisfied FD constraint.

(/\) :: FDConstr → FDConstr → FDConstr

Conjunction of FD constraints.

andC :: [FDConstr] → FDConstr

Conjunction of a list of FD constraints.

allC :: (a → FDConstr) → [a] → FDConstr

Maps a constraint abstraction to a list of FD constraints and joins them.

allDifferent :: [FDExpr] → FDConstr

"All different" constraint on FD variables.

sum :: [FDExpr] → FDRel → FDExpr → FDConstr

Relates the sum of FD variables with some integer of FD variable.

scalarProduct :: [FDExpr] → [FDExpr] → FDRel → FDExpr → FDConstr

(scalarProduct cs vs relop v) is satisfied if (sum (cs*vs) relop v) is satisfied.
The first argument must be a list of integers. The other arguments are as in sum.

count :: FDExpr → [FDExpr] → FDRel → FDExpr → FDConstr

(count v vs relop c) is satisfied if (n relop c), where n is the number of elements
in the list of FD variables vs that are equal to v, is satisfied. The first argument must
be an integer. The other arguments are as in sum.

solveFD :: [Option] → [FDExpr] → FDConstr → [Int]

Computes (non-deterministically) a solution for the FD variables (second argument)
w.r.t. constraint (third argument), where the values in the solution correspond to the list
of FD variables. The first argument contains options to control the labeling/instantiation
of FD variables.

solveFDAll :: [Option] → [FDExpr] → FDConstr → [[Int]]

Computes all solutions for the FD variables (second argument) w.r.t. constraint (third
argument), where the values in each solution correspond to the list of FD variables. The
first argument contains options to control the labeling/instantiation of FD variables.

solveFDOne :: [Option] → [FDExpr] → FDConstr → [Int]

Computes a single solution for the FD variables (second argument) w.r.t. constraint
(third argument), where the values in the solution correspond to the list of FD variables.
The first argument contains options to control the labeling/instantiation of FD variables.

100

A.2.5 Library CLPFD

Library for finite domain constraint solving.
The general structure of a specification of an FD problem is as follows:
domainconstraint & fdconstraint & labeling

where:
domain constraint specifies the possible range of the FD variables (see constraint domain)
fd constraint specifies the constraint to be satisfied by a valid solution (see constraints #+, #-,
allDifferent, etc below)
labeling is a labeling function to search for a concrete solution.
Note: This library is based on the corresponding library of Sicstus-Prolog but does not implement
the complete functionality of the Sicstus-Prolog library. However, using the PAKCS interface for
external functions, it is relatively easy to provide the complete functionality.

Exported types:

data Constraint

A datatype to represent reifyable constraints.

Exported constructors:

data LabelingOption

This datatype contains all options to control the instantiated of FD variables with the
enumeration constraint labeling.

Exported constructors:

• LeftMost :: LabelingOption

LeftMost

– The leftmost variable is selected for instantiation (default)

• FirstFail :: LabelingOption

FirstFail

– The leftmost variable with the smallest domain is selected (also known as first-fail prin-
ciple)

• FirstFailConstrained :: LabelingOption

FirstFailConstrained

– The leftmost variable with the smallest domain and the most constraints on it is selected.

• Min :: LabelingOption

Min

– The leftmost variable with the smalled lower bound is selected.

101

• Max :: LabelingOption

Max

– The leftmost variable with the greatest upper bound is selected.

• Step :: LabelingOption

Step

– Make a binary choice between x=#b and x/=#b for the selected variable x where b is the
lower or upper bound of x (default).

• Enum :: LabelingOption

Enum

– Make a multiple choice for the selected variable for all the values in its domain.

• Bisect :: LabelingOption

Bisect

– Make a binary choice between x<=#m and x>#m for the selected variable x where m is the
midpoint of the domain x (also known as domain splitting).

• Up :: LabelingOption

Up

– The domain is explored for instantiation in ascending order (default).

• Down :: LabelingOption

Down

– The domain is explored for instantiation in descending order.

• All :: LabelingOption

All

– Enumerate all solutions by backtracking (default).

• Minimize :: Int → LabelingOption

Minimize v

– Find a solution that minimizes the domain variable v (using a branch-and-bound algo-
rithm).

• Maximize :: Int → LabelingOption

Maximize v

– Find a solution that maximizes the domain variable v (using a branch-and-bound algo-
rithm).

102

• Assumptions :: Int → LabelingOption

Assumptions x

– The variable x is unified with the number of choices made by the selected enumeration
strategy when a solution is found.

• RandomVariable :: Int → LabelingOption

RandomVariable x

– Select a random variable for instantiation where x is a seed value for the random numbers
(only supported by SWI-Prolog).

• RandomValue :: Int → LabelingOption

RandomValue x

– Label variables with random integer values where x is a seed value for the random
numbers (only supported by SWI-Prolog).

Exported functions:

domain :: [Int] → Int → Int → Bool

Constraint to specify the domain of all finite domain variables.

(+#) :: Int → Int → Int

Addition of FD variables.

(-#) :: Int → Int → Int

Subtraction of FD variables.

(*#) :: Int → Int → Int

Multiplication of FD variables.

(=#) :: Int → Int → Bool

Equality of FD variables.

(/=#) :: Int → Int → Bool

Disequality of FD variables.

(<#) :: Int → Int → Bool

"Less than" constraint on FD variables.

(<=#) :: Int → Int → Bool

"Less than or equal" constraint on FD variables.

(>#) :: Int → Int → Bool

103

"Greater than" constraint on FD variables.

(>=#) :: Int → Int → Bool

"Greater than or equal" constraint on FD variables.

(#=#) :: Int → Int → Constraint

Reifyable equality constraint on FD variables.

(#/=#) :: Int → Int → Constraint

Reifyable inequality constraint on FD variables.

(#<#) :: Int → Int → Constraint

Reifyable "less than" constraint on FD variables.

(#<=#) :: Int → Int → Constraint

Reifyable "less than or equal" constraint on FD variables.

(#>#) :: Int → Int → Constraint

Reifyable "greater than" constraint on FD variables.

(#>=#) :: Int → Int → Constraint

Reifyable "greater than or equal" constraint on FD variables.

neg :: Constraint → Constraint

The resulting constraint is satisfied if both argument constraints are satisfied.

(#/\#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if both argument constraints are satisfied.

(#\/#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if both argument constraints are satisfied.

(#=>#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if the first argument constraint do not hold or both
argument constraints are satisfied.

(#<=>#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if both argument constraint are either satisfied and
do not hold.

solve :: Constraint → Bool

Solves a reified constraint.

104

sum :: [Int] → (Int → Int → Bool) → Int → Bool

Relates the sum of FD variables with some integer of FD variable.

scalarProduct :: [Int] → [Int] → (Int → Int → Bool) → Int → Bool

(scalarProduct cs vs relop v) is satisfied if ((cs*vs) relop v) is satisfied. The first argu-
ment must be a list of integers. The other arguments are as in sum.

count :: Int → [Int] → (Int → Int → Bool) → Int → Bool

(count v vs relop c) is satisfied if (n relop c), where n is the number of elements in the
list of FD variables vs that are equal to v, is satisfied. The first argument must be an
integer. The other arguments are as in sum.

allDifferent :: [Int] → Bool

"All different" constraint on FD variables.

all different :: [Int] → Bool

For backward compatibility. Use allDifferent.

indomain :: Int → Bool

Instantiate a single FD variable to its values in the specified domain.

labeling :: [LabelingOption] → [Int] → Bool

Instantiate FD variables to their values in the specified domain.

A.2.6 Library CLPR

Library for constraint programming with arithmetic constraints over reals.

Exported functions:

(+.) :: Float → Float → Float

Addition on floats in arithmetic constraints.

(-.) :: Float → Float → Float

Subtraction on floats in arithmetic constraints.

(*.) :: Float → Float → Float

Multiplication on floats in arithmetic constraints.

(/.) :: Float → Float → Float

Division on floats in arithmetic constraints.

(<.) :: Float → Float → Bool

105

"Less than" constraint on floats.

(>.) :: Float → Float → Bool

"Greater than" constraint on floats.

(<=.) :: Float → Float → Bool

"Less than or equal" constraint on floats.

(>=.) :: Float → Float → Bool

"Greater than or equal" constraint on floats.

i2f :: Int → Float

Conversion function from integers to floats. Rigid in the first argument, i.e., suspends
until the first argument is ground.

minimumFor :: (a → Bool) → (a → Float) → a

Computes the minimum with respect to a given constraint. (minimumFor g f) evaluates
to x if (g x) is satisfied and (f x) is minimal. The evaluation fails if such a minimal value
does not exist. The evaluation suspends if it contains unbound non-local variables.

minimize :: (a → Bool) → (a → Float) → a → Bool

Minimization constraint. (minimize g f x) is satisfied if (g x) is satisfied and (f x) is
minimal. The evaluation suspends if it contains unbound non-local variables.

maximumFor :: (a → Bool) → (a → Float) → a

Computes the maximum with respect to a given constraint. (maximumFor g f) evaluates
to x if (g x) is satisfied and (f x) is maximal. The evaluation fails if such a maximal value
does not exist. The evaluation suspends if it contains unbound non-local variables.

maximize :: (a → Bool) → (a → Float) → a → Bool

Maximization constraint. (maximize g f x) is satisfied if (g x) is satisfied and (f x) is
maximal. The evaluation suspends if it contains unbound non-local variables.

A.2.7 Library Combinatorial

A collection of common non-deterministic and/or combinatorial operations. Many operations are
intended to operate on sets. The representation of these sets is not hidden; rather sets are repre-
sented as lists. Ideally these lists contains no duplicate elements and the order of their elements
cannot be observed. In practice, these conditions are not enforced.

106

Exported functions:

permute :: [a] → [a]

Compute any permutation of a list.

subset :: [a] → [a]

Compute any sublist of a list. The sublist contains some of the elements of the list in
the same order.

allSubsets :: [a] → [[a]]

Compute all the sublists of a list.

splitSet :: [a] → ([a],[a])

Split a list into any two sublists.

sizedSubset :: Int → [a] → [a]

Compute any sublist of fixed length of a list. Similar to subset, but the length of the
result is fixed.

partition :: [a] → [[a]]

Compute any partition of a list. The output is a list of non-empty lists such that their
concatenation is a permutation of the input list. No guarantee is made on the order of
the arguments in the output.

A.2.8 Library CPNS

Implementation of a Curry Port Name Server based on raw sockets. It is used to implement the
library Ports for distributed programming with ports.

Exported functions:

cpnsStart :: IO ()

Starts the "Curry Port Name Server" (CPNS) running on the local machine. The CPNS
is responsible to resolve symbolic names for ports into physical socket numbers so that
a port can be reached under its symbolic name from any machine in the world.

cpnsShow :: IO ()

Shows all registered ports at the local CPNS demon (in its logfile).

cpnsStop :: IO ()

Terminates the local CPNS demon

registerPort :: String → Int → Int → IO ()

107

Registers a symbolic port at the local host.

getPortInfo :: String → String → IO (Int,Int)

Gets the information about a symbolic port at some host.

unregisterPort :: String → IO ()

Unregisters a symbolic port at the local host.

cpnsAlive :: Int → String → IO Bool

Tests whether the CPNS demon at a host is alive.

main :: IO ()

Main function for CPNS demon. Check arguments and execute command.

A.2.9 Library CSV

Library for reading/writing files in CSV format. Files in CSV (comma separated values) format
can be imported and exported by most spreadsheed and database applications.

Exported functions:

writeCSVFile :: String → [[String]] → IO ()

Writes a list of records (where each record is a list of strings) into a file in CSV format.

showCSV :: [[String]] → String

Shows a list of records (where each record is a list of strings) as a string in CSV format.

readCSVFile :: String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list of
strings).

readCSVFileWithDelims :: String → String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list of
strings).

readCSV :: String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list
of strings).

readCSVWithDelims :: String → String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list
of strings).

108

A.2.10 Library Debug

This library contains some useful operation for debugging programs.

Exported functions:

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

traceId :: String → String

Prints the first argument as a side effect and returns it afterwards.

traceShow :: a → b → b

Prints the first argument using show and returns the second argument afterwards.

traceShowId :: a → a

Prints the first argument using show and returns it afterwards.

traceIO :: String → IO ()

Output a trace message from the IO monad.

assert :: Bool → String → a → a

Assert a condition w.r.t. an error message. If the condition is not met it fails with the
given error message, otherwise the third argument is returned.

assertIO :: Bool → String → IO ()

Assert a condition w.r.t. an error message from the IO monad. If the condition is not
met it fails with the given error message.

A.2.11 Library Directory

Library for accessing the directory structure of the underlying operating system.

Exported functions:

doesFileExist :: String → IO Bool

Returns true if the argument is the name of an existing file.

doesDirectoryExist :: String → IO Bool

Returns true if the argument is the name of an existing directory.

fileSize :: String → IO Int

Returns the size of the file.

109

getModificationTime :: String → IO ClockTime

Returns the modification time of the file.

getCurrentDirectory :: IO String

Returns the current working directory.

setCurrentDirectory :: String → IO ()

Sets the current working directory.

getDirectoryContents :: String → IO [String]

Returns the list of all entries in a directory.

createDirectory :: String → IO ()

Creates a new directory with the given name.

createDirectoryIfMissing :: Bool → String → IO ()

Creates a new directory with the given name if it does not already exist. If the first
parameter is True it will also create all missing parent directories.

removeDirectory :: String → IO ()

Deletes a directory from the file system.

renameDirectory :: String → String → IO ()

Renames a directory.

getHomeDirectory :: IO String

Returns the home directory of the current user.

getTemporaryDirectory :: IO String

Returns the temporary directory of the operating system.

getAbsolutePath :: String → IO String

Convert a path name into an absolute one. For instance, a leading ~ is replaced by the
current home directory.

removeFile :: String → IO ()

Deletes a file from the file system.

renameFile :: String → String → IO ()

Renames a file.

copyFile :: String → String → IO ()

Copy the contents from one file to another file

110

A.2.12 Library Distribution

This module contains functions to obtain information concerning the current distribution of the
Curry implementation, e.g., compiler version, load paths, front end.

Exported types:

data FrontendTarget

Data type for representing the different target files that can be produced by the front
end of the Curry compiler.

Exported constructors:

• FCY :: FrontendTarget

FCY

– FlatCurry file ending with .fcy

• FINT :: FrontendTarget

FINT

– FlatCurry interface file ending with .fint

• ACY :: FrontendTarget

ACY

– AbstractCurry file ending with .acy

• UACY :: FrontendTarget

UACY

– Untyped (without type checking) AbstractCurry file ending with .uacy

• HTML :: FrontendTarget

HTML

– colored HTML representation of source program

• CY :: FrontendTarget

CY

– source representation employed by the frontend

• TOKS :: FrontendTarget

TOKS

– token stream of source program

111

data FrontendParams

Abstract data type for representing parameters supported by the front end of the Curry
compiler.

Exported constructors:

Exported functions:

curryCompiler :: String

The name of the Curry compiler (e.g., "pakcs" or "kics2").

curryCompilerMajorVersion :: Int

The major version number of the Curry compiler.

curryCompilerMinorVersion :: Int

The minor version number of the Curry compiler.

curryRuntime :: String

The name of the run-time environment (e.g., "sicstus", "swi", or "ghc")

curryRuntimeMajorVersion :: Int

The major version number of the Curry run-time environment.

curryRuntimeMinorVersion :: Int

The minor version number of the Curry run-time environment.

installDir :: String

Path of the main installation directory of the Curry compiler.

rcFileName :: IO String

The name of the file specifying configuration parameters of the current distribution. This
file must have the usual format of property files (see description in module PropertyFile).

rcFileContents :: IO [(String,String)]

Returns the current configuration parameters of the distribution. This action yields the
list of pairs (var,val).

getRcVar :: String → IO (Maybe String)

Look up a specific configuration variable as specified by user in his rc file. Upper-
case/lowercase is ignored for the variable names.

getRcVars :: [String] → IO [Maybe String]

112

Look up configuration variables as specified by user in his rc file. Uppercase/lowercase
is ignored for the variable names.

splitModuleFileName :: String → String → (String,String)

Split the FilePath of a module into the directory prefix and the FilePath correspond-
ing to the module name. For instance, the call splitModuleFileName "Data.Set"
"lib/Data/Set.curry" evaluates to ("lib", "Data/Set.curry"). This can be useful
to compute output directories while retaining the hierarchical module structure.

splitModuleIdentifiers :: String → [String]

Split up the components of a module identifier. For instance, splitModuleIdentifiers
"Data.Set" evaluates to ["Data", "Set"].

joinModuleIdentifiers :: [String] → String

Join the components of a module identifier. For instance, joinModuleIdentifiers
["Data", "Set"] evaluates to "Data.Set".

stripCurrySuffix :: String → String

Strips the suffix ".curry" or ".lcurry" from a file name.

modNameToPath :: String → String

Transforms a hierarchical module name into a path name, i.e., replace the dots in the
name by directory separator chars.

currySubdir :: String

Name of the sub directory where auxiliary files (.fint, .fcy, etc) are stored.

inCurrySubdir :: String → String

Transforms a path to a module name into a file name by adding the currySubDir
to the path and transforming a hierarchical module name into a path. For instance,
inCurrySubdir "mylib/Data.Char" evaluates to "mylib/.curry/Data/Char".

inCurrySubdirModule :: String → String → String

Transforms a file name by adding the currySubDir to the file name. This version respects
hierarchical module names.

addCurrySubdir :: String → String

Transforms a directory name into the name of the corresponding sub directory containing
auxiliary files.

sysLibPath :: [String]

finding files in correspondence to compiler load path Returns the current path (list of
directory names) of the system libraries.

113

getLoadPathForModule :: String → IO [String]

Returns the current path (list of directory names) that is used for loading modules w.r.t.
a given module path. The directory prefix of the module path (or "." if there is no such
prefix) is the first element of the load path and the remaining elements are determined
by the environment variable CURRYRPATH and the entry "libraries" of the system’s
rc file.

lookupModuleSourceInLoadPath :: String → IO (Maybe (String,String))

Returns a directory name and the actual source file name for a module by looking up
the module source in the current load path. If the module is hierarchical, the directory
is the top directory of the hierarchy. Returns Nothing if there is no corresponding source
file.

lookupModuleSource :: [String] → String → IO (Maybe (String,String))

Returns a directory name and the actual source file name for a module by looking up
the module source in the load path provided as the first argument. If the module is
hierarchical, the directory is the top directory of the hierarchy. Returns Nothing if there
is no corresponding source file.

defaultParams :: FrontendParams

The default parameters of the front end.

rcParams :: IO FrontendParams

The default parameters of the front end as configured by the compiler specific resource
configuration file.

setQuiet :: Bool → FrontendParams → FrontendParams

Set quiet mode of the front end.

setExtended :: Bool → FrontendParams → FrontendParams

Set extended mode of the front end.

setOverlapWarn :: Bool → FrontendParams → FrontendParams

Set overlap warn mode of the front end.

setFullPath :: [String] → FrontendParams → FrontendParams

Set the full path of the front end. If this parameter is set, the front end searches all
modules in this path (instead of using the default path).

setHtmlDir :: String → FrontendParams → FrontendParams

Set the htmldir parameter of the front end. Relevant for HTML generation.

setLogfile :: String → FrontendParams → FrontendParams

114

Set the logfile parameter of the front end. If this parameter is set, all messages produced
by the front end are stored in this file.

setSpecials :: String → FrontendParams → FrontendParams

Set additional specials parameters of the front end. These parameters are specific for
the current front end and should be used with care, since their form might change in
the future.

addTarget :: FrontendTarget → FrontendParams → FrontendParams

Add an additional front end target.

quiet :: FrontendParams → Bool

Returns the value of the "quiet" parameter.

extended :: FrontendParams → Bool

Returns the value of the "extended" parameter.

overlapWarn :: FrontendParams → Bool

Returns the value of the "overlapWarn" parameter.

fullPath :: FrontendParams → Maybe [String]

Returns the full path parameter of the front end.

htmldir :: FrontendParams → Maybe String

Returns the htmldir parameter of the front end.

logfile :: FrontendParams → Maybe String

Returns the logfile parameter of the front end.

specials :: FrontendParams → String

Returns the special parameters of the front end.

callFrontend :: FrontendTarget → String → IO ()

In order to make sure that compiler generated files (like .fcy, .fint, .acy) are up to date,
one can call the front end of the Curry compiler with this action. If the front end returns
with an error, an exception is raised.

callFrontendWithParams :: FrontendTarget → FrontendParams → String → IO ()

In order to make sure that compiler generated files (like .fcy, .fint, .acy) are up to
date, one can call the front end of the Curry compiler with this action where various
parameters can be set. If the front end returns with an error, an exception is raised.

115

A.2.13 Library Either

Library with some useful operations for the Either data type.

Exported functions:

lefts :: [Either a b] → [a]

Extracts from a list of Either all the Left elements in order.

rights :: [Either a b] → [b]

Extracts from a list of Either all the Right elements in order.

isLeft :: Either a b → Bool

Return True if the given value is a Left-value, False otherwise.

isRight :: Either a b → Bool

Return True if the given value is a Right-value, False otherwise.

fromLeft :: Either a b → a

Extract the value from a Left constructor.

fromRight :: Either a b → b

Extract the value from a Right constructor.

partitionEithers :: [Either a b] → ([a],[b])

Partitions a list of Either into two lists. All the Left elements are extracted, in order,
to the first component of the output. Similarly the Right elements are extracted to the
second component of the output.

A.2.14 Library ErrorState

A combination of Error and state monad like ErrorT State in Haskell.

Exported types:

type ES a b c = b → Either a (c,b)

Error state monad.

116

Exported functions:

evalES :: (a → Either b (c,a)) → a → Either b c

Evaluate an ES monad

returnES :: a → b → Either c (a,b)

Lift a value into the ES monad

failES :: a → b → Either a (c,b)

Failing computation in the ES monad

(>+=) :: (a → Either b (c,a)) → (c → a → Either b (d,a)) → a → Either b

(d,a)

Bind of the ES monad

(>+) :: (a → Either b (c,a)) → (a → Either b (d,a)) → a → Either b (d,a)

Sequence operator of the ES monad

(<$>) :: (a → b) → (c → Either d (a,c)) → c → Either d (b,c)

Apply a pure function onto a monadic value.

(<*>) :: (a → Either b (c → d,a)) → (a → Either b (c,a)) → a → Either b

(d,a)

Apply a function yielded by a monadic action to a monadic value.

gets :: a → Either b (a,a)

Retrieve the current state

puts :: a → a → Either b ((),a)

Replace the current state

modify :: (a → a) → a → Either b ((),a)

Modify the current state

mapES :: (a → b → Either c (d,b)) → [a] → b → Either c ([d],b)

Map a monadic function on all elements of a list by sequencing the effects.

concatMapES :: (a → b → Either c ([d],b)) → [a] → b → Either c ([d],b)

Same as concatMap, but for a monadic function.

mapAccumES :: (a → b → c → Either d ((a,e),c)) → a → [b] → c → Either d

((a,[e]),c)

Same as mapES but with an additional accumulator threaded through.

117

A.2.15 Library FileGoodies

A collection of useful operations when dealing with files.

Exported functions:

separatorChar :: Char

The character for separating hierarchies in file names. On UNIX systems the value is /.

pathSeparatorChar :: Char

The character for separating names in path expressions. On UNIX systems the value is
:.

suffixSeparatorChar :: Char

The character for separating suffixes in file names. On UNIX systems the value is ..

isAbsolute :: String → Bool

Is the argument an absolute name?

dirName :: String → String

Extracts the directoy prefix of a given (Unix) file name. Returns "." if there is no prefix.

baseName :: String → String

Extracts the base name without directoy prefix of a given (Unix) file name.

splitDirectoryBaseName :: String → (String,String)

Splits a (Unix) file name into the directory prefix and the base name. The directory
prefix is "." if there is no real prefix in the name.

stripSuffix :: String → String

Strips a suffix (the last suffix starting with a dot) from a file name.

fileSuffix :: String → String

Yields the suffix (the last suffix starting with a dot) from given file name.

splitBaseName :: String → (String,String)

Splits a file name into prefix and suffix (the last suffix starting with a dot and the rest).

splitPath :: String → [String]

Splits a path string into list of directory names.

lookupFileInPath :: String → [String] → [String] → IO (Maybe String)

Looks up the first file with a possible suffix in a list of directories. Returns Nothing if
such a file does not exist.

getFileInPath :: String → [String] → [String] → IO String

Gets the first file with a possible suffix in a list of directories. An error message is
delivered if there is no such file.

118

A.2.16 Library FilePath

This library is a direct port of the Haskell library System.FilePath of Neil Mitchell.

Exported types:

type FilePath = String

Exported functions:

pathSeparator :: Char

pathSeparators :: String

isPathSeparator :: Char → Bool

searchPathSeparator :: Char

isSearchPathSeparator :: Char → Bool

extSeparator :: Char

isExtSeparator :: Char → Bool

splitSearchPath :: String → [String]

getSearchPath :: IO [String]

splitExtension :: String → (String,String)

takeExtension :: String → String

119

replaceExtension :: String → String → String

(<.>) :: String → String → String

dropExtension :: String → String

addExtension :: String → String → String

hasExtension :: String → Bool

splitExtensions :: String → (String,String)

dropExtensions :: String → String

takeExtensions :: String → String

splitDrive :: String → (String,String)

joinDrive :: String → String → String

takeDrive :: String → String

dropDrive :: String → String

hasDrive :: String → Bool

isDrive :: String → Bool

120

splitFileName :: String → (String,String)

replaceFileName :: String → String → String

dropFileName :: String → String

takeFileName :: String → String

takeBaseName :: String → String

replaceBaseName :: String → String → String

hasTrailingPathSeparator :: String → Bool

addTrailingPathSeparator :: String → String

dropTrailingPathSeparator :: String → String

takeDirectory :: String → String

replaceDirectory :: String → String → String

combine :: String → String → String

(</>) :: String → String → String

splitPath :: String → [String]

121

splitDirectories :: String → [String]

joinPath :: [String] → String

equalFilePath :: String → String → Bool

makeRelative :: String → String → String

normalise :: String → String

isValid :: String → Bool

makeValid :: String → String

isRelative :: String → Bool

isAbsolute :: String → Bool

A.2.17 Library Findall

Library with some operations for encapsulating search. Note that some of these operations are
not fully declarative, i.e., the results depend on the order of evaluation and program rules. There
are newer and better approaches the encpasulate search, in particular, set functions (see module
SetFunctions), which should be used.
In previous versions of PAKCS, some of these operations were part of the standard prelude. We
keep them in this separate module in order to support a more portable standard prelude.

Exported functions:

getAllValues :: a → IO [a]

Gets all values of an expression (currently, via an incomplete depth-first strategy). Con-
ceptually, all values are computed on a copy of the expression, i.e., the evaluation of the
expression does not share any results. Moreover, the evaluation suspends as long as the
expression contains unbound variables. Similar to Prolog’s findall.

122

getSomeValue :: a → IO a

Gets a value of an expression (currently, via an incomplete depth-first strategy). The
expression must have a value, otherwise the computation fails. Conceptually, the value
is computed on a copy of the expression, i.e., the evaluation of the expression does not
share any results. Moreover, the evaluation suspends as long as the expression contains
unbound variables.

allValues :: a → [a]

Returns all values of an expression (currently, via an incomplete depth-first strategy).
Conceptually, all values are computed on a copy of the expression, i.e., the evaluation
of the expression does not share any results. Moreover, the evaluation suspends as long
as the expression contains unbound variables.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules.

someValue :: a → a

Returns some value for an expression (currently, via an incomplete depth-first strat-
egy). If the expression has no value, the computation fails. Conceptually, the value is
computed on a copy of the expression, i.e., the evaluation of the expression does not
share any results. Moreover, the evaluation suspends as long as the expression contains
unbound variables.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value.

allSolutions :: (a → Bool) → [a]

Returns all values satisfying a predicate, i.e., all arguments such that the predicate
applied to the argument can be evaluated to True (currently, via an incomplete depth-
first strategy). The evaluation suspends as long as the predicate expression contains
unbound variables.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules.

someSolution :: (a → Bool) → a

Returns some values satisfying a predicate, i.e., some argument such that the predicate
applied to the argument can be evaluated to True (currently, via an incomplete depth-
first strategy). If there is no value satisfying the predicate, the computation fails.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules. Thus, this operation should be
used only if the predicate has a single solution.

try :: (a → Bool) → [a → Bool]

123

Basic search control operator.

inject :: (a → Bool) → (a → Bool) → a → Bool

Inject operator which adds the application of the unary procedure p to the search variable
to the search goal taken from Oz. p x comes before g x to enable a test+generate form
in a sequential implementation.

solveAll :: (a → Bool) → [a → Bool]

Computes all solutions via a a depth-first strategy.

once :: (a → Bool) → a → Bool

Gets the first solution via a depth-first strategy.

best :: (a → Bool) → (a → a → Bool) → [a → Bool]

Gets the best solution via a depth-first strategy according to a specified operator that
can always take a decision which of two solutions is better. In general, the comparison
operation should be rigid in its arguments!

findall :: (a → Bool) → [a]

Gets all solutions via a depth-first strategy and unpack the values from the lambda-
abstractions. Similar to Prolog’s findall.

findfirst :: (a → Bool) → a

Gets the first solution via a depth-first strategy and unpack the values from the search
goals.

browse :: (a → Bool) → IO ()

Shows the solution of a solved constraint.

browseList :: [a → Bool] → IO ()

Unpacks solutions from a list of lambda abstractions and write them to the screen.

unpack :: (a → Bool) → a

Unpacks a solution’s value from a (solved) search goal.

rewriteAll :: a → [a]

Gets all values computable by term rewriting. In contrast to findall, this operation
does not wait until all "outside" variables are bound to values, but it returns all values
computable by term rewriting and ignores all computations that requires bindings for
outside variables.

rewriteSome :: a → Maybe a

Similarly to rewriteAll but returns only some value computable by term rewriting.
Returns Nothing if there is no such value.

124

A.2.18 Library Float

A collection of operations on floating point numbers.

Exported functions:

pi :: Float

The number pi.

(+.) :: Float → Float → Float

Addition on floats.

(-.) :: Float → Float → Float

Subtraction on floats.

(*.) :: Float → Float → Float

Multiplication on floats.

(/.) :: Float → Float → Float

Division on floats.

(^.) :: Float → Int → Float

The value of a ^. b is a raised to the power of b. Executes in O(log b) steps.

i2f :: Int → Float

Conversion function from integers to floats.

truncate :: Float → Int

Conversion function from floats to integers. The result is the closest integer between the
argument and 0.

round :: Float → Int

Conversion function from floats to integers. The result is the nearest integer to the
argument. If the argument is equidistant between two integers, it is rounded to the
closest even integer value.

recip :: Float → Float

Reciprocal

sqrt :: Float → Float

Square root.

log :: Float → Float

125

Natural logarithm.

logBase :: Float → Float → Float

Logarithm to arbitrary Base.

exp :: Float → Float

Natural exponent.

sin :: Float → Float

Sine.

cos :: Float → Float

Cosine.

tan :: Float → Float

Tangent.

asin :: Float → Float

Arc sine.

acos :: Float → Float

atan :: Float → Float

Arc tangent.

sinh :: Float → Float

Hyperbolic sine.

cosh :: Float → Float

tanh :: Float → Float

Hyperbolic tangent.

asinh :: Float → Float

Hyperbolic Arc sine.

acosh :: Float → Float

atanh :: Float → Float

Hyperbolic Arc tangent.

126

A.2.19 Library Function

This module provides some utility functions for function application.

Exported functions:

fix :: (a → a) → a

fix f is the least fixed point of the function f, i.e. the least defined x such that f x =
x.

on :: (a → a → b) → (c → a) → c → c → b

(*) ‘on‘ f = \x y -> f x * f y. Typical usage: sortBy (compare ‘on‘ fst).

first :: (a → b) → (a,c) → (b,c)

Apply a function to the first component of a tuple.

second :: (a → b) → (c,a) → (c,b)

Apply a function to the second component of a tuple.

(***) :: (a → b) → (c → d) → (a,c) → (b,d)

Apply two functions to the two components of a tuple.

(&&&) :: (a → b) → (a → c) → a → (b,c)

Apply two functions to a value and returns a tuple of the results.

both :: (a → b) → (a,a) → (b,b)

Apply a function to both components of a tuple.

A.2.20 Library FunctionInversion

This module provides some utility functions for inverting functions.

Exported functions:

invf1 :: (a → b) → b → a

Inverts a unary function.

invf2 :: (a → b → c) → c → (a,b)

Inverts a binary function.

invf3 :: (a → b → c → d) → d → (a,b,c)

Inverts a ternary function.

invf4 :: (a → b → c → d → e) → e → (a,b,c,d)

Inverts a function of arity 4.

invf5 :: (a → b → c → d → e → f) → f → (a,b,c,d,e)

Inverts a function of arity 5.

127

A.2.21 Library GetOpt

This Module is a modified version of the Module System.Console.GetOpt by Sven Panne from the
ghc-base package it has been adapted for Curry by Bjoern Peemoeller
(c) Sven Panne 2002-2005 The Glasgow Haskell Compiler License
Copyright 2004, The University Court of the University of Glasgow. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
this list of conditions and the following disclaimer.
this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
used to endorse or promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY
OF GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW
OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Exported types:

data ArgOrder

Exported constructors:

• RequireOrder :: ArgOrder a

• Permute :: ArgOrder a

• ReturnInOrder :: (String → a) → ArgOrder a

data OptDescr

Exported constructors:

• Option :: String → [String] → (ArgDescr a) → String → OptDescr a

data ArgDescr

128

Exported constructors:

• NoArg :: a → ArgDescr a

• ReqArg :: (String → a) → String → ArgDescr a

• OptArg :: (Maybe String → a) → String → ArgDescr a

Exported functions:

usageInfo :: String → [OptDescr a] → String

getOpt :: ArgOrder a → [OptDescr a] → [String] → ([a],[String],[String])

getOpt’ :: ArgOrder a → [OptDescr a] → [String] → ([a],[String],[String],[String])

A.2.22 Library Global

Library for handling global entities. A global entity has a name declared in the program. Its
value can be accessed and modified by IO actions. Furthermore, global entities can be declared as
persistent so that their values are stored across different program executions.
Currently, it is still experimental so that its interface might be slightly changed in the future.
A global entity g with an initial value v of type t must be declared by:

g :: Global t
g = global v spec

Here, the type t must not contain type variables and spec specifies the storage mechanism for the
global entity (see type GlobalSpec).

Exported types:

data Global

The abstract type of a global entity.

Exported constructors:

data GlobalSpec

The storage mechanism for the global entity.

Exported constructors:

129

• Temporary :: GlobalSpec

Temporary

– the global value exists only during a single execution of a program

• Persistent :: String → GlobalSpec

Persistent f

– the global value is stored persisently in file f (which is created and initialized if it does
not exists)

Exported functions:

global :: a → GlobalSpec → Global a

global is only used for the declaration of a global value and should not be used elsewhere.
In the future, it might become a keyword.

readGlobal :: Global a → IO a

Reads the current value of a global.

safeReadGlobal :: Global a → a → IO a

Safely reads the current value of a global. If readGlobal fails (e.g., due to a corrupted
persistent storage), the global is re-initialized with the default value given as the second
argument.

writeGlobal :: Global a → a → IO ()

Updates the value of a global. The value is evaluated to a ground constructor term
before it is updated.

A.2.23 Library GlobalVariable

Library for handling global variables. A global variable has a name declared in the program. Its
value (a data term possibly containing free variables) can be accessed and modified by IO actions.
In contast to global entities (as defined in the library Global), global variables can contain logic
variables shared with computations running in the same computation space. As a consequence,
global variables cannot be persistent, their values are not kept across different program executions.
Currently, it is still experimental so that its interface might be slightly changed in the future.
A global variable g with an initial value v of type t must be declared by:
g :: GVar t

g = gvar v

Here, the type t must not contain type variables. v is the initial value for every program run.
Note: the implementation in PAKCS is based on threading a state through the execution. Thus,
it might be the case that some updates of global variables are lost if fancy features like unsafe
operations or debugging support are used.

130

Exported types:

data GVar

The general type of global variables.

Exported constructors:

Exported functions:

gvar :: a → GVar a

gvar is only used for the declaration of a global variable and should not be used else-
where. In the future, it might become a keyword.

readGVar :: GVar a → IO a

Reads the current value of a global variable.

writeGVar :: GVar a → a → IO ()

Updates the value of a global variable. The associated term is evaluated to a data term
and might contain free variables.

A.2.24 Library Integer

A collection of common operations on integer numbers. Most operations make no assumption on
the precision of integers. Operation bitNot is necessarily an exception.

Exported functions:

(^) :: Int → Int → Int

The value of a ^ b is a raised to the power of b. Fails if b < 0. Executes in O(log
b) steps.

pow :: Int → Int → Int

The value of pow a b is a raised to the power of b. Fails if b < 0. Executes in O(log
b) steps.

ilog :: Int → Int

The value of ilog n is the floor of the logarithm in the base 10 of n. Fails if n <=
0. For positive integers, the returned value is 1 less the number of digits in the decimal
representation of n.

isqrt :: Int → Int

The value of isqrt n is the floor of the square root of n. Fails if n < 0. Executes
in O(log n) steps, but there must be a better way.

131

factorial :: Int → Int

The value of factorial n is the factorial of n. Fails if n < 0.

binomial :: Int → Int → Int

The value of binomial n m is n(n-1)...(n-m+1)/m(m-1)*...1 Fails if ‘m <= 0‘ or ‘n <
m‘.

abs :: Int → Int

The value of abs n is the absolute value of n.

max3 :: a → a → a → a

Returns the maximum of the three arguments.

min3 :: a → a → a → a

Returns the minimum of the three arguments.

maxlist :: [a] → a

Returns the maximum of a list of integer values. Fails if the list is empty.

minlist :: [a] → a

Returns the minimum of a list of integer values. Fails if the list is empty.

bitTrunc :: Int → Int → Int

The value of bitTrunc n m is the value of the n least significant bits of m.

bitAnd :: Int → Int → Int

Returns the bitwise AND of the two arguments.

bitOr :: Int → Int → Int

Returns the bitwise inclusive OR of the two arguments.

bitNot :: Int → Int

Returns the bitwise NOT of the argument. Since integers have unlimited precision, only
the 32 least significant bits are computed.

bitXor :: Int → Int → Int

Returns the bitwise exclusive OR of the two arguments.

even :: Int → Bool

Returns whether an integer is even

odd :: Int → Bool

Returns whether an integer is odd

132

A.2.25 Library IO

Library for IO operations like reading and writing files that are not already contained in the prelude.

Exported types:

data Handle

The abstract type of a handle for a stream.

Exported constructors:

data IOMode

The modes for opening a file.

Exported constructors:

• ReadMode :: IOMode

• WriteMode :: IOMode

• AppendMode :: IOMode

data SeekMode

The modes for positioning with hSeek in a file.

Exported constructors:

• AbsoluteSeek :: SeekMode

• RelativeSeek :: SeekMode

• SeekFromEnd :: SeekMode

Exported functions:

stdin :: Handle

Standard input stream.

stdout :: Handle

Standard output stream.

stderr :: Handle

Standard error stream.

openFile :: String → IOMode → IO Handle

Opens a file in specified mode and returns a handle to it.

133

hClose :: Handle → IO ()

Closes a file handle and flushes the buffer in case of output file.

hFlush :: Handle → IO ()

Flushes the buffer associated to handle in case of output file.

hIsEOF :: Handle → IO Bool

Is handle at end of file?

isEOF :: IO Bool

Is standard input at end of file?

hSeek :: Handle → SeekMode → Int → IO ()

Set the position of a handle to a seekable stream (e.g., a file). If the second argument
is AbsoluteSeek, SeekFromEnd, or RelativeSeek, the position is set relative to the
beginning of the file, to the end of the file, or to the current position, respectively.

hWaitForInput :: Handle → Int → IO Bool

Waits until input is available on the given handle. If no input is available within t
milliseconds, it returns False, otherwise it returns True.

hWaitForInputs :: [Handle] → Int → IO Int

Waits until input is available on some of the given handles. If no input is available
within t milliseconds, it returns -1, otherwise it returns the index of the corresponding
handle with the available data.

hWaitForInputOrMsg :: Handle → [a] → IO (Either Handle [a])

Waits until input is available on a given handles or a message in the message stream.
Usually, the message stream comes from an external port. Thus, this operation im-
plements a committed choice over receiving input from an IO handle or an external
port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

hWaitForInputsOrMsg :: [Handle] → [a] → IO (Either Int [a])

Waits until input is available on some of the given handles or a message in the message
stream. Usually, the message stream comes from an external port. Thus, this operation
implements a committed choice over receiving input from IO handles or an external
port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

134

hReady :: Handle → IO Bool

Checks whether an input is available on a given handle.

hGetChar :: Handle → IO Char

Reads a character from an input handle and returns it. Throws an error if the end of
file has been reached.

hGetLine :: Handle → IO String

Reads a line from an input handle and returns it. Throws an error if the end of file has
been reached while reading the first character. If the end of file is reached later in the
line, it ist treated as a line terminator and the (partial) line is returned.

hGetContents :: Handle → IO String

Reads the complete contents from an input handle and closes the input handle before
returning the contents.

getContents :: IO String

Reads the complete contents from the standard input stream until EOF.

hPutChar :: Handle → Char → IO ()

Puts a character to an output handle.

hPutStr :: Handle → String → IO ()

Puts a string to an output handle.

hPutStrLn :: Handle → String → IO ()

Puts a string with a newline to an output handle.

hPrint :: Handle → a → IO ()

Converts a term into a string and puts it to an output handle.

hIsReadable :: Handle → IO Bool

Is the handle readable?

hIsWritable :: Handle → IO Bool

Is the handle writable?

hIsTerminalDevice :: Handle → IO Bool

Is the handle connected to a terminal?

A.2.26 Library IOExts

Library with some useful extensions to the IO monad.

135

Exported types:

data IORef

Mutable variables containing values of some type. The values are not evaluated when
they are assigned to an IORef.

Exported constructors:

Exported functions:

execCmd :: String → IO (Handle,Handle,Handle)

Executes a command with a new default shell process. The standard I/O streams
of the new process (stdin,stdout,stderr) are returned as handles so that they can be
explicitly manipulated. They should be closed with IO.hClose since they are not closed
automatically when the process terminates.

evalCmd :: String → [String] → String → IO (Int,String,String)

Executes a command with the given arguments as a new default shell process and
provides the input via the process’ stdin input stream. The exit code of the process and
the contents written to the standard I/O streams stdout and stderr are returned.

connectToCommand :: String → IO Handle

Executes a command with a new default shell process. The input and output streams
of the new process is returned as one handle which is both readable and writable. Thus,
writing to the handle produces input to the process and output from the process can
be retrieved by reading from this handle. The handle should be closed with IO.hClose

since they are not closed automatically when the process terminates.

readCompleteFile :: String → IO String

An action that reads the complete contents of a file and returns it. This action can be
used instead of the (lazy) readFile action if the contents of the file might be changed.

updateFile :: (String → String) → String → IO ()

An action that updates the contents of a file.

exclusiveIO :: String → IO a → IO a

Forces the exclusive execution of an action via a lock file. For instance, (exclusiveIO
"myaction.lock" act) ensures that the action "act" is not executed by two processes on
the same system at the same time.

setAssoc :: String → String → IO ()

Defines a global association between two strings. Both arguments must be evaluable to
ground terms before applying this operation.

136

getAssoc :: String → IO (Maybe String)

Gets the value associated to a string. Nothing is returned if there does not exist an
associated value.

newIORef :: a → IO (IORef a)

Creates a new IORef with an initial value.

readIORef :: IORef a → IO a

Reads the current value of an IORef.

writeIORef :: IORef a → a → IO ()

Updates the value of an IORef.

modifyIORef :: IORef a → (a → a) → IO ()

Modify the value of an IORef.

A.2.27 Library List

Library with some useful operations on lists.

Exported functions:

elemIndex :: a → [a] → Maybe Int

Returns the index i of the first occurrence of an element in a list as (Just i), otherwise
Nothing is returned.

elemIndices :: a → [a] → [Int]

Returns the list of indices of occurrences of an element in a list.

find :: (a → Bool) → [a] → Maybe a

Returns the first element e of a list satisfying a predicate as (Just e), otherwise Nothing
is returned.

findIndex :: (a → Bool) → [a] → Maybe Int

Returns the index i of the first occurrences of a list element satisfying a predicate as
(Just i), otherwise Nothing is returned.

findIndices :: (a → Bool) → [a] → [Int]

Returns the list of indices of list elements satisfying a predicate.

nub :: [a] → [a]

Removes all duplicates in the argument list.

137

nubBy :: (a → a → Bool) → [a] → [a]

Removes all duplicates in the argument list according to an equivalence relation.

delete :: a → [a] → [a]

Deletes the first occurrence of an element in a list.

deleteBy :: (a → a → Bool) → a → [a] → [a]

Deletes the first occurrence of an element in a list according to an equivalence relation.

(\\) :: [a] → [a] → [a]

Computes the difference of two lists.

union :: [a] → [a] → [a]

Computes the union of two lists.

unionBy :: (a → a → Bool) → [a] → [a] → [a]

Computes the union of two lists according to the given equivalence relation

intersect :: [a] → [a] → [a]

Computes the intersection of two lists.

intersectBy :: (a → a → Bool) → [a] → [a] → [a]

Computes the intersection of two lists according to the given equivalence relation

intersperse :: a → [a] → [a]

Puts a separator element between all elements in a list.

Example: (intersperse 9 [1,2,3,4]) = [1,9,2,9,3,9,4]

intercalate :: [a] → [[a]] → [a]

intercalate xs xss is equivalent to (concat (intersperse xs xss)). It inserts the
list xs in between the lists in xss and concatenates the result.

transpose :: [[a]] → [[a]]

Transposes the rows and columns of the argument.

Example: (transpose [[1,2,3],[4,5,6]]) = [[1,4],[2,5],[3,6]]

diagonal :: [[a]] → [a]

Diagonalization of a list of lists. Fairly merges (possibly infinite) list of (possibly infinite)
lists.

permutations :: [a] → [[a]]

138

Returns the list of all permutations of the argument.

partition :: (a → Bool) → [a] → ([a],[a])

Partitions a list into a pair of lists where the first list contains those elements that satisfy
the predicate argument and the second list contains the remaining arguments.

Example: (partition (<4) [8,1,5,2,4,3]) = ([1,2,3],[8,5,4])

group :: [a] → [[a]]

Splits the list argument into a list of lists of equal adjacent elements.

Example: (group [1,2,2,3,3,3,4]) = [[1],[2,2],[3,3,3],[4]]

groupBy :: (a → a → Bool) → [a] → [[a]]

Splits the list argument into a list of lists of related adjacent elements.

splitOn :: [a] → [a] → [[a]]

Breaks the second list argument into pieces separated by the first list argument, con-
suming the delimiter. An empty delimiter is invalid, and will cause an error to be
raised.

split :: (a → Bool) → [a] → [[a]]

Splits a list into components delimited by separators, where the predicate returns True
for a separator element. The resulting components do not contain the separators. Two
adjacent separators result in an empty component in the output.

split (==a) "aabbaca" == ["","","bb","c",""] split (==a) "" == [""]

inits :: [a] → [[a]]

Returns all initial segments of a list, starting with the shortest. Example: inits
[1,2,3] == [[],[1],[1,2],[1,2,3]]

tails :: [a] → [[a]]

Returns all final segments of a list, starting with the longest. Example: tails [1,2,3]
== [[1,2,3],[2,3],[3],[]]

replace :: a → Int → [a] → [a]

Replaces an element in a list.

isPrefixOf :: [a] → [a] → Bool

Checks whether a list is a prefix of another.

isSuffixOf :: [a] → [a] → Bool

Checks whether a list is a suffix of another.

139

isInfixOf :: [a] → [a] → Bool

Checks whether a list is contained in another.

sortBy :: (a → a → Bool) → [a] → [a]

Sorts a list w.r.t. an ordering relation by the insertion method.

insertBy :: (a → a → Bool) → a → [a] → [a]

Inserts an object into a list according to an ordering relation.

last :: [a] → a

Returns the last element of a non-empty list.

init :: [a] → [a]

Returns the input list with the last element removed.

sum :: [Int] → Int

Returns the sum of a list of integers.

product :: [Int] → Int

Returns the product of a list of integers.

maximum :: [a] → a

Returns the maximum of a non-empty list.

maximumBy :: (a → a → Ordering) → [a] → a

Returns the maximum of a non-empty list according to the given comparison function

minimum :: [a] → a

Returns the minimum of a non-empty list.

minimumBy :: (a → a → Ordering) → [a] → a

Returns the minimum of a non-empty list according to the given comparison function

scanl :: (a → b → a) → a → [b] → [a]

scanl is similar to foldl, but returns a list of successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z f x1, (z f x1) f x2, ...]

scanl1 :: (a → a → a) → [a] → [a]

scanl1 is a variant of scanl that has no starting value argument: scanl1 f [x1, x2, ...]
== [x1, x1 f x2, ...]

scanr :: (a → b → b) → b → [a] → [b]

140

scanr is the right-to-left dual of scanl.

scanr1 :: (a → a → a) → [a] → [a]

scanr1 is a variant of scanr that has no starting value argument.

mapAccumL :: (a → b → (a,c)) → a → [b] → (a,[c])

The mapAccumL function behaves like a combination of map and foldl; it applies a
function to each element of a list, passing an accumulating parameter from left to right,
and returning a final value of this accumulator together with the new list.

mapAccumR :: (a → b → (a,c)) → a → [b] → (a,[c])

The mapAccumR function behaves like a combination of map and foldr; it applies a
function to each element of a list, passing an accumulating parameter from right to left,
and returning a final value of this accumulator together with the new list.

cycle :: [a] → [a]

Builds an infinite list from a finite one.

unfoldr :: (a → Maybe (b,a)) → a → [b]

Builds a list from a seed value.

A.2.28 Library Maybe

Library with some useful functions on the Maybe datatype.

Exported functions:

isJust :: Maybe a → Bool

Return True iff the argument is of the form Just _.

isNothing :: Maybe a → Bool

Return True iff the argument is of the form Nothing.

fromJust :: Maybe a → a

Extract the argument from the Just constructor and throw an error if the argument is
Nothing.

fromMaybe :: a → Maybe a → a

Extract the argument from the Just constructor or return the provided default value if
the argument is Nothing.

listToMaybe :: [a] → Maybe a

Return Nothing on an empty list or Just x where x is the first list element.

141

maybeToList :: Maybe a → [a]

Return an empty list for Nothing or a singleton list for Just x.

catMaybes :: [Maybe a] → [a]

Return the list of all Just values.

mapMaybe :: (a → Maybe b) → [a] → [b]

Apply a function which may throw out elements using the Nothing constructor to a list
of elements.

(>>-) :: Maybe a → (a → Maybe b) → Maybe b

Monadic bind for Maybe. Maybe can be interpreted as a monad where Nothing is
interpreted as the error case by this monadic binding.

sequenceMaybe :: [Maybe a] → Maybe [a]

Monadic sequence for Maybe.

mapMMaybe :: (a → Maybe b) → [a] → Maybe [b]

Monadic map for Maybe.

mplus :: Maybe a → Maybe a → Maybe a

Combine two Maybes, returning the first Just value, if any.

A.2.29 Library NamedSocket

Library to support network programming with sockets that are addressed by symbolic names. In
contrast to raw sockets (see library Socket), this library uses the Curry Port Name Server to provide
sockets that are addressed by symbolic names rather than numbers.
In standard applications, the server side uses the operations listenOn and socketAccept to provide
some service on a named socket, and the client side uses the operation connectToSocket to request
a service.

Exported types:

data Socket

Abstract type for named sockets.

Exported constructors:

142

Exported functions:

listenOn :: String → IO Socket

Creates a server side socket with a symbolic name.

socketAccept :: Socket → IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client. The handle is both
readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available
within the time limit, it returns Nothing, otherwise the connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

socketName :: Socket → String

Returns a the symbolic name of a named socket.

connectToSocketRepeat :: Int → IO a → Int → String → IO (Maybe Handle)

Waits for connection to a Unix socket with a symbolic name. In contrast to
connectToSocket, this action waits until the socket has been registered with its sym-
bolic name.

connectToSocketWait :: String → IO Handle

Waits for connection to a Unix socket with a symbolic name and return the handle of
the connection. This action waits (possibly forever) until the socket with the symbolic
name is registered.

connectToSocket :: String → IO Handle

Creates a new connection to an existing(!) Unix socket with a symbolic name. If the
symbolic name is not registered, an error is reported.

A.2.30 Library Nat

Library defining natural numbers in Peano representation and some operations on this representa-
tion.

143

Exported types:

data Nat

Natural numbers defined in Peano representation.

Exported constructors:

• Z :: Nat

• S :: Nat → Nat

Exported functions:

fromNat :: Nat → Int

Transforms a natural number into a standard integer.

toNat :: Int → Nat

Transforms a standard integer into a natural number.

add :: Nat → Nat → Nat

Addition on natural numbers.

sub :: Nat → Nat → Nat

Subtraction defined by reversing addition.

mul :: Nat → Nat → Nat

Multiplication on natural numbers.

leq :: Nat → Nat → Bool

A.2.31 Library Parser

Library with functional logic parser combinators.
Adapted from: Rafael Caballero and Francisco J. Lopez-Fraguas: A Functional Logic Perspective
of Parsing. In Proc. FLOPS’99, Springer LNCS 1722, pp. 85-99, 1999

Exported types:

type Parser a = [a] → [a]

type ParserRep a b = a → [b] → [b]

144

Exported functions:

(<|>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers without representation in an alternative manner.

(<||>) :: (a → [b] → [b]) → (a → [b] → [b]) → a → [b] → [b]

Combines two parsers with representation in an alternative manner.

(<*>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers (with or without representation) in a sequential manner.

(>>>) :: ([a] → [a]) → b → b → [a] → [a]

Attaches a representation to a parser without representation.

empty :: [a] → [a]

The empty parser which recognizes the empty word.

terminal :: a → [a] → [a]

A parser recognizing a particular terminal symbol.

satisfy :: (a → Bool) → a → [a] → [a]

A parser (with representation) recognizing a terminal satisfying a given predicate.

star :: (a → [b] → [b]) → [a] → [b] → [b]

A star combinator for parsers. The returned parser repeats zero or more times a parser
p with representation and returns the representation of all parsers in a list.

some :: (a → [b] → [b]) → [a] → [b] → [b]

A some combinator for parsers. The returned parser repeats the argument parser (with
representation) at least once.

A.2.32 Library Ports

Library for distributed programming with ports. This paper14 contains a description of the basic
ideas behind this library.

14http://www.informatik.uni-kiel.de/~mh/papers/PPDP99.html

145

Exported types:

data Port

The internal constructor for the port datatype is not visible to the user.

Exported constructors:

data SP_Msg

A "stream port" is an adaption of the port concept to model the communication with
bidirectional streams, i.e., a stream port is a port connection to a bidirectional stream
(e.g., opened by openProcessPort) where the communication is performed via the fol-
lowing stream port messages.

Exported constructors:

• SP_Put :: String → SP_Msg

SP_Put s

– write the argument s on the output stream

• SP_GetLine :: String → SP_Msg

SP_GetLine s

– unify the argument s with the next text line of the input stream

• SP_GetChar :: Char → SP_Msg

SP_GetChar c

– unify the argument c with the next character of the input stream

• SP_EOF :: Bool → SP_Msg

SP_EOF b

– unify the argument b with True if we are at the end of the input stream, otherwise with
False

• SP_Close :: SP_Msg

SP_Close

– close the input/output streams

146

Exported functions:

openPort :: Port a → [a] → Bool

Opens an internal port for communication.

send :: a → Port a → Bool

Sends a message to a port.

doSend :: a → Port a → IO ()

I/O action that sends a message to a port.

ping :: Int → Port a → IO (Maybe Int)

Checks whether port p is still reachable.

timeoutOnStream :: Int → [a] → Maybe [a]

Checks for instantiation of a stream within some amount of time.

openProcessPort :: String → IO (Port SP_Msg)

Opens a new connection to a process that executes a shell command.

openNamedPort :: String → IO [a]

Opens an external port with a symbolic name.

connectPortRepeat :: Int → IO a → Int → String → IO (Maybe (Port b))

Waits for connection to an external port. In contrast to connectPort, this action waits
until the external port has been registered with its symbolic name.

connectPortWait :: String → IO (Port a)

Waits for connection to an external port and return the connected port. This action
waits (possibly forever) until the external port is registered.

connectPort :: String → IO (Port a)

Connects to an external port. The external port must be already registered, otherwise
an error is reported.

choiceSPEP :: Port SP_Msg → [a] → Either String [a]

This function implements a committed choice over the receiving of messages via a stream
port and an external port.

Note that the implementation of choiceSPEP works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

newObject :: (a → [b] → Bool) → a → Port b → Bool

147

Creates a new object (of type State -> [msg] -> Bool) with an initial state and a port
to which messages for this object can be sent.

newNamedObject :: (a → [b] → Bool) → a → String → IO ()

Creates a new object (of type State -> [msg] -> Bool) with a symbolic port name to
which messages for this object can be sent.

runNamedServer :: ([a] → IO b) → String → IO b

Runs a new server (of type [msg] -> IO a) on a named port to which messages can be
sent.

A.2.33 Library Pretty

This library provides pretty printing combinators. The interface is that of Daan Leijen’s library
linear-time, bounded implementation by Olaf Chitil. Note that the implementation of fill and
fillBreak is not linear-time bounded Support of ANSI escape codes for formatting and colorisation
of documents in text terminals (see https://en.wikipedia.org/wiki/ANSIescapecode)

Exported types:

data Doc

The abstract data type Doc represents pretty documents.

Exported constructors:

Exported functions:

pPrint :: Doc → String

Standard printing with a column length of 80.

empty :: Doc

The empty document

isEmpty :: Doc → Bool

Is the document empty?

text :: String → Doc

The document (text s) contains the literal string s. The string shouldn’t contain any
newline (\n) characters. If the string contains newline characters, the function string
should be used.

linesep :: String → Doc

The document (linesep s) advances to the next line and indents to the current nesting
level. Document (linesep s) behaves like (text s) if the line break is undone by
group.

148

<http://www.cs.uu.nl/~daan/download/pprint/pprint.html
http://www.cs.kent.ac.uk/pubs/2006/2381/index.html

hardline :: Doc

The document hardline advances to the next line and indents to the current nesting
level. hardline cannot be undone by group.

line :: Doc

The document line advances to the next line and indents to the current nesting level.
Document line behaves like (text " ") if the line break is undone by group.

linebreak :: Doc

The document linebreak advances to the next line and indents to the current nesting
level. Document linebreak behaves like (text "") if the line break is undone by group.

softline :: Doc

The document softline behaves like space if the resulting output fits the page, other-
wise it behaves like line. softline = group line

softbreak :: Doc

The document softbreak behaves like (text "") if the resulting output fits the page,
otherwise it behaves like line. softbreak = group linebreak

group :: Doc → Doc

The combinator group is used to specify alternative layouts. The document (group x)
undoes all line breaks in document x. The resulting line is added to the current line if
that fits the page. Otherwise, the document x is rendered without any changes.

nest :: Int → Doc → Doc

The document (nest i d) renders document d with the current indentation level in-
creased by i (See also hang, align and indent).

nest 2 (text "hello" $$ text "world") $$ text "!"

outputs as:

hello
world

!

hang :: Int → Doc → Doc

The combinator hang implements hanging indentation. The document (hang i d) ren-
ders document d with a nesting level set to the current column plus i. The following
example uses hanging indentation for some text:

149

test = hang 4
(fillSep

(map text
(words "the hang combinator indents these words !")))

Which lays out on a page with a width of 20 characters as:

the hang combinator
indents these
words !

The hang combinator is implemented as:

hang i x = align (nest i x)

align :: Doc → Doc

The document (align d) renders document d with the nesting level set to the
current column. It is used for example to implement hang‘.

As an example, we will put a document right above another one, regardless of the current
nesting level:

x $$ y = align (x $$ y)
test = text "hi" <+> (text "nice" $$ text "world")

which will be layed out as:

hi nice
world

indent :: Int → Doc → Doc

The document (indent i d) indents document d with i spaces.

test = indent 4 (fillSep (map text
(words "the indent combinator indents these words !")))

Which lays out with a page width of 20 as:

the indent
combinator
indents these
words !

150

combine :: Doc → Doc → Doc → Doc

The document (combine c d1 d2) combines document d1 and d2 with document c in
between using (<>) with identity empty. Thus, the following equations hold.

combine c d1 empty == d1
combine c empty d2 == d2
combine c d1 d2 == d1 <> c <> d2 if neither d1 nor d2 are empty

(<>) :: Doc → Doc → Doc

The document (x <> y) concatenates document x and document y. It is an associative
operation having empty as a left and right unit.

(<+>) :: Doc → Doc → Doc

The document (x <+> y) concatenates document x and y with a space in between
with identity empty.

($$) :: Doc → Doc → Doc

The document (x $$ y) concatenates document x and y with a line in between with
identity empty.

(<$+$>) :: Doc → Doc → Doc

The document (x <$+$> y) concatenates document x and y with a blank line in be-
tween with identity empty.

(</>) :: Doc → Doc → Doc

The document (x </> y) concatenates document x and y with a softline in between
with identity empty. This effectively puts x and y either next to each other (with a
space in between) or underneath each other.

(<$$>) :: Doc → Doc → Doc

The document (x <$$> y) concatenates document x and y with a linebreak in be-
tween with identity empty.

(<//>) :: Doc → Doc → Doc

The document (x <//> y) concatenates document x and y with a softbreak in be-
tween with identity empty. This effectively puts x and y either right next to each other
or underneath each other.

(<$!$>) :: Doc → Doc → Doc

The document (x <$!$> y) concatenates document x and y with a hardline in be-
tween with identity empty. This effectively puts x and y underneath each other.

151

compose :: (Doc → Doc → Doc) → [Doc] → Doc

The document (compose f xs) concatenates all documents xs with function f. Func-
tion f should be like (<+>), ($$) and so on.

hsep :: [Doc] → Doc

The document (hsep xs) concatenates all documents xs horizontally with (<+>).

vsep :: [Doc] → Doc

The document (vsep xs) concatenates all documents xs vertically with ($$). If a group
undoes the line breaks inserted by vsep, all documents are separated with a space.

someText = map text (words ("text to lay out"))
test = text "some" <+> vsep someText

This is layed out as:

some text
to
lay
out

The align combinator can be used to align the documents under their first element:

test = text "some" <+> align (vsep someText)

This is printed as:

some text
to
lay
out

vsepBlank :: [Doc] → Doc

The document vsep xs concatenates all documents xs vertically with (<$+$>). If a
group undoes the line breaks inserted by vsepBlank, all documents are separated with
a space.

fillSep :: [Doc] → Doc

The document (fillSep xs) concatenates documents xs horizontally with (</>) as
long as its fits the page, than inserts a line and continues doing that for all documents
in xs. fillSep xs = foldr (</>) empty xs

152

sep :: [Doc] → Doc

The document (sep xs) concatenates all documents xs either horizontally with (<+>),
if it fits the page, or vertically with ($$). sep xs = group (vsep xs)

hcat :: [Doc] → Doc

The document (hcat xs) concatenates all documents xs horizontally with (<>).

vcat :: [Doc] → Doc

The document (vcat xs) concatenates all documents xs vertically with (<$$>). If a
group undoes the line breaks inserted by vcat, all documents are directly concatenated.

fillCat :: [Doc] → Doc

The document (fillCat xs) concatenates documents xs horizontally with (<//>) as
long as its fits the page, than inserts a linebreak and continues doing that for all
documents in xs. fillCat xs = foldr (<//>) empty xs

cat :: [Doc] → Doc

The document (cat xs) concatenates all documents xs either horizontally with (<>),
if it fits the page, or vertically with (<$$>). cat xs = group (vcat xs)

punctuate :: Doc → [Doc] → [Doc]

(punctuate p xs) concatenates all documents xs with document p except for the last
document.

someText = map text ["words","in","a","tuple"]
test = parens (align (cat (punctuate comma someText)))

This is layed out on a page width of 20 as:

(words,in,a,tuple)

But when the page width is 15, it is layed out as:

(words,
in,
a,
tuple)

(If you want put the commas in front of their elements instead of at the end, you should
use tupled or, in general, encloseSep.)

encloseSep :: Doc → Doc → Doc → [Doc] → Doc

153

The document (encloseSep l r s xs) concatenates the documents xs seperated by s
and encloses the resulting document by l and r. The documents are rendered horizon-
tally if that fits the page. Otherwise they are aligned vertically. All seperators are put
in front of the elements.

For example, the combinator list can be defined with encloseSep:

list xs = encloseSep lbracket rbracket comma xs
test = text "list" <+> (list (map int [10,200,3000]))

Which is layed out with a page width of 20 as:

list [10,200,3000]

But when the page width is 15, it is layed out as:

list [10
,200
,3000]

encloseSepSpaced :: Doc → Doc → Doc → [Doc] → Doc

The document (encloseSepSpaced l r s xs) concatenates the documents xs seper-
ated by s and encloses the resulting document by l and r. In addition, after each
occurrence of s, after l, and before r, a space is inserted. The documents are rendered
horizontally if that fits the page. Otherwise they are aligned vertically. All seperators
are put in front of the elements.

hEncloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (hEncloseSep l r s xs) concatenates the documents xs seperated by
s and encloses the resulting document by l and r.

The documents are rendered horizontally.

fillEncloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (fillEncloseSep l r s xs) concatenates the documents xs seperated
by s and encloses the resulting document by l and r.

The documents are rendered horizontally if that fits the page. Otherwise they are aligned
vertically. All seperators are put in front of the elements.

fillEncloseSepSpaced :: Doc → Doc → Doc → [Doc] → Doc

The document (fillEncloseSepSpaced l r s xs) concatenates the documents xs
seperated by s and encloses the resulting document by l and r. In addition, after
each occurrence of s, after l, and before r, a space is inserted.

The documents are rendered horizontally if that fits the page. Otherwise, they are
aligned vertically. All seperators are put in front of the elements.

154

list :: [Doc] → Doc

The document (list xs) comma seperates the documents xs and encloses them in
square brackets. The documents are rendered horizontally if that fits the page. Other-
wise they are aligned vertically. All comma seperators are put in front of the elements.

listSpaced :: [Doc] → Doc

Spaced version of list

set :: [Doc] → Doc

The document (set xs) comma seperates the documents xs and encloses them in
braces. The documents are rendered horizontally if that fits the page. Otherwise they
are aligned vertically. All comma seperators are put in front of the elements.

setSpaced :: [Doc] → Doc

Spaced version of set

tupled :: [Doc] → Doc

The document (tupled xs) comma seperates the documents xs and encloses them in
parenthesis. The documents are rendered horizontally if that fits the page. Otherwise
they are aligned vertically. All comma seperators are put in front of the elements.

tupledSpaced :: [Doc] → Doc

Spaced version of tupled

semiBraces :: [Doc] → Doc

The document (semiBraces xs) seperates the documents xs with semi colons and en-
closes them in braces. The documents are rendered horizontally if that fits the page.
Otherwise they are aligned vertically. All semi colons are put in front of the elements.

semiBracesSpaced :: [Doc] → Doc

Spaced version of semiBraces

enclose :: Doc → Doc → Doc → Doc

The document (enclose l r x) encloses document x between documents l and r using
(<>). enclose l r x = l <> x <> r

squotes :: Doc → Doc

Document (squotes x) encloses document x with single quotes "’".

dquotes :: Doc → Doc

Document (dquotes x) encloses document x with double quotes.

bquotes :: Doc → Doc

155

Document (bquotes x) encloses document x with back quotes "‘".

parens :: Doc → Doc

Document (parens x) encloses document x in parenthesis, "(" and ")".

parensIf :: Bool → Doc → Doc

Document (parensIf x) encloses document x in parenthesis,"(" and ")", iff the con-
dition is true.

angles :: Doc → Doc

Document (angles x) encloses document x in angles, "<" and ">".

braces :: Doc → Doc

Document (braces x) encloses document x in braces, "{" and "}".

brackets :: Doc → Doc

Document (brackets x) encloses document x in square brackets, "[" and "]".

char :: Char → Doc

The document (char c) contains the literal character c. The character should not be
a newline (\n), the function line should be used for line breaks.

string :: String → Doc

The document (string s) concatenates all characters in s using line for newline char-
acters and char for all other characters. It is used instead of text whenever the text
contains newline characters.

int :: Int → Doc

The document (int i) shows the literal integer i using text.

float :: Float → Doc

The document (float f) shows the literal float f using text.

lparen :: Doc

The document lparen contains a left parenthesis, "(".

rparen :: Doc

The document rparen contains a right parenthesis, ")".

langle :: Doc

The document langle contains a left angle, "<".

rangle :: Doc

156

The document rangle contains a right angle, ">".

lbrace :: Doc

The document lbrace contains a left brace, "{".

rbrace :: Doc

The document rbrace contains a right brace, "}".

lbracket :: Doc

The document lbracket contains a left square bracket, "[".

rbracket :: Doc

The document rbracket contains a right square bracket, "]".

squote :: Doc

The document squote contains a single quote, "’".

dquote :: Doc

The document dquote contains a double quote.

semi :: Doc

The document semi contains a semi colon, ";".

colon :: Doc

The document colon contains a colon, ":".

comma :: Doc

The document comma contains a comma, ",".

space :: Doc

The document space contains a single space, " ".

x <+> y = x <> space <> y

dot :: Doc

The document dot contains a single dot, ".".

backslash :: Doc

The document backslash contains a back slash, "\".

equals :: Doc

The document equals contains an equal sign, "=".

157

larrow :: Doc

The document larrow contains a left arrow sign, "<-".

rarrow :: Doc

The document rarrow contains a right arrow sign, "->".

doubleArrow :: Doc

The document doubleArrow contains an double arrow sign, "=>".

doubleColon :: Doc

The document doubleColon contains a double colon sign, "::".

bar :: Doc

The document bar contains a vertical bar sign, "|".

at :: Doc

The document at contains an at sign, "@".

tilde :: Doc

The document tilde contains a tilde sign, "~".

fill :: Int → Doc → Doc

The document (fill i d) renders document d. It than appends spaces until the width
is equal to i. If the width of d is already larger, nothing is appended. This combinator is
quite useful in practice to output a list of bindings. The following example demonstrates
this.

types = [("empty","Doc")
,("nest","Int -> Doc -> Doc")
,("linebreak","Doc")]

ptype (name,tp)
= fill 6 (text name) <+> text "::" <+> text tp

test = text "let" <+> align (vcat (map ptype types))

Which is layed out as:

let empty :: Doc
nest :: Int -> Doc -> Doc
linebreak :: Doc

158

Note that fill is not guaranteed to be linear-time bounded since it has to compute the
width of a document before pretty printing it

fillBreak :: Int → Doc → Doc

The document (fillBreak i d) first renders document d. It than appends spaces
until the width is equal to i. If the width of d is already larger than i, the nesting
level is increased by i and a line is appended. When we redefine ptype in the previous
example to use fillBreak, we get a useful variation of the previous output:

ptype (name,tp)
= fillBreak 6 (text name) <+> text "::" <+> text tp

The output will now be:

let empty :: Doc
nest :: Int -> Doc -> Doc
linebreak

:: Doc

Note that fillBreak is not guaranteed to be linear-time bounded since it has to compute
the width of a document before pretty printing it

bold :: Doc → Doc

The document (bold d) displays document d with bold text

faint :: Doc → Doc

The document (faint d) displays document d with faint text

blinkSlow :: Doc → Doc

The document (blinkSlow d) displays document d with slowly blinking text (rarely
supported)

blinkRapid :: Doc → Doc

The document (blinkRapid d) displays document d with rapidly blinking text (rarely
supported)

italic :: Doc → Doc

The document (italic d) displays document d with italicized text (rarely supported)

underline :: Doc → Doc

The document (underline d) displays document d with underlined text

crossout :: Doc → Doc

159

The document (crossout d) displays document d with crossed out text

inverse :: Doc → Doc

The document (inverse d) displays document d with inversed coloring, i.e. use text
color of d as background color and background color of d as text color

black :: Doc → Doc

The document (black d) displays document d with black text color

red :: Doc → Doc

The document (red d) displays document d with red text color

green :: Doc → Doc

The document (green d) displays document d with green text color

yellow :: Doc → Doc

The document (yellow d) displays document d with yellow text color

blue :: Doc → Doc

The document (blue d) displays document d with blue text color

magenta :: Doc → Doc

The document (magenta d) displays document d with magenta text color

cyan :: Doc → Doc

The document (cyan d) displays document d with cyan text color

white :: Doc → Doc

The document (white d) displays document d with white text color

bgBlack :: Doc → Doc

The document (bgBlack d) displays document d with black background color

bgRed :: Doc → Doc

The document (bgRed d) displays document d with red background color

bgGreen :: Doc → Doc

The document (bgGreen d) displays document d with green background color

bgYellow :: Doc → Doc

The document (bgYellow d) displays document d with yellow background color

bgBlue :: Doc → Doc

160

The document (bgBlue d) displays document d with blue background color

bgMagenta :: Doc → Doc

The document (bgMagenta d) displays document d with magenta background color

bgCyan :: Doc → Doc

The document (bgCyan d) displays document d with cyan background color

bgWhite :: Doc → Doc

The document (bgWhite d) displays document d with white background color

pretty :: Int → Doc → String

(pretty w d) pretty prints document d with a page width of w characters

A.2.34 Library Profile

Preliminary library to support profiling.

Exported types:

data ProcessInfo

The data type for representing information about the state of a Curry process.

Exported constructors:

• RunTime :: ProcessInfo

RunTime

– the run time in milliseconds

• ElapsedTime :: ProcessInfo

ElapsedTime

– the elapsed time in milliseconds

• Memory :: ProcessInfo

Memory

– the total memory in bytes

• Code :: ProcessInfo

Code

– the size of the code area in bytes

• Stack :: ProcessInfo

Stack

161

– the size of the local stack for recursive functions in bytes

• Heap :: ProcessInfo

Heap

– the size of the heap to store term structures in bytes

• Choices :: ProcessInfo

Choices

– the size of the choicepoint stack

• GarbageCollections :: ProcessInfo

GarbageCollections

– the number of garbage collections performed

Exported functions:

getProcessInfos :: IO [(ProcessInfo,Int)]

Returns various informations about the current state of the Curry process. Note that
the returned values are very implementation dependent so that one should interpret
them with care!

garbageCollectorOff :: IO ()

Turns off the garbage collector of the run-time system (if possible). This could be useful
to get more precise data of memory usage.

garbageCollectorOn :: IO ()

Turns on the garbage collector of the run-time system (if possible).

garbageCollect :: IO ()

Invoke the garbage collector (if possible). This could be useful before run-time critical
operations.

showMemInfo :: [(ProcessInfo,Int)] → String

Get a human readable version of the memory situation from the process infos.

printMemInfo :: IO ()

Print a human readable version of the current memory situation of the Curry process.

profileTime :: IO a → IO a

Print the time needed to execute a given IO action.

profileTimeNF :: a → IO ()

162

Evaluates the argument to normal form and print the time needed for this evaluation.

profileSpace :: IO a → IO a

Print the time and space needed to execute a given IO action. During the executation,
the garbage collector is turned off to get the total space usage.

profileSpaceNF :: a → IO ()

Evaluates the argument to normal form and print the time and space needed for this
evaluation. During the evaluation, the garbage collector is turned off to get the total
space usage.

evalTime :: a → a

Evaluates the argument to normal form (and return the normal form) and print the
time needed for this evaluation on standard error. Included for backward compatibility
only, use profileTime!

evalSpace :: a → a

Evaluates the argument to normal form (and return the normal form) and print the
time and space needed for this evaluation on standard error. During the evaluation,
the garbage collector is turned off. Included for backward compatibility only, use pro-
fileSpace!

A.2.35 Library PropertyFile

A library to read and update files containing properties in the usual equational syntax, i.e., a
property is defined by a line of the form prop=value where prop starts with a letter. All other lines
(e.g., blank lines or lines starting with # are considered as comment lines and are ignored.

Exported functions:

readPropertyFile :: String → IO [(String,String)]

Reads a property file and returns the list of properties. Returns empty list if the property
file does not exist.

updatePropertyFile :: String → String → String → IO ()

Update a property in a property file or add it, if it is not already there.

A.2.36 Library Read

Library with some functions for reading special tokens.
This library is included for backward compatibility. You should use the library ReadNumeric which
provides a better interface for these functions.

163

Exported functions:

readNat :: String → Int

Read a natural number in a string. The string might contain leadings blanks and the
the number is read up to the first non-digit.

readInt :: String → Int

Read a (possibly negative) integer in a string. The string might contain leadings blanks
and the the integer is read up to the first non-digit.

readHex :: String → Int

Read a hexadecimal number in a string. The string might contain leadings blanks and
the the integer is read up to the first non-heaxdecimal digit.

A.2.37 Library ReadNumeric

Library with some functions for reading and converting numeric tokens.

Exported functions:

readInt :: String → Maybe (Int,String)

Read a (possibly negative) integer as a first token in a string. The string might contain
leadings blanks and the integer is read up to the first non-digit. If the string does not
start with an integer token, Nothing is returned, otherwise the result is Just (v, s),
where v is the value of the integer and s is the remaing string without the integer token.

readNat :: String → Maybe (Int,String)

Read a natural number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-digit. If the string does not start with
a natural number token, Nothing is returned, otherwise the result is Just (v, s) where
v is the value of the number and s is the remaing string without the number token.

readHex :: String → Maybe (Int,String)

Read a hexadecimal number as a first token in a string. The string might contain
leadings blanks and the number is read up to the first non-hexadecimal digit. If the
string does not start with a hexadecimal number token, Nothing is returned, otherwise
the result is Just (v, s) where v is the value of the number and s is the remaing string
without the number token.

readOct :: String → Maybe (Int,String)

Read an octal number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-octal digit. If the string does not
start with an octal number token, Nothing is returned, otherwise the result is Just (v,
s) where v is the value of the number and s is the remaing string without the number
token.

164

readBin :: String → Maybe (Int,String)

Read a binary number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-binary digit. If the string does not
start with a binary number token, Nothing is returned, otherwise the result is Just (v,
s) where v is the value of the number and s is the remaing string without the number
token.

A.2.38 Library ReadShowTerm

Library for converting ground terms to strings and vice versa.

Exported functions:

showTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.
Thus, showTerm suspends until its argument is ground. This function is similar to
the prelude function show but can read the string back with readUnqualifiedTerm

(provided that the constructor names are unique without the module qualifier).

showQTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.
Thus, showTerm suspends until its argument is ground. Note that this function differs
from the prelude function show since it prefixes constructors with their module name in
order to read them back with readQTerm.

readsUnqualifiedTerm :: [String] → String → [(a,String)]

Transform a string containing a term in standard prefix notation without module quali-
fiers into the corresponding data term. The first argument is a non-empty list of module
qualifiers that are tried to prefix the constructor in the string in order to get the qualified
constructors (that must be defined in the current program!). In case of a successful parse,
the result is a one element list containing a pair of the data term and the remaining
unparsed string.

readUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module quali-
fiers into the corresponding data term. The first argument is a non-empty list of module
qualifiers that are tried to prefix the constructor in the string in order to get the qualified
constructors (that must be defined in the current program!).

Example: readUnqualifiedTerm ["Prelude"] "Just 3" evaluates to (Just 3)

readsTerm :: String → [(a,String)]

For backward compatibility. Should not be used since their use can be problematic in
case of constructors with identical names in different modules.

165

readTerm :: String → a

For backward compatibility. Should not be used since their use can be problematic in
case of constructors with identical names in different modules.

readsQTerm :: String → [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. In case of a successful parse, the result
is a one element list containing a pair of the data term and the remaining unparsed string.

readQTerm :: String → a

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term.

readQTermFile :: String → IO a

Reads a file containing a string representation of a term in standard prefix notation and
returns the corresponding data term.

readQTermListFile :: String → IO [a]

Reads a file containing lines with string representations of terms of the same type and
returns the corresponding list of data terms.

writeQTermFile :: String → a → IO ()

Writes a ground term into a file in standard prefix notation.

writeQTermListFile :: String → [a] → IO ()

Writes a list of ground terms into a file. Each term is written into a separate line which
might be useful to modify the file with a standard text editor.

A.2.39 Library SetFunctions

This module contains an implementation of set functions. The general idea of set functions is
described in:

S. Antoy, M. Hanus: Set Functions for Functional Logic Programming Proc. 11th Inter-
national Conference on Principles and Practice of Declarative Programming (PPDP’09),
pp. 73-82, ACM Press, 2009

Intuition: If f is an n-ary function, then (setn f) is a set-valued function that collects all non-
determinism caused by f (but not the non-determinism caused by evaluating arguments!) in a set.
Thus, (setn f a1 ... an) returns the set of all values of (f b1 ... bn) where b1,...,bn are
values of the arguments a1,...,an (i.e., the arguments are evaluated "outside" this capsule so that
the non-determinism caused by evaluating these arguments is not captured in this capsule but yields
several results for (setn...). Similarly, logical variables occuring in a1,...,an are not bound inside
this capsule (but causes a suspension until they are bound). The set of values returned by a set
function is represented by an abstract type Values on which several operations are defined in this
module. Actually, it is a multiset of values, i.e., duplicates are not removed.
Restrictions:

166

1. The set is a multiset, i.e., it might contain multiple values.

2. The multiset of values is completely evaluated when demanded. Thus, if it is infinite, its
evaluation will not terminate even if only some elements (e.g., for a containment test) are
demanded. However, for the emptiness test, at most one value will be computed

3. The arguments of a set function are strictly evaluated before the set functions itself will be
evaluated.

Since this implementation is restricted and prototypical, the interface is not stable and might change.

Exported types:

data Values

Abstract type representing multisets of values.

Exported constructors:

Exported functions:

set0 :: a → Values a

Combinator to transform a 0-ary function into a corresponding set function.

set1 :: (a → b) → a → Values b

Combinator to transform a unary function into a corresponding set function.

set2 :: (a → b → c) → a → b → Values c

Combinator to transform a binary function into a corresponding set function.

set3 :: (a → b → c → d) → a → b → c → Values d

Combinator to transform a function of arity 3 into a corresponding set function.

set4 :: (a → b → c → d → e) → a → b → c → d → Values e

Combinator to transform a function of arity 4 into a corresponding set function.

set5 :: (a → b → c → d → e → f) → a → b → c → d → e → Values f

Combinator to transform a function of arity 5 into a corresponding set function.

set6 :: (a → b → c → d → e → f → g) → a → b → c → d → e → f → Values

g

Combinator to transform a function of arity 6 into a corresponding set function.

set7 :: (a → b → c → d → e → f → g → h) → a → b → c → d → e → f → g

→ Values h

167

Combinator to transform a function of arity 7 into a corresponding set function.

isEmpty :: Values a → Bool

Is a multiset of values empty?

notEmpty :: Values a → Bool

Is a multiset of values not empty?

valueOf :: a → Values a → Bool

Is some value an element of a multiset of values?

choose :: Values a → (a,Values a)

Chooses (non-deterministically) some value in a multiset of values and returns the cho-
sen value and the remaining multiset of values. Thus, if we consider the operation
chooseValue by

chooseValue x = fst (choose x)

then (set1 chooseValue) is the identity on value sets, i.e., (set1 chooseValue s)
contains the same elements as the value set s.

chooseValue :: Values a → a

Chooses (non-deterministically) some value in a multiset of values and returns the chosen
value. Thus, (set1 chooseValue) is the identity on value sets, i.e., (set1 chooseValue
s) contains the same elements as the value set s.

select :: Values a → (a,Values a)

Selects (indeterministically) some value in a multiset of values and returns the selected
value and the remaining multiset of values. Thus, select has always at most one value.
It fails if the value set is empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness) if
all values in the argument set are identical.

selectValue :: Values a → a

Selects (indeterministically) some value in a multiset of values and returns the selected
value. Thus, selectValue has always at most one value. It fails if the value set is empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness)
if all values in the argument set are identical. It returns a single value even for infinite
value sets (in contrast to select or choose).

mapValues :: (a → b) → Values a → Values b

Maps a function to all elements of a multiset of values.

168

foldValues :: (a → a → a) → a → Values a → a

Accumulates all elements of a multiset of values by applying a binary operation. This
is similarly to fold on lists, but the binary operation must be commutative so that
the result is independent of the order of applying this operation to all elements in the
multiset.

filterValues :: (a → Bool) → Values a → Values a

Keeps all elements of a multiset of values that satisfy a predicate.

minValue :: (a → a → Bool) → Values a → a

Returns the minimal element of a non-empty multiset of values with respect to a given
total ordering on the elements.

maxValue :: (a → a → Bool) → Values a → a

Returns the maximal element of a non-empty multiset of value with respect to a given
total ordering on the elements.

values2list :: Values a → IO [a]

Puts all elements of a multiset of values in a list. Since the order of the elements in the
list might depend on the time of the computation, this operation is an I/O action.

printValues :: Values a → IO ()

Prints all elements of a multiset of values.

sortValues :: Values a → [a]

Transforms a multiset of values into a list sorted by the standard term ordering. As a
consequence, the multiset of values is completely evaluated.

sortValuesBy :: (a → a → Bool) → Values a → [a]

Transforms a multiset of values into a list sorted by a given ordering on the values. As a
consequence, the multiset of values is completely evaluated. In order to ensure that the
result of this operation is independent of the evaluation order, the given ordering must
be a total order.

A.2.40 Library Socket

Library to support network programming with sockets. In standard applications, the server side
uses the operations listenOn and socketAccept to provide some service on a socket, and the client
side uses the operation connectToSocket to request a service.

Exported types:

data Socket

The abstract type of sockets.

Exported constructors:

169

Exported functions:

listenOn :: Int → IO Socket

Creates a server side socket bound to a given port number.

listenOnFresh :: IO (Int,Socket)

Creates a server side socket bound to a free port. The port number and the socket is
returned.

socketAccept :: Socket → IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client. The handle is both
readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available
within the time limit, it returns Nothing, otherwise the connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

connectToSocket :: String → Int → IO Handle

Creates a new connection to a Unix socket.

A.2.41 Library State

This library provides an implementation of the state monad.

Exported types:

type State a b = a → (b,a)

Exported functions:

bindS :: (a → (b,a)) → (b → a → (c,a)) → a → (c,a)

bindS :: (a → (b,a)) → (a → (c,a)) → a → (c,a)

170

returnS :: a → b → (a,b)

getS :: a → (a,a)

putS :: a → a → ((),a)

modifyS :: (a → a) → a → ((),a)

sequenceS :: [a → (b,a)] → a → ([b],a)

sequenceS :: [a → (b,a)] → a → ((),a)

mapS :: (a → b → (c,b)) → [a] → b → ([c],b)

mapS :: (a → b → (c,b)) → [a] → b → ((),b)

runState :: (a → (b,a)) → a → (b,a)

evalState :: (a → (b,a)) → a → b

execState :: (a → (b,a)) → a → a

liftS :: (a → b) → (c → (a,c)) → c → (b,c)

liftS2 :: (a → b → c) → (d → (a,d)) → (d → (b,d)) → d → (c,d)

A.2.42 Library System

Library to access parts of the system environment.

171

Exported functions:

getCPUTime :: IO Int

Returns the current cpu time of the process in milliseconds.

getElapsedTime :: IO Int

Returns the current elapsed time of the process in milliseconds. This operation is not
supported in KiCS2 (there it always returns 0), but only included for compatibility
reasons.

getArgs :: IO [String]

Returns the list of the program’s command line arguments. The program name is not
included.

getEnviron :: String → IO String

Returns the value of an environment variable. The empty string is returned for undefined
environment variables.

setEnviron :: String → String → IO ()

Set an environment variable to a value. The new value will be passed to subsequent
shell commands (see system) and visible to subsequent calls to getEnviron (but it is
not visible in the environment of the process that started the program execution).

unsetEnviron :: String → IO ()

Removes an environment variable that has been set by setEnviron.

getHostname :: IO String

Returns the hostname of the machine running this process.

getPID :: IO Int

Returns the process identifier of the current Curry process.

getProgName :: IO String

Returns the name of the current program, i.e., the name of the main module currently
executed.

system :: String → IO Int

Executes a shell command and return with the exit code of the command. An exit
status of zero means successful execution.

exitWith :: Int → IO a

Terminates the execution of the current Curry program and returns the exit code given
by the argument. An exit code of zero means successful execution.

172

sleep :: Int → IO ()

The evaluation of the action (sleep n) puts the Curry process asleep for n seconds.

isPosix :: Bool

Is the underlying operating system a POSIX system (unix, MacOS)?

isWindows :: Bool

Is the underlying operating system a Windows system?

A.2.43 Library Time

Library for handling date and time information.

Exported types:

data ClockTime

ClockTime represents a clock time in some internal representation.

Exported constructors:

data CalendarTime

A calendar time is presented in the following form: (CalendarTime year month day hour
minute second timezone) where timezone is an integer representing the timezone as a
difference to UTC time in seconds.

Exported constructors:

• CalendarTime :: Int → Int → Int → Int → Int → Int → Int → CalendarTime

Exported functions:

ctYear :: CalendarTime → Int

The year of a calendar time.

ctMonth :: CalendarTime → Int

The month of a calendar time.

ctDay :: CalendarTime → Int

The day of a calendar time.

ctHour :: CalendarTime → Int

The hour of a calendar time.

ctMin :: CalendarTime → Int

173

The minute of a calendar time.

ctSec :: CalendarTime → Int

The second of a calendar time.

ctTZ :: CalendarTime → Int

The time zone of a calendar time. The value of the time zone is the difference to UTC
time in seconds.

getClockTime :: IO ClockTime

Returns the current clock time.

getLocalTime :: IO CalendarTime

Returns the local calendar time.

clockTimeToInt :: ClockTime → Int

Transforms a clock time into a unique integer. It is ensured that clock times that differs
in at least one second are mapped into different integers.

toCalendarTime :: ClockTime → IO CalendarTime

Transforms a clock time into a calendar time according to the local time (if possible).
Since the result depends on the local environment, it is an I/O operation.

toUTCTime :: ClockTime → CalendarTime

Transforms a clock time into a standard UTC calendar time. Thus, this operation is
independent on the local time.

toClockTime :: CalendarTime → ClockTime

Transforms a calendar time (interpreted as UTC time) into a clock time.

calendarTimeToString :: CalendarTime → String

Transforms a calendar time into a readable form.

toDayString :: CalendarTime → String

Transforms a calendar time into a string containing the day, e.g., "September 23, 2006".

toTimeString :: CalendarTime → String

Transforms a calendar time into a string containing the time.

addSeconds :: Int → ClockTime → ClockTime

Adds seconds to a given time.

addMinutes :: Int → ClockTime → ClockTime

174

Adds minutes to a given time.

addHours :: Int → ClockTime → ClockTime

Adds hours to a given time.

addDays :: Int → ClockTime → ClockTime

Adds days to a given time.

addMonths :: Int → ClockTime → ClockTime

Adds months to a given time.

addYears :: Int → ClockTime → ClockTime

Adds years to a given time.

daysOfMonth :: Int → Int → Int

Gets the days of a month in a year.

validDate :: Int → Int → Int → Bool

Is a date consisting of year/month/day valid?

compareDate :: CalendarTime → CalendarTime → Ordering

Compares two dates (don’t use it, just for backward compatibility!).

compareCalendarTime :: CalendarTime → CalendarTime → Ordering

Compares two calendar times.

compareClockTime :: ClockTime → ClockTime → Ordering

Compares two clock times.

A.2.44 Library Unsafe

Library containing unsafe operations. These operations should be carefully used (e.g., for testing
or debugging). These operations should not be used in application programs!

Exported functions:

unsafePerformIO :: IO a → a

Performs and hides an I/O action in a computation (use with care!).

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

spawnConstraint :: Bool → a → a

175

Spawns a constraint and returns the second argument. This function can be considered
as defined by spawnConstraint c x | c = x. However, the evaluation of the constraint
and the right-hand side are performed concurrently, i.e., a suspension of the constraint
does not imply a blocking of the right-hand side and the right-hand side might be
evaluated before the constraint is successfully solved. Thus, a computation might return
a result even if some of the spawned constraints are suspended (use the PAKCS option
+suspend to show such suspended goals).

isVar :: a → Bool

Tests whether the first argument evaluates to a currently unbound variable (use with
care!).

identicalVar :: a → a → Bool

Tests whether both arguments evaluate to the identical currently unbound variable
(use with care!). For instance, identicalVar (id x) (fst (x,1)) evaluates to True

whereas identicalVar x y and let x=1 in identicalVar x x evaluate to False

isGround :: a → Bool

Tests whether the argument evaluates to a ground value (use with care!).

compareAnyTerm :: a → a → Ordering

Comparison of any data terms, possibly containing variables. Data constructors are
compared in the order of their definition in the datatype declarations and recursively in
the arguments. Variables are compared in some internal order.

showAnyTerm :: a → String

Transforms the normal form of a term into a string representation in stan-
dard prefix notation. Thus, showAnyTerm evaluates its argument to normal
form. This function is similar to the function ReadShowTerm.showTerm but it also
transforms logic variables into a string representation that can be read back by
Unsafe.read(s)AnyUnqualifiedTerm. Thus, the result depends on the evaluation and
binding status of logic variables so that it should be used with care!

showAnyQTerm :: a → String

Transforms the normal form of a term into a string representation in standard prefix
notation. Thus, showAnyQTerm evaluates its argument to normal form. This function
is similar to the function ReadShowTerm.showQTerm but it also transforms logic variables
into a string representation that can be read back by Unsafe.read(s)AnyQTerm. Thus,
the result depends on the evaluation and binding status of logic variables so that it
should be used with care!

readsAnyUnqualifiedTerm :: [String] → String → [(a,String)]

176

Transform a string containing a term in standard prefix notation without module qual-
ifiers into the corresponding data term. The string might contain logical variable en-
codings produced by showAnyTerm. In case of a successful parse, the result is a one
element list containing a pair of the data term and the remaining unparsed string.

readAnyUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module qual-
ifiers into the corresponding data term. The string might contain logical variable en-
codings produced by showAnyTerm.

readsAnyQTerm :: String → [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. The string might contain logical
variable encodings produced by showAnyQTerm. In case of a successful parse, the re-
sult is a one element list containing a pair of the data term and the remaining unparsed
string.

readAnyQTerm :: String → a

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. The string might contain logical
variable encodings produced by showAnyQTerm.

showAnyExpression :: a → String

Transforms any expression (even not in normal form) into a string representation in
standard prefix notation without module qualifiers. The result depends on the evaluation
and binding status of logic variables so that it should be used with care!

showAnyQExpression :: a → String

Transforms any expression (even not in normal form) into a string representation in
standard prefix notation with module qualifiers. The result depends on the evaluation
and binding status of logic variables so that it should be used with care!

readsAnyQExpression :: String → [(a,String)]

Transforms a string containing an expression in standard prefix notation with qualified
constructor names into the corresponding expression. The string might contain logical
variable and defined function encodings produced by showAnyQExpression. In case of a
successful parse, the result is a one element list containing a pair of the expression and
the remaining unparsed string.

readAnyQExpression :: String → a

Transforms a string containing an expression in standard prefix notation with qualified
constructor names into the corresponding expression. The string might contain logical
variable and defined function encodings produced by showAnyQExpression.

177

A.2.45 Library Test.EasyCheck

EasyCheck is a library for automated, property-based testing of Curry programs. The ideas behind
EasyCheck are described in this paper. The CurryCheck tool automatically executes tests defined
with this library. CurryCheck supports the definition of unit tests (also for I/O operations) and
property tests parameterized over some arguments. CurryCheck is described in more detail in this
paper.
Note that this module defines the interface of EasyCheck to define properties. The operations to
actually execute the tests are contained in the accompanying library Test.EasyCheckExec.

Exported types:

data PropIO

Abstract type to represent properties involving IO actions.

Exported constructors:

data Test

Abstract type to represent a single test for a property to be checked. A test consists
of the result computed for this test, the arguments used for this test, and the labels
possibly assigned to this test by annotating properties.

Exported constructors:

data Result

Data type to represent the result of checking a property.

Exported constructors:

• Undef :: Result

• Ok :: Result

• Falsified :: [String] → Result

• Ambigious :: [Bool] → [String] → Result

data Prop

Abstract type to represent properties to be checked. Basically, it contains all tests to
be executed to check the property.

Exported constructors:

178

http://www-ps.informatik.uni-kiel.de/~sebf/pub/flops08.html
http://www.informatik.uni-kiel.de/~mh/papers/LOPSTR16.html
http://www.informatik.uni-kiel.de/~mh/papers/LOPSTR16.html

Exported functions:

returns :: IO a → a → PropIO

The property returns a x is satisfied if the execution of the I/O action a returns the
value x.

sameReturns :: IO a → IO a → PropIO

The property sameReturns a1 a2 is satisfied if the execution of the I/O actions a1 and
a2 return identical values.

toError :: a → PropIO

The property toError a is satisfied if the evaluation of the argument to normal form
yields an exception.

toIOError :: IO a → PropIO

The property toIOError a is satisfied if the execution of the I/O action a causes an
exception.

ioTestOf :: PropIO → Bool → String → IO (Maybe String)

Extracts the tests of an I/O property (used by the test runner).

testsOf :: Prop → [Test]

Extracts the tests of a property (used by the test runner).

result :: Test → Result

Extracts the result of a test.

args :: Test → [String]

Extracts the arguments of a test.

stamp :: Test → [String]

Extracts the labels of a test.

updArgs :: ([String] → [String]) → Test → Test

Updates the arguments of a test.

test :: a → ([a] → Bool) → Prop

Constructs a property to be tested from an arbitrary expression (first argument) and
a predicate that is applied to the list of non-deterministic values. The given predi-
cate determines whether the constructed property is satisfied or falsified for the given
expression.

(-=-) :: a → a → Prop

179

The property x -=- y is satisfied if x and y have deterministic values that are equal.

(<~>) :: a → a → Prop

The property x <~> y is satisfied if the sets of the values of x and y are equal.

(~>) :: a → a → Prop

The property x ~> y is satisfied if x evaluates to every value of y. Thus, the set of
values of y must be a subset of the set of values of x.

(<~) :: a → a → Prop

The property x <~ y is satisfied if y evaluates to every value of x. Thus, the set of
values of x must be a subset of the set of values of y.

(<~~>) :: a → a → Prop

The property x <~~> y is satisfied if the multisets of the values of x and y are equal.

(==>) :: Bool → Prop → Prop

A conditional property is tested if the condition evaluates to True.

solutionOf :: (a → Bool) → a

solutionOf p returns (non-deterministically) a solution of predicate p. This operation
is useful to test solutions of predicates.

is :: a → (a → Bool) → Prop

The property is x p is satisfied if x has a deterministic value which satisfies p.

isAlways :: a → (a → Bool) → Prop

The property isAlways x p is satisfied if all values of x satisfy p.

isEventually :: a → (a → Bool) → Prop

The property isEventually x p is satisfied if some value of x satisfies p.

uniquely :: Bool → Prop

The property uniquely x is satisfied if x has a deterministic value which is true.

always :: Bool → Prop

The property always x is satisfied if all values of x are true.

eventually :: Bool → Prop

The property eventually x is satisfied if some value of x is true.

failing :: a → Prop

180

The property failing x is satisfied if x has no value.

successful :: a → Prop

The property successful x is satisfied if x has at least one value.

deterministic :: a → Prop

The property deterministic x is satisfied if x has exactly one value.

(#) :: a → Int → Prop

The property x # n is satisfied if x has n values.

(#<) :: a → Int → Prop

The property x #< n is satisfied if x has less than n values.

(#>) :: a → Int → Prop

The property x #> n is satisfied if x has more than n values.

for :: a → (a → Prop) → Prop

The property for x p is satisfied if all values y of x satisfy property p y.

forAll :: [a] → (a → Prop) → Prop

The property forAll xs p is satisfied if all values x of the list xs satisfy property p x.

forAllValues :: (a → Prop) → [b] → (b → a) → Prop

Only for internal use by the test runner.

(<=>) :: a → a → Prop

The property f <=> g is satisfied if f and g are equivalent operations, i.e., they can
be replaced in any context without changing the computed results.

label :: String → Prop → Prop

Assign a label to a property. All labeled tests are counted and shown at the end.

classify :: Bool → String → Prop → Prop

Assign a label to a property if the first argument is True. All labeled tests are counted
and shown at the end. Hence, this combinator can be used to classify tests:

multIsComm x y = classify (x<0 || y<0) "Negative" $ x*y -=- y*x

trivial :: Bool → Prop → Prop

Assign the label "trivial" to a property if the first argument is True. All labeled tests
are counted and shown at the end.

181

collect :: a → Prop → Prop

Assign a label showing the given argument to a property. All labeled tests are counted
and shown at the end.

collectAs :: String → a → Prop → Prop

Assign a label showing a given name and the given argument to a property. All labeled
tests are counted and shown at the end.

valuesOfSearchTree :: SearchTree a → [a]

Extracts values of a search tree according to a given strategy (here: randomized diago-
nalization of levels with flattening).

valuesOf :: a → [a]

Computes the list of all values of the given argument according to a given strategy (here:
randomized diagonalization of levels with flattening).

A.2.46 Library Test.Prop

This module defines the interface of properties that can be checked with the CurryCheck tool,
an automatic property-based test tool based on the EasyCheck library. The ideas behind Easy-
Check are described in this paper. CurryCheck automatically tests properties defined with this
library. CurryCheck supports the definition of unit tests (also for I/O operations) and property
tests parameterized over some arguments. CurryCheck is described in more detail in this paper.
Basically, this module is a stub clone of the EasyCheck library which contains only the interface
of the operations used to specify properties. Hence, this library does not import any other library.
This supports the definition of properties in any other module (execept for the prelude).

Exported types:

data PropIO

Abstract type to represent properties involving IO actions.

Exported constructors:

data Prop

Abstract type to represent properties to be checked. Basically, it contains all tests to
be executed to check the property.

Exported constructors:

182

http://www-ps.informatik.uni-kiel.de/~sebf/pub/flops08.html
http://www.informatik.uni-kiel.de/~mh/papers/LOPSTR16.html

Exported functions:

returns :: IO a → a → PropIO

The property returns a x is satisfied if the execution of the I/O action a returns the
value x.

sameReturns :: IO a → IO a → PropIO

The property sameReturns a1 a2 is satisfied if the execution of the I/O actions a1 and
a2 return identical values.

toError :: a → PropIO

The property toError a is satisfied if the evaluation of the argument to normal form
yields an exception.

toIOError :: IO a → PropIO

The property toIOError a is satisfied if the execution of the I/O action a causes an
exception.

(-=-) :: a → a → Prop

The property x -=- y is satisfied if x and y have deterministic values that are equal.

(<~>) :: a → a → Prop

The property x <~> y is satisfied if the sets of the values of x and y are equal.

(~>) :: a → a → Prop

The property x ~> y is satisfied if x evaluates to every value of y. Thus, the set of
values of y must be a subset of the set of values of x.

(<~) :: a → a → Prop

The property x <~ y is satisfied if y evaluates to every value of x. Thus, the set of
values of x must be a subset of the set of values of y.

(<~~>) :: a → a → Prop

The property x <~~> y is satisfied if the multisets of the values of x and y are equal.

(==>) :: Bool → Prop → Prop

A conditional property is tested if the condition evaluates to True.

solutionOf :: (a → Bool) → a

solutionOf p returns (non-deterministically) a solution of predicate p. This operation
is useful to test solutions of predicates.

is :: a → (a → Bool) → Prop

183

The property is x p is satisfied if x has a deterministic value which satisfies p.

isAlways :: a → (a → Bool) → Prop

The property isAlways x p is satisfied if all values of x satisfy p.

isEventually :: a → (a → Bool) → Prop

The property isEventually x p is satisfied if some value of x satisfies p.

uniquely :: Bool → Prop

The property uniquely x is satisfied if x has a deterministic value which is true.

always :: Bool → Prop

The property always x is satisfied if all values of x are true.

eventually :: Bool → Prop

The property eventually x is satisfied if some value of x is true.

failing :: a → Prop

The property failing x is satisfied if x has no value.

successful :: a → Prop

The property successful x is satisfied if x has at least one value.

deterministic :: a → Prop

The property deterministic x is satisfied if x has exactly one value.

(#) :: a → Int → Prop

The property x # n is satisfied if x has n values.

(#<) :: a → Int → Prop

The property x #< n is satisfied if x has less than n values.

(#>) :: a → Int → Prop

The property x #> n is satisfied if x has more than n values.

for :: a → (a → Prop) → Prop

The property for x p is satisfied if all values y of x satisfy property p y.

forAll :: [a] → (a → Prop) → Prop

The property forAll xs p is satisfied if all values x of the list xs satisfy property p x.

(<=>) :: a → a → Prop

184

The property f <=> g is satisfied if f and g are equivalent operations, i.e., they can
be replaced in any context without changing the computed results.

label :: String → Prop → Prop

Assign a label to a property. All labeled tests are counted and shown at the end.

classify :: Bool → String → Prop → Prop

Assign a label to a property if the first argument is True. All labeled tests are counted
and shown at the end. Hence, this combinator can be used to classify tests:

multIsComm x y = classify (x<0 || y<0) "Negative" $ x*y -=- y*x

trivial :: Bool → Prop → Prop

Assign the label "trivial" to a property if the first argument is True. All labeled tests
are counted and shown at the end.

collect :: a → Prop → Prop

Assign a label showing the given argument to a property. All labeled tests are counted
and shown at the end.

collectAs :: String → a → Prop → Prop

Assign a label showing a given name and the given argument to a property. All labeled
tests are counted and shown at the end.

valuesOf :: a → [a]

Computes the list of all values of the given argument according to a given strategy (here:
randomized diagonalization of levels with flattening).

A.3 Data Structures and Algorithms

A.3.1 Library Array

Implementation of Arrays with Braun Trees. Conceptually, Braun trees are always infinite. Conse-
quently, there is no test on emptiness.

Exported types:

data Array

Exported constructors:

185

Exported functions:

emptyErrorArray :: Array a

Creates an empty array which generates errors for non-initialized indexes.

emptyDefaultArray :: (Int → a) → Array a

Creates an empty array, call given function for non-initialized indexes.

(//) :: Array a → [(Int,a)] → Array a

Inserts a list of entries into an array.

update :: Array a → Int → a → Array a

Inserts a new entry into an array.

applyAt :: Array a → Int → (a → a) → Array a

Applies a function to an element.

(!) :: Array a → Int → a

Yields the value at a given position.

listToDefaultArray :: (Int → a) → [a] → Array a

Creates a default array from a list of entries.

listToErrorArray :: [a] → Array a

Creates an error array from a list of entries.

combine :: (a → b → c) → Array a → Array b → Array c

combine two arbitrary arrays

combineSimilar :: (a → a → a) → Array a → Array a → Array a

the combination of two arrays with identical default function and a combinator which
is neutral in the default can be implemented much more efficient

A.3.2 Library Dequeue

An implementation of double-ended queues supporting access at both ends in constant amortized
time.

Exported types:

data Queue

The datatype of a queue.

Exported constructors:

186

Exported functions:

empty :: Queue a

The empty queue.

cons :: a → Queue a → Queue a

Inserts an element at the front of the queue.

snoc :: a → Queue a → Queue a

Inserts an element at the end of the queue.

isEmpty :: Queue a → Bool

Is the queue empty?

deqLength :: Queue a → Int

Returns the number of elements in the queue.

deqHead :: Queue a → a

The first element of the queue.

deqTail :: Queue a → Queue a

Removes an element at the front of the queue.

deqLast :: Queue a → a

The last element of the queue.

deqInit :: Queue a → Queue a

Removes an element at the end of the queue.

deqReverse :: Queue a → Queue a

Reverses a double ended queue.

rotate :: Queue a → Queue a

Moves the first element to the end of the queue.

matchHead :: Queue a → Maybe (a,Queue a)

Matches the front of a queue. matchHead q is equivalent to if isEmpty q then

Nothing else Just (deqHead q, deqTail q) but more efficient.

matchLast :: Queue a → Maybe (a,Queue a)

Matches the end of a queue. matchLast q is equivalent to if isEmpty q then Nothing

else Just (deqLast q,deqInit q) but more efficient.

listToDeq :: [a] → Queue a

Transforms a list to a double ended queue.

deqToList :: Queue a → [a]

Transforms a double ended queue to a list.

187

A.3.3 Library FiniteMap

A finite map is an efficient purely functional data structure to store a mapping from keys to values.
In order to store the mapping efficiently, an irreflexive(!) order predicate has to be given, i.e., the
order predicate le should not satisfy (le x x) for some key x.
Example: To store a mapping from Int -> String, the finite map needs a Boolean predicate like
(<). This version was ported from a corresponding Haskell library

Exported types:

data FM

Exported constructors:

Exported functions:

emptyFM :: (a → a → Bool) → FM a b

The empty finite map.

unitFM :: (a → a → Bool) → a → b → FM a b

Construct a finite map with only a single element.

listToFM :: (a → a → Bool) → [(a,b)] → FM a b

Builts a finite map from given list of tuples (key,element). For multiple occurences of
key, the last corresponding element of the list is taken.

addToFM :: FM a b → a → b → FM a b

Throws away any previous binding and stores the new one given.

addListToFM :: FM a b → [(a,b)] → FM a b

Throws away any previous bindings and stores the new ones given. The items are added
starting with the first one in the list

addToFM C :: (a → a → a) → FM b a → b → a → FM b a

Instead of throwing away the old binding, addToFM_C combines the new element with
the old one.

addListToFM C :: (a → a → a) → FM b a → [(b,a)] → FM b a

Combine with a list of tuples (key,element), cf. addToFM_C

delFromFM :: FM a b → a → FM a b

Deletes key from finite map. Deletion doesn’t complain if you try to delete something
which isn’t there

188

delListFromFM :: FM a b → [a] → FM a b

Deletes a list of keys from finite map. Deletion doesn’t complain if you try to delete
something which isn’t there

updFM :: FM a b → a → (b → b) → FM a b

Applies a function to element bound to given key.

splitFM :: FM a b → a → Maybe (FM a b,(a,b))

Combines delFrom and lookup.

plusFM :: FM a b → FM a b → FM a b

Efficiently add key/element mappings of two maps into a single one. Bindings in right
argument shadow those in the left

plusFM C :: (a → a → a) → FM b a → FM b a → FM b a

Efficiently combine key/element mappings of two maps into a single one, cf. ad-
dToFM_C

minusFM :: FM a b → FM a b → FM a b

(minusFM a1 a2) deletes from a1 any bindings which are bound in a2

intersectFM :: FM a b → FM a b → FM a b

Filters only those keys that are bound in both of the given maps. The elements will be
taken from the second map.

intersectFM C :: (a → b → c) → FM d a → FM d b → FM d c

Filters only those keys that are bound in both of the given maps and combines the
elements as in addToFM_C.

foldFM :: (a → b → c → c) → c → FM a b → c

Folds finite map by given function.

mapFM :: (a → b → c) → FM a b → FM a c

Applies a given function on every element in the map.

filterFM :: (a → b → Bool) → FM a b → FM a b

Yields a new finite map with only those key/element pairs matching the given predicate.

sizeFM :: FM a b → Int

How many elements does given map contain?

eqFM :: FM a b → FM a b → Bool

189

Do two given maps contain the same key/element pairs?

isEmptyFM :: FM a b → Bool

Is the given finite map empty?

elemFM :: a → FM a b → Bool

Does given map contain given key?

lookupFM :: FM a b → a → Maybe b

Retrieves element bound to given key

lookupWithDefaultFM :: FM a b → b → a → b

Retrieves element bound to given key. If the element is not contained in map, return
default value.

keyOrder :: FM a b → a → a → Bool

Retrieves the ordering on which the given finite map is built.

minFM :: FM a b → Maybe (a,b)

Retrieves the smallest key/element pair in the finite map according to the basic key
ordering.

maxFM :: FM a b → Maybe (a,b)

Retrieves the greatest key/element pair in the finite map according to the basic key
ordering.

fmToList :: FM a b → [(a,b)]

Builds a list of key/element pairs. The list is ordered by the initially given irreflexive
order predicate on keys.

keysFM :: FM a b → [a]

Retrieves a list of keys contained in finite map. The list is ordered by the initially given
irreflexive order predicate on keys.

eltsFM :: FM a b → [b]

Retrieves a list of elements contained in finite map. The list is ordered by the initially
given irreflexive order predicate on keys.

fmToListPreOrder :: FM a b → [(a,b)]

Retrieves list of key/element pairs in preorder of the internal tree. Useful for lists that
will be retransformed into a tree or to match any elements regardless of basic order.

fmSortBy :: (a → a → Bool) → [a] → [a]

190

Sorts a given list by inserting and retrieving from finite map. Duplicates are deleted.

showFM :: FM a b → String

Transforms a finite map into a string. For efficiency reasons, the tree structure is shown
which is valid for reading only if one uses the same ordering predicate.

readFM :: (a → a → Bool) → String → FM a b

Transforms a string representation of a finite map into a finite map. One has two provide
the same ordering predicate as used in the original finite map.

A.3.4 Library Random

Library for pseudo-random number generation in Curry.
This library provides operations for generating pseudo-random number sequences. For any given
seed, the sequences generated by the operations in this module should be identical to the sequences
generated by the java.util.Random package.
The algorithm is a linear congruential pseudo-random number generator described in Donald E.
Knuth, The Art of Computer Programming , Volume 2: Seminumerical Algorithms, section 3.2.1.

Exported functions:

nextInt :: Int → [Int]

Returns a sequence of pseudorandom, uniformly distributed 32-bits integer values. All
232 possible integer values are produced with (approximately) equal probability.

nextIntRange :: Int → Int → [Int]

Returns a pseudorandom, uniformly distributed sequence of values between 0 (inclusive)
and the specified value (exclusive). Each value is a 32-bits positive integer. All n possible
values are produced with (approximately) equal probability.

nextBoolean :: Int → [Bool]

Returns a pseudorandom, uniformly distributed sequence of boolean values. The values
True and False are produced with (approximately) equal probability.

getRandomSeed :: IO Int

Returns a time-dependent integer number as a seed for really random numbers. Should
only be used as a seed for pseudorandom number sequence and not as a random number
since the precision is limited to milliseconds

shuffle :: Int → [a] → [a]

Computes a random permutation of the given list.

191

A.3.5 Library RedBlackTree

Library with an implementation of red-black trees:
Serves as the base for both TableRBT and SetRBT All the operations on trees are generic, i.e., one
has to provide two explicit order predicates ("lessThan" and "eq"below) on elements.

Exported types:

data RedBlackTree

A red-black tree consists of a tree structure and three order predicates. These predicates
generalize the red black tree. They define 1) equality when inserting into the tree

eg for a set eqInsert is (==), for a multiset it is (-> False) for a lookUp-table it is
((==) . fst) 2) equality for looking up values eg for a set eqLookUp is (==), for a
multiset it is (==) for a lookUp-table it is ((==) . fst) 3) the (less than) relation for
the binary search tree

Exported constructors:

Exported functions:

empty :: (a → a → Bool) → (a → a → Bool) → (a → a → Bool) → RedBlackTree

a

The three relations are inserted into the structure by function empty. Returns an empty
tree, i.e., an empty red-black tree augmented with the order predicates.

isEmpty :: RedBlackTree a → Bool

Test on emptyness

newTreeLike :: RedBlackTree a → RedBlackTree a

Creates a new empty red black tree from with the same ordering as a give one.

lookup :: a → RedBlackTree a → Maybe a

Returns an element if it is contained in a red-black tree.

update :: a → RedBlackTree a → RedBlackTree a

Updates/inserts an element into a RedBlackTree.

delete :: a → RedBlackTree a → RedBlackTree a

Deletes entry from red black tree.

tree2list :: RedBlackTree a → [a]

Transforms a red-black tree into an ordered list of its elements.

sortBy :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for
the elements.

setInsertEquivalence :: (a → a → Bool) → RedBlackTree a → RedBlackTree a

For compatibility with old version only

192

A.3.6 Library SCC

Computing strongly connected components
Copyright (c) 2000 - 2003, Wolfgang Lux See LICENSE for the full license.
The function scc computes the strongly connected components of a list of entities in two steps.
First, the list is topologically sorted "downwards" using the defines relation. Then the resulting list
is sorted "upwards" using the uses relation and partitioned into the connected components. Both
relations are computed within this module using the bound and free names of each declaration.
In order to avoid useless recomputations, the code in the module first decorates the declarations
with their bound and free names and a unique number. The latter is only used to provide a trivial
ordering so that the declarations can be used as set elements.

Exported functions:

scc :: (a → [b]) → (a → [b]) → [a] → [[a]]

Computes the strongly connected components of a list of entities. To be flexible, we
distinguish the nodes and the entities defined in this node.

A.3.7 Library SearchTree

This library defines a representation of a search space as a tree and various search strategies on this
tree. This module implements strong encapsulation as discussed in the JFLP’04 paper.

Exported types:

type Strategy a = SearchTree a → ValueSequence a

A search strategy maps a search tree into some sequence of values. Using the abtract
type of sequence of values (rather than list of values) enables the use of search strategies
for encapsulated search with search trees (strong encapsulation) as well as with set
functions (weak encapsulation).

data SearchTree

A search tree is a value, a failure, or a choice between two search trees.

Exported constructors:

• Value :: a → SearchTree a

• Fail :: Int → SearchTree a

• Or :: (SearchTree a) → (SearchTree a) → SearchTree a

193

http://www.informatik.uni-kiel.de/~mh/papers/JFLP04_findall.html

Exported functions:

getSearchTree :: a → IO (SearchTree a)

Returns the search tree for some expression.

someSearchTree :: a → SearchTree a

Internal operation to return the search tree for some expression. Note that this operation
is not purely declarative since the ordering in the resulting search tree depends on the
ordering of the program rules.

Note that in PAKCS the search tree is just a degenerated tree representing all values of
the argument expression and it is computed at once (i.e., not lazily!).

isDefined :: a → Bool

Returns True iff the argument is defined, i.e., has a value.

showSearchTree :: SearchTree a → String

Shows the search tree as an intended line structure

searchTreeSize :: SearchTree a → (Int,Int,Int)

Returns the size (number of Value/Fail/Or nodes) of the search tree.

limitSearchTree :: Int → SearchTree a → SearchTree a

Limit the depth of a search tree. Branches which a depth larger than the first argument
are replace by Fail (-1).

dfsStrategy :: SearchTree a → ValueSequence a

Depth-first search strategy.

bfsStrategy :: SearchTree a → ValueSequence a

Breadth-first search strategy.

idsStrategy :: SearchTree a → ValueSequence a

Iterative-deepening search strategy.

idsStrategyWith :: Int → (Int → Int) → SearchTree a → ValueSequence a

Parameterized iterative-deepening search strategy. The first argument is the initial
depth bound and the second argument is a function to increase the depth in each itera-
tion.

diagStrategy :: SearchTree a → ValueSequence a

Diagonalization search strategy.

allValuesWith :: (SearchTree a → ValueSequence a) → SearchTree a → [a]

194

Return all values in a search tree via some given search strategy.

allValuesDFS :: SearchTree a → [a]

Return all values in a search tree via depth-first search.

allValuesBFS :: SearchTree a → [a]

Return all values in a search tree via breadth-first search.

allValuesIDS :: SearchTree a → [a]

Return all values in a search tree via iterative-deepening search.

allValuesIDSwith :: Int → (Int → Int) → SearchTree a → [a]

Return all values in a search tree via iterative-deepening search. The first argument is
the initial depth bound and the second argument is a function to increase the depth in
each iteration.

allValuesDiag :: SearchTree a → [a]

Return all values in a search tree via diagonalization search strategy.

getAllValuesWith :: (SearchTree a → ValueSequence a) → a → IO [a]

Gets all values of an expression w.r.t. a search strategy. A search strategy is an operation
to traverse a search tree and collect all values, e.g., dfsStrategy or bfsStrategy.
Conceptually, all values are computed on a copy of the expression, i.e., the evaluation
of the expression does not share any results.

printAllValuesWith :: (SearchTree a → ValueSequence a) → a → IO ()

Prints all values of an expression w.r.t. a search strategy. A search strategy is an opera-
tion to traverse a search tree and collect all values, e.g., dfsStrategy or bfsStrategy.
Conceptually, all printed values are computed on a copy of the expression, i.e., the
evaluation of the expression does not share any results.

printValuesWith :: (SearchTree a → ValueSequence a) → a → IO ()

Prints the values of an expression w.r.t. a search strategy on demand by the user. Thus,
the user must type <enter></enter> before another value is computed and printed.
A search strategy is an operation to traverse a search tree and collect all values, e.g.,
dfsStrategy or bfsStrategy. Conceptually, all printed values are computed on a copy
of the expression, i.e., the evaluation of the expression does not share any results.

someValue :: a → a

Returns some value for an expression.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value. It fails if the expression has no value.

195

someValueWith :: (SearchTree a → ValueSequence a) → a → a

Returns some value for an expression w.r.t. a search strategy. A search strategy
is an operation to traverse a search tree and collect all values, e.g., dfsStrategy or
bfsStrategy.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value. It fails if the expression has no value.

A.3.8 Library SearchTreeTraversal

Implements additional traversals on search trees.

Exported functions:

depthDiag :: SearchTree a → [a]

diagonalized depth first search.

rndDepthDiag :: Int → SearchTree a → [a]

randomized variant of diagonalized depth first search.

levelDiag :: SearchTree a → [a]

diagonalization of devels.

rndLevelDiag :: Int → SearchTree a → [a]

randomized diagonalization of levels.

rndLevelDiagFlat :: Int → Int → SearchTree a → [a]

randomized diagonalization of levels with flattening.

A.3.9 Library SetRBT

Library with an implementation of sets as red-black trees.
All the operations on sets are generic, i.e., one has to provide an explicit order predicate (<)
(less-than) on elements.

Exported types:

type SetRBT a = RedBlackTree a

196

Exported functions:

emptySetRBT :: (a → a → Bool) → RedBlackTree a

Returns an empty set, i.e., an empty red-black tree augmented with an order predicate.

isEmptySetRBT :: RedBlackTree a → Bool

Test for an empty set.

elemRBT :: a → RedBlackTree a → Bool

Returns true if an element is contained in a (red-black tree) set.

insertRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a set if it is not already there.

insertMultiRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a multiset. Thus, the same element can have several occurrences
in the multiset.

deleteRBT :: a → RedBlackTree a → RedBlackTree a

delete an element from a set. Deletes only a single element from a multi set

setRBT2list :: RedBlackTree a → [a]

Transforms a (red-black tree) set into an ordered list of its elements.

unionRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the union of two (red-black tree) sets. This is done by inserting all elements
of the first set into the second set.

intersectRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the intersection of two (red-black tree) sets. This is done by inserting all
elements of the first set contained in the second set into a new set, which order is taken
from the first set.

sortRBT :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for
the elements.

A.3.10 Library Sort

A collection of useful functions for sorting and comparing characters, strings, and lists.

197

Exported functions:

sort :: [a] → [a]

The default sorting operation, mergeSort, with standard ordering <=.

sortBy :: (a → a → Bool) → [a] → [a]

The default sorting operation: mergeSort

sorted :: [a] → Bool

sorted xs is satisfied if the elements xs are in ascending order.

sortedBy :: (a → a → Bool) → [a] → Bool

sortedBy leq xs is satisfied if all adjacent elements of the list xs satisfy the ordering
predicate leq.

permSort :: [a] → [a]

Permutation sort with standard ordering <=. Sorts a list by finding a sorted permutation
of the input. This is not a usable way to sort a list but it can be used as a specification
of other sorting algorithms.

permSortBy :: (a → a → Bool) → [a] → [a]

Permutation sort with ordering as first parameter. Sorts a list by finding a sorted
permutation of the input. This is not a usable way to sort a list but it can be used as a
specification of other sorting algorithms.

insertionSort :: [a] → [a]

Insertion sort with standard ordering <=. The list is sorted by repeated sorted insertion
of the elements into the already sorted part of the list.

insertionSortBy :: (a → a → Bool) → [a] → [a]

Insertion sort with ordering as first parameter. The list is sorted by repeated sorted
insertion of the elements into the already sorted part of the list.

quickSort :: [a] → [a]

Quicksort with standard ordering <=. The classical quicksort algorithm on lists.

quickSortBy :: (a → a → Bool) → [a] → [a]

Quicksort with ordering as first parameter. The classical quicksort algorithm on lists.

mergeSort :: [a] → [a]

Bottom-up mergesort with standard ordering <=.

mergeSortBy :: (a → a → Bool) → [a] → [a]

198

Bottom-up mergesort with ordering as first parameter.

leqList :: (a → a → Bool) → [a] → [a] → Bool

Less-or-equal on lists.

cmpList :: (a → a → Ordering) → [a] → [a] → Ordering

Comparison of lists.

leqChar :: Char → Char → Bool

Less-or-equal on characters (deprecated, use Prelude.<=</code></=</code>).

cmpChar :: Char → Char → Ordering

Comparison of characters (deprecated, use Prelude.compare).

leqCharIgnoreCase :: Char → Char → Bool

Less-or-equal on characters ignoring case considerations.

leqString :: String → String → Bool

Less-or-equal on strings (deprecated, use Prelude.<=</code></=</code>).

cmpString :: String → String → Ordering

Comparison of strings (deprecated, use Prelude.compare).

leqStringIgnoreCase :: String → String → Bool

Less-or-equal on strings ignoring case considerations.

leqLexGerman :: String → String → Bool

Lexicographical ordering on German strings. Thus, upper/lowercase are not distin-
guished and Umlauts are sorted as vocals.

A.3.11 Library TableRBT

Library with an implementation of tables as red-black trees:
A table is a finite mapping from keys to values. All the operations on tables are generic, i.e., one has
to provide an explicit order predicate ("cmp" below) on elements. Each inner node in the red-black
tree contains a key-value association.

Exported types:

type TableRBT a b = RedBlackTree (a,b)

199

Exported functions:

emptyTableRBT :: (a → a → Bool) → RedBlackTree (a,b)

Returns an empty table, i.e., an empty red-black tree.

isEmptyTable :: RedBlackTree (a,b) → Bool

tests whether a given table is empty

lookupRBT :: a → RedBlackTree (a,b) → Maybe b

Looks up an entry in a table.

updateRBT :: a → b → RedBlackTree (a,b) → RedBlackTree (a,b)

Inserts or updates an element in a table.

tableRBT2list :: RedBlackTree (a,b) → [(a,b)]

Transforms the nodes of red-black tree into a list.

deleteRBT :: a → RedBlackTree (a,b) → RedBlackTree (a,b)

A.3.12 Library Traversal

Library to support lightweight generic traversals through tree-structured data. See here15 for a
description of the library.

Exported types:

type Traversable a b = a → ([b],[b] → a)

A datatype is Traversable if it defines a function that can decompose a value into a list
of children of the same type and recombine new children to a new value of the original
type.

Exported functions:

noChildren :: a → ([b],[b] → a)

Traversal function for constructors without children.

children :: (a → ([b],[b] → a)) → a → [b]

Yields the children of a value.

replaceChildren :: (a → ([b],[b] → a)) → a → [b] → a

Replaces the children of a value.
15http://www-ps.informatik.uni-kiel.de/~sebf/projects/traversal.html

200

mapChildren :: (a → ([b],[b] → a)) → (b → b) → a → a

Applies the given function to each child of a value.

family :: (a → ([a],[a] → a)) → a → [a]

Computes a list of the given value, its children, those children, etc.

childFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → a → [b]

Computes a list of family members of the children of a value. The value and its children
can have different types.

mapFamily :: (a → ([a],[a] → a)) → (a → a) → a → a

Applies the given function to each member of the family of a value. Proceeds bottom-up.

mapChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → b) →
a → a

Applies the given function to each member of the families of the children of a value.
The value and its children can have different types. Proceeds bottom-up.

evalFamily :: (a → ([a],[a] → a)) → (a → Maybe a) → a → a

Applies the given function to each member of the family of a value as long as possible. On
each member of the family of the result the given function will yield Nothing. Proceeds
bottom-up.

evalChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → Maybe

b) → a → a

Applies the given function to each member of the families of the children of a value as
long as possible. Similar to evalFamily.

fold :: (a → ([a],[a] → a)) → (a → [b] → b) → a → b

Implements a traversal similar to a fold with possible default cases.

foldChildren :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (a → [c] → d)

→ (b → [c] → c) → a → d

Fold the children and combine the results.

replaceChildrenIO :: (a → ([b],[b] → a)) → a → IO [b] → IO a

IO version of replaceChildren

mapChildrenIO :: (a → ([b],[b] → a)) → (b → IO b) → a → IO a

IO version of mapChildren

mapFamilyIO :: (a → ([a],[a] → a)) → (a → IO a) → a → IO a

201

IO version of mapFamily

mapChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

b) → a → IO a

IO version of mapChildFamilies

evalFamilyIO :: (a → ([a],[a] → a)) → (a → IO (Maybe a)) → a → IO a

IO version of evalFamily

evalChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

(Maybe b)) → a → IO a

IO version of evalChildFamilies

A.3.13 Library ValueSequence

This library defines a data structure for sequence of values. It is used in search trees (module
SearchTree) as well as in set functions (module SetFunctions). Using sequence of values (rather
than standard lists of values) is necessary to get the behavior of set functions w.r.t. finite failures
right, as described in the paper

J. Christiansen, M. Hanus, F. Reck, D. Seidel: A Semantics for Weakly Encapsulated
Search in Functional Logic Programs Proc. 15th International Conference on Principles
and Practice of Declarative Programming (PPDP’13), pp. 49-60, ACM Press, 2013

Note that this is a simple implementation for PAKCS in order to provide some functionality used
by other modules. In particular, the intended semantics of failures is not provided in this imple-
mentation.

Exported types:

data ValueSequence

A value sequence is an abstract sequence of values. It also contains failure elements in
order to implement the semantics of set functions w.r.t. failures in the intended manner
(only in KiCS2).

Exported constructors:

Exported functions:

emptyVS :: ValueSequence a

An empty sequence of values.

addVS :: a → ValueSequence a → ValueSequence a

Adds a value to a sequence of values.

202

failVS :: Int → ValueSequence a

Adds a failure to a sequence of values. The argument is the encapsulation level of the
failure.

(|++|) :: ValueSequence a → ValueSequence a → ValueSequence a

Concatenates two sequences of values.

vsToList :: ValueSequence a → [a]

Transforms a sequence of values into a list of values.

203

B Markdown Syntax

This document describes the syntax of texts containing markdown elements. The markdown syntax
is intended to simplify the writing of texts whose source is readable and can be easily formatted,
e.g., as part of a web document. It is a subset of the original markdown syntax (basically, only
internal links and pictures are missing) supported by the Curry library Markdown.

B.1 Paragraphs and Basic Formatting

Paragraphs are separated by at least one line which is empty or does contain only blanks.
Inside a paragraph, one can emphasize text or also strongly emphasize text. This is done by

wrapping it with one or two _ or * characters:

emphasize
emphasize
__strong__
strong

Furthermore, one can also mark program code text by backtick quotes (‘):

The function ‘fib‘ computes Fibonacci numbers.

Web links can be put in angle brackets, like in the link http://www.google.com:

<http://www.google.com>

Currently, only links starting with ’http’ are recognized (so that one can also use HTML markup).
If one wants to put a link under a text, one can put the text in square brackets directly followed by
the link in round brackets, as in Google:

[Google](http://www.google.com)

If one wants to put a character that has a specific meaning in the syntax of Markdown, like * or
_, in the output document, it should be escaped with a backslash, i.e., a backslash followed by a
special character in the source text is translated into the given character (this also holds for program
code, see below). For instance, the input text

word

produces the output "_word_". The following backslash escapes are recognized:

\ backslash
‘ backtick
* asterisk
_ underscore
{} curly braces
[] square brackets

204

http://en.wikipedia.org/wiki/Markdown
http://curry-language.org/
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Markdown.html
http://www.google.com
http://www.google.com

() parentheses
hash symbol
+ plus symbol
- minus symbol (dash)
. dot

blank
! exclamation mark

B.2 Lists and Block Formatting

An unordered list (i.e., without numbering) is introduced by putting a star in front of the list
elements (where the star can be preceded by blanks). The individual list elements must contain the
same indentation, as in

* First list element
with two lines

* Next list element.

It contains two paragraphs.

* Final list element.

This is formatted as follows:

• First list element with two lines

• Next list element.

It contains two paragraphs.

• Final list element.

Instead of a star, one can also put dashes or plus to mark unordered list items. Furthermore, one
could nest lists. Thus, the input text

- Color:
+ Yellow
+ Read
+ Blue

- BW:
+ Black
+ White

is formatted as

• Color:

205

– Yellow

– Read

– Blue

• BW:

– Black

– White

Similarly, ordered lists (i.e., with numbering each item) are introduced by a number followed by
a dot and at least one blank. All following lines belonging to the same numbered item must have
the same indent as the first line. The actual value of the number is not important. Thus, the input

1. First element

99. Second
element

is formatted as

1. First element

2. Second element

A quotation block is marked by putting a right angle followed by a blank in front of each line:

> This is
> a quotation.

It will be formatted as a quote element:

This is a quotation.

A block containing program code starts with a blank line and is marked by intending each input
line by at least four spaces where all following lines must have at least the same indentation as the
first non-blank character of the first line:

f x y = let z = (x,y)
in (z,z)

The indentation is removed in the output:

f x y = let z = (x,y)
in (z,z)

To visualize the structure of a document, one can also put a line containing only blanks and at least
three dashes (stars would also work) in the source text:

This is formatted as a horizontal line:

206

B.3 Headers

The are two forms to mark headers. In the first form, one can "underline" the main header in the
source text by equal signs and the second-level header by dashes:

First-level header
==================

Second-level header

Alternatively (and for more levels), one can prefix the header line by up to six hash characters,
where the number of characters corresponds to the header level (where level 1 is the main header):

Main header

Level 2 header

Level 3

Level 4

Level 5

Level 6

207

C SQL Syntax Supported by CurryPP

This section contains a grammar in EBNF which specifies the SQL syntax recognized by the Curry
preprocessor in integrated SQL code (see Sect. 12.4). The grammar satisfies the LL(1) property
and is influenced by the SQLite dialect.16

--------------type of statements--------------------------------

statement ::= queryStatement | transactionStatement
queryStatement ::= (deleteStatement

| insertStatement
| selectStatement
| updateStatement)
’;’

------------- transaction -------------------------------------

transactionStatement ::= (BEGIN
|IN TRANSACTION ’(’ queryStatement

{ queryStatement }’)’
|COMMIT
|ROLLBACK) ’;’

-------------- delete --

deleteStatement ::= DELETE FROM tableSpecification
[WHERE condition]

-------------insert ---

insertStatement ::= INSERT INTO tableSpecification
insertSpecification

insertSpecification ::= [’(’ columnNameList ’)’] valuesClause

valuesClause ::= VALUES valueList

------------update--

updateStatement ::= UPDATE tableSpecification
SET (columnAssignment {’,’ columnAssignment}

[WHERE condition]
| embeddedCurryExpression)

columnAssignment ::= columnName ’=’ literal

-------------select statement ---------------------------------

16https://sqlite.org/lang.html

208

https://sqlite.org/lang.html

selectStatement ::= selectHead { setOperator selectHead }
[orderByClause]
[limitClause]

selectHead ::= selectClause fromClause
[WHERE condition]
[groupByClause [havingClause]]

setOperator ::= UNION | INTERSECT | EXCEPT

selectClause ::= SELECT [(DISTINCT | ALL)]
(selectElementList | ’*’)

selectElementList ::= selectElement { ’,’ selectElement }

selectElement ::= [tableIdentifier’.’] columnName
| aggregation
| caseExpression

aggregation ::= function ’(’ [DISTINCT] columnReference ’)’

caseExpression ::= CASE WHEN condition THEN operand
ELSE operand END

function ::= COUNT | MIN | MAX | AVG | SUM

fromClause ::= FROM tableReference { ’,’ tableReference }

groupByClause ::= GROUP BY columnList

havingClause ::= HAVING conditionWithAggregation

orderByClause ::= ORDER BY columnReference [sortDirection]
{’,’ columnReference

[sortDirection] }

sortDirection ::= ASC | DESC

limitClause = LIMIT integerExpression

-------------common elements-----------------------------------

columnList ::= columnReference { ’,’ columnReference }

columnReference ::= [tableIdentifier’.’] columnName

columnNameList ::= columnName { ’,’ columnName}

tableReference ::= tableSpecification [AS tablePseudonym]

209

[joinSpecification]
tableSpecification ::= tableName

condition ::= operand operatorExpression
[logicalOperator condition]

| EXISTS subquery [logicalOperator condition]
| NOT condition
| ’(’ condition ’)’
| satConstraint [logicalOperator condition]

operand ::= columnReference
| literal

subquery ::= ’(’ selectStatement ’)’

operatorExpression ::= IS NULL
| NOT NULL
| binaryOperator operand
| IN setSpecification
| BETWEEN operand operand
| LIKE quotes pattern quotes

setSpecification ::= literalList

binaryOperator ::= ’>’| ’<’ | ’>=’ | ’<=’ | ’=’ | ’!=’

logicalOperator ::= AND | OR

conditionWithAggregation ::=
aggregation [logicalOperator disaggregation]

| ’(’ conditionWithAggregation ’)’
| operand operatorExpression

[logicalOperator conditionWithAggregation]
| NOT conditionWithAggregation
| EXISTS subquery

[logicalOperator conditionWithAggregation]
| satConstraint

[logicalOperator conditionWithAggregation]

aggregation ::= function ’(’(ALL | DISTINCT) columnReference’)’
binaryOperator
operand

satConstraint ::= SATISFIES tablePseudonym
relation
tablePseudonym

joinSpecification ::= joinType tableSpecification

210

[AS tablePseudonym]
[joinCondition]
[joinSpecification]

joinType ::= CROSS JOIN | INNER JOIN

joinCondition ::= ON condition

-------------identifier and datatypes-------------------------

valueList ::= (embeddedCurryExpression | literalList)
{’,’ (embeddedCurryExpression | literalList)}

literalList ::= ’(’ literal { ’,’ literal } ’)’

literal ::= numericalLiteral
| quotes alphaNumericalLiteral quotes
| dateLiteral
| booleanLiteral
| embeddedCurryExpression
| NULL

numericalLiteral ::= integerExpression
|floatExpression

integerExpression ::= [-] digit { digit }

floatExpression := [-] digit { digit } ’.’ digit { digit }

alphaNumericalLiteral ::= character { character }
character ::= digit | letter

dateLiteral ::= year ’:’ month ’:’ day ’:’
hours ’:’ minutes ’:’ seconds

month ::= digit digit
day ::= digit digit
hours ::= digit digit
minutes ::= digit digit
seconds ::= digit digit
year ::= digit digit digit digit

booleanLiteral ::= TRUE | FALSE

embeddedCurryExpression ::= ’{’ curryExpression ’}’

pattern ::= (character | specialCharacter)
{(character | specialCharacter)}

specialCharacter ::= ’%’ | ’_’

211

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

letter ::= (a...z) | (A...Z)

tableIdentifier ::= tablePseudonym | tableName
columnName ::= letter [alphanumericalLiteral]
tableName ::= letter [alphanumericalLiteral]
tablePseudonym ::= letter
relation ::= letter [[alphanumericalLiteral] | ’_’]
quotes ::= (’"’|’’’)

212

D Overview of the PAKCS Distribution

A schematic overview of the various components contained in the distribution of PAKCS and the
translation process of programs inside PAKCS is shown in Figure 7 on page 214. In this figure,
boxes denote different components of PAKCS and names in boldface denote files containing various
intermediate representations during the translation process (see Section E below). The PAKCS
distribution contains a front end for reading (parsing and type checking) Curry programs that can
be also used by other Curry implementations. The back end (formerly known as “Curry2Prolog”)
compiles Curry programs into Prolog programs. It also support constraint solvers for arithmetic
constraints over real numbers and finite domain constraints, and further libraries for GUI pro-
gramming, meta-programming etc. Currently, it does not implement encapsulated search in full
generality (only a strict version of findall is supported), and concurrent threads are not executed
in a fair manner.

213

Figure 7: Overview of PAKCS

214

E Auxiliary Files

During the translation and execution of a Curry program with PAKCS, various intermediate repre-
sentations of the source program are created and stored in different files which are shortly explained
in this section. If you use PAKCS, it is not necessary to know about these auxiliary files because they
are automatically generated and updated. You should only remember the command for deleting all
auxiliary files (“cleancurry”, see Section 1.1) to clean up your directories.

The various components of PAKCS create the following auxiliary files.

prog.fcy: This file contains the Curry program in the so-called “FlatCurry” representation where
all functions are global (i.e., lambda lifting has been performed) and pattern matching is
translated into explicit case/or expressions (compare Appendix A.1.4). This representation
might be useful for other back ends and compilers for Curry and is the basis doing meta-
programming in Curry. This file is implicitly generated when a program is compiled with
PAKCS. It can be also explicitly generated by the front end of PAKCS:

pakcs frontend --flat -ipakcshome /lib prog

The FlatCurry representation of a Curry program is usually generated by the front-end after
parsing, type checking and eliminating local declarations.

If the Curry module M is stored in the directory dir, the corresponding FlatCurry pro-
gram is stored in the directory “dir/.curry”. This is also the case for hierarchical module
names: if the module D1.D2.M is stored in the directory dir (i.e., the module is actu-
ally stored in dir/D1/D2/M.curry), then the corresponding FlatCurry program is stored in
“dir/.curry/D1/D2/M.fcy”.

prog.fint: This file contains the interface of the program in the so-called “FlatCurry” representa-
tion, i.e., it is similar to prog.fcy but contains only exported entities and the bodies of all
functions omitted (i.e., “external”). This representation is useful for providing a fast access to
module interfaces. This file is implicitly generated when a program is compiled with PAKCS
and stored in the same directory as prog.fcy.

prog.pl: This file contains a Prolog program as the result of translating the Curry program with
PAKCS.

If the Curry module M is stored in the directory dir, the corresponding Prolog program
is stored in the directory “dir/.curry/pakcs”. This is also the case for hierarchical module
names: if the module D1.D2.M is stored in the directory dir (i.e., the module is actu-
ally stored in dir/D1/D2/M.curry), then the corresponding Prolog program is stored in
“dir/.curry/pakcs/D1/D2/prog.pl”.

prog.po: This file contains the Prolog program prog.pl in an intermediate format for faster loading.
This file is stored in the same directory as prog.pl.

prog: This file contains the executable after compiling and saving a program with PAKCS (see
Section 2.2).

215

F External Functions

Currently, PAKCS has no general interface to external functions. Therefore, if a new external func-
tion should be added to the system, this function must be declared as external in the Curry source
code and then an implementation for this external function must be inserted in the corresponding
back end. An external function is defined as follows in the Curry source code:

1. Add a type declaration for the external function somewhere in the body of the appropriate
file (usually, the prelude or some system module).

2. For external functions it is not allowed to define any rule since their semantics is determined
by an external implementation. Instead of the defining rules, you have to write

f external

somewhere in the file containing the type declaration for the external function f.

For instance, the addition on integers can be declared as an external function as follows:

(+) :: Int → Int → Int
(+) external

The further modifications to be done for an inclusion of an external function has to be done in the
back end. A new external function is added to the back end of PAKCS by informing the compiler
about the existence of an external function and adding an implementation of this function in the
run-time system. Therefore, the following items must be added in the PAKCS compiler system:

1. If the Curry module Mod contains external functions, there must be a file named Mod.prim_c2p

containing the specification of these external functions. The contents of this file is in XML
format and has the following general structure:17

<primitives>
specification of external function f1
. . .

specification of external function fn
</primitives>

The specification of an external function f with arity n has the form

<primitive name="f" arity="n">
<library>lib</library>
<entry>pred</entry>

</primitive>

where lib is the Prolog library (stored in the directory of the Curry module or in the global
directory pakcshome /curry2prolog/lib_src) containing the code implementing this function
and pred is a predicate name in this library implementing this function. Note that the function
f must be declared in module Mod: either as an external function or defined in Curry by

17http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd contains a DTD describing the exact structure
of these files.

216

http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd

equations. In the latter case, the Curry definition is not translated but calls to this function
are redirected to the Prolog code specified above.

Furthermore, the list of specifications can also contain entries of the form

<ignore name="f" arity="n" />

for functions f with arity n that are declared in module Mod but should be ignored for code
generation, e.g., since they are never called w.r.t. to the current implementation of external
functions. For instance, this is useful when functions that can be defined in Curry should be
(usually more efficiently) are implemented as external functions.

Note that the arguments are passed in their current (possibly unevaluated) form. Thus, if the
external function requires the arguments to be evaluated in a particular form, this must be
done before calling the external function. For instance, the external function for adding two
integers requires that both arguments must be evaluated to non-variable head normal form
(which is identical to the ground constructor normal form). Therefore, the function “+” is
specified in the prelude by

(+) :: Int → Int → Int
x + y = (prim_Int_plus $# y) $# x

prim_Int_plus :: Int → Int → Int
prim_Int_plus external

where prim_Int_plus is the actual external function implementing the addition on integers.
Consequently, the specification file Prelude.prim_c2p has an entry of the form

<primitive name="prim_Int_plus" arity="2">
<library>prim_standard</library>
<entry>prim_Int_plus</entry>

</primitive>

where the Prolog library prim_standard.pl contains the Prolog code implementing this func-
tion.

2. For most external functions, a standard interface is generated by the compiler so that an n-ary
function can be implemented by an (n + 1)-ary predicate where the last argument must be
instantiated to the result of evaluating the function. The standard interface can be used if all
arguments are ensured to be fully evaluated (e.g., see definition of (+) above) and no suspension
control is necessary, i.e., it is ensured that the external function call does not suspend for all
arguments. Otherwise, the raw interface (see below) must be used. For instance, the Prolog
code implementing prim_Int_plus contained in the Prolog library prim_standard.pl is as
follows (note that the arguments of (+) are passed in reverse order to prim_Int_plus in order
to ensure a left-to-right evaluation of the original arguments by the calls to ($#)):

prim_Int_plus(Y,X,R) :- R is X+Y.

3. The standard interface for I/O actions, i.e., external functions with result type IO a, assumes
that the I/O action is implemented as a predicate (with a possible side effect) that instantiates

217

the last argument to the returned value of type “a”. For instance, the primitive predicate
prim_getChar implementing prelude I/O action getChar can be implemented by the Prolog
code

prim_getChar(C) :- get_code(N), char_int(C,N).

where char_int is a predicate relating the internal Curry representation of a character with
its ASCII value.

4. If some arguments passed to the external functions are not fully evaluated or the external
function might suspend, the implementation must follow the structure of the PAKCS run-
time system by using the raw interface. In this case, the name of the external entry must
be suffixed by “[raw]” in the prim_c2p file. For instance, if we want to use the raw interface
for the external function prim_Int_plus, the specification file Prelude.prim_c2p must have an
entry of the form

<primitive name="prim_Int_plus" arity="2">
<library>prim_standard</library>
<entry>prim_Int_plus[raw]</entry>

</primitive>

In the raw interface, the actual implementation of an n-ary external function consists of the
definition of an (n+3)-ary predicate pred. The first n arguments are the corresponding actual
arguments. The (n+1)-th argument is a free variable which must be instantiated to the result
of the function call after successful execution. The last two arguments control the suspension
behavior of the function (see [5] for more details): The code for the predicate pred should
only be executed when the (n+ 2)-th argument is not free, i.e., this predicate has always the
SICStus-Prolog block declaration

?- block pred(?,. . .,?,-,?).

In addition, typical external functions should suspend until the actual arguments are instan-
tiated. This can be ensured by a call to ensureNotFree or ($#) before calling the external
function. Finally, the last argument (which is a free variable at call time) must be unified
with the (n + 2)-th argument after the function call is successfully evaluated (and does not
suspend). Additionally, the actual (evaluated) arguments must be dereferenced before they
are accessed. Thus, an implementation of the external function for adding integers is as follows
in the raw interface:

?- block prim_Int_plus(?,?,?,-,?).
prim_Int_plus(RY,RX,Result,E0,E) :-

deref(RX,X), deref(RY,Y), Result is X+Y, E0=E.

Here, deref is a predefined predicate for dereferencing the actual argument into a constant
(and derefAll for dereferencing complex structures).

The Prolog code implementing the external functions must be accessible to the run-time system
of PAKCS by putting it into the directory containing the corresponding Curry module or into the

218

system directory pakcshome /curry2prolog/lib_src. Then it will be automatically loaded into the
run-time environment of each compiled Curry program.

Note that arbitrary functions implemented in C or Java can be connected to PAKCS by using
the corresponding interfaces of the underlying Prolog system.

219

Index
<, 145
***, 127
*., 105, 125
*#, 99, 103
+., 105, 125
+#, 99, 103
---, 41
--compact, 79
--fcypp, 79
-., 105, 125
-=-, 179, 183
-#, 99, 103
-fpopt, 79
.pakcsrc, 16
/., 105, 125
//, 186
/=#, 99, 103
/\, 100
:!, 12
:add, 10
:browse, 11
:cd, 12
:coosy, 12
:dir, 12
:edit, 11
:eval, 11
:fork, 12
:help, 10
:interface, 11
:load, 10
:modules, 11
:peval, 12
:programs, 11
:quit, 11
:reload, 10
:save, 12
:set, 11
:set path, 8
:show, 11, 12
:source, 12
:type, 11

:usedimports, 11
==>, 180, 183
=#, 99, 103
@, 18
@author, 41
@cons, 41
@param, 41
@return, 42
@version, 41
#, 181, 184
#/=#, 104
#/\#, 104
#=#, 104
#=>#, 104
#<, 181, 184
#<=#, 104
#<=>#, 104
#<#, 104
#>, 181, 184
#>=#, 104
#>#, 104
#\/#, 104
$$, 151
&&&, 127
PAKCS, 9
<*>, 117, 145
<+>, 151
<., 105
<.>, 120
<//>, 151
</>, 121, 151
<=., 106
<=#, 99, 103
<=>, 181, 184
<#, 99, 103
<$

<$
$>, 151

<$+$>, 151
<$$>, 151
<$>, 117

220

<>, 151
<~, 180, 183
<~>, 180, 183
<~~>, 180, 183
>+, 117
>+=, 117
>., 106
>=., 106
>=#, 100, 104
>#, 100, 103
>>-, 142
>>>, 145
~>, 180, 183
\\, 138
^, 131
^., 125

abs, 132
AbstractCurry, 90
acos, 126
acosh, 126
add, 144
addCurrySubdir, 113
addDays, 175
addExtension, 120
addHours, 175
addListToFM, 188
addListToFM C, 188
addMinutes, 174
addMonths, 175
addSeconds, 174
addTarget, 115
addToFM, 188
addToFM C, 188
addTrailingPathSeparator, 121
addVS, 202
addYears, 175
align, 150
all different, 105
allC, 100
allDifferent, 100, 105
allfails, 13
allSolutions, 123
allSubsets, 107

allValues, 123
allValuesBFS, 195
allValuesDFS, 195
allValuesDiag, 195
allValuesIDS, 195
allValuesIDSwith, 195
allValuesWith, 194
always, 180, 184
analyzing programs, 64
andC, 100
angles, 156
applyAt, 186
ArgDescr, 128
ArgOrder, 128
args, 15, 179
Array, 185
as-pattern, 18
asin, 126
asinh, 126
assert, 109
assertEqual, 93
assertEqualIO, 93
assertIO, 93, 109
Assertion, 93
assertSolutions, 93
assertTrue, 93
assertValues, 93
at, 158
atan, 126
atanh, 126

backslash, 157
bar, 158
baseName, 118
best, 124
bfsStrategy, 194
bgBlack, 160
bgBlue, 160
bgCyan, 161
bgGreen, 160
bgMagenta, 161
bgRed, 160
bgWhite, 161
bgYellow, 160

221

bindS, 170
bindS , 170
binomial, 132
bitAnd, 132
bitNot, 132
bitOr, 132
bitTrunc, 132
bitXor, 132
black, 160
blinkRapid, 159
blinkSlow, 159
blue, 160
bold, 159
both, 127
bquotes, 155
braces, 156
brackets, 156
browse, 124
browseList, 124

CalendarTime, 173
calendarTimeToString, 174
callFrontend, 115
callFrontendWithParams, 115
CASC, 44
CASS, 64
cat, 153
catMaybes, 142
char, 156
checkAssertion, 94
childFamilies, 201
children, 200
choiceSPEP, 147
choose, 168
chooseValue, 168
classify, 181, 185
cleancurry, 7
ClockTime, 173
clockTimeToInt, 174
cmpChar, 199
cmpList, 199
cmpString, 199
collect, 182, 185
collectAs, 182, 185

colon, 157
combine, 121, 151, 186
combineSimilar, 186
comma, 157
comment

documentation, 41
compact, 13
compareAnyTerm, 176
compareCalendarTime, 175
compareClockTime, 175
compareDate, 175
compose, 152
concatMapES, 117
connectPort, 89, 147
connectPortRepeat, 147
connectPortWait, 147
connectToCommand, 136
connectToSocket, 143, 170
connectToSocketRepeat, 143
connectToSocketWait, 143
cons, 187
consfail, 13
constract, 35
Constraint, 101
copyFile, 110
cos, 126
cosh, 126
count, 100, 105
cpnsAlive, 108
cpnsShow, 107
cpnsStart, 107
cpnsStop, 107
createDirectory, 110
createDirectoryIfMissing, 110
crossout, 159
ctDay, 173
ctHour, 173
ctMin, 173
ctMonth, 173
ctSec, 174
ctTZ, 174
ctYear, 173
curry, 9
curry erd2curry, 71

222

Curry mode, 16
Curry preprocessor, 49
curry-doc, 43
curry-peval, 75
curry-style, 44
curry-verify, 45
Curry2Prolog, 213
CurryCheck, 29
curryCompiler, 112
curryCompilerMajorVersion, 112
curryCompilerMinorVersion, 112
CurryDoc, 41
CURRYPATH, 8, 14
curryRuntime, 112
curryRuntimeMajorVersion, 112
curryRuntimeMinorVersion, 112
currySubdir, 113
CurryVerify, 45
cyan, 160
cycle, 141
cyclic structure, 17

database programming, 71
daysOfMonth, 175
debug, 13, 15
debug mode, 13, 15
defaultParams, 114
delete, 138, 192
deleteBy, 138
deleteRBT, 197, 200
delFromFM, 188
delListFromFM, 189
depthDiag, 196
deqHead, 187
deqInit, 187
deqLast, 187
deqLength, 187
deqReverse, 187
deqTail, 187
deqToList, 187
deterministic, 181, 184
dfsStrategy, 194
diagonal, 138
diagStrategy, 194

digitToInt, 95
dirName, 118
Doc, 148
doc, 43
documentation comment, 41
documentation generator, 41
doesDirectoryExist, 109
doesFileExist, 109
domain, 99, 103
doSend, 89, 147
dot, 157
doubleArrow, 158
doubleColon, 158
dquote, 157
dquotes, 155
dropDrive, 120
dropExtension, 120
dropExtensions, 120
dropFileName, 121
dropTrailingPathSeparator, 121

elemFM, 190
elemIndex, 137
elemIndices, 137
elemRBT, 197
eltsFM, 190
Emacs, 16
empty, 145, 148, 187, 192
emptyDefaultArray, 186
emptyErrorArray, 186
emptyFM, 188
emptySetRBT, 197
emptyTableRBT, 200
emptyVS, 202
encapsulated search, 8
enclose, 155
encloseSep, 153
encloseSepSpaced, 154
entity relationship diagram, 71
eqFM, 189
equalFilePath, 122
equals, 157
ERD2Curry, 71
erd2curry, 71

223

ES, 116
evalChildFamilies, 201
evalChildFamiliesIO, 202
evalCmd, 136
evalES, 117
evalFamily, 201
evalFamilyIO, 202
evalSpace, 163
evalState, 171
evalTime, 163
even, 132
eventually, 180, 184
exclusiveIO, 136
execCmd, 136
execState, 171
exitWith, 172
exp, 126
extended, 115
external function, 216
extSeparator, 119

factorial, 132
failES, 117
failing, 180, 184
failVS, 203
faint, 159
family, 201
FCYPP, 79
fcypp, 79
fd, 99
FDConstr, 99
FDExpr, 99
FDRel, 96
FilePath, 119
fileSize, 109
fileSuffix, 118
fill, 158
fillBreak, 159
fillCat, 153
fillEncloseSep, 154
fillEncloseSepSpaced, 154
fillSep, 152
filterFM, 189
filterValues, 169

find, 137
findall, 8, 124
findfirst, 8, 124
findIndex, 137
findIndices, 137
firewall, 90
first, 14, 127
fix, 127
FlatCurry, 90
float, 156
FM, 188
fmSortBy, 190
fmToList, 190
fmToListPreOrder, 190
fold, 201
foldChildren, 201
foldFM, 189
foldValues, 169
for, 181, 184
forAll, 181, 184
forAllValues, 181
free, 13
free variable mode, 10, 13
fromJust, 141
fromLeft, 116
fromMaybe, 141
fromNat, 144
fromRight, 116
FrontendParams, 112
FrontendTarget, 111
fullPath, 115
function

external, 216
functional pattern, 17

garbageCollect, 162
garbageCollectorOff, 162
garbageCollectorOn, 162
getAbsolutePath, 110
getAllFailures, 92
getAllSolutions, 92
getAllValues, 92, 122
getAllValuesWith, 195
getArgs, 172

224

getAssoc, 137
getClockTime, 174
getContents, 135
getCPUTime, 172
getCurrentDirectory, 110
getDirectoryContents, 110
getElapsedTime, 172
getEnviron, 172
getFileInPath, 118
getHomeDirectory, 110
getHostname, 172
getLoadPathForModule, 114
getLocalTime, 174
getModificationTime, 110
getOneSolution, 92
getOneValue, 92
getOpt, 129
getOpt’, 129
getPID, 172
getPortInfo, 108
getProcessInfos, 162
getProgName, 172
getRandomSeed, 191
getRcVar, 112
getRcVars, 112
getS, 171
gets, 117
getSearchPath, 119
getSearchTree, 92, 194
getSomeValue, 123
getTemporaryDirectory, 110
Global, 129
global, 130
GlobalSpec, 129
green, 160
group, 139, 149
groupBy, 139
GVar, 131
gvar, 131

Handle, 133
hang, 149
hardline, 149
hasDrive, 120

hasExtension, 120
hasTrailingPathSeparator, 121
hcat, 153
hClose, 134
hEncloseSep, 154
hFlush, 134
hGetChar, 135
hGetContents, 135
hGetLine, 135
hIsEOF, 134
hIsReadable, 135
hIsTerminalDevice, 135
hIsWritable, 135
hPrint, 135
hPutChar, 135
hPutStr, 135
hPutStrLn, 135
hReady, 135
hSeek, 134
hsep, 152
htmldir, 115
hWaitForInput, 134
hWaitForInputOrMsg, 134
hWaitForInputs, 134
hWaitForInputsOrMsg, 134

i2f, 106, 125
identicalVar, 176
idsStrategy, 194
idsStrategyWith, 194
ilog, 131
inCurrySubdir, 113
inCurrySubdirModule, 113
indent, 150
indomain, 105
init, 140
inits, 139
inject, 124
insertBy, 140
insertionSort, 198
insertionSortBy, 198
insertMultiRBT, 197
insertRBT, 197
installDir, 112

225

int, 156
interactive, 14
intercalate, 138
intersect, 138
intersectBy, 138
intersectFM, 189
intersectFM C, 189
intersectRBT, 197
intersperse, 138
intToDigit, 95
inverse, 160
invf1, 127
invf2, 127
invf3, 127
invf4, 127
invf5, 127
IOMode, 133
IORef, 136
ioTestOf, 179
is, 180, 183
isAbsolute, 118, 122
isAlpha, 95
isAlphaNum, 95
isAlways, 180, 184
isAscii, 94
isAsciiLower, 94
isAsciiUpper, 94
isBinDigit, 95
isControl, 95
isDefined, 194
isDigit, 95
isDrive, 120
isEmpty, 148, 168, 187, 192
isEmptyFM, 190
isEmptySetRBT, 197
isEmptyTable, 200
isEOF, 134
isEventually, 180, 184
isExtSeparator, 119
isGround, 176
isHexDigit, 95
isInfixOf, 140
isJust, 141
isLatin1, 94

isLeft, 116
isLower, 95
isNothing, 141
isOctDigit, 95
isPathSeparator, 119
isPosix, 173
isPrefixOf, 139
isqrt, 131
isRelative, 122
isRight, 116
isSearchPathSeparator, 119
isSpace, 95
isSuffixOf, 139
isUpper, 95
isValid, 122
isVar, 176
isWindows, 173
italic, 159

joinDrive, 120
joinModuleIdentifiers, 113
joinPath, 122

keyOrder, 190
keysFM, 190

label, 181, 185
labeling, 105
LabelingOption, 101
langle, 156
larrow, 158
last, 140
lbrace, 157
lbracket, 157
lefts, 116
leq, 144
leqChar, 199
leqCharIgnoreCase, 199
leqLexGerman, 199
leqList, 199
leqString, 199
leqStringIgnoreCase, 199
let, 17
levelDiag, 196
liftS, 171

226

liftS2, 171
limitSearchTree, 194
line, 149
linebreak, 149
linesep, 148
list, 155
listenOn, 143, 170
listenOnFresh, 170
listSpaced, 155
listToDefaultArray, 186
listToDeq, 187
listToErrorArray, 186
listToFM, 188
listToMaybe, 141
log, 125
logBase, 126
logfile, 115
lookup, 192
lookupFileInPath, 118
lookupFM, 190
lookupModuleSource, 114
lookupModuleSourceInLoadPath, 114
lookupRBT, 200
lookupWithDefaultFM, 190
lparen, 156

magenta, 160
main, 108
makeRelative, 122
makeValid, 122
mapAccumES, 117
mapAccumL, 141
mapAccumR, 141
mapChildFamilies, 201
mapChildFamiliesIO, 202
mapChildren, 201
mapChildrenIO, 201
mapES, 117
mapFamily, 201
mapFamilyIO, 201
mapFM, 189
mapMaybe, 142
mapMMaybe, 142
mapS, 171

mapS , 171
mapValues, 168
markdown, 42
matchHead, 187
matchLast, 187
max3, 132
maxFM, 190
maximize, 106
maximum, 140
maximumBy, 140
maximumFor, 106
maxlist, 132
maxValue, 169
maybeToList, 142
mergeSort, 198
mergeSortBy, 198
min3, 132
minFM, 190
minimize, 106
minimum, 140
minimumBy, 140
minimumFor, 106
minlist, 132
minusFM, 189
minValue, 169
modify, 117
modifyIORef, 137
modifyS, 171
modNameToPath, 113
mplus, 142
mul, 144

Nat, 144
neg, 104
nest, 149
newIORef, 137
newNamedObject, 148
newObject, 147
newTreeLike, 192
nextBoolean, 191
nextInt, 191
nextIntRange, 191
noChildren, 200
noindex, 43

227

normalise, 122
notEmpty, 168
nub, 137
nubBy, 138

odd, 132
on, 127
once, 124
onlyindex, 43
openFile, 133
openNamedPort, 89, 90, 147
openPort, 89, 147
openProcessPort, 147
OptDescr, 128
Option, 97
overlapWarn, 115

pakcs, 9
pakcs frontend, 215
PAKCS_LOCALHOST, 90
PAKCS_OPTION_FCYPP, 79
PAKCS_SOCKET, 90
PAKCS_TRACEPORTS, 90
pakcsrc, 16
parens, 156
parensIf, 156
Parser, 144
parser, 15
ParserRep, 144
partial evaluation, 75
partition, 107, 139
partitionEithers, 116
path, 8, 14
pathSeparator, 119
pathSeparatorChar, 118
pathSeparators, 119
pattern

functional, 17
permSort, 198
permSortBy, 198
permutations, 138
permute, 107
peval, 75
peval, 75

pi, 125
ping, 147
plusFM, 189
plusFM C, 189
Port, 89, 146
ports, 89
postcondition, 36
pow, 131
pPrint, 148
precondition, 35
preprocessor, 49
pretty, 161
printAllValuesWith, 195
printdepth, 14
printfail, 13
printMemInfo, 162
printValues, 169
printValuesWith, 195
ProcessInfo, 161
product, 140
profile, 14
profileSpace, 163
profileSpaceNF, 163
profileTime, 162
profileTimeNF, 162
program

analysis, 64
documentation, 41
testing, 29
verification, 45

Prop, 178, 182
PropIO, 178, 182
ProtocolMsg, 93
punctuate, 153
putS, 171
puts, 117

Queue, 186
quickSort, 198
quickSortBy, 198
quiet, 115

rangle, 156
rarrow, 158

228

rbrace, 157
rbracket, 157
rcFileContents, 112
rcFileName, 112
rcParams, 114
readAnyQExpression, 177
readAnyQTerm, 177
readAnyUnqualifiedTerm, 177
readBin, 165
readCompleteFile, 136
readCSV, 108
readCSVFile, 108
readCSVFileWithDelims, 108
readCSVWithDelims, 108
readCurry, 91
readFlatCurry, 91
readFM, 191
readGlobal, 130
readGVar, 131
readHex, 164
readInt, 164
readIORef, 137
readNat, 164
readOct, 164
readPropertyFile, 163
readQTerm, 166
readQTermFile, 166
readQTermListFile, 166
readsAnyQExpression, 177
readsAnyQTerm, 177
readsAnyUnqualifiedTerm, 176
readsQTerm, 166
readsTerm, 165
readsUnqualifiedTerm, 165
readTerm, 166
readUnqualifiedTerm, 165
recip, 125
red, 160
RedBlackTree, 192
registerPort, 107
removeDirectory, 110
removeFile, 110
renameDirectory, 110
renameFile, 110

replace, 139
replaceBaseName, 121
replaceChildren, 200
replaceChildrenIO, 201
replaceDirectory, 121
replaceExtension, 120
replaceFileName, 121
Result, 178
result, 179
returnES, 117
returnS, 171
returns, 179, 183
rewriteAll, 124
rewriteSome, 124
rights, 116
rndDepthDiag, 196
rndLevelDiag, 196
rndLevelDiagFlat, 196
rotate, 187
round, 125
rparen, 156
runcurry, 61
runNamedServer, 148
runState, 171

safe, 15
safeReadGlobal, 130
sameReturns, 179, 183
satisfy, 145
scalarProduct, 100, 105
scanl, 140
scanl1, 140
scanr, 140
scanr1, 141
scc, 193
sClose, 143, 170
searchPathSeparator, 119
SearchTree, 92, 193
searchTreeSize, 194
second, 127
SeekMode, 133
select, 168
selectValue, 168
semi, 157

229

semiBraces, 155
semiBracesSpaced, 155
send, 89, 147
sep, 153
separatorChar, 118
seqStrActions, 94
sequenceMaybe, 142
sequenceS, 171
sequenceS , 171
set, 155
set functions, 8
set0, 167
set1, 167
set2, 167
set3, 167
set4, 167
set5, 167
set6, 167
set7, 167
setAssoc, 136
setCurrentDirectory, 110
setEnviron, 172
setExtended, 114
setFullPath, 114
setHtmlDir, 114
setInsertEquivalence, 192
setLogfile, 114
setOverlapWarn, 114
setQuiet, 114
SetRBT, 196
setRBT2list, 197
setSpaced, 155
setSpecials, 115
showAnyExpression, 177
showAnyQExpression, 177
showAnyQTerm, 176
showAnyTerm, 176
showCSV, 108
showFM, 191
showMemInfo, 162
showQTerm, 165
showSearchTree, 194
showTerm, 165
showTestCase, 94

showTestCompileError, 94
showTestEnd, 94
showTestMod, 94
shuffle, 191
sin, 126
single, 15
singleton variables, 7
sinh, 126
sizedSubset, 107
sizeFM, 189
sleep, 173
snoc, 187
Socket, 142, 169
socketAccept, 143, 170
socketName, 143
softbreak, 149
softline, 149
solutionOf, 180, 183
solve, 104
solveAll, 124
solveFD, 100
solveFDAll, 100
solveFDOne, 100
some, 145
someSearchTree, 194
someSolution, 123
someValue, 123, 195
someValueWith, 196
sort, 198
sortBy, 140, 192, 198
sorted, 198
sortedBy, 198
sortRBT, 197
sortValues, 169
sortValuesBy, 169
SP_Msg, 146
space, 157
spawnConstraint, 175
specials, 115
specification, 35
spiceup, 73
Spicey, 73
split, 139
splitBaseName, 118

230

splitDirectories, 122
splitDirectoryBaseName, 118
splitDrive, 120
splitExtension, 119
splitExtensions, 120
splitFileName, 121
splitFM, 189
splitModuleFileName, 113
splitModuleIdentifiers, 113
splitOn, 139
splitPath, 118, 121
splitSearchPath, 119
splitSet, 107
spy, 15
sqrt, 125
squote, 157
squotes, 155
stamp, 179
star, 145
State, 170
stderr, 133
stdin, 133
stdout, 133
Strategy, 193
string, 156
stripCurrySuffix, 113
stripSuffix, 118
style, 44
style checking, 44
sub, 144
subset, 107
successful, 181, 184
suffixSeparatorChar, 118
sum, 100, 105, 140
sysLibPath, 113
system, 172

TableRBT, 199
tableRBT2list, 200
tabulator stops, 7
tails, 139
takeBaseName, 121
takeDirectory, 121
takeDrive, 120

takeExtension, 119
takeExtensions, 120
takeFileName, 121
tan, 126
tanh, 126
terminal, 145
Test, 178
test, 179
Test.EasyCheck, 29, 33
Test.Prop, 29
testing programs, 29
testsOf, 179
text, 148
tilde, 158
time, 14
timeoutOnStream, 147
toCalendarTime, 174
toClockTime, 174
toDayString, 174
toError, 179, 183
toIOError, 179, 183
toLower, 95
toNat, 144
toTimeString, 174
toUpper, 95
toUTCTime, 174
trace, 15, 109, 175
traceId, 109
traceIO, 109
traceShow, 109
traceShowId, 109
transpose, 138
Traversable, 200
tree2list, 192
trivial, 181, 185
true, 100
truncate, 125
try, 123
tupled, 155
tupledSpaced, 155

underline, 159
unfoldr, 141
union, 138

231

unionBy, 138
unionRBT, 197
uniquely, 180, 184
unitFM, 188
unpack, 124
unregisterPort, 108
unsafePerformIO, 175
unsetEnviron, 172
updArgs, 179
update, 186, 192
updateFile, 136
updatePropertyFile, 163
updateRBT, 200
updFM, 189
usageInfo, 129

v, 14
validDate, 175
valueOf, 168
Values, 167
values2list, 169
ValueSequence, 202
valuesOf, 182, 185
valuesOfSearchTree, 182
variables

singleton, 7
vcat, 153
verbosity, 14
verify, 45
verifying programs, 45
vsep, 152
vsepBlank, 152
vsToList, 203

waitForSocketAccept, 143, 170
warn, 14
where, 17
white, 160
writeAssertResult, 94
writeCSVFile, 108
writeGlobal, 130
writeGVar, 131
writeIORef, 137
writeQTermFile, 166

writeQTermListFile, 166

yellow, 160

232

	Title
	Contents
	Preface
	Overview of PAKCS
	General Use
	Restrictions
	Modules in PAKCS

	PAKCS: An Interactive Curry Development System
	Invoking PAKCS
	Commands of PAKCS
	Options of PAKCS
	Using PAKCS in Batch Mode
	Command Line Editing
	Customization
	Emacs Interface

	Extensions
	Recursive Variable Bindings
	Functional Patterns
	Order of Pattern Matching

	Recognized Syntax of Curry
	Notational Conventions
	Lexicon
	Comments
	Identifiers and Keywords
	Numeric and Character Literals

	Layout
	Context-Free Grammar

	Optimization of Curry Programs
	cypm: The Curry Package Manager
	curry check: A Tool for Testing Properties of Curry Programs
	Testing Properties
	Generating Test Data
	Checking Contracts and Specifications
	Checking Usage of Specific Operations

	CurryBrowser: A Tool for Analyzing and Browsing Curry Programs
	Installation
	Basic Usage

	curry-doc: A Documentation Generator for Curry Programs
	Installation
	Documentation Comments
	Generating Documentation

	curry-style: A Style Checker for Curry Programs
	Installation
	Basic Usage
	Configuration

	CurryVerify: A Tool to Support the Verification of Curry Programs
	Installation
	Basic Usage
	Options

	CurryPP: A Preprocessor for Curry Programs
	Installation
	Basic Usage
	Integrated Code
	Regular Expressions
	Format Specifications
	HTML Code
	XML Expressions

	SQL Statements
	ER Specifications
	SQL Statements as Integrated Code

	Default Rules
	Contracts

	runcurry: Running Curry Programs
	Installation
	Using runcurry

	CASS: A Generic Curry Analysis Server System
	Installation
	Using CASS to Analyze Programs
	Batch Mode
	API Mode
	Server Mode

	Implementing Program Analyses

	ERD2Curry: A Tool to Generate Programs from ER Specifications
	Installation
	Basic Usage

	Spicey: An ER-based Web Framework
	Installation
	Usage

	curry-peval: A Partial Evaluator for Curry
	Installation
	Basic Usage
	Options

	Preprocessing FlatCurry Files
	Technical Problems
	SWI-Prolog
	Distributed Programming and Sockets
	Contact for Help

	Bibliography
	Libraries of the PAKCS Distribution
	Constraints, Ports, Meta-Programming
	Arithmetic Constraints
	Finite Domain Constraints
	Ports: Distributed Programming in Curry
	AbstractCurry and FlatCurry: Meta-Programming in Curry

	General Libraries
	Library AllSolutions
	Library Assertion
	Library Char
	Library CLP.FD
	Library CLPFD
	Library CLPR
	Library Combinatorial
	Library CPNS
	Library CSV
	Library Debug
	Library Directory
	Library Distribution
	Library Either
	Library ErrorState
	Library FileGoodies
	Library FilePath
	Library Findall
	Library Float
	Library Function
	Library FunctionInversion
	Library GetOpt
	Library Global
	Library GlobalVariable
	Library Integer
	Library IO
	Library IOExts
	Library List
	Library Maybe
	Library NamedSocket
	Library Nat
	Library Parser
	Library Ports
	Library Pretty
	Library Profile
	Library PropertyFile
	Library Read
	Library ReadNumeric
	Library ReadShowTerm
	Library SetFunctions
	Library Socket
	Library State
	Library System
	Library Time
	Library Unsafe
	Library Test.EasyCheck
	Library Test.Prop

	Data Structures and Algorithms
	Library Array
	Library Dequeue
	Library FiniteMap
	Library Random
	Library RedBlackTree
	Library SCC
	Library SearchTree
	Library SearchTreeTraversal
	Library SetRBT
	Library Sort
	Library TableRBT
	Library Traversal
	Library ValueSequence

	Markdown Syntax
	Paragraphs and Basic Formatting
	Lists and Block Formatting
	Headers

	SQL Syntax Supported by CurryPP
	Overview of the PAKCS Distribution
	Auxiliary Files
	External Functions
	Index

