
Overlapping Rules and Logic Variables in
Functional Logic Programs?

October 12, 2005

Sergio Antoy1 Michael Hanus2

1 Department of Computer Science, Portland State University,
P.O. Box 751, Portland, OR 97207, U.S.A.

antoy@cs.pdx.edu

2 Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Abstract. Functional logic languages extend purely functional languages
with two features: operations defined by overlapping rules and logic vari-
ables in both defining rules and expressions to evaluate. In this paper, we
show that only one of these features is sufficient in a core language. On the
one hand, overlapping rules can be eliminated by introducing logic variables
in rules. On the other hand, logic variables can be eliminated by introduc-
ing operations defined by overlapping rules. The proposed transformations
between different classes of programs not only give a better understanding
of the features of functional logic programs but also are useful to simplify
implementations of functional logic languages.

1 Motivation

Functional logic languages [18] integrate the best features of functional and logic
languages in order to provide a variety of programming concepts. For instance, the
concepts of demand-driven evaluation and higher-order functions from functional
programming can be combined with logic programming features like computing
with partial information (logic variables), constraint solving, and nondeterminis-
tic search for solutions. In contrast to purely functional languages, functional logic
languages allow computations with overlapping rules (i.e., more than one rule can
be applied to evaluate a function call) and logic variables (i.e., unbound variables
occurring in the initial expression and/or rules, also called extra variables). Oper-
ationally, these features are supported by nondeterministic computation steps.

Functional logic languages are modeled by constructor-based term rewriting
systems (TRS) with narrowing as the evaluation mechanism. A crucial choice in
the design of a language, both at the source level and the implementation level,
is the class of rewrite systems used to model the programs. Early languages (e.g.,
Babel [26] and K-Leaf [17]) were modeled by weakly orthogonal, constructor-based
TRSs. Larger classes provide more expressiveness. Thus, modern languages, such
as Curry [19, 21] and T OY [24], are modeled by the whole class of the constructor-
based rewrite systems with extra variables. However, the implementation of a
language modeled by a smaller class is likely to be simpler and/or more efficient.
? This work was partially supported by the German Research Council (DFG) grant Ha

2457/5-1 and the NSF grant CCR-0218224.

For the above reason, program transformation among different classes of TRSs
is an interesting research subject. The goal is to transform a program in the source
language into an equivalent program in a language, referred to as the core language,
that is conceptually simpler or could be implemented more efficiently. For example,
[5] shows that any conditional constructor-based TRS can be transformed into
an unconditional overlapping inductively sequential TRS [4]. The target class is
a proper subclass of the source class, a situation that leads to conceptual and
practial benefits. This paper studies two transformations similar to that described
in [5] and with the same intent.

The first transformation maps the overlapping inductively sequential TRS with
or without extra variables into the inductively sequential TRS with extra variables.
This shows that if a language allows extra variables, then, at the core level, over-
lapping is not necessary. Of course, at the source level overlapping is a feature that
contributes to the expressiveness of a language and therefore is desirable.

The second transformation eliminates logic variables from computations within
the overlapping inductively sequential TRS. By “logic variables” we mean extra
variables in rewrite rules and variables, which are free or unbound, in expressions to
evaluate. A somewhat unexpected, though immediate, consequence of this trans-
formation is that the power of narrowing computations can be obtained by mere
rewriting. As for the previous transformation, at the source level logic variables
contribute to the expressiveness of a language and therefore are desirable.

Loosely speaking, these results can be understood as the possibility to trade
in a core language logic variables for a rather disciplined form of rule overlapping
and vice versa. Section 2 reviews concepts and notations used in this paper. Sec-
tion 3 defines the transformation that replaces overlapping with extra variables
and proves its correctness. Section 4 defines the transformation that replaces logic
variables with overlapping and proves its correctness. Section 5 offers our conclu-
sion.

2 Preliminaries

In this section we review some term rewriting [10, 16] notations and functional
logic programming [18] concepts used in the remaining of this paper.

We consider a many-sorted signature Σ partitioned into a set C of constructors
and a set F of (defined) functions or operations. We write c/n ∈ C and f/n ∈ F
for n-ary constructor and operation symbols, respectively. Given a set of sorted
variables X , the set of well-sorted terms and constructor terms are denoted by
T (Σ,X) and T (C,X), respectively. We write Var(t) for the set of all the variables
occurring in a term t. A term t is ground if Var(t) = ∅. A term is linear if
it does not contain multiple occurrences of a variable. A term is operation-rooted
(constructor-rooted) if its root symbol is an operation (constructor). A head normal
form is a term that is not operation-rooted, i.e., it is a variable or a constructor-
rooted term. We write ok for a sequence of objects o1, . . . , ok.

Example 1. In the following, we write datatype declarations in Curry syntax [21],
i.e., a sort S is defined by enumerating its constructors in the form

data S = C1 s11 . . . s1a1 | . . . | Cn sn1 . . . snan

2

Thus, Ci is a constructor of sort S and arity ai with argument sorts si1, . . . , siai
.

For instance, the sorts of Boolean values and natural numbers in Peano’s notation
are defined as

data Bool = True | False
data Nat = O | S Nat 2

A pattern is a linear term of the form f(t1, . . . , tn) where f/n ∈ F is an operation
symbol and t1, . . . , tn are constructor terms. A constructor-based rewrite system
is a set of pairs of terms or rewrite rules of the form

l→ r

where l is a pattern and l and r are of the same sort. An operation f is defined by all
the rewrite rules whose left-hand side is rooted by f . A functional logic program is
a constructor-based rewrite system. Traditionally, term rewriting systems have the
additional requirement Var(r) ⊆ Var(l). However, in functional logic programming
variables occurring in Var(r) but not in Var(l)), called extra variables, are often
useful. Therefore, we allow rewrite rules with extra variables in functional logic
programs. We denote the set of extra variables of a rewrite rule l → r, defined as
Var(r)\Var(l), with Evar(l→ r).

To formally define computations w.r.t. a given program, additional notions are
necessary. A position p in a term t is represented by a sequence of natural numbers.
Positions are used to identify specific subterms. Thus, t|p denotes the subterm of t
at position p, and t[s]p denotes the result of replacing the subterm t|p with the term
s (see [16] for details). A substitution is an idempotent mapping σ : X → T (Σ,X)
such that its domain Dom(σ) = {x | σ(x) 6= x} is finite and x and σ(x) are
of the same sort for all variables x. We denote a substitution σ by the finite set
{x 7→ σ(x) | x ∈ Dom(σ)}. In particular, ∅ denotes the identity substitution. We
denote by σ|V the restriction of a substitution σ to a set of variables V . A (ground)
constructor substitution σ has the property that σ(x) is a (ground) constructor
term for all x ∈ Dom(σ). The composition σ ◦ η of two substitutions is defined by
(σ ◦ η)(x) = η(σ(x)) for all variables x. Substitutions are extended to morphisms
on terms in the obvious way. The subsumption ordering is a binary relation on
terms defined by u ≤ v if there is a substitution σ with σ(u) = v. In this case, v
is also called an instance of u. If, in addition, v is a (ground) constructor term,
we call it (ground) constructor instance. If u ≤ v and v ≤ u, then u and v differ
only for a renaming of variables. We write u < v if u ≤ v and v 6≤ u. A unifier of
two terms s and t is a substitution σ such that σ(s) = σ(t). The unifier σ is most
general if for any other unifier σ′ there exists a substitution η with σ′ = σ ◦ η.
Furthermore, we denote by s� t the most general unifier of s and t restricted to
Var(s).

A rewrite step t →p,l→r,η t
′ w.r.t. a given rewrite system R is defined if there

are a position p in t, a rule l → r ∈ R with fresh variables, and a substitution η
with t|p = η(l) such that t′ = t[η(r)]p. We impose the condition on the freshness
of the variables since we allow extra variables in rewrite rules. The indices in the
notation of a rewrite step are omitted when inconsequential. A term t is called
irreducible or in normal form if there is no term s such that t → s. +→ and ∗→
denote the transitive and reflexive-transitive closure of the relation→, respectively.

Functional logic languages compute solutions of free variables occurring in ex-
pressions by instantiating these variables to constructor terms so that a rewrite

3

step becomes applicable. The combination of variable instantiation and rewriting
is called narrowing. Formally, t ;σ t

′ is a narrowing step if σ(t) →p,l→r,η t
′ where

σ is a substitution, t|p is not a variable, and Dom(η) ⊆ Var(l). We denote by
t0

∗
;σ tn a sequence of narrowing steps t0 ;σ1 . . . ;σn tn with σ = σ1 ◦ · · · ◦ σn

(if n = 0 then σ = ∅). We omit the substitution in the notation of both narrowing
steps and sequences when irrelevant to the discussion.

The requirement that Dom(η) ⊆ Var(l), as in [5], ensures that no extra variable
in a rule is instantiated during a narrowing step. An extra variable in a rewrite rule
is generally intended as a place holder for any term, e.g., see [11] where extra vari-
ables are allowed in the conditions of rewrite rules. In constructor-based rewrite
systems, a more suitable convention should allow an extra variable to stand only
for constructor terms, since terms that cannot be reduced to a constructor term
are intended as errors. By contrast, requiring that extra variables remain unin-
stantiated in a rewrite step appears as treating extra variables as constants, thus
foregoing the expressive power that they provide. However, when computations
are performed by narrowing, particularly using an efficient strategy, it seems most
sensible to avoid instantiating extra variables in the step that introduces them.
The reason is that these variables become logic variables in subsequent steps and
therefore may be narrowed. The advantage of instantiating them in a narrowing
step after they are introduced, as opposed to instantiating them in the step that
introduces them, is that the latter would have no information on choosing useful
instantiations, whereas the former could instantiate them with choices useful to
perform a step. In particular, efficient strategies such as [4, 7] will instantiate logic
variables only as far as necessary to perform needed steps. This level of specializa-
tion seems impossible to achieve at the time extra variables are introduced, unless
the step introducing them performs some kind of lookahead.

The general definition of narrowing allows too many narrowing steps in a term
so that it is not useful in practice. Therefore, older narrowing strategies (see [18]
for a detailed account), influenced by the resolution principle, require that the
substitution used in a narrowing step is a most general unifier of the term being
replaced and the left-hand side of the applied rule. As shown in [7], this condition
prevents the development of optimal evaluation strategies. Therefore, more recent
narrowing strategies relax this requirement but provide other constructive meth-
ods to compute a small set of unifiers and positions used in narrowing steps [6].
In particular, needed or demand-driven strategies perform narrowing steps only
if they are necessary to compute a result. Such strategies are defined on more
restricted classes of rewrite systems that will be defined next.

An important narrowing strategy, needed narrowing [7], is defined on the sub-
class of the inductively sequential TRSs. This class can be characterized by defi-
nitional trees [3] that are also useful to formalize and implement demand-driven
narrowing strategies. Since only the left-hand sides of rules are important for the
applicability of needed narrowing, the following formulation of definitional trees
[4] considers patterns partially ordered by subsumption.

A definitional tree of an operation f is a non-empty set T of linear patterns
partially ordered by subsumption having the following properties:

Leaves property: The maximal elements of T , called the leaves, are exactly the
(variants of) the left-hand sides of the rules defining f . Non-maximal elements
are also called branches.

4

Root property: T has a minimum element, called the root, of the form f(x1, . . . , xn)
where x1, . . . , xn are pairwise distinct variables.

Parent property: If π ∈ T is a pattern different from the root, there exists a unique
π′ ∈ T , called the parent of π (and π is called a child of π′), such that π′ < π
and there is no other pattern π′′ ∈ T (Σ,X) with π′ < π′′ < π.

Induction property: All the children of a pattern π differ from each other only at
a common position, called the inductive position, which is the position of a
variable in π.1

An operation is called inductively sequential if it has a definitional tree. Tradi-
tionally, it is also required that the rules do not contain extra variables [7]. Here,
we relax this requirement: A TRS is inductively sequential with extra variables
(ISX) if all its defined operations are inductively sequential. Intuitively, induc-
tively sequential functions are defined by structural induction on the argument
types. Purely functional programs and the vast majority of functions in functional
logic programs are inductively sequential.

Example 2. The following operations are inductively sequential w.r.t. the datatype
declarations of Example 1:

leq(O,x) → True
leq(S(x),O) → False
leq(S(x),S(y)) → leq(x,y)

cond(True,x) → x

nine → S(S(S(S(S(S(S(S(S(0)))))))))

The operation smallnum denotes a number less than ten and is defined by an ISX
rule containing an extra variable x:

smallnum → cond(leq(x,nine),x) 2

Functional logic languages extend purely functional languages by allowing over-
lapping rules. We are interested only in a disciplined form of overlapping. Two
distinct rewrite rules l1 → r1 and l2 → r2 are called overlapping if the left-hand
sides l1 and l2 are variants of each other, i.e., they are equal by subsumption. We
denote the set of all rules with the same left-hand side l by the single (meta) rule
l → r1 ? · · · ? rk, where “?” is a meta symbol and r1, . . . , rk are the right-hand
sides. A TRS is overlapping inductively sequential (OIS) if all its defined oper-
ations are inductively sequential when overlapping rules with identical left-hand
sides are joined into a single rule as above. The purpose of this paper is to show
that an ISX program executed by narrowing can be transformed into an OIS pro-
gram executed by rewriting and vice versa, i.e., the classes ISX and OIS loosely
speaking have the same expressiveness.

Next, we define the needed narrowing strategy on inductively sequential rewrite
systems.

Definition 1. Let R be an inductively sequential TRS where each function sym-
bol has a uniquely associated definitional tree. We define the function λ from
1 There might exist distinct definitional trees of an operation. In this case one can use

any tree for computing a needed narrowing step of a term since the need of the step
does not depend on the selected tree.

5

operation-rooted terms to sets of triples (position, rule, substitution) as follows.
Let t = f(t1, . . . , tn) be an operation-rooted term, T the definitional tree associ-
ated to f , and π a maximal pattern of T that unifies with t. Then λ(t) is the least
set satisfying

λ(t) 3


(Λ, π → r, t� π) if π is a leaf of T and π → r

is a variant of a rewrite rule
(q · p,R, η ◦ σ) if π is a branch of T ,

where q is the inductive position of π,
η = t� π, and (p,R, σ) ∈ λ(η(t|q)) 2

In each recursive step during the computation of λ, a position and a substitution is
composed with the results computed by the recursive call. Thus, each needed nar-
rowing step can be represented as (p1 · · · pk, R, σ1 ◦ · · · ◦σk), where pk = Λ, pj is an
inductive position for all j ∈ {1, . . . , k−1}, and σj a most general unifier restricted
to the term variables computed in each recursive call for all j ∈ {1, . . . , k}. This
representation of a needed narrowing step is called its canonical decomposition.

Proposition 1 ([4]). Let R be an overlapping inductively sequential TRS and
t an operation-rooted term. If (p, l → r, σ) ∈ λ(t), then t ;p,l→r,σ σ(t[r]p) is a

needed narrowing step, also denoted by t
NN
;p,l→r,σ σ(t[r]p).

The need of the step computed by λ in Proposition 1 is modulo the nondeterminis-
tic choice of the right-hand side. The term t cannot be narrowed to a constructor
term without a step at p with a rule l → r′. However, it may be possible that
r 6= r′.

3 Eliminating Overlapping Rules

In this section we show that using rules with multiple right-hand sides does not
increase the expressiveness of a functional logic language already providing in-
ductively sequential rewrite systems with extra variables. For this purpose, we
introduce a transformation from OIS into ISX systems and prove that needed
narrowing computes the same results on the original and the transformed system.

Definition 2 (Transformation from OIS into ISX). We define a transfor-
mation OE (Overlapping Elimination) on TRSs. Non-overlapping rewrite rules
are not changed. Overlapping rewrite rules of the form f(tn) → r1 ? · · · ? rk are
replaced by a single rule f(tn) → f ′(y, xl) where Var(tn) = {x1, . . . , xl}, y is a
new free variable, and f ′ is a new function symbol defined by the new rules

f ′(I1, xl) → r1
...
f ′(Ik, xl) → rk

The constants Ij are the elements of a new index type defined by

data Ix = I1 | · · · | Ik

In practice, one can use the same index type (e.g., natural numbers) for all the
rules. 2

6

The transformation only adds new function and constructor symbols. Thus, every
term w.r.t. the original signature is also a term w.r.t. the transformed signature.
In the following, we denote the original TRS by R and the transformed TRS by
R′ = OE (R).

Example 3. The following operation coin epitomizes an overlapping inductively
sequential operation:

coin → 0 ? 1

The OE transformed program is:

data Icoin = I0 | I1

coin → coin’(y)
coin’(IO) → 0
coin’(I1) → 1 2

Example 4. Consider an operation parent that non-deterministically returns ei-
ther the mother or the father of the argument:

parent(x) → mother(x) ? father(x)

The OE transformed program is:

data Iparent = I0 | I1

parent(x) → parent’(y,x)
parent’(IO,x) → mother(x)
parent’(I1,x) → father(x) 2

Proposition 2. If R is overlapping inductively sequential, then the transformed
system R′ is inductively sequential with extra variables.

Proof. Since the left-hand sides of the rules in R are not changed and the rules of
the new function symbols are obviously inductively sequential, R′ is inductively
sequential. Furthermore, since all overlapping rules in R are eliminated and the
rules of the new function symbols are not overlapping, the proposition holds. 2

To claim the correctness of the transformation, we need to show that every compu-
tation in the original system has a corresponding computation in the transformed
system and vice versa. For this purpose, we need two auxiliary results. The follow-
ing lemma shows that any narrowing step in the original system can be simulated
in the transformed system by either the same step or two consecutive steps using
the introduced rules.

Lemma 1 (Completeness of OE). Let t ∈ T (Σ,X). If t ;p,R,σ t′ with l →
r ∈ R, then t

+
;σ′ t

′ w.r.t. R′ with σ =Var(t) σ
′.

Proof. If R is a rule in R∩R′, the lemma holds immediately. Otherwise, there are
overlapping rules l→ r1 ? · · · ? rk inR and R = f(t1, . . . , tn) → rj for some j. Since
t ;p,R,σ t

′, by definition of narrowing, t|p = σ(f(t1, . . . , tk)) and t′ = σ(t)[σ(rj)]p
for some j. Then

t ;p,f(tn)→f ′(y,xl),σ
σ(t)[f ′(y, σ(xl))]p ;p,f ′(Ij ,xl)→rj ,{y 7→Ij} σ(t)[σ(rj)]p

is a narrowing derivation w.r.t. R′ with a fresh variable y. Since σ′ = {y 7→ Ij} ◦σ
and y 6∈ Var(t), σ =Var(t) σ

′. 2

7

The next lemma shows that every needed narrowing step in the transformed system
that introduces a function symbol not occurring in the signature of the original
system is immediately followed by a needed narrowing step that removes this
symbol.

Lemma 2 (Soundness of OE). Let f(tn) → r1 ? · · · ? rk be overlapping rules
of an OIS TRS and R = f(tn) → f ′(y, xl) and Rj = f ′(Ij , xl) → rj , for j ∈
{1, . . . , k}, be the corresponding rules introduced by the OE transformation. If

t ∈ T (Σ,X) and t
NN
;p,R,σ t′, then t′

NN
;p,Rj ,{y 7→Ij} t

′[σ(rj)]p are the only needed
narrowing steps applicable to t′.

Proof. Let (p1 · · · pk, R, σ1 ◦ · · · ◦ σk) be the canonical decomposition of the first
needed narrowing step. Let πm, for m ∈ {1, . . . , k − 1}, be the branch of the
definitional tree used in conjunction with position p1 · · · pm in the computation of
λ(t). Observe that π1 is used at Λ, π2 is used at p1, etc. Let Q be the set of positions
in πm. Since the replacement in the narrowing step of t is at a position below
p1 · · · pm−1, for each position q ∈ Q, (σ1 ◦ · · · ◦ σm(t|p1···pm−1))|q = (t′|p1···pm−1)|q.
Therefore, πm is the only maximal pattern in its definitional tree that unifies with
t′|p1···pm−1 and the unifier is the identity on Var(t′): no pattern greater than πm

unifies with t′|p1···pm−1 , otherwise, πm would not be maximal in the computation
of λ(t). Furthermore, t′|p1···pk

unifies with any leaf in the definitional tree of f ′:
in the definitional tree of f ′ the leaves have the form f ′(Ij , xl) and in t′|p1···pk

the
root is f ′ and its first argument is a variable.

Thus, (p,Rj , {y 7→ Ij}) belongs to λ(t′) and the narrowing steps exist as
claimed. Furthermore, no other needed narrowing step from t′ exists due to the
uniqueness of πm for all m ∈ {1, . . . , k − 1}. 2

The following theorem states the main result of this section—the correctness of
the OE transformation w.r.t. needed narrowing.

Theorem 1 (Correctness of OE). Let R be a OIS TRS, R′ = OE (R), and
t, s terms of R. The following claims hold.

Soundness If t
NN *
;σ′ s w.r.t. R′, then there exists a derivation t

NN *
;σ s w.r.t. R

such that σ =Var(t) σ
′.

Completeness If t
NN *
;σ s w.r.t. R, then there exists a derivation t

NN *
;σ′ s w.r.t.

R′ such that σ =Var(t) σ
′.

Proof. The completeness is an immediate consequence of Lemma 1. For the sound-
ness, consider a needed narrowing derivation

t0
NN
;σ′1

t1
NN
;σ′2

· · · NN
;σ′n

tn

w.r.t. R′ and t = t0, s = tn. We show by induction on n that there exists a
corresponding needed narrowing derivation

t0
NN +
; σ1 t1

NN +
; σ2 · · ·

NN +
; σn

tn

w.r.t. R and σ′1 ◦ · · · ◦ σ′n =Var(t) σ1 ◦ · · · ◦ σn.
The base case (n = 0) vacuously holds. For the induction step, consider the

first narrowing step t0
NN
;σ′1

t1. If this step uses a rule from R∩R′, the claim follows

8

immediately from the induction hypothesis. Otherwise, there are overlapping rules
R = f(tn) → r1 ? · · · ? rk in R such that R1 = f(tn) → f ′(y, xl) and R2 =
f ′(Ij , xl) → rj , for some j ∈ {1, . . . , k}, are the corresponding rules introduced by
the OE transformation. Since t0 ∈ T (Σ,X), by Lemma 2,

t0
NN
;p1,R1,σ′1

t1
NN
;p1,R2,σ′2

t2

with σ′2 = {y 7→ Ij} (where y is a free variable introduced in the first narrowing
step). Since R1 and the overlapping rules R have identical left-hand sides (so that
we can assume that their definitional trees are also identical), there exists a needed
narrowing step

t0
NN
;p1,f(tn)→rj ,σ′1

t1[σ′1(rj)]p1

By Lemma 2, t1[σ′1(rj)]p1 = t2 and σ′1 ◦ σ′2 =Var(t) σ
′
1. Since t2 ∈ T (Σ,X), we can

apply the induction hypothesis to the remaining narrowing derivation to prove the
claim. 2

4 Eliminating Logic Variables

In the previous section, we have shown that the class of the inductively sequential
TRSs with extra variables, ISX, is at least as expressive as the class of the overlap-
ping inductively sequential TRSs, OIS. This result is interesting because it enables
us to trade in the implementation of a language the complications of overlapping,
or multiple right-hand sides, for the presence of extra variables. Since we already
allow extra variables in the OIS programs, we simply eliminate overlapping in the
transformation.

In this section, we present a somewhat complementary result. We show that the
overlapping inductively sequential TRSs, without extra variables, denoted OIS−,
are at least as expressive as the ISX programs. We use a transformation that
eliminates unbound variables entirely, i.e., also from the “top-level” or initial term
being evaluated. Therefore, a computation in the OIS− programs is by rewriting,
not narrowing. This result is interesting because it enables us to trade in the
implementation of a language the complications of narrowing, in particular the
use of substitutions, for the presence of multiple right-hand sides in the program
rules.

As for the OE transformation, a functional logic program is an overlapping
inductively sequential, many sorted, constructor based TRSs with extra variables.
This time, though, our goal is to eliminate extra variables, instead of overlappings.
Thus, we denote with XE , extra variable elimination, the new transformation. For
any sort S, we consider a constant operation, instanceOfS, that enumerates the
values of the sort S. We call this operation a generator of S.

Definition 3 (instanceOf). Let S be a sort defined by a datatype declaration
of the form

data S = C1 t11 . . . t1a1 | . . . | Cn tn1 . . . tnan

The operation instanceOfS is defined by the overlapping rules

instanceOfS → C1(instanceOft11,. . .,instanceOft1a1)

9

? . . .
? Cn(instanceOftn1,. . .,instanceOftnan

) 2

If S is a primitive or builtin sort, e.g., integers or characters, then we will assume
that the operation instanceOfS is primitive or builtin as well. However, the fol-
lowing example shows that generators of primitive sorts, even infinite ones, can be
coded by ordinary rules.

Example 5. Suppose that a sort “tree of integers” is defined by

data TreeInt = Leaf | Branch Int TreeInt TreeInt

the generator of TreeInt is

instanceOfTreeInt
→ Leaf
? Branch(instanceOfInt,instanceOfTreeInt,instanceOfTreeInt)

Below are two plausible ordinary definitions of the generator of the integers:

instanceOfInt = 0 ? genNeg ? genPos
genNeg → -1 ? genNeg - 1
genPos → 1 ? genPos + 1

or also

instanceOfInt → gen(0)
gen(x) → if x >= 0 then x ? gen(-(x+1))

else x ? gen(-x) 2

In the following, we consider only ordinary rewrite systems over algebraic
datatypes. For such systems, Definition 3 immediately implies the following prop-
erty of instanceOf.

Lemma 3 (Completeness of generators). For every ground constructor term
t of sort S, there exists a rewrite sequence of instanceOfS to t.

Proof. By structural induction on t. 2

The XE transformation replaces any free variable v in a term with an operation
that evaluates to any value that could instantiate the variable v during a compu-
tation.

Definition 4 (Extra variable elimination). Let V be a set of (sorted) vari-
ables. Then the instantiation substitution IOV is defined as

IOV = {x 7→ instanceOfsx | x ∈ V has sort sx}

For every term t we define

XE (t) = IOVar(t)(t) 2

The following lemma extends Lemma 3 to terms with variables.

Lemma 4. For every variable x and constructor term u of the same sort,
XE (x) ∗→ XE (u).

10

Proof. By structural induction on u. 2

Definition 5 (Transformation from OIS into OIS−). Let R be an OIS
program. We define XE (R) = R′∪I, where I defines a fresh symbol instanceOfS
for every sort S in the signature of R, and l→ r′ is a rule of R′ iff l→ r is a rule
of R and r′ = IOEvar(l→r)(r). 2

Proposition 3. If R is an overlapping inductively sequential TRSs, then XE (R)
is an overlapping inductively sequential TRSs with no extra variables.

Proof. Let XE (R) = R′∪I according to the definition of of XE . The left-hand sides
of R and R′ are the same and the left-hand sides of I are constants, hence XE (R)
is overlapping inductively sequential. Furthermore, there are no extra variables in
R′ by construction and in I by definition. Hence, the proposition holds. 2

To claim the correctness of the XE transformation, we need to show that, under
appropriate conditions and qualifications, every computation in the original sys-
tem has a corresponding computation in the transformed system and vice versa.
First, we discuss the completeness of XE . We state the completeness for narrowing
derivations that compute constructor substitutions.

Lemma 5 (Completeness of XE steps). Let R an OIS program. For all terms

t, u, if t ;σ u w.r.t. R where σ is a constructor substitution, then XE (t) +→ XE (u)
w.r.t. XE (R).

Proof. Let R′ = XE (R). Since rewriting is closed under context, an immediate
consequence of Lemma 4 ensures that XE (t) ∗→ XE (σ(t)) w.r.t. R′. By the def-
inition of a narrowing step, there is a variant l → r of a rule in R, a position
p of t and a substitution η with Dom(η) ⊆ Var(l) such that σ(t)|p = η(l) and
u = σ(t)[η(r)]p. By definition of XE , l → r′ is a variant of a rule in R′ with
r′ = IOEvar(l→r)(r). Thus, σ(t) → σ(t)[η(r′)]p is a rewrite step w.r.t. R′ and, since
rewriting is closed under instantiation, XE (σ(t)) → XE (σ(t)[η(r′)]p) w.r.t. R′.
Since r′ = IOEvar(l→r)(r), the instantiated terms η(r′) and η(r) differ only in the
instantiation of extra variables: they are instantiated to instanceOf operations in
η(r′) whereas in η(r) they are unbound. By definition of XE , they are bound in
XE (η(r)) to the same instanceOf operations as in XE (η(r′)). Thus, we obtain

XE (t) ∗→ XE (σ(t)) → XE (σ(t)[η(r′)]p) = XE (σ(t)[η(r)]p) = XE (u) 2

Lemma 6 (Completeness of XE derivations). Let R an OIS program. For

any terms t and constructor term u, if t
∗
; u w.r.t. R where the substitution of

each narrowing step is a constructor substitution, then for any ground constructor
instance v of u, XE (t) ∗→ v w.r.t. XE (R).

Proof. If t ∗
; u w.r.t. R, Lemma 5 implies that XE (t) ∗→ XE (u) w.r.t. XE (R).

Let v be a ground constructor instance of u, i.e., there is a ground constructor
substitution η with Dom(η) = Var(u) and η(u) = v. Let x be a variable in Var(u).
By Lemma 3, XE (x) +→ η(x). Since the rewrite relation is closed under context,
XE (u) +→ η(u) which proves the claim. 2

11

For narrowing derivations with arbitrary substitutions, the proof of this lemma
fails since instanceOf rewrites only to constructor terms. To extend the proof
to obtain a more general result, we need to consider a variation of instanceOf
defined as follows:

instanceOfS → s1(instanceOft11,. . .,instanceOft1a1)
? . . .
? sn(instanceOftn1,. . .,instanceOftnan)

where {s1, . . . , sn} are all the signature symbols of sort S and the arguments of
si have sorts ti1, . . . , tiai

. However, this extension is not relevant in practice since
narrowing strategies used in functional logic languages compute only constructor
substitutions [6, 7].

In general, the transformation XE is not sound, i.e., there are rewrite deriva-
tions in the transformed system that have no correspondence in the original system.

Example 6. Consider the following program defining an operation that evaluates
to an arbitrary even number:

even → x+x

Applying XE to this program yields:

even → instanceOfInt + instanceOfInt

Consequently, the term even can be evaluated as follows:

even → instanceOfInt + instanceOfInt
+→ 0 + 1 → 1 2

This examples shows that all the occurrences of an instanceOf operation origi-
nating from the same variable should be reduced to the same value. Derivations
where this condition is satisfied are called admissible. We will show that the XE
transformation is sound for admissible derivations.

The problem in the previous example would be eliminated by having only
one occurrence of instanceOfInt. Therefore, we introduce a notation of terms
where only one occurrence is represented so that the derivation above is no longer
possible. Our notation uses pairs 〈t, χ〉 of a term t and a substitution χ which
represents the term χ(t). The substitution χ will be defined as IOVar(t) so that
it contains a single occurrence of an instanceOf operation for each free variable
of t. We define rewrite steps on this representation. A redex may occur in either
t or χ. Rewriting in t corresponds to standard rewriting, whereas a rewrite step
in χ may correspond to a multistep [22] in χ(t) if the bound variable has several
occurrences in t.

Definition 6 (Transformation to term/substitution pairs). For every term
t we define XEP(t) = 〈t, IOVar(t)〉. For every OIS programR we define XEP(R) =
R′ ∪ I, where I is as in Definition 5, and l → r′ is a rule of R′ iff l → r is a rule
of R and r′ = 〈r, IOEvar(l→r)〉. 2

Next we define rewrite steps on the pair representation of terms.

Definition 7 (Rewriting on term/substitution pairs). Let R be an OIS
program and XEP(R) = R′ ∪ I. Let t be a term and XEP(t) = 〈t, χ〉. We define a
rewrite step on XEP(t) as follows. 〈t, χ〉 → 〈t′, χ′〉 if one of the following conditions
holds:

12

(type-1 step) there exist a position p in t, a variant l→ 〈r, ψ〉 with fresh variables
of a rule in R′, a substitution σ such that Dom(σ) ⊆ Var(l), σ(l) = t|p,
t′ = t[σ(r)]p, and χ′ = χ|Var(t′) ∪ ψ

(type-2 step) there exist a variable v ∈ Dom(χ) with χ(v) = instanceOfS and a
rule

instanceOfS → c(instanceOfS1, . . . , instanceOfSk)

according to Definition 3 such that t′ = {v 7→ c(v1, . . . , vk)}(t), χ′ = (χ\{v 7→
instanceOfS}) ∪ {vi 7→ instanceOfSi | i = 1, . . . , k} where v1, . . . , vk are
fresh variables. 2

The following proposition states an important invariant of a rewrite sequence on
term/substitution pairs.

Proposition 4. Let R be an OIS program, R′ = XEP(R), t a term in R and
t′ = XEP(t). If t′ → 〈s, χ〉 is a rewrite step in R′, then Dom(χ) = Var(s) and
χ(x) = instanceOfS for all variables x ∈ Var(s) of sort S. In particular, there
exists a term u in R such that XEP(u) = 〈s, χ〉.

Proof. Direct from Definition 7. 2

Our notion of rewrite step on the term/substitution pair representation of a term
t directly corresponds to the notion of multistep of t in standard rewriting. A
multistep can be seen as an order-independent sequence of steps. In our particular
case, every occurrence of instanceOfS resulting from the same variable is replaced
by the same replacement. Therefore, the term/substitution pair representation
ensures that only admissible reduction sequences are computed. The following
lemma formalizes this correspondence.

Lemma 7. Let R be an OIS program, t a term and XEP(t) = 〈t, χ〉. For every

step 〈t, χ〉 → 〈t′, χ′〉 w.r.t. XEP(R) there exists a rewrite derivation χ(t) +→ χ′(t′)
w.r.t. XE (R).

Proof. The proof is by cases on the step type of 〈t, χ〉 → 〈t′, χ′〉.
Case type-1: By definition of type-1 step, there exists a position p of t and a rule

l→ r in R such that in XEP(R), l→ 〈r, ψ〉 is a rule and σ(l) = t|p in XEP(R) and
t′ = t[σ(r)]p. Also note that l→ r′ is a rule of XE (R) where, by Def. 5, r′ = ψ(r).
Thus, in XE (R), σ(l) = χ(t)|p = χ(t|p) and χ(t) → χ(t)[σ(r′)]p = χ(t[σ(r′)]p). We
show that χ(t[σ(r′)]p) = χ′(t′) = χ′(t[σ(r)]p). Let q be the position of a variable
x ∈ Var(t′) and let Sx be the sort of x. If x ∈ V ar(t), then, by the definition of
χ′, χ′(x) = χ(x). Otherwise, x ∈ Var(r). By definition of rewrite step, Dom(σ) =
Var(l), hence σ(x) = x. By the definition of χ′, χ′(x) = ψ(x) = instanceOfSx.
By Def. 5, r′|q = instanceOfSx, thus, in XE (R) we have χ(t) +→ χ′(t′).

Case type-2: Let v be the variable witnessing the definition of type-2 step
and let Q be the set of occurrence positions of v in t. By definition of
type-2 step, χ(v) = instanceOfS and there exists a rule instanceOfS →
c(instanceOfS1, . . . , instanceOfSk). Consider the derivation χ(t) ∗→ u that
reduces the subterm instanceOfS of χ(t) for every position in Q with

13

c(instanceOfS1, . . . , instanceOfSk). We show that u = χ′(t′). Let q be a po-
sition. If q is disjoint from any position in Q, then by construction χ(t|q) =
u and, by Def. 7, χ(t|q) = χ′(t′|q). If q is in Q, then, by construction
u|q = c(instanceOfS1, . . . , instanceOfSk) and by Def. 7, t′|q = c(v1, . . . , vk)
and χ′(vi) = instanceOfSi for all i ∈ {1, . . . , k} which implies χ′(t′)|q =
c(instanceOfS1, . . . , instanceOfSk). Thus, u = χ′(t′) for every position, and in
XE (R) we have χ(t) +→ χ′(t′). 2

The term/substitution representation is an appealing formalism for this problem
because it can be directly mapped to let binding constructs available in many
programming languages. For instance, the transformed program of Example 6 can
be coded in Curry [21] with a let binding as

even = let x = instanceOfInt in x+x

The semantics of the let binding construct is defined in such a way that all oc-
currences of let bound variables are replaced by the same replacement [1, 23] (ef-
ficiently implemented by sharing). Our notion of rewriting is a natural adaptation
of this semantics.

In order to prove the soundness of the XEP transformation, we state some
useful properties of rewrite steps on the term/substitution representation.

Lemma 8. LetR be an OIS TRS,R′ = XEP(R), t a term ofR, and t′ = XEP(t).
If t′

+→ u is a derivation with only type-2 steps, then there exists a constructor
substitution σ such that XEP(σ(t)) = u.

Proof. The claim for each step of the derivation is immediate from the definitions
of type-2 step and XEP . 2

Lemma 9. LetR be an OIS TRS,R′ = XEP(R), t a term ofR, and t′ = XEP(t).
If t′ → u′ with a type-1 step, then there exists a term u such that t→ u w.r.t. R
and XEP(u) = u′.

Proof. Let t′ → u′ be a type-1 rewrite step. By definition of type-1 steps,
t′ = 〈t, IOVar(t)〉, there exist a position p in t, a variant l → 〈r, ψ〉 with fresh
variables of a rule in R′, a substitution σ such that σ(l) = t|p, u = t[σ(r)]p,
χ = IOVar(t)|Var(u) ∪ ψ, and u′ = 〈u, χ〉. Furthermore, l → r ∈ R and ψ =
IOEvar(l→r). Hence, t→ u is a rewrite step w.r.t. R and XEP(u) = 〈u, IOVar(u)〉.
Finally, χ = IOVar(t)|Var(u) ∪ψ = IOVar(t)|Var(u) ∪ IOEvar(l→r) = IOVar(u) (since
Dom(σ) ⊆ Var(l) by definition of type-1 step), which proves the claim. 2

Now we are ready to state the soundness of the XEP transformation.

Lemma 10 (Soundness of XEP). Let R be an OIS TRS, R′ = XEP(R), and

t a term of R. If there exists a derivation t′
∗→ 〈v, ν〉 w.r.t. R′, where t′ = XEP(t),

then there exists a term u such that t
∗
; u in R with u ≤ ν(v).

Proof. First we prove the following auxiliary statement: For every derivation

t0 → t1 → · · · → tn

14

w.r.t. R′ where t0 = XEP(t) and the last step is a type-1 step, there exists a term
u with t

∗
; u in R and XEP(u) = tn. We prove this statement by induction on

the number k of type-1 steps in this derivation.
Base case (k = 1): Since the final step is the only type-1 step, all steps ti → ti+1

(i ∈ {0, . . . , n−1}) are type-2 steps. Lemma 8 implies the existence of a constructor
substitution σ with XEP(σ(t)) = tn−1. Furthermore, Lemma 9 applied to the type-
1 step tn−1 → tn implies the existence of a term u such that σ(t) → u w.r.t. R
and XEP(u) = tn. Since σ is a constructor substitution, t|p is not a variable for
the redex position p used in this rewrite step. Thus, by definition of narrowing,
t ; u.

Inductive case (k > 1): Let t0 → t1 → · · · → tm be the initial derivation steps
(m < n) such that ti → ti+1 (i ∈ {0, . . . ,m− 1}) are type-2 steps and tm−1 → tm
is a type-1 step. Similarly to the base case, there exists a term u such that t ; u
w.r.t. R and XEP(u) = tm. Applying the induction hypothesis to the remaining
derivation

tm → tm+1 → · · · → tn

implies the existence of a term u′ such that u ∗
; u′ w.r.t. R and XEP(u′) = tn.

Thus, t ∗
; u′ w.r.t. R.

Now, consider a derivation

t0 → t1 → · · · → tm → · · · → tn

w.r.t. R′ such that XEP(t) = t0, tm−1 → tm is the last type-1 step of this
derivation. Our auxiliary statement shows the existence of a term u with t ; u
w.r.t. R and XEP(u) = tm. Lemma 8 applied to the remaining type-2 steps
ti → ti+1 (i ∈ {m, . . . , n − 1}) implies the existence of a substitution σ with
XEP(σ(u)) = tn = 〈v, ν〉. By definition of XEP , σ(u) = v. Hence, u ≤ v ≤ ν(v).
2

The following lemma shows the completeness of single XEP steps.

Lemma 11. LetR an OIS program and t a term, and σ a constructor substitution
in R. Then there exists a derivation XEP(t) ∗→ XEP(σ(t)) w.r.t. XEP(R).

Proof. The lemma vacuously holds for σ = ∅ or σ(t) = t. First we prove the
claim for a particular form of σ which instantiates a single variable with a single
constructor symbol. Thus, consider σ = {x 7→ c(x1, . . . , xn)}, n ≥ 0, with x ∈
Var(t). Let XEP(t) = 〈t, χ〉. Since χ(x) = instanceOfS, where S is the sort of
x, XEP(t) → 〈σ(t), χ\σ ∪ {xi 7→ instanceOfSi | i = 1, . . . , n}〉 by definition of
type-2 step. Since Var(σ(t)) = (Var(t)\{x}) ∪ {x1, . . . , xn}, the claim follows by
definition of XEP(σ(t)).

For the general case of σ, the claim follows by induction on the structure of
σ(x) and by induction on the number of variables in Dom(σ). 2

Lemma 12 (Completeness of XEP steps). Let R an OIS program. For all

terms t, u, if t ;σ u w.r.t. R where σ is a constructor substitution, then XEP(t) +→
XEP(u) w.r.t. XEP(R).

15

Proof. Let R′ = XEP(R). Due to Lemma 11, XEP(t) ∗→ XEP(σ(t)) w.r.t. R′.
By the definition of a narrowing step, there is a variant l → r of a rule in
R, a position p of t and a substitution η with Dom(η) ⊆ Var(l) such that
σ(t)|p = η(l) and u = σ(t)[η(r)]p. By definition of XEP , l → 〈r, IOEvar(l→r)〉
is a variant of a rule in R′. Let XEP(σ(t)) = 〈σ(t), χ〉. By definition of type-1
step, XEP(σ(t)) → 〈u, χ|Var(u) ∪ IOEvar(l→r)〉. Since Var(u) = Var(σ(t))|Var(u) ∪
Evar(l → r) and Dom(χ) = Var(σ(t)) ⊇ Var(σ(t))|Var(u), we have IOVar(u) =
χ|Var(u) ∪ IOEvar(l→r). Hence, XEP(σ(t)) → XEP(u) which proves the claim. 2

The following theorem summarizes the main results of this section—the correctness
of the XEP transformation.

Theorem 2 (Correctness of XEP). Let R be a OIS TRS, R′ = XEP(R), t, s
terms of R, and t′ = XEP(t). Then the following claims hold.

Soundness If t′
∗→ 〈v, ν〉 is a derivation w.r.t. R′, then there exists a narrowing

derivation t
∗
; u w.r.t. R with u ≤ ν(v). In particular, if ν(v) is a constructor

term, then ν = ∅ and u is a constructor term.
Completeness If t

∗
; s w.r.t. R, then there exists a derivation t′

∗→ s′ w.r.t. R′

such that s′ = XEP(s). In particular, if s is a constructor term, then there

exists a derivation t′
∗→ 〈v,∅〉 w.r.t. R′ for any ground constructor instance v

of s.

Proof. The soundness follows from Lemma 10. If ν is not empty, ν(v) is not a
constructor term by Proposition 4.

The completeness follows from Lemma 12 by induction on the length of the
derivation. If s is a constructor term and η is a ground constructor substitution,
Lemma 11 implies the existence of a derivation XEP(s) ∗→ XEP(η(s)) = 〈η(s),∅〉.

2

The correctness of the OE transformation is proved using the needed narrowing
strategy, whereas the correctness of XEP makes no assumption on the strategy.
We use needed narrowing in the first case since we do not see an easy proof for
a more general strategy. Since in practice one wants to use an efficient strategy,
our choice is not limiting. Likewise, proving the correctness of XEP for needed
narrowing does not seem easy. However, we remark the tight correspondence of
steps in a TRS R and the transformed TRS XEP(R) shown in Lemmas 9 and 12.
The difference between the steps in the two systems is only in type-2 steps. These
steps are avoided by the original TRS which performs narrowing steps as opposed
to rewrite steps. Narrowing steps are more expensive due to the computation of
variable instantiations. Since these instantiations correspond to type-2 steps, we
conjecture that the costs of both derivations in a practical implementation are
comparable.

The above results show that, loosely speaking, variables and overlapping rules
have the same computational power in a functional logic language. The evalua-
tion of expressions with free variables, particularly in the tradition of logic pro-
gramming, produces variable bindings. These bindings are an integral part of the
computation. This information seems to be lost with the XEP transformation. A
simple way to recover this information is to transform the initial term t of a com-
putation into a tuple (t, x1, . . . , xn) where x1, . . . , xn are the variables of t. The

16

evaluation of the tuple will be (e, b1, . . . , bn) where e is the computed value and
b1, . . . , bn constitute the computed answer. A remaining obstacle is that bindings
may contain variables whereas in our approach b1, . . . , bn are ground. To overcome
this obstacle, one may adopt the convention that an occurrence of instanceOf
is only evaluated if its value is necessary to perform a type-1 step. Observe that
type-1 steps are never performed in b1, . . . , bn.

5 Conclusion

We have presented two transformations on functional logic programs. The first
transformation eliminates overlapping rules by introducing auxiliary functions and
extra variables. Together with the results of [5], this transformation shows that
any functional logic program can be mapped into an inductively sequential TRS
with extra variables so that it can be executed by needed narrowing. Hence, the
class ISX is a reasonable core language for functional logic programming. The
second transformation completely eliminates logic variables from functional logic
computations by replacing them with operations defined by overlapping rules. The
correctness of this transformation requires the consistent evaluation of these new
operations w.r.t. the logic variable occurrences. This can be achieved by sharing
which is usually available in lazy languages.

The results presented in this paper provide a better understanding of the fea-
tures of functional logic languages and their interactions. Although the source
level of such languages extend purely functional languages by overlapping rules
and extra variables, our results show that only one of these alternative concepts
is enough for a core language.

Apart from these theoretical considerations, our results have also a practical
interest since a simplified core language can reduce the implementation effort it
requires. For instance, typical implementations of core languages are based on ab-
stract machines that bridge the gap between the source level and the hardware
(e.g., [8, 20, 25]). Usually, these machines provide instructions and data structures
to support the implementation of both overlapping rules and logic variables. Our
results enable the simplification of these abstract machines. For instance, specific
instructions to handle computations that use overlapping rules need not be consid-
ered in an abstract machine if the OE transformation is applied in the compilation
process. This is done in the implementations described in [14, 28], although without
any formal justification. Likewise, the handling of logic variables (e.g., data struc-
tures such as binding arrays and binding instructions) can be removed if the XEP
transformation is applied. Which of the two alternatives is more convenient de-
pends on the concrete architecture of the machine. A simplified core language can
also reduce the effort to build tools for functional logic languages. For instance,
recent tools for debugging functional logic programs (e.g., tracers [13], profilers
[12], slicers [27]) or program optimization (e.g., partial evaluation [2]) are based
on a core language that supports both overlapping rules and logic variables which
could be simplified using our results.

Finally, the XEP transformation also sheds some new light on the role of logic
variables in declarative programming. It has been sometimes argued (in the func-
tional programming community) that the instantiation of a logic variable during a
computation is similar to a side effect due to its global visibility. For instance, this

17

has led to the modeling of logic variables as references in Haskell [15]. However,
our results show that the binding of a logic variable can be also interpreted as the
stepwise evaluation of an operation so that the power of narrowing computations
can be obtained by rewriting.

We have presented our results for a first-order many-sorted functional logic
language. The extension to higher-order features is not difficult if one uses the
well-known translation of higher-order functions into first-order rewrite rules by
interpreting partial function applications as constructor terms and introducing a
family of application operations for these terms (e.g., see [9, 29]). The extension to
polymorphically typed languages is not so obvious since the XEP transformation
assumes that the type of each logic variable is known at compile time. This infor-
mation is always available in a many-sorted TRS but could be difficult to obtain
in a polymorphic functional logic language where logic variables might have an
arbitrary type. In this case, one could define a specific “polymorphic” instanceOf
operation that evaluates to values of all possible types. However, this is not prac-
tical due to an increase of the search space size and the possibility of ill-typed
expressions during a computation. An appropriate solution to this problem is a
topic for future research.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics for
Declarative Multi-Paradigm Languages. Journal of Symbolic Computation, Vol. 40,
No. 1, pp. 795–829, 2005.

2. E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluator for a Multi-
Paradigm Declarative Language. Journal of Functional and Logic Programming,
Vol. 2002, No. 1, 2002.

3. S. Antoy. Definitional Trees. In Proc. of the 3rd International Conference on Alge-
braic and Logic Programming, pp. 143–157. Springer LNCS 632, 1992.

4. S. Antoy. Optimal Non-Deterministic Functional Logic Computations. In Proc.
International Conference on Algebraic and Logic Programming (ALP’97), pp. 16–30.
Springer LNCS 1298, 1997.

5. S. Antoy. Constructor-based Conditional Narrowing. In Proc. of the 3rd International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP 2001), pp. 199–206. ACM Press, 2001.

6. S. Antoy. Evaluation Strategies for Functional Logic Programming. Journal of
Symbolic Computation, Vol. 40, No. 1, pp. 875–903, 2005.

7. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of the
ACM, Vol. 47, No. 4, pp. 776–822, 2000.

8. S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A Virtual Machine for Functional Logic
Computations. In Proc. of the 16th International Workshop on Implementation and
Application of Functional Languages (IFL 2004), pp. 108–125. Springer LNCS 3474,
2005.

9. S. Antoy and A. Tolmach. Typed Higher-Order Narrowing without Higher-Order
Strategies. In Proc. 4th Fuji International Symposium on Functional and Logic Pro-
gramming (FLOPS’99), pp. 335–352. Springer LNCS 1722, 1999.

10. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

11. J.A. Bergstra and J.W. Klop. Conditional Rewrite Rules: Confluence and Termi-
nation. Journal of Computer and System Sciences, Vol. 32, No. 3, pp. 323–362,
1986.

18

12. B. Braßel, M. Hanus, F. Huch, J. Silva, and G. Vidal. Run-Time Profiling of Func-
tional Logic Programs. In Proceedings of the International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR’04), pp. 182–197. Springer LNCS
3573, 2005.

13. B. Braßel, M. Hanus, F. Huch, and G. Vidal. A Semantics for Tracing Declarative
Multi-Paradigm Programs. In Proceedings of the 6th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming (PPDP’04), pp.
179–190. ACM Press, 2004.

14. B. Braßel and F. Huch. Translating Curry to Haskell. In Proc. of the ACM SIGPLAN
2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp.
60–65. ACM Press, 2005.

15. K. Claessen and P. Ljunglöf. Typed Logical Variables in Haskell. In Proc. ACM
SIGPLAN Haskell Workshop, Montreal, 2000.

16. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pp. 243–320. Elsevier, 1990.

17. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus
Functional Language. Journal of Computer and System Sciences, Vol. 42, No. 2, pp.
139–185, 1991.

18. M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

19. M. Hanus. A Unified Computation Model for Functional and Logic Programming. In
Proc. of the 24th ACM Symposium on Principles of Programming Languages (Paris),
pp. 80–93, 1997.

20. M. Hanus and R. Sadre. An Abstract Machine for Curry and its Concurrent Imple-
mentation in Java. Journal of Functional and Logic Programming, Vol. 1999, No. 6,
1999.

21. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8). Avail-
able at http://www.informatik.uni-kiel.de/~curry, 2003.

22. G. Huet and J.-J. Lévy. Computations in Orthogonal Rewriting Systems. In J.-
L. Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor of Alan
Robinson, pp. 395–443. MIT Press, 1991.

23. J. Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. 20th ACM
Symposium on Principles of Programming Languages (POPL’93), pp. 144–154. ACM
Press, 1993.

24. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

25. W. Lux and H. Kuchen. An Efficient Abstract Machine for Curry. In K. Beiersdörfer,
G. Engels, and W. Schäfer, editors, Informatik ’99 — Annual meeting of the German
Computer Science Society (GI), pp. 390–399. Springer, 1999.

26. J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with Functions
and Predicates: The Language BABEL. Journal of Logic Programming, Vol. 12, pp.
191–223, 1992.

27. C. Ochoa, J. Silva, and G. Vidal. Dynamic Slicing Based on Redex Trails. In
Proc. of the ACM SIGPLAN 2004 Symposium on Partial Evaluation and Program
Manipulation (PEPM’04), pp. 123–134. ACM Press, 2004.

28. A. Tolmach, S. Antoy, and M. Nita. Implementing Functional Logic Languages Using
Multiple Threads and Stores. In Proc. of the Ninth ACM SIGPLAN International
Conference on Functional Programming (ICFP’04), pp. 90–102. ACM Press, 2004.

29. D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Machine
Intelligence 10, pp. 441–454, 1982.

19

