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Abstract

Functional logic languages with a complete operational semantics are based on
narrowing, a unification-based goal-solving mechanism which subsumes the reduction
principle of functional languages and the resolution principle of logic languages. Needed
narrowing is an optimal narrowing strategy and the basis of several recent functional
logic languages. In this paper, we define a partial evaluator for functional logic pro-
grams based on needed narrowing. We prove strong correctness of this partial evaluator
and show that the nice properties of needed narrowing carry over to the specialization
process and the specialized programs. In particular, the structure of the specialized pro-
grams provides for the application of optimal evaluation strategies. This is in contrast
to other partial evaluation methods for functional logic programs which can change the
original program structure in a negative way. Finally, we present some experiments
which highlight the practical advantages of our approach.

1 Introduction

Functional logic languages combine the operational principles of the most important declarat-
ive programming paradigms, namely functional and logic programming. Efficient demand-
driven functional computations are amalgamated with the flexible use of logical variables
providing for function inversion and search for solutions. The operational semantics of such
languages is usually based on narrowing, a generalization of term rewriting which combines
reduction and variable instantiation. A narrowing step instantiates variables of an expres-
sion and applies a reduction step to a redex of the instantiated expression. The instantiation
of variables is usually computed by unifying a subterm of the entire expression with the
left-hand side of some rule.

Example 1 Consider the following rules which define the less-or-equal predicate “6” on
natural numbers which are represented by terms built from 0 and s (note that variable names
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always start with an uppercase letter):

0 6 N → true

s(M) 6 0 → false

s(M) 6 s(N) → M 6 N

The goal s(X) 6 Y can be solved (i.e., reduced to true) by instantiating Y to s(Y1) to apply
the third rule followed by the instantiation of X to 0 to apply the first rule:

s(X) 6 Y ;{Y7→s(Y1)} X 6 Y1 ;{X7→0} true

Narrowing provides completeness in the sense of logic programming (computation of all solu-
tions) as well as functional programming (computation of values). Since simple narrowing
can have a huge search space, great effort has been made to develop sophisticated narrowing
strategies without losing completeness (see [25] for a survey). To avoid unnecessary compu-
tations and to provide computations with infinite data structures as well as a demand-driven
generation of the search space, the most recent work has advocated lazy narrowing strategies
(e.g., [10, 22, 40, 44]). Needed narrowing [10] is based on the idea of evaluating only subterms
which are needed in order to compute a result. For instance, in a term like t1 6 t2, it is
always necessary to evaluate t1 (to some head normal form) since all three rules in Example 1
have a non-variable first argument. On the other hand, the evaluation of t2 is only needed
if t1 is of the form s(2). Thus, if t1 is a free variable, needed narrowing instantiates it to a
constructor, here 0 or s(2). Depending on this instantiation, either the first rule is applied
or the second argument t2 is evaluated. Needed narrowing is currently the best narrowing
strategy for first-order functional logic programs due to its optimality properties w.r.t. the
length of derivations and the number of computed solutions [10] and it can be efficiently
implemented by pattern matching and unification (e.g., [26, 40]). Moreover, it has recently
been extended to higher-order functions and λ-terms as data structures and proved optimal
w.r.t. independence of computed solutions [29].

Partial evaluation (PE) is a semantics-preserving performance optimization technique
for computer programs which consists of the specialization of the program w.r.t. parts of
its input. PE has been widely applied in the fields of term rewriting systems [13, 14, 15,
20, 35, 43], functional programming [17, 32], and logic programming [21, 39]. Although the
objectives are similar, the general methods are often different due to the distinct underlying
models and the different perspectives (see [5] for a detailed comparison). This separation has
the negative consequence of duplicated work since developments are not shared and many
similarities are overlooked. A unified (narrowing-based) treatment can bring the different
methodologies closer and lays the ground for new insights in all three fields [5, 6, 23, 46, 48].

To perform reductions at specialization time, a partial evaluator normally includes an
interpreter [17, 24]. This implies that the power of the transformation is highly influenced by
the properties of the evaluation strategy from the underlying interpreter. Narrowing-driven
PE [4, 5] is the first generic algorithm for the specialization of functional logic programs.
The method is parametric w.r.t. the narrowing strategy which is used for the automatic
construction of the search trees. The method is formalized within the theoretical framework
established in [39] for the partial evaluation of logic programs (also known as partial de-
duction), although a number of concepts have been generalized to deal with the functional
component of the language (e.g., nested function calls in expressions, different evaluation
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strategies, etc.). This approach has better opportunities for optimization thanks to the
functional dimension (e.g., by the inclusion of deterministic evaluation steps). Also, since
unification is embedded into narrowing, it is able to automatically propagate syntactic in-
formation on the partial input (term structure) and not only constant values, similar to
partial deduction. Using the terminology of [24], the narrowing-driven PE method of [5] is
able to produce both polyvariant and polygenetic specializations, i.e., it can produce differ-
ent specializations for the same function definition and can also combine distinct original
function definitions into a comprehensive specialized function. This means that narrowing-
driven PE has the same potential for specialization as positive supercompilation of functional
programs [23] and conjunctive partial deduction of logic programs [38] (a comparison can be
found in [1, 5, 6]).

The contribution of this paper is the definition of a partial evaluator for functional logic
programs based on needed narrowing. To be more precise, we provide the following results:

• We prove strong correctness for such a partial evaluator, i.e., the answers computed
by needed narrowing in the original and the partially evaluated programs coincide.

• We relate this partial evaluator to partial evaluation based on lazy narrowing [3] and
show its advantages.

• We prove that partial evaluation based on needed narrowing keeps desirable proper-
ties during the specialization process, namely the inductively sequential structure of
programs which is a prerequisite for optimal evaluation strategies. This is in contrast
to partial evaluation based on lazy narrowing which can destroy such properties. Nev-
ertheless, we also show a positive result about the structure of specialized programs
obtained by PE based on lazy narrowing.

• We show that the specialized programs do not lose their abilities for deterministic
reduction. This is important from an implementation point of view and it is not
obtained by partial evaluation based on other operational models, like lazy narrowing.

• Moreover, we provide experimental evidence of the advantages of partial evaluation
based on needed narrowing.

The multi-paradigm language Curry [27, 30] is an attempt to combine the paradigms of
functional, logic and concurrent programming. Since the kernel of Curry (i.e., without the
concurrency features) is based on needed narrowing and inductively sequential programs,
the results of this paper can be applied to optimize a large class of Curry programs.

The structure of the paper is as follows. After some basic definitions in the next section,
we recall in Section 3 the formal definition of inductively sequential programs and needed
narrowing. Section 4 recalls the lazy narrowing strategy and relates it to needed narrow-
ing. The definition of partial evaluation based on needed narrowing is provided in Section 5
together with results about the structure of specialized programs and the (strong) correct-
ness of the transformation. Section 7 shows the practical importance of our specialization
techniques by means of some benchmarks and Section 8 concludes.
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2 Preliminaries

Term rewriting systems (TRSs) provide an adequate computational model for functional lan-
guages which allow the definition of functions by means of patterns (e.g., Haskell, Hope or
Miranda) [12, 33, 47]. Within this framework, the class of inductively sequential programs,
which we consider in this paper, has been defined, studied, and used for the implementation
of programming languages which provide for optimal computations both in functional and
functional logic programming [7, 10, 27, 28, 40]. Inductively sequential programs can be
thought of as constructor-based TRSs with discriminating left-hand sides, i.e., typical func-
tional programs. Thus, in the remainder of the paper we follow the standard framework of
term rewriting [19] for developing our results.

We consider a (many-sorted) signature Σ partitioned into a set C of constructors and
a set F of (defined) functions or operations. We write c/n ∈ C and f/n ∈ F for n-ary
constructor and operation symbols, respectively. There is at least one sort Bool containing
the 0-ary Boolean constructors true and false. The set of terms and constructor terms with
variables (e.g., x, y, z) from X are denoted by T (C ∪ F ,X ) and T (C,X ), respectively. The
set of variables occurring in a term t is denoted by Var(t). A term t is ground if Var(t) = ∅.
A term is linear if it does not contain multiple occurrences of one variable. We write on for
the list of objects o1, . . . , on.

A pattern is a term of the form f(dn) where f/n ∈ F and d1, . . . , dn ∈ T (C,X ). A term is
operation-rooted if it has an operation symbol at the root. root(t) denotes the symbol at the
root of the term t. A position p in a term t is represented by a sequence of natural numbers
(Λ denotes the empty sequence, i.e., the root position). Positions are ordered by the prefix
ordering: u ≤ v, if there exists w such that u.w = v. Positions u, v are disjoint, denoted
u⊥v, if neither u ≤ v nor v ≤ u. Given a term t, we let Pos(t) and NVPos(t) denote the set
of positions and the set of non-variable positions of t, respectively. t|p denotes the subterm
of t at position p, and t[s]p denotes the result of replacing the subterm t|p by the term s (see
[19] for details). For a set of (pairwise distinct, ordered) positions P = {p1, . . . , pn}, we let
t[s1, . . . , sn]P = (((t[s1]p1

)[s2]p2
) . . . [sn]pn

).
We denote by {x1 7→ t1, . . . , xn 7→ tn} the substitution σ with σ(xi) = ti for i = 1, . . . , n

(with xi 6= xj if i 6= j), and σ(x) = x for all other variables x. The set Dom(σ) = {x ∈
X | σ(x) 6= x} is called the domain of σ. A substitution σ is (ground) constructor, if σ(x)
is (ground) constructor for all x ∈ Dom(σ). The identity substitution is denoted by id.
Substitutions are extended to morphisms on terms by σ(f(tn)) = f(σ(tn)) for every term
f(tn). Given a substitution θ and a set of variables V ⊆ X , we denote by θ|̀V the substitution
obtained from θ by restricting its domain to V . We write θ = σ [V ] if θ|̀V = σ |̀V , and θ ≤ σ [V ]
denotes the existence of a substitution γ such that γ ◦ θ = σ [V ].

A term t′ is an instance of t if there is a substitution σ with t′ = σ(t). This implies a
subsumption ordering on terms which is defined by t ≤ t′ iff t′ is an instance of t. A unifier
of two terms s and t is a substitution σ with σ(s) = σ(t). The unifier σ is most general if
σ ≤ σ′ [X ] for each other unifier σ′. Two substitutions σ and σ′ are independent (on a set
of variables V ) iff there exists some x ∈ V such that σ(x) and σ′(x) are not unifiable.

A set of rewrite rules l → r such that l 6∈ X , and Var(r) ⊆ Var(l) is called a term
rewriting system (TRS). The terms l and r are called the left-hand side (lhs) and the right-
hand side (rhs) of the rule, respectively. A TRS R is left-linear if l is linear for all l → r ∈ R.
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A TRS is constructor-based (CB) if each lhs l is a pattern. Two (possibly renamed) rules
l → r and l′ → r′ overlap, if there is a non-variable position p ∈ NVPos(l) and a most
general unifier σ such that σ(l|p) = σ(l′). The pair 〈σ(l)[σ(r′)]p, σ(r)〉 is called a critical pair
and is also called an overlay if p = Λ. A critical pair 〈t, s〉 is trivial if t = s. A left-linear TRS
without critical pairs is called orthogonal. It is called almost orthogonal if its critical pairs are
trivial overlays. If it only has trivial critical pairs it is called weakly orthogonal. Note that,
in CB-TRSs, almost orthogonality and weak orthogonality coincide. In the remainder of
this paper, a functional logic program is a finite left-linear CB-TRS. Conditions in program
rules are treated by using the predefined functions and, if then else, case of which are
reduced by standard defining rules [44].

A rewrite step is an application of a rewrite rule to a term, i.e., t →p,R s if there exists a
position p in t, a rewrite rule R = l → r and a substitution σ with t|p = σ(l) and s = t[σ(r)]p
(p and R will often be omitted in the notation of a computation step). The instantiated lhs
σ(l) is called a redex. We let PosR(t) denote the set of redex positions of the term t in the
TRS R. The inner reduction relation is →>Λ = →\→Λ. A term t is root-stable (often called
a head-normal form) if it cannot be rewritten to a redex. A term is root-normalizing if it
has a root-stable reduct. A constructor root-stable term is either a variable or a constructor-
rooted term, that is, a term rooted by a constructor symbol. A term t is called irreducible
or in normal form if there is no term s with t → s. →+ denotes the transitive closure of →
and →∗ denotes the reflexive and transitive closure of →.

To evaluate terms containing variables, narrowing non-deterministically instantiates the
variables such that a rewrite step is possible (usually by computing most general unifiers
between a subterm and some lhs [25], but this requirement is relaxed in needed narrowing
steps to obtain an optimal evaluation strategy [10]). Formally, t ;p,R,σ t′ is a narrowing
step if p is a non-variable position in t and σ(t) →p,R t′. We denote by t0 ;

∗
σ tn a sequence

of narrowing steps t0 ;σ1
. . . ;σn

tn with σ = σn ◦ · · · ◦ σ1. Since we are interested in
computing values (constructor terms) as well as answers (substitutions) in functional logic
programming, we say that the narrowing derivation t ;

∗
σ c computes the result c with answer

σ if c is a constructor term. The evaluation to ground constructor terms (and not to arbitrary
expressions) is the intended semantics of functional languages and also of most functional
logic languages. In particular, the equality predicate ≈ used in some examples is defined,
as in functional languages, as the strict equality on terms (note that we do not require
terminating rewrite systems and thus reflexivity is not desired), i.e., the equation t1 ≈ t2
is satisfied if t1 and t2 are reducible to the same ground constructor term. Furthermore,
a substitution σ is a solution for an equation t1 ≈ t2 if σ(t1) ≈ σ(t2) is satisfied. The
strict equality can be defined as a binary Boolean function by the following set of orthogonal
rewrite rules (see, e.g., [10]):

c ≈ c → true for all c/0 ∈ C
c(X1, . . . , Xn) ≈ c(Y1, . . . , Yn) → (X1 ≈ Y1) ∧ . . . ∧ (Xn ≈ Yn) for all c/n ∈ C, n > 0

true ∧ X → X

Thus, we do not treat the strict equality in any special way, and it is sufficient to consider
it as a Boolean function which must be reduced to the constant true. We say that σ is a
computed answer substitution for an equation e if there is a narrowing derivation e ;

∗
σ true.

More details about strict equality can be found in [10, 22, 44].
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Narrowing derivations can be represented by a (possibly infinite) finitely branching tree.
Following [39], in this work we adopt the convention that any derivation is potentially incom-
plete (a branch thus can be failed, incomplete, successful, or infinite). A failing leaf contains
an expression which is not a constructor term and which cannot be further narrowed.

3 Needed Narrowing

A challenge in the design of functional logic languages is the definition of a “good” nar-
rowing strategy, i.e., a restriction λ on the narrowing steps issuing from t, without losing
completeness. Needed narrowing [10] is currently the best known narrowing strategy due
to its optimality properties w.r.t. the length of successful derivations and the number of
computed solutions. Needed narrowing is defined on inductively sequential programs. To
provide a precise definition of this class of programs and the needed narrowing strategy,
we introduce definitional trees. In contrast to the original definition [7], here we use the
“declarative” definition [8] since it is more appropriate for proving the results about partial
evaluation based on needed narrowing.

A definitional tree of a finite set of linear patterns S is a non-empty set P of linear
patterns partially ordered by subsumption having the following properties:

Root property: There is a minimum element pattern(P), also called the pattern of the defin-
itional tree.

Leaves property: The maximal elements, called the leaves, are the elements of S. Non-
maximal elements are also called branches.

Parent property: If π ∈ P, π 6= pattern(P), there exists a unique π′ ∈ P, called the parent
of π (and π is called a child of π′), such that π′ < π and there is no other pattern
π′′ ∈ T (C ∪ F ,X ) with π′ < π′′ < π.

Induction property: Given π ∈ P\S, there is a position o in π with π|o ∈ X (called the
inductive position), and constructors c1/k1, . . . , cn/kn ∈ C with ci 6= cj for i 6= j, such
that, for all π1, . . . , πn which have the parent π, πi = π[ci(xki

)]o (where xki
are new

distinct variables) for all 1 ≤ i ≤ n.

If R is an orthogonal TRS and f/n a defined function, we call P a definitional tree of f if
pattern(P) = f(xn) for distinct variables xn and the leaves of P are all and only variants of
the left-hand sides of the rules in R defining f . Due to the orthogonality of R, we can assign
a unique rule defining f to each leaf. A defined function is called inductively sequential if it
has a definitional tree. A rewrite system R is called inductively sequential if all its defined
functions are inductively sequential. An inductively sequential TRS can be viewed as a set of
definitional trees, each defining a function symbol. There can be more than one definitional
tree for an inductively sequential function. In the following, we assume that there is a fixed
definitional tree for each defined function.

It is often convenient and simplifies understanding to provide a graphic representation
of definitional trees, where each inner node is marked with a pattern, the inductive position
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0 6 Y → true s(X′) 6 Y

s(X′) 6 0 → falses(X′) 6 s(Y′) → X′ 6 Y′

X 6 Y

�
�

�
�

Q
Q

Q
Q

�
�

��

Q
Q

QQ

Figure 1: Definitional tree for the function “6”

in branches is surrounded by a box, and the leaves contain the corresponding rules. For
instance, the definitional tree for the function “6” in Example 1 is illustrated in Figure 1.

The following auxiliary proposition shows that functions defined by a single rule are
always inductively sequential.

Proposition 1 If f(tn) is a linear pattern, then there exists a definitional tree for the set
{f(tn)} with pattern f(xn).

Proof. By induction on the number of constructor symbols occurring in t, where each
constructor symbol is introduced in a child of a branch and each branch has only one child.
2

For the definition of needed narrowing, we assume that t is an operation-rooted term and
P is a definitional tree with pattern(P) = π such that π ≤ t. We define a function λ from
terms and definitional trees to sets of tuples (position, rule, substitution) as the least set
satisfying the following properties. We consider two cases for P:1

1. If π is a leaf, i.e., P = {π}, and π → r is a variant of a rewrite rule, then

λ(t,P) = {(Λ, π → r, id)} .

2. If π is a branch, consider the inductive position o of π and a child πi = π[ci(xn)]o ∈ P.
Let Pi = {π′ ∈ P | πi ≤ π′} be the definitional tree where all patterns are instances of
πi. Then we consider the following cases for the subterm t|o:

λ(t,P) ∋



























(p, R, σ ◦ τ) if t|o = x ∈ X , τ = {x 7→ ci(xn)},
and (p, R, σ) ∈ λ(τ(t),Pi);

(p, R, σ ◦ id) if t|o = ci(tn) and (p, R, σ) ∈ λ(t,Pi);

(o.p, R, σ ◦ id) if t|o = f(tn) for f ∈ F and (p, R, σ) ∈ λ(t|o,P ′)
where P ′ is a definitional tree for f .

Informally speaking, needed narrowing applies a rule, if possible (case 1), or checks the
subterm corresponding to the inductive position of the branch (case 2): if it is a variable, it
is instantiated to the constructor of a child; if it is already a constructor, we proceed with

1This description of a needed narrowing step is slightly different from [10], but it results in the same
needed narrowing steps.
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the corresponding child; if it is a function, we evaluate it by recursively applying needed
narrowing. Thus, the strategy differs from lazy functional languages only in the instantiation
of free variables.

Note that, in each recursive step during the computation of λ, we compose the current
substitution with the local substitution of this step (which can be the identity). Thus, each
needed narrowing step can be represented as (p, R, ϕk ◦ · · · ◦ ϕ1), where each ϕj is either
the identity or the replacement of a single variable computed in each recursive step (see the
following proposition). This is also called the canonical representation of a needed narrow-
ing step. As in proof procedures for logic programming, we assume that the definitional
trees always contain new variables if they are used in a narrowing step. This implies that
all computed substitutions are idempotent (we will implicitly assume this property in the
following).

To compute needed narrowing steps for an operation-rooted term t, we take a definitional
tree P for the root of t and compute λ(t,P). Then, for all (p, R, σ) ∈ λ(t,P), t ;p,R,σ t′

is a needed narrowing step. We call this step deterministic if λ(t,P) contains exactly one
element.

Example 2 Consider the rules for “6” in Example 1 together with the following rules de-
fining the addition on natural numbers:

0 + N → N

s(M) + N → s(M + N)

Then the function λ computes the following set for the initial term X 6 X + X:

{(Λ, 0 6 N → true, {X 7→ 0}), (2, s(M) + N → s(M + N), {X 7→ s(M)})}

This corresponds to the narrowing steps

X 6 X + X ;{X7→0} true

X 6 X + X ;{X7→s(M)} s(M) 6 s(M + s(M))

In the following we state some interesting properties of needed narrowing which will become
useful later. The first proposition shows that each substitution in a needed narrowing step
instantiates only variables occurring in the initial term.

Proposition 2 If (p, R, ϕk ◦ · · · ◦ ϕ1) ∈ λ(t,P) is a needed narrowing step, then, for i =
1, . . . , k, ϕi = id or ϕi = {x 7→ c(xn)} (where xn are pairwise different variables) with
x ∈ Var(ϕi−1 ◦ · · · ◦ ϕ1(t)).

Proof. By induction on k. 2

The next lemma shows that for different narrowing steps (computing different substitutions)
there is always a variable which is instantiated to different constructors:

Lemma 3 Let t be an operation-rooted term, P a definitional tree with pattern(P) ≤ t and
(p, R, ϕk ◦ · · · ◦ ϕ1), (p

′, R′, ϕ′
k′ ◦ · · · ◦ ϕ′

1) ∈ λ(t,P), k ≤ k′. Then, for all i ∈ {1, . . . , k},

• either ϕi ◦ · · · ◦ ϕ1 = ϕ′
i ◦ · · · ◦ ϕ′

1, or
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• there exists some j < i with

1. ϕj ◦ · · · ◦ ϕ1 = ϕ′
j ◦ · · · ◦ ϕ′

1, and

2. ϕj+1 = {x 7→ c(· · ·)} and ϕ′
j+1 = {x 7→ c′(· · ·)} with c 6= c′.

Proof. By induction on k (the number of recursive steps performed by λ to compute
(p, R, ϕk ◦ · · · ◦ ϕ1)):

k = 1: Then P = {π} and λ(t,P) = {(Λ, R, id)}. Thus, the proposition trivially holds.

k > 1: Then π = pattern(P) is a branch and there is an inductive position o of π such that
all children of π have the form πi = π[ci(xn)]o ∈ P. Let Pi = {π′ ∈ P | πi ≤ π′} be the
definitional tree where all patterns are instances of πi, for i = 1, . . . , n. We prove the
induction step by a case distinction on the form of the subterm t|o:

t|o = x ∈ X : Then ϕ1 = {x 7→ ci(xn)} and (p, R, ϕk◦· · ·◦ϕ2) ∈ λ(ϕ1(t),Pi) for some i.
If ϕ′

1 = {x 7→ c(· · ·)} with c 6= ci, then the proposition directly holds. Otherwise,
if ϕ1 = ϕ′

1, the proposition follows from the induction hypothesis applied to
(p, R, ϕk ◦ · · · ◦ ϕ2), (p

′, R′, ϕ′
k′ ◦ · · · ◦ ϕ′

2) ∈ λ(ϕ1(t),Pi).

t|o = ci(tn): Then ϕ1 = id and (p, R, ϕk ◦ · · ·◦ϕ2) ∈ λ(t,Pi). Clearly, ϕ′
1 = id by defin-

ition of λ. Hence the proposition follows from the induction hypothesis applied
to (p, R, ϕk ◦ · · · ◦ ϕ2), (p

′, R′, ϕ′
k′ ◦ · · · ◦ ϕ′

2) ∈ λ(t,Pi).

t|o = f(tn): Then ϕ1 = id and (p, R, ϕk ◦ · · ·◦ϕ2) ∈ λ(t|o,P
′) where P ′ is a definitional

tree for f . By definition of λ, ϕ′
1 = id. Then the proposition follows from the

induction hypothesis applied to (p, R, ϕk◦· · ·◦ϕ2), (p
′, R′, ϕ′

k′◦· · ·◦ϕ′
2) ∈ λ(t|o,P ′).

2

For inductively sequential programs, needed narrowing is sound and complete w.r.t. strict
equations and constructor substitutions as solutions (note that constructor substitutions are
sufficient in practice since more general solutions would contain unevaluated or undefined
expressions). Moreover, needed narrowing does not compute redundant solutions. These
properties are formalized as follows:

Theorem 4 [10] Let R be an inductively sequential program and e an equation.

1. (Soundness) If e ;
∗
σ true is a needed narrowing derivation, then σ is a solution for e.

2. (Completeness) For each constructor substitution σ that is a solution of e, there exists
a needed narrowing derivation e ;

∗
σ′ true with σ′ ≤ σ [Var(e)].

3. (Minimality) If e ;
∗
σ true and e ;

∗
σ′ true are two distinct needed narrowing deriva-

tions, then σ and σ′ are independent on Var(e).
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An important advantage of functional logic languages in comparison to pure logic languages
is their improved operational behavior by avoiding non-deterministic computation steps. One
reason for that is a demand-driven computation strategy which can avoid the evaluation of
potential non-deterministic expressions. For instance, consider the rules in Examples 1 and 2
and the term 0 6 X + X. Needed narrowing evaluates this term by one deterministic step to
true. In an equivalent logic program, this nested term must be flattened into a conjunction
of two predicate calls, like +(X, X, Z) ∧ 6(0, Z, B), which causes a non-deterministic compu-
tation due to the predicate call +(X, X, Z).2 Another reason for the improved operational
behavior of functional logic languages is the ability of particular evaluation strategies (like
needed narrowing or parallel narrowing [11]) to evaluate ground terms in a completely de-
terministic way, which is important to ensure an efficient implementation of purely functional
evaluations. This property, which is obvious by the definition of needed narrowing, is form-
ally stated in the following proposition. For this purpose, we call a term t deterministically
evaluable (w.r.t. needed narrowing) if each step in a narrowing derivation issuing from t is
deterministic. A term t deterministically normalizes to a constructor term c (w.r.t. needed
narrowing) if t is deterministically evaluable and there is a needed narrowing derivation
t ;

∗
id c (i.e., c is the normal form of t).

Proposition 5 Let R be an inductively sequential program and t be a term.

1. If t ;
∗
id c is a needed narrowing derivation, then t deterministically normalizes to c.

2. If t is ground, then t is deterministically evaluable.

4 Lazy Narrowing and Uniform Programs

In order to compare partial evaluators based on lazy narrowing and needed narrowing and
to show the improvements obtained by using needed narrowing in partial evaluation, we
provide a brief review of the lazy narrowing strategy in this section.

Lazy narrowing reduces expressions at outermost narrowable positions. Narrowing at
inner positions is performed only if it is demanded (by the pattern in the lhs of some rule).
In the following, we specify the lazy narrowing strategy similar to [44].

The following definitions are necessary for our formalization of lazy narrowing. A linear
unification problem is a pair of terms: δ = 〈f(dn), f(tn)〉, where f(dn) and f(tn) do not
share variables, and f(dn) is a linear pattern. Linear unification LU(δ) can either succeed,
fail or suspend, delivering (Succ, σ), (Fail, ∅) or (Demand, P ), respectively, where P is the
set of demanded positions which require further evaluation (details can be found in [3]).

We define the lazy narrowing strategy as follows. Roughly speaking, in the following
definition, the set-valued function λlazy(t) returns the set of triples (p, R, σ) such that p is a
demanded position of t which can be narrowed by the rule R with narrowing substitution σ
(where σ is a most general unifier of t|p and the left-hand side of R). We assume the rules
of R to be numbered with R1, . . . , Rm.

2Such non-deterministic computations could be avoided using Prolog systems with coroutining, but then
we are faced with the problem of floundering and incompleteness.

10



Definition 6 (lazy narrowing strategy)

λlazy(t) =
⋃m

k=1 λ (t, Λ, k)

λ (t, p, k) = if root(lk) = root(t|p) then

case LU(〈lk, t|p〉) of







(Succ, σ) : {(p, Rk, σ)}
(Fail, ∅) : ∅

(Demand, P ) :
⋃

q∈P

⋃m

k=1 λ (t, p.q, k)

else ∅

where Rk = (lk → rk) is a (renamed apart) rule of R.

Example 3 Consider the rules for “6” and “+” in Examples 1 and 2. Then lazy narrowing
evaluates the term X 6 X + X by applying a narrowing step at the top (with the first rule for
“6”) or by applying a narrowing step to the second argument X + X since this is demanded
by the second and third rules for “6”. Thus, there are three lazy narrowing steps:

X 6 X + X ;{X7→0} true

X 6 X + X ;{X7→0} 0 6 0

X 6 X + X ;{X7→s(M)} s(M) 6 s(M + s(M))

Note that the second lazy narrowing step is in some sense superfluous since it also yields the
final value true with the same binding as the first step. The avoidance of such superfluous
steps by using needed narrowing will have a positive impact on the partial evaluation process,
as we will see later.

In orthogonal programs, lazy narrowing is complete w.r.t. strict equations and constructor
substitutions:

Proposition 7 [44] Let R be an orthogonal program, e an equation, and σ a constructor
substitution that is a solution for e. Then there is a lazy narrowing derivation e ;

∗
σ′ true

such that σ′ ≤ σ [Var(e)].

Thus, lazy narrowing is complete for a larger class of programs than needed narrowing (since
inductively sequential programs are always orthogonal)3, but it has in some cases a behavior
which is worse than needed narrowing (see Example 3). There exists a class of programs
where the superfluous steps of lazy narrowing are avoided, since lazy narrowing and needed
narrowing coincide on this class. These are the uniform programs [50] which are inductively
sequential programs where at most one constructor occurs in the left-hand side of each
rule. A program is uniform if each function f is defined by one rule f(xn) → r or the
lhs of every rule Ri defining f has the form f(xk, ci(yni

), zm), where xk, yni
, zm are pairwise

different variables and the constructors ci are distinct in different rules. In the latter case, an
evaluation of a call to f demands its (k + 1)-th argument. A different definition of uniform
programs can be found in [34].

3The idea of needed narrowing can also be extended to almost orthogonal programs [11], but then the
optimality properties are lost.
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There is a simple mapping U from inductively sequential into uniform programs which
can be found in [50] and is based on flattening nested patterns. For instance, if R is the
program in Example 1, then U(R) consists of the rules

0 6 N → true

s(M) 6 N → M 6′ N

M 6′ 0 → false

M 6′ s(N1) → M 6 N1

where 6′ is a new function symbol.
The following theorem states a correspondence between needed narrowing derivations

using the original program and lazy narrowing derivations in the transformed uniform pro-
gram.

Theorem 8 [50] Let R be an inductively sequential program, U(R) the transformed uniform
program, and t an operation-rooted term. Then there exists a needed narrowing derivation
t ;

∗
σ s w.r.t. R to a constructor root-stable form s iff there exists a lazy narrowing derivation

t ;
∗
σ s w.r.t. U(R).

5 Partial Evaluation with Needed Narrowing

In this section, we introduce the notion of partial evaluation of functional logic programs
in order to define a partial evaluator based on needed narrowing. Moreover, we show some
important properties of the specialized programs.

Specialized program rules are constructed from narrowing derivations using the notion
of resultant.

Definition 9 (resultant) Let R be a TRS and s be a term. Given a narrowing derivation
s ;

+
σ t, its associated resultant is the rewrite rule σ(s) → t.

We note that, whenever the specialized call s is not a linear pattern, lhs’s of resultants
may not be linear patterns either and hence resultants may not be program rules. In order to
produce program rules, we will introduce a post-processing renaming transformation which
not only eliminates redundant structures but also obtains independent specializations (in the
sense of [39]) and is necessary for the correctness of the PE transformation. Roughly speak-
ing, independence ensures that the different specializations for the same function definition
are correctly distinguished, which is crucial for polyvariant specialization.

The (pre–)partial evaluation of a term s is obtained by constructing a (possibly incom-
plete) narrowing tree for s and then extracting the specialized definitions (the resultants)
from the non–failing, root–to–leaf paths of the tree.

Definition 10 (pre–partial evaluation) Let R be a TRS and s a term. Let T be a finite
(possibly incomplete) narrowing tree for s in R such that no constructor root-stable term in
the tree has been narrowed. Let tn be the terms in the non-failing leaves of T. Then, the
set of resultants for the narrowing sequences {s ;

+
σi

ti | i = 1, . . . , n} is called a pre–partial
evaluation of s in R.

The pre–partial evaluation of a set of terms S in R is defined as the union of the pre–
partial evaluations for the terms of S in R.
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The following example illustrates that the restriction to not surpass head normal forms in
pre–partial evaluations cannot be dropped.

Example 4 Consider the following program R:

f(0) → 0

g(X) → s(f(X))
h(s(X)) → s(0)

with the set of calls S = {g(X), h(X)}. Then, a pre–partial evaluation of S in R is the program
R′:

g(0) → s(0)
h(s(X)) → s(0)

Now, the equation h(g(s(0))) ≈ X has the following successful needed narrowing derivation
in R (selected redex underlined at each step):

h(g(s(0))) ≈ X ; h(s(f(s(0)))) ≈ X ; s(0) ≈ X ;
∗
{X7→s(0)} true

whereas it fails in the specialized program R′.

A recursive closedness condition, which guarantees that each call which might occur
during the execution of the resulting program is covered by some program rule, is formalized
by inductively checking that the different calls in the rules are sufficiently covered by the
specialized functions.

Informally, a term t rooted by a defined function symbol is closed w.r.t. a set of calls S,
if it is an instance of a term of S and the terms in the matching substitution are recursively
closed by S.

Definition 11 (closedness) Let S be a finite set of terms. We say that a term t is S-closed
if closed(S, t) holds, where the predicate closed is defined inductively as follows:

closed(S, t) ⇔















true if t ∈ X
closed(S, t1) ∧ . . . ∧ closed(S, tn) if t = c(tn), c ∈ (C ∪ {≈,∧}), n ≥ 0
∧

x 7→t′∈θ

closed(S, t′) if ∃θ, ∃s ∈ S s.t. θ(s) = t

We say that a set of terms T is S-closed, written closed(S, T ), if closed(S, t) holds for all
t ∈ T , and we say that a TRS R is S-closed if closed(S,Rcalls) holds. Here we denote by
Rcalls the set of the rhs’s of the rules in R.

According to the (non-deterministic) definition above, an expression rooted by a “primitive”
function symbol, such as a conjunction t1 ∧ t2 or an equation t1 ≈ t2, can be proven closed
w.r.t. S either by checking that t1 and t2 are S-closed or by testing whether the conjunction
(equation) is an instance of a call in S (followed by an inductive test of the subterms). This
is useful when we are not interested in specializing complex expressions (like conjunctions
or strict equations) but we still want to run them after specialization. Note that this is
safe, since we consider that the rules which define the primitive functions are automatically
added to each program, hence calls to these symbols are steadily covered in the specialized
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program. A general technique for dealing with primitive symbols which deterministically
splits terms before testing them for closedness and is able to improve the specialization can
be found in [1].

In general, given a call s and a program R, there exists an infinite number of different
pre–partial evaluations of s in R. A fixed rule for generating resultants called an unfolding
rule is assumed, which determines the expressions to be narrowed (by using a fixed narrowing
strategy) and which decides how to stop the construction of narrowing trees (see [5, 1] for
the definition of concrete unfolding rules).

Example 5 Consider the well-known function append to concatenate two lists:4

append(nil, Ys) → Ys
append(X : Xs, Ys) → X : append(Xs, Ys)

with the set of calls S = {append(append(Xs, Ys), Zs), append(Xs, Ys)}. A pre–partial evalu-
ation of S in R using needed narrowing is the S-closed program:

append(append(nil, Ys), Zs) → append(Ys, Zs)
append(append(X : Xs, Ys), Zs) → X : append(append(Xs, Ys), Zs)
append(nil, Zs) → Zs
append(Y : Ys, Zs) → Y : append(Ys, Zs)

In the following, we denote by pre–NN–PE and pre–LN–PE the sets of resultants computed
for S in R by considering an unfolding rule which constructs finite needed or lazy narrowing
trees, respectively. We will use the acronyms NN–PE and LN–PE for the renamed rules
which will result from the correspondent post-processing renaming transformation. The idea
behind this transformation is that, for any S-closed call t, the answers computed for t in R
and the answers computed for the renamed call in the specialized, renamed program coincide.
In particular, in order to apply a partial evaluator based on needed narrowing and to ensure
that the resulting program is inductively sequential whenever the source program is, we have
to make sure that the set of specialized terms (after renaming) contains only linear patterns
with distinct root symbols. This can be ensured by introducing a new function symbol for
each specialized term and then replacing each call in the specialized program by a call to
the corresponding renamed function. In particular, the left-hand sides of the specialized
program (which are constructor instances of the specialized terms) are replaced by instances
of the corresponding new linear patterns through renaming.

Definition 12 (independent renaming) An independent renaming ρ for a set of terms
S is a mapping from terms to terms defined as follows: for s ∈ S, ρ(s) = fs(xn), where xn

are the distinct variables in s in the order of their first occurrence and fs is a new function
symbol, which does not occur in R or S and is different from the root symbol of any other
ρ(s′), with s′ ∈ S and s′ 6= s. By abuse, we let ρ(S) denote the set S ′ = {ρ(s) | s ∈ S}.

The notion of partial evaluation can be formally defined as follows.

4We use nil and : as constructors of lists.
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Definition 13 (partial evaluation) Let R be a TRS, S a finite set of terms and R′ a
pre–partial evaluation of R w.r.t. S. Let ρ be an independent renaming of S. We define the
partial evaluation R′′ of R w.r.t. S (under ρ) as follows:

R′′ =
⋃

s∈S

{θ(ρ(s)) → renρ(r) | θ(s) → r ∈ R′ is a resultant for s in R}

where the non-deterministic renaming function renρ is defined as follows:

renρ(t) =























t if t ∈ X

c(renρ(tn)) if t = c(tn), c ∈ (C ∪ {≈,∧}), n ≥ 0
θ′(ρ(s)) if ∃θ, ∃s ∈ S such that t = θ(s) and

θ′ = {x 7→ renρ(θ(x)) | x ∈ Dom(θ)}
t otherwise

Similarly to the test for closedness, an equation s ≈ t can be (non-deterministically) renamed
either by independently renaming s and t or by replacing the considered equation by a
call to the corresponding new, renamed function (when the equation is an instance of some
specialized call in S). Note also that, whenever an operation-rooted term t is not an instance
of any term in S (which can occur if t is not S-closed), the function renρ(t) = t, i.e., the
term t is not renamed, which implies that it will not be closed w.r.t. the renamed calls ρ(S).

We now illustrate these definitions with an example.

Example 6 Consider again the program append and the set S of Example 5. An independ-
ent renaming ρ for S is the mapping:

{ append(Xs, Ys) 7→ app(Xs, Ys),
append(append(Xs, Ys), Zs) 7→ dapp(Xs, Ys, Zs) }.

A partial evaluation R′ of R w.r.t. S (under ρ) is:

dapp(nil, Ys, Zs) → app(Ys, Zs)
dapp(X : Xs, Ys, Zs) → X : dapp(Xs, Ys, Zs)

app(nil, Ys) → Ys
app(X : Xs, Ys) → X : app(Xs, Ys)

We note that, for a given renaming ρ, the filtered form of a program R may depend on
the strategy which selects the term from ρ(S) which is used to rename a given call t in R
(e.g., append(append(Xs, Ys), Zs)), since there may exist, in general, more than one s in S
that covers the call t. Some potential specialization might be lost due to an inconvenient
choice. The problem of defining some plausible heuristics able to produce the better potential
specialization is still pending research.

The correctness of LN-PE is stated in [1, 3]. The following lemma shows that the partial
evaluation w.r.t. needed narrowing can also be obtained (but possibly with more steps) by
partial evaluation of the transformed uniform program w.r.t. lazy narrowing. This shows
that in some sense the specializations computed by a partial evaluator based on needed
narrowing cannot be worse than the specializations computed by a lazy narrowing partial
evaluator. On the other hand, we will show that there are cases where a LN-PE is worse
than a NN-PE for the same original program.
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Lemma 14 Let R be an inductively sequential program, Ru = U(R) the corresponding
uniform program, and S a finite set of operation-rooted terms. If R′ is a NN-PE of S in R,
then R′ is also a LN-PE of S in Ru.

Proof. Since the final renaming applied in the partial evaluation of a program does not
depend on the narrowing strategy used during the pre-partial evaluation, it suffices to show
that each resultant w.r.t. needed narrowing in R corresponds to a resultant w.r.t. lazy
narrowing in Ru. Due to the definition of a resultant, each rule in the pre-partial evaluation
w.r.t. needed narrowing in R has the form

σ(t) → s

where t ∈ S and t ;
+
σ s is a needed narrowing derivation w.r.t. R. By Theorem 8, there

exists a lazy narrowing derivation t ;
+
σ s w.r.t. Ru which has the same answer and result

(note that Theorem 8 states this property only for derivations into constructor-rooted terms,
but it also holds in the direction used here for arbitrary needed narrowing derivations since
each needed narrowing step corresponds to a sequence of lazy narrowing steps w.r.t. the
transformed uniform programs, which can be seen by the proof of this theorem). Thus,
σ(t) → s is a resultant of this lazy narrowing derivation w.r.t. Ru. 2

The following theorem states an important property of partial evaluation w.r.t. needed nar-
rowing: if the input program is inductively sequential, then the specialized program is also
inductively sequential so that we can also apply the optimal needed narrowing strategy to the
specialized program. Firstly, this is only proved for partial evaluation w.r.t. linear patterns
but later we extend this result to arbitrary sets of terms.

Theorem 15 Let R be an inductively sequential program and t be a linear pattern. If R′ is
a pre-NN-PE of t in R, then R′ is inductively sequential.

Proof. Due to the definition of pre-NN-PE, R′ has the form

σ1(t) → t1
...
σn(t) → tn

where t ;
+
σi

ti, i = 1, . . . , n, are all the derivations in the needed narrowing tree for t ending
in a non-failing leaf. To show the inductive sequentiality of R′, it suffices to show that there
exists a definitional tree for the set S = {σ1(t), . . . , σn(t)} with pattern f(xp) if t has the
p-ary function f at the root. We prove this property by induction on the number of inner
nodes of the narrowing tree for t.
Base case: If the number of inner nodes is 1, we first construct a definitional tree for the
set S = {t} containing only the pattern at the root of the narrowing tree. This is always
possible by Proposition 1. Now we construct a definitional tree for the sons of the root by
extending this initial definitional tree. This construction is identical to the induction step.
Induction step: Assume that s is a leaf in the narrowing tree, σ is the accumulated
substitution from the root to this leaf, and P is a definitional tree for the set

S = {θ(t) | t ;
+
θ s′ is a derivation in the needed narrowing tree

with a non-failing leaf s′}.
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Now we extend the narrowing tree by applying one needed narrowing step to s, i.e., let

s ;ϕ1
s1

...
s ;ϕm

sm

be all needed narrowing steps for s. For the induction step, it is sufficient to show that there
exists a definitional tree for

S ′ = (S\{σ(t)}) ∪ {ϕ1(σ(t)), . . . , ϕm(σ(t))} .

Consider for each needed narrowing step s ;ϕi
si the associated canonical representation

(p, R, ϕiki
◦ · · · ◦ ϕi1) ∈ λ(s,Ps) (where Ps is a definitional tree for the root of s). Let

P ′ = P ∪ {ϕij ◦ · · · ◦ ϕi1 ◦ σ(t) | 1 ≤ i ≤ m, 1 ≤ j ≤ ki}

We prove that P ′ is a definitional tree for S ′ by showing that each of the four properties of
a definitional tree holds for P ′.

Root property: The minimum elements are identical for both definitional trees, i.e.,
pattern(P) = pattern(P ′), since only instances of a leaf of P are added in P ′.

Leaves property: The maximal elements of P are S. Since all substitutions computed by
needed narrowing along different derivations are independent (Lemma 3), σ is inde-
pendent to all other substitutions occurring in S and the substitutions ϕ1, . . . , ϕm

are pairwise independent. Thus, the replacement of the element σ(t) in S by the set
{ϕ1(σ(t)), . . . , ϕm(σ(t))} does not introduce any comparable (w.r.t. the subsumption
ordering) terms. This implies that S ′ is the set of maximal elements of P ′.

Parent property: Let π ∈ P ′\{pattern(P ′)}. We consider two cases for π:

1. π ∈ P: Then the parent property trivially holds since only instances of a leaf of
P are added in P ′.

2. π 6∈ P: By definition of P ′, π = ϕij ◦ · · · ◦ ϕi1 ◦ σ(t) for some 1 ≤ i ≤ m and
1 ≤ j ≤ ki. We show by induction on j that the parent property holds for π.
Base case (j = 1): Then π = ϕi1(σ(t)). It is ϕi1 6= id (otherwise π = σ(t) ∈ P).
Thus, by Proposition 2, ϕi1 = {x 7→ c(xn)} with x ∈ Var(s) ⊆ Var(σ(t)). Due to
the linearity of the initial pattern and all substituted terms (cf. Proposition 2),
σ(t) has a single occurrence o of the variable x and, therefore, π = σ(t)[c(xn)]o,
i.e., σ(t) is the unique parent of π.
Induction step (j > 1): We assume that the parent property holds for π′ =
ϕi,j−1 ◦ · · · ◦ ϕi1 ◦ σ(t). Let ϕij 6= id (otherwise the induction step is trivial). By
Proposition 2, ϕij = {x 7→ c(xn)} with x ∈ Var(ϕi,j−1 ◦ · · · ◦ ϕi1 ◦ σ(t)) (since
Var(s) ⊆ Var(σ(t))). Now we proceed as in the base case to show that π′ is the
unique parent of π.

Induction property: Let π ∈ P ′\S ′. We consider two cases for π:
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1. π ∈ P\{σ(t)}: Then the induction property holds for π since it already holds in
P and only instances of σ(t) are added in P ′.

2. π = ϕij ◦ · · · ◦ ϕi1 ◦ σ(t) for some 1 ≤ i ≤ m and 0 ≤ j < ki. Assume ϕi,j+1 6= id
(otherwise, do the identical proof with the representation π = ϕi,j+1 ◦ · · · ◦ ϕi1 ◦
σ(t)). By Proposition 2, ϕi,j+1 = {x 7→ c(xn)} and π has a single occurrence
of the variable x (due to the linearity of the initial pattern and all substituted
terms). Therefore, π′ = ϕi,j+1 ◦ · · · ◦ ϕi1 ◦ σ(t) is a child of π. Consider another
child π′′ = ϕi′j′ ◦ · · · ◦ϕi′1 ◦σ(t) of π (other patterns in P ′ cannot be children of π
due to the induction property for P). Assume ϕi′j′ ◦ · · · ◦ ϕi′1 6= ϕi,j+1 ◦ · · · ◦ ϕi1

(otherwise, both children are identical). By Lemma 3, there exists some l with
ϕi′l ◦ · · · ◦ϕi′1 = ϕil ◦ · · · ◦ϕi1, ϕi′,l+1 = {x′ 7→ c′(· · ·)}, and ϕi,l+1 = {x′ 7→ c′′(· · ·)}
with c′ 6= c′′. Since π′′ and π′ are children of π (i.e., immediate successors w.r.t.
the subsumption ordering) it must be x′ = x (otherwise, π′ differs from π at more
than one position) and ϕi′,j′ = · · · = ϕi′,l+2 = id (otherwise, π′′ differs from π at
more than one position). Thus, π′ and π′′ differ only in the instantiation of the
variable x which has exactly one occurrence in their common parent π, i.e., there
is a position o of π with π|o = x and π′ = π[c′(xn′

i
)]o and π′′ = π[c′′(xn′′

i
)]o. Since

π′′ was an arbitrary child of π, the induction property holds.

2

Since partial evaluation is usually initiated with more than one term, we extend the previous
theorem to this more general case.

Corollary 16 Let R be an inductively sequential program and S be a finite set of linear
patterns with pairwise different root symbols. If R′ is a pre-NN-PE of S in R, then R′ is
inductively sequential.

Proof. This is a consequence of Theorem 15 since we can construct a definitional tree for
each pre-NN-PE of a pattern of S. Since all patterns have different root symbols, the roots
of these definitional trees do not overlap. 2

Now we are able to show that, using needed narrowing, partial evaluation of an arbitrary set
of terms w.r.t. an inductively sequential program always produces an inductively sequential
program.

Theorem 17 Let R be an inductively sequential program and S a finite set of operation-
rooted terms. Then each NN-PE of R w.r.t. S is inductively sequential.

Proof. Let R′ be a pre-NN-PE of R w.r.t. S and let ρ be an independent renaming of S.
Then each rule of a NN-PE R′′ of R w.r.t. S (under ρ) has the form θ(ρ(s)) → renρ(r) for
some rule θ(s) → r ∈ R′. Consider the extended rewrite system

Rρ = R∪ {ρ(s) → s | s ∈ S}

where the renaming ρ is encoded by a set of rewrite rules. Note that Rρ is inductively
sequential since the new left-hand sides ρ(s) are of the form fs(xn) with new function symbols
fs.
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Let R′
ρ be an arbitrary pre-NN-PE of Rρ w.r.t. ρ(S). Since ρ(S) is a set of linear patterns

with pairwise different root symbols, R′
ρ is inductively sequential by Corollary 16. It is

obvious that each subset of an inductively sequential program is also inductively sequential
(since only the left-hand sides of the rules are relevant for this property). Therefore, to
complete the proof it is sufficient to show that all left-hand sides of rules from R′′ can also
occur as left-hand sides in some R′

ρ.
Each rule of R′′ has the form θ(ρ(s)) → renρ(r) for some rule θ(s) → r ∈ R′. By

definition of R′, there exists a needed narrowing derivation s ;
+
θ r w.r.t. R. Hence,

ρ(s) ;id s ;
+
θ r

is a needed narrowing derivation w.r.t. Rρ. Thus, θ(ρ(s)) → r is a resultant which can occur
in some R′

ρ. 2

The following example reveals that, when we consider lazy narrowing, the LN-PE of a
uniform program w.r.t. a linear pattern is not generally uniform.

Example 7 Let R be the uniform program:

f(X, b) → g(X)
g(a) → a

Let t = f(X, Y) and ρ(t) = f2(X, Y). Then, a LN-PE R′ of t in R (under ρ) is

f2(a, b) → a

which is not uniform.

Note that the residual program R′ in the example above is inductively sequential. This
raises the question as to whether the LN-PE of a uniform program is always inductively
sequential. Corollary 18 will positively answer this question.

Corollary 18 Let R be a uniform program and S a finite set of operation-rooted terms. If
R′ is a LN-PE of S in R, then R′ is inductively sequential.

Proof. Since a uniform program is inductively sequential and lazy narrowing steps w.r.t.
uniform programs are also needed narrowing steps (cf. proof of Theorem 8), the proposition
is a direct consequence of Theorem 17. 2

The uniformity condition in Corollary 18 cannot be weakened to inductive sequentiality
when LN-PEs are considered, as demonstrated by the following counterexample.

Example 8 Let R be the inductively sequential program:

f(a, a, a) → b h(a, b, X) → b

f(b, b, X) → b h(e, X, k) → b

g(a, b, X) → b i(X, c, d) → b

g(X, c, d) → b i(e, X, k) → b
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Let t = f(g(X, Y, Z), h(X, Y, Z), i(X, Y, Z)) ∈ S and ρ be a renaming such that ρ(t) = f3(X, Y, Z).
Then, every LN-PE R′ of S in R (considering depth-2 lazy narrowing trees to construct the
resultants) contains the rules:

f3(a, b, X) → · · ·
f3(e, X, k) → · · ·
f3(X, c, d) → · · ·

and thus R′ is not inductively sequential.

Two main factors affecting the quality of a PE are determinacy and choice points [21].
The following examples illustrate the different way in which NN-PE and LN-PE “compile-
in” choice points during unfolding, which is crucial to performance since a poor control
choice during the construction of the computation trees can inadvertently introduce extra
computation into a program.

Example 9 Consider again the rules of Example 2 and the input term X 6 X + Y. The
computed LN-PE is

leq2(0, N) → true

leq2(0, N′) → true

leq2(s(M), N) → leq2(M, N)

where the renamed initial term is leq2(X, Y). The redundancy of lazy narrowing has the
effect that the first two rules of the specialized program are identical (up to renaming). A
good specialization without generating redundant rules is obtained with partial evaluation
based on needed narrowing, since the NN-PE consists of the rules

leq2(0, N) → true

leq2(s(M), N) → leq2(M, N)

which are computed in half of the time needed for LN-PE (see Section 7). A call-by-value
partial evaluator based on innermost narrowing (without normalization) [5] has an even
worse behavior in this example since it does not specialize the program at all.

In the example above, the superfluous rule in the LN-PE can be avoided by removing
duplicates in a post-processing step. The next example shows that this is not always possible.

Example 10 Lazy evaluation strategies are necessary if one wants to deal with infinite data
structures and possibly non-terminating function calls. The following orthogonal program
makes extensive use of these features:

f(0, 0) → s(f(0, 0)) g(0) → g(0)
f(s(N), X) → s(f(N, X)) h(s(X)) → 0

The specialization is initiated with the term h(f(X, g(Y))). Note that this term reduces to 0

if X is bound to s(2), and it does not terminate if X is bound to 0 due to the nonterminating
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evaluation of the second argument. The NN-PE of this program perfectly reflects this behavior
(the renamed initial term is h2(X, Y)):

h0 → h0 h2(0, 0) → h0

h2(s(X), Y) → 0

On the other hand, the LN-PE of this program has a worse structure:

h1(X) → h1(X) h2(X, 0) → h1(X)
h1(s(X)) → 0 h2(s(X), Y) → 0

h2(s(X), 0) → 0

Note that the specialized program in the above example is not inductively sequential
(nor orthogonal) in contrast to the original program. This does not only mean that needed
narrowing is not applicable to the specialized program but also that the specialized pro-
gram has a worse termination behavior than the original one. For instance, consider the
term h(f(s(0), g(0))). The evaluation of this term has a finite derivation tree w.r.t. lazy
narrowing as well as needed narrowing. However, the renamed term h2(s(0), 0) has a finite
derivation tree w.r.t. the NN-PE but an infinite derivation tree w.r.t. the LN-PE and lazy
narrowing. The infinite branch is caused by the application of the rules h2(X, 0) → h1(X)
and h1(X) → h1(X).

This last example also shows that partial evaluation based on lazy narrowing can des-
troy the advantages of deterministic reduction of functional logic programs, which is not
possible using NN-PE. This is ensured by the following proposition, which guarantees that
a term which is deterministically normalizable w.r.t. the original program cannot cause a
non-deterministic evaluation w.r.t. the specialized program using NN-PE.

Proposition 19 Let R be an inductively sequential program, S a finite set of operation-
rooted terms, ρ an independent renaming of S, and e an equation. Let R′ be a NN-PE of
R w.r.t. S (under ρ) such that R′ ∪ {e′} is S ′-closed, where e′ = renρ(e) and S ′ = ρ(S). If
e deterministically normalizes to true w.r.t. R, then e′ deterministically normalizes to true
w.r.t. R′.

Proof. Since e deterministically normalizes to true w.r.t. R, there is a needed narrowing
derivation e ;

∗
id true in R. By Theorem 20 (see below), there is a needed narrowing

derivation e′ ;
∗
σ true in R′ with σ = id [Var(e)]. This implies σ = id by definition of needed

narrowing. Therefore, e′ deterministically normalizes to true w.r.t. R′ by Proposition 5. 2

This property of the specialized programs is desirable and important from an implement-
ation point of view, since the implementation of non-deterministic steps is an expensive
operation in logic-oriented languages. Moreover, additional non-determinism in the special-
ized programs can result in additional infinite derivations, as shown in Example 10. This
might have the effect that solutions are no longer computable in a sequential implementation
based on backtracking. Therefore, this property is also desirable in partial deduction of logic
programs, but as far as we know, no similar results are known for partial deduction of logic
programs.
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Finally, we state the strong correctness of NN-PE, which amounts to the full computa-
tional equivalence between the original and the specialized programs (i.e., the fact that the
two programs compute exactly the same answers) for the considered goals. The proof of this
theorem can be found in the subsequent section.

Theorem 20 (strong correctness) Let R be an inductively sequential program. Let e be
an equation, V ⊇ Var(e) a finite set of variables, S a finite set of operation-rooted terms,
and ρ an independent renaming of S. Let R′ be a NN-PE of R w.r.t. S (under ρ) such
that R′ ∪ {e′} is S ′-closed, where e′ = renρ(e) and S ′ = ρ(S). Then, e ;

∗
σ true is a needed

narrowing derivation for e in R iff there exists a needed narrowing derivation e′ ;
∗
σ′ true in

R′ such that σ′ = σ [V ] (up to renaming).

6 Strong Correctness of NN-PE

In this section, we prove Theorem 20, i.e., the strong correctness of NN-PE, and introduce
some necessary auxiliary notions and results for this proof. The proof proceeds essentially as
follows. Firstly, we prove the soundness (resp. completeness) of the transformation, i.e., we
prove that for each answer computed by needed narrowing in the original (resp. specialized)
program there exists a more general answer in the specialized (resp. original) program for
the considered queries. Then, by using the minimality of needed narrowing, we conclude the
strong correctness of NN-PE, i.e., the answers computed in the original and the partially
evaluated programs coincide (up to renaming).

In order to simplify the proofs, we assume (without loss of generality) that the rules of
the strict equality are automatically added to the original as well as the partially evaluated
program. We also assume that the set of specialized terms always contains the calls x ≈ y
and x ∧ y, and by abuse we take ρ(≈) = ≈ and ρ(∧) = ∧. This allows us to handle the
strict equality rules in R′ as ordinary resultants derived from the one-step needed narrowing
derivations for the calls x ≈ y and x ∧ y in R.

6.1 Soundness

The following lemmata are auxiliary to prove that reduction sequences in the specialized
program can also be performed in the original program (up to renaming of terms and pro-
grams).

Lemma 21 Let R be an inductively sequential program and s be an operation-rooted term.
Let s ;

+
σ r be a needed narrowing derivation w.r.t. R whose associated resultant is R =

(σ(s) → r). If t →p,R t′ for some position p ∈ Pos(t), then t →+ t′ w.r.t. R.

Proof. Given the derivation s ;
+
σ r, by the soundness of needed narrowing (claim 1 of

Theorem 4), we have σ(s) →+ r. Since t →p,R t′, there exists a substitution θ such that
θ(σ(s)) = t|p and t′ = t[θ(r)]p. Since σ(s) →+ r, by the stability of rewriting, we have
θ(σ(s)) →+ θ(r). Therefore t = t[θ(σ(s))]p →+ t[θ(r)]p = t′ w.r.t. R, which concludes the
proof. 2
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Lemma 22 Let S be a finite set of terms and ρ an independent renaming for S. Let R =
(θ(s) → r) be a rewrite rule such that θ is constructor and s ∈ S, and let R′ = (l′ → r′)
be a renaming of R where l′ = θ(ρ(s)) and r′ = renρ(r). Given a term t1 and one of its
renamings t′1 = renρ(t1), if t′1 →p′,R′ t′2 then t1 →p,R t2 where p is the corresponding position
of p′ in t′1 and t′2 = renρ(t2).

Proof. Immediate by definition of renρ. 2

The following proposition is the key to prove the soundness of NN-PE.

Proposition 23 Let R be an inductively sequential program. Let e be an equation, S a
finite set of operation-rooted terms, ρ an independent renaming of S, and R′ a NN-PE of
R w.r.t. S (under ρ) such that R′ ∪ {e′} is S ′-closed, where e′ = renρ(e) and S ′ = ρ(S). If
e′ →∗ true in R′ then e →∗ true in R.

Proof. We prove the claim by induction on the number n of rewrite steps in e′ →∗ true
(considering e′ an arbitrary S ′-closed expression).

Base case. If n = 0, we have e′ = true and the claim follows trivially since renρ(true) = true
by definition.

Inductive case. Let us consider a rewrite sequence of the form e′ →p′,R′ h′ →∗ true, with
R′ = (l′ → r′). By definition of NN-PE, R′ has been obtained by applying the post-
processing renaming to a rule R = (θ(s) → r) in the pre-NN-PE, where θ is constructor,
l′ = θ(ρ(s)), and r′ = renρ(r). By Lemma 22, we have e →p,R h where p is the
corresponding position of p′ in e′ and h′ = renρ(h). By definition of pre-NN-PE, there
exists a needed narrowing derivation s ;

+
θ r which produced the resultant R. Since

e →p,R h, we have e →+ h in R by Lemma 21.

Since the terms in S ′ are linear and R′ is S ′-closed, h′ is trivially S ′-closed. By applying
the inductive hypothesis to the subderivation h′ →∗ true in R′, there exists a sequence
h →∗ true in R. Together with the initial sequence e →∗ h we get the desired derivation
in R.

2

Now we state and prove the soundness of NN-PE.

Theorem 24 Let R be an inductively sequential program. Let e be an equation, V ⊇ Var(e)
a finite set of variables, S a finite set of operation-rooted terms, and ρ an independent
renaming of S. Let R′ be a NN-PE of R w.r.t. S (under ρ) such that R′ ∪ {e′} is S ′-closed,
where e′ = renρ(e) and S ′ = ρ(S). If e′ ;

∗
σ′ true is a needed narrowing derivation for e′ in

R′, then there exists a needed narrowing derivation e ;
∗
σ true in R such that σ ≤ σ′ [V ].

Proof. Since e′ ;
∗
σ′ true in R′ and R′ is inductively sequential (Theorem 17), by the

soundness of needed narrowing (claim 1 of Theorem 4), we have σ′(e′) →∗ true. Since e′

is S ′-closed and σ′ is constructor, by definition of closedness, σ′(e′) is also S ′-closed and
σ′(e′) = renρ(σ

′(e)). By Proposition 23, there exists a rewrite sequence σ′(e) →∗ true in
R. Therefore, by the completeness of needed narrowing (claim 2 of Theorem 4), there exists
a needed narrowing derivation e ;

∗
σ true in R such that σ ≤ σ′ [V ], which completes the

proof. 2
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6.2 Completeness

Firstly, we consider the notions of descendants and traces. Let A = (t →u,l→r t′) be a
reduction step of some term t into t′ at position u with rule l → r. The set of descendants
[31] of a position v of t by A, denoted v\A, is

v\A =







∅ if u = v,
{v} if u 6≤ v,
{u.p′.q | r|p′ = x} if v = u.p.q and l|p = x, where x ∈ X .

The set of traces of a position v of t by A, denoted v\\A is

v\\A =







{v} if u = v,
{v} if u 6≤ v,
{u.p′.q | r|p′ = x} if v = u.p.q and l|p = x, where x ∈ X .

The set of descendants of a position v by a reduction sequence B is defined inductively as
follows

v\B =







{v} if B is the null derivation,
⋃

w∈v\B′

w\B′′ if B = B′B′′, where B′ is the initial step of B.

Given a set of positions P , we let P\B =
⋃

p∈P p\B. The definition of the set of traces of a
position by a reduction sequence is perfectly analogous.

A redex s in a term t is root-needed, if s (itself or one of its descendants) is contracted
in every rewrite sequence from t to a root-stable term [42].

In the remainder of this section, we consider outermost-needed reduction sequences as
defined5 in [9].

Definition 25 ([7]) Let R be an inductively sequential program. The (partial) function ϕ
takes arguments t = f(t) for a given f ∈ F , and a definitional tree6 P such that pattern(P) ≤
t, and yields a redex occurrence p ∈ PosR(t) called an outermost-needed redex:

ϕ(t,P) =































Λ if P = {π}
ϕ(t,Pi) if P = branch(π, p,P1, . . . ,Pn)

and pattern(Pi) ≤ t for some i, 1 ≤ i ≤ n
p.ϕ(t|p,Pg) if P = branch(π, p,P1, . . . ,Pn),

root(t|p) = g ∈ F , and
Pg is a definitional tree for g.

The following technical results are auxiliary.

Lemma 26 [42] Let R be an almost orthogonal TRS. If t is root-stable and s→∗
>Λt, then s

is root-stable.

5This is a slightly different though equivalent definition, since we do not allow for exempt nodes, as in [7].
6In this definition, we write branch(π, p,P1, . . . ,Pn) for a definitional tree P with pattern π if π is a

branch with inductive position p and children π1, . . . , πn where Pi = {π′ ∈ P | πi ≤ π′}, i = 1, . . . , n.
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Theorem 27 Let R be an inductively sequential program and t be a non-root-stable term.
Every outermost-needed redex is root-needed.

Proof. By Theorem 18 in [28], outermost-needed redexes are addressed by strong indices.
By Theorem 5.6 in [41], nv-indices (hence strong indices, see [45]) in non-root-stable terms
address root-needed redexes. 2

Theorem 28 Let R be a weakly orthogonal CB-TRS and t be a term. Let P =
{p1, . . . , pn} ⊆ Pos(t) be a set of disjoint positions of t such that each t|pi

for 1 ≤ i ≤ n
is operation-rooted. If t admits a root-normalizing derivation which does not root-normalize
any t|pi

, then t admits a root-normalizing derivation which does not reduce any t|pi
.

Proof. If t is root-stable, the result is immediate. If t is not root-stable, then there exists a
root-stable reduct σ(r) and a derivation A : t →∗ σ(l)→Λσ(r) for some rule l → r in R which,
by hypothesis, root-normalizes t without root-normalizing any t|pi

. Let yn = y1, . . . , yn be
new, distinct variables each of which is used to name a subterm t|pi

. The substitution θt

defined by θt(yi) = t|pi
associates a subterm to each variable. Note that θt(t[yn]P ) = t.

As an intermediate step of the demonstration, first we prove, by induction on the length
N + 1 of the derivation A, that there exists a substitution σ′ such that t[yn]P →∗ σ′(l) and
θt(σ

′(x)) →∗ σ(x) for all x ∈ Var(l).
First we note that, since the derivation A does not root-normalize any t|pi

, we have that
pi > Λ for every 1 ≤ i ≤ n (otherwise P = {Λ} and we obtain a contradiction with the
initial hypothesis).

1. If N = 0, then t = σ(l). Since pi > Λ, t|pi
is operation-rooted for 1 ≤ i ≤ n, and R

is constructor based, then for each pi there exists a variable position vi ∈ Pos(l) such
that pi = vi.wi and l|vi

is a variable. Then, for each x ∈ Var(l), we let σ′(x) = t[yn]P |vx

where vx is the position of x in l. Hence, t[yn]P = σ′(l) and θt(σ
′(x)) = θt(t[yn]P |vx

) =
σ(x) for each x ∈ Var(l). Thus, θt(σ

′(x)) →∗ σ(x).

2. If N > 0, then we consider the derivation t →q t′ →∗ σ(l). Let P ′ = q\\P =
{p′1, . . . , p

′
n′} be the traces of P w.r.t. the rewriting step t →q t′ (note that the traces

are well defined since every t|pi
is operation-rooted). By hypothesis, the derivation

t →∗ σ(l) → σ(r) does not root-normalize any t|p for p ∈ P . In particular, the
step t →q t′ does not root-normalize any t|p for p ∈ P . Therefore, each t′|p′ for
every p′ ∈ P ′ is operation-rooted and the derivation t′ →∗ σ(l) → σ(r) does not root-
normalize any t′|p′ for p′ ∈ P ′. Thus, by the induction hypothesis, t′[zn′ ]P ′ →∗ σ′(l) and
θt′(σ

′(x)) →∗ σ(x) for all x ∈ Var(l) where zn′ = z1, . . . , zn′ are new, distinct variables
which identify the subterms in t′ addressed by P ′, i.e., θt′(zi) = t′|p′i for 1 ≤ i ≤ n′.
We connect variables in zn′ and variables in yn by means of a substitution τ : zn′ → yn

as follows: τ(zi) = yj iff p′i is a trace of pj (w.r.t. the step t → t′) for 1 ≤ i ≤ n′ and
1 ≤ j ≤ n. Now we consider two cases:

(a) If there is no p ∈ P such that p ≤ q, then, since each t|pi
is operation-rooted

and R is constructor-based, we have that t[yn]P →q τ(t′[zn′]P ′). Moreover, since
no t|pi

changes in this rewriting step, we have θt(τ(z)) = θt′(z) for all z ∈ zn′ ,
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i.e., θt′ = θt ◦ τ . Since t′[zn′ ]P ′ →∗ σ′(l), by stability, τ(t′[zn′]P ′) →∗ τ(σ′(l)).
Thus, t[yn]P →∗ τ(σ′(l)). Since θt′(σ

′(x)) = θt(τ(σ′(x))) →∗ σ(x), the conclusion
follows.

(b) If there is p ∈ P such that p ≤ q, then P ′ = P , n = n′ and we can take yn = zn′ .
Hence, t[yn]P = t′[yn]P = t′[zn′ ]P ′. Now we have that θt(yi) → θt′(yi) if p = pi,
for some 1 ≤ i ≤ n whereas θt(yj) = θt′(yj) for all j 6= i, and the conclusion also
follows.

Since θt(σ
′(x)) →∗ σ(x) for all x ∈ Var(l), we consider two possibilities:

1. If r 6∈ X , then, since Var(r) ⊆ Var(l), we have that θt(σ
′(r))→∗

>Λσ(r).

2. If r = x ∈ X , then, we prove that this implies that θt(σ
′(r)) = θt(σ

′(x))→∗
>Λ σ(x) =

σ(r). Otherwise, it is necessary that σ′(x) be a variable. In this case, it must be
σ′(x) = yi for some 1 ≤ i ≤ n (otherwise, θt(σ

′(x)) = σ′(x) is a variable and it cannot
be rewritten to σ(x) in zero or more steps unless σ′(x) = σ(x) in which case, we
trivially have that θt(σ

′(x))→∗
>Λσ(x)). Since σ(r) = σ(x) is root-stable, the existence

of the derivation θt(σ
′(x)) = θt(yi) →∗ σ(x) implies (since each reduction step in the

derivation θt(σ
′(x)) →∗ σ(x) has been taken from the derivation A) that the derivation

A root-normalizes the subterm θt(yi) = t|pi
. This contradicts our initial hypothesis.

Thus, in all cases, we have that θt(σ
′(r))→∗

>Λσ(r) and, since σ(r) is root-stable, by Lemma
26 (remember that weak orthogonality and almost orthogonality coincide for CB-TRSs),
θt(σ

′(r)) is root-stable. Note that we have also proved that t[yn]P →∗ σ′(l) → σ′(r) and
therefore, by stability, t = θt(t[yn]P ) →∗ θt(σ

′(r)) is a root-normalizing derivation for t
which does not reduce any t|pi

for 1 ≤ i ≤ n. 2

Theorem 29 Let R be a weakly orthogonal CB-TRS and t be a term. Let P =
{p1, . . . , pn} ⊆ Pos(t) be a set of disjoint positions of t such that each t|pi

for 1 ≤ i ≤ n is a
root-stable, operation-rooted term. If t is root-normalizing, then t admits a root-normalizing
derivation which does not reduce any t|pi

.

Proof. The proof is perfectly analogous to the proof of Theorem 28. Assume the same
notations for the proof. Only one difference arises in the last part of the proof: we need
not distinguish the cases r ∈ X and r 6∈ X . This is because the fact that each t|pi

is
root-stable and the fact that θt(σ

′(x)) →∗ σ(x) for all x ∈ Var(l) allows us to immediately
derive that θt(σ

′(x))→∗
>Λσ(x). Now, it suffices to consider that every t|pi

and their possible
reducts are operation-rooted, which easily follows from the fact that each t|pi

is root-stable
and operation-rooted. 2

Theorem 30 Let R be a weakly orthogonal CB-TRS, t be a term, and p ∈ Pos(t). Let s
be a root-stable, operation-rooted subterm of t. If t is root-normalizing, then s does not have
redexes which are root-needed in t.

Proof. Immediate, by using Theorem 29. 2
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Theorem 31 Let R be a weakly orthogonal CB-TRS and t be a term. If s is an operation-
rooted subterm of t that contains a redex which is root-needed in t, then every root-needed
redex in s is root-needed in t.

Proof. Since t contains at least a root-needed redex, then t is not root-stable. If t has no
root-stable form, it is trivial, since every redex is root-needed in t. Hence, we assume that
t has a root-stable reduct. Let s|q be a root-needed redex in s. Then, s is not root-stable.
Let s|q′ be a root-needed redex in t. If s|q is not root-needed in t, then it is possible to
root-normalize t without reducing the redex s|q. However, without reducing the redex s|q
it is not possible to root-normalize s. Therefore, it is possible to root-normalize t without
root-normalize s. By Theorem 28, it is possible to root-normalize t without reducing s,
hence without reducing s|q′, which yields a contradiction. 2

The following auxiliary definition is useful to deal with closed terms (it is a slight refinement
of the same notion in [5]).

Definition 32 (covering set, closure set) Let S be a finite set of terms and t be an S-
closed term. We define the covering set of t w.r.t. S as follows:

CSet(S, t) = {O | O ∈ c set(S, t), (u.0, fail) 6∈ O, u ∈ IN∗}

where the auxiliary function c set, used to compute each closure set O, is defined inductively
as follows:

c set(S, t) ∋














∅ if t ∈ X ∪ C,
⋃n

i=1{(i.p, s) | (p, s) ∈ c set(S, ti)} if t = c(tn), c ∈ C ∪ {≈,∧},
{(Λ, s)} ∪ {(q.p, s′) | s|q ∈ X , (p, s′) ∈ c set(S, θ(s|q))} if ∃θ, ∃s ∈ S. θ(s) = t,
{(0, fail)} otherwise.

Note that positions ending with the mark ‘0’ identify the situation in which some subexpres-
sion of t is not an instance of any of the terms in S. Thus, a set containing a pair of the
form (u.0, fail) is not considered a closure set.

Roughly speaking, given a set of terms S and a term t which is S-closed, each set in
CSet(S, t) identifies a concrete way in which t can be proven S-closed, thus avoiding the
non-determinism which is implicit in the definition of closedness.

The following lifting lemma is a slight variant of the completeness result for needed
narrowing.

Lemma 33 Let R be an inductively sequential program. Let σ be a constructor substitution,
V a finite set of variables, and s an operation-rooted term with Var(s) ⊆ V . If σ(s) →p1,R1

· · · →pn,Rn
t is an outermost-needed reduction sequence, then there exists a needed narrowing

derivation s ;p1,R1,σ1
· · · ;pn,Rn,σn

t′ and a constructor substitution σ′ such that σ′(t′) = t
and σ′ ◦ σn ◦ · · · ◦ σ1 = σ [V ].
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Proof. It is perfectly analogous to the proof of Theorem 4 (completeness) in [9]. 2

Now we prove two technical results which are necessary for a useful generalization of the
lifting lemma. We need to make the lemma applicable even when the considered substitution
is not constructor, as long as it still does not introduce a needed redex. In order to do this
extension, we need to ensure that it is possible to get rid of some operation-rooted subterms
which are introduced by instantiation whenever they are not contracted in the considered
derivation. We prove this in the following lemmata.

Lemma 34 Let R be program. Let t and s be operation-rooted terms and P0 ⊆ Pos(t) be a
nonempty set of disjoint positions such that t|p = s for all p ∈ P0. Let

t[s, . . . , s]P0
= t0 →p1,R1

· · · →pn,Rn
tn = t′[s, . . . , s]Pn

be a reduction sequence where Ai = (ti−1 →pi,Ri
ti) and Pi = Pi−1\Ai for all i = 1, . . . , n,

n ≥ 0. If p 6≤ pi for all p ∈ Pi−1, i = 1, . . . , n, then there exists a reduction sequence

t[x, . . . , x]P0
→p1,R1

· · · →pn,Rn
t′[x, . . . , x]Pn

Proof. By induction on the number n of steps in the former reduction:

n = 0. Trivial.

n > 0. Consider A1 = (t[s, . . . , s]P0
→p1,R1

t′′[s, . . . , s]P1
), where R1 = (l1 → r1), σ1(l1) =

t|p1
, and P1 = P0\A1. We distinguish two cases depending on the relative position of

p1 (the case p ≤ p1, for some p ∈ P0, is not considered since the subterms in s are not
contracted, i.e., p 6≤ p1 for all p ∈ P0):

∀p ∈ P0. p1 ⊥ p. In this case, we have that σ1(l1) = (t[x, . . . , x]P0
)|p1

and, by definition
of descendant, P0 = P1. Therefore t[x, . . . , x]P0

→p1,R1
t′′[x, . . . , x]P0

, and the
claim follows by applying the inductive hypothesis to the sequence

B = (t′′[s, . . . , s]P0
→p2,R2

· · · →pn,Rn
t′[s, . . . , s]Pn

),

where Pn = P0\B.

∃p ∈ P0. p1 < p. Since s is operation-rooted and l1 is a linear pattern, then there exists
a substitution σ′

1 such that σ′
1(l1) = (t[x, . . . , x]P0

)|p1
(i.e., {x 7→ s} ◦ σ′

1 = σ1).
Therefore, the following reduction step can be proven:

t[x, . . . , x]P0
→p1,R1

t′′[x, . . . , x]P1

and the claim follows by applying the inductive hypothesis to

B = (t′′[s, . . . , s]P1
→p2,R2

· · · →pn,Rn
t′[s, . . . , s]Pn

),

where Pn = P1\B.

2
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Lemma 35 Let R be a program. Let θ = {x1 7→ s1, . . . , xm 7→ sm} be an idempotent
substitution such that si is an operation-rooted term for all i = 1, . . . , m. Let s be an
operation-rooted term and θ(s) = t0 →p1,R1

· · · →pn,Rn
tn be a reduction sequence where

Ai = (ti−1 →pi,Ri
ti) and Pi = Pi−1\Ai, for i = 1, . . . , n, n ≥ 0. If p 6≤ pi for all p ∈ Pi−1,

i = 1, . . . , n, then there exists a reduction sequence s →p1,R1
· · · →pn,Rn

s′ such that θ(s′) =
tn.

Proof. By induction on the number m of bindings in θ:

Base case. Consider θ = {x1 7→ s1}. Then θ(s) = t0[s1, . . . , s1]P and s = t0[x1, . . . , x1]P ,
where P = {p ∈ Pos(s) | s|p = x1}. Then, the claim follows directly by Lemma 34.

Induction step. Consider θ = θ1 ∪ θ′, where θ1 = {x1 7→ s1} and θ′ = {x2 7→ s2, . . . , xm 7→
sm}. Then, θ(s) = t0[s1, . . . , s1]P and θ′(s) = t0[x1, . . . , x1]P , where P = {p ∈ Pos(s) |
s|p = x1}. Applying Lemma 34, we have that t0[x1, . . . , x1]P →p1,R1

· · · →pn,Rn
s′′ is

a reduction sequence such that θ1(s
′′) = tn. By applying the inductive hypothesis to

this derivation, we have that s →p1,R1
· · · →pn,Rn

s′ is a reduction sequence such that
θ′(s′) = s′′. Therefore, since Dom(θ1) ∩ Dom(θ′) = ∅, we get θ(s′) = (θ1 ◦ θ′)(s′) =
θ1(s

′′) = tn, which proves the claim.

2

Now we are ready to extend the lifting lemma for needed narrowing (Lemma 33) to
non-constructor substitutions which do not introduce needed redexes.

Theorem 36 Let R be an inductively sequential program. Let σ be a substitution and V a
finite set of variables. Let s be an operation-rooted term and Var(s) ⊆ V . Let σ(s) →p1,R1

· · · →pn,Rn
t be an outermost-needed rewrite sequence such that, for all root-needed redex

σ(s)|p of σ(s), p ∈ NVPos(s). Then, there exists a needed narrowing derivation s ;p1,R1,σ1

· · · ;pn,Rn,σn
t′ and a substitution σ′ such that σ′(t′) = t and σ′ ◦ σn ◦ · · · ◦ σ1 = σ [V ].

Proof. We consider two cases:

Let σ be a constructor substitution. In this case, the claim follows directly by Lemma 33,
and σ′ is a constructor substitution too.

Let σ be a non-constructor substitution. Then, there exist substitutions θ1 and θ2 such that
σ = θ2 ◦ θ1, the substitution θ1 is constructor, and for all x 7→ s′ ∈ θ2, s′ is operation-
rooted. Then σ(s) = θ2(θ1(s)). By applying Lemma 35, we have θ1(s) →p1,R1

· · · →pn,Rn
s′′ such that θ2(s

′′) = t. On the other hand, since σ does not introduce root-
needed redexes (i.e., if σ(s)|p is a root-needed redex then p ∈ NVPos(s)), then the
sequence is an outermost-needed derivation. Now, applying Lemma 33 to this reduc-
tion sequence, there exists a needed narrowing derivation s ;p1,R1,σ1

· · · ;pn,Rn,σn
t′

and a constructor substitution σ′′ such that σ′′(t′) = s′′ and σ′′ ◦ σn ◦ · · · ◦ σ1 = θ1 [V ].
By taking σ′ = θ2 ◦ σ′′, we have σ′(t′) = (θ2 ◦ σ′′)(t′) = θ2(σ

′′(t′)) = θ2(s
′′) = t. Finally,

since σ′′ ◦ σn ◦ · · · ◦ σ1 = θ1 [V ], we have θ2 ◦ σ′′ ◦ σn ◦ · · · ◦ σ1 = θ2 ◦ θ1 [V ], and hence
σ′ ◦ σn ◦ · · · ◦ σ1 = σ [V ], which completes the proof.
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2

The next lemma establishes a strong correspondence between the closedness of an ex-
pression t and that of one renaming of t.

Lemma 37 Let S be a finite set of terms, ρ an independent renaming of S, and S ′ = ρ(S).
Given a term t, renρ(t) is S ′-closed iff t is S-closed.

Proof. By induction on the structure of the terms. 2

The following lemma states that, if some term t has an operation-rooted subterm s that
contains a redex which is root-needed in t, then the outermost-needed redex in s is also
root-needed in t.

Lemma 38 Let R be an inductively sequential program and t be a term. If s is an operation-
rooted subterm of t which contains a root-needed redex in t, then every outermost-needed redex
in s is root-needed in t.

Proof. Since t contains at least a root-needed redex, t is not root-stable. If t has no
root-stable form, then every redex in t is root-needed. Therefore, we assume that t has a
root-stable reduct. If s contains an outermost-needed redex, then, by hypothesis and by
Theorem 30, s is not root-stable. Hence, by Theorem 27, such a redex is root-needed in s.
By Theorem 31, the conclusion follows. 2

The following lemma is helpful.

Lemma 39 Let R be an inductively sequential program and t be a term. If s is an operation-
rooted subterm of t which contains a root-needed redex in t and there is a subterm s′ of s which
does not contain any root-needed redex in t, then there is no outermost-needed derivation from
s to a root-stable form which contracts any redex (or residual) in s′.

Proof. If s is root-stable, the claim is trivially true. If s is not root-stable and there is
an outermost-needed derivation starting from s which contracts a (residual of a) redex s′′ in
s′, then, by Theorem 27 such a redex is root-needed in s. Therefore, by Theorem 31, s′′ is
root-needed in t, thus leading to a contradiction. 2

Proposition 40 Let R be an inductively sequential program. Let e be an equation, S a
finite set of operation-rooted terms, ρ an independent renaming of S, and R′ a NN-PE of
R w.r.t. S (under ρ) such that R′ ∪ {e′} is S ′-closed, where e′ = renρ(e) and S ′ = ρ(S). If
e →∗ true in R then e′ →∗ true in R′.

Proof. Since e′ is S ′-closed, by Lemma 37, e is S-closed. Now we prove that, for any
reduction sequence e →∗ true in R for an S-closed term e (not necessarily an equation),
there exists a reduction sequence e′ →∗ true in R′, with e′ = renρ(e). Let B1, . . . , Bj be all
possible needed reduction sequences from e to true, and let ki be the number of contracted
redexes in Bi, i = 1, . . . , j. We prove the claim by induction on the maximum number
n = max(k1, . . . , kj) of contracted needed redexes which are necessary to reduce e to true.

30



n = 0. This case is trivial since e′ = renρ(true) = true.

n > 0. Since e is S-closed, there exists a closure set {(p1, s1), . . . , (pm, sm)} ∈ CSet(S, e),
m > 0, where pi ∈ Pos(e) and si ∈ S, i = 1, . . . , m. Since e contains at least one
needed redex, there exists some i ∈ {1, . . . , m} such that e|pi

= θ(si) and the following
facts hold:

• there exists at least one position q ∈ Pos(e|pi
) such that e|pi.q is a needed redex

in e, and

• for all needed redex e|pi.q′ in e, we have q′ ∈ NVPos(si).

Informally, pi addresses an “innermost” subterm of e (according to the partition im-
posed by the closure set) in the sense that e|pi

contains at least one needed redex and
there is no inner subterm e|pj

, pi < pj , which contains needed redexes. Since both
e and e|pi

are operation-rooted terms, by Lemma 38 we know that each outermost-
needed redex in e|pi

is also a needed redex in e (note that, for derivations e →∗ true
in confluent TRSs, the notions of neededness and root-neededness coincide, since true
is the only root-stable form of e). Let us assume that q1 is the position of such an
outermost-needed redex. Since there is no inner subterm e|pj

, pi < pj, which contains
needed redexes in e, then by Lemma 39, we have that there is no inner subterm e|pj

,
pi < pj , which contains root-needed redexes in e|pi

. Hence, we can consider a reduction
sequence

e[θ(si)]pi
→pi.q1,R1

. . . →pi.qk,Rk
e[s′i]pi

→∗ true

such that the corresponding sequence for θ(si)

θ(si) →q1,R1
. . . →qk−1,Rk−1

s′′i →qk,Rk
s′i

is outermost-needed, s′i is root-stable, and s′′i is not root-stable, k > 0.

Now, we prove that s′i is constructor-rooted. Assume that s′i is operation-rooted.
Then, since t′ = e[s′i]pi

is root-normalizing, by Theorem 29, there exists a reduction
sequence t′ →∗ true which does not reduce s′i. Since s′i is operation-rooted and R
is constructor-based, then there exists a reduction sequence e[x]pi

→∗ true, with x 6∈
Var(e). Therefore, e →∗ true without reducing e|pi

, which contradicts the initial
hypothesis that e|pi

contains a root-needed redex in e. Hence, s′i is constructor-rooted.

Let V be a finite set of variables containing Var(si). By Theorem 36, we know that
there exists a needed narrowing derivation si ;q1,R1,σ1

. . . ;qk,Rk,σk
s′′i which contracts

the same positions using the same rules and in the same order. By definition of NN-PE,
some resultant of R′ derives from a prefix of this needed narrowing derivation. Assume
that the following subderivation

si ;q1,R1,σ1
. . . ;qj ,Rj ,σj

t′, 0 < j ≤ k
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is the one which has been used to construct such a resultant. Let σ′′ = σj ◦ · · · ◦ σ1.
Since θ(si) →q1,R1

. . . →qj ,Rj
t, again by Theorem 36, there exists a substitution σ′

such that σ′(t′) = t and σ′ ◦ σ′′ = θ [V ]. Thus, the considered resultant has the form

R′ = (σ′′(ρ(si)) → renρ(t
′))

and the considered reduction sequence in R has the form

e = e[θ(si)]pi
→pi.q1,R1

. . . →pi.qj ,Rj
e[t]pi

→∗ true

Now, we prove that e′ can be reduced at position p′i using R′, where p′i is the cor-
responding position of pi in e after renaming. By construction, θ(x) is S-closed for
all x ∈ Dom(θ). Moreover, since σ′′ is constructor and σ′ ◦ σ′′ = θ [V ], we have
that σ′(x) is also S-closed for all x ∈ Dom(σ′). Then, there exists a substitution
θ′ = {x 7→ renρ(σ

′(x)) | x ∈ Dom(σ′)} such that θ′(x) is S ′-closed for all x ∈ Dom(θ′).
By definition of post-processing renaming, e′|p′i = renρ(e|pi

) = renρ(θ(si)). Since
Var(si) = Var(ρ(si)) and σ′′ is constructor, we have renρ(θ(si)) = renρ(σ

′ ◦ σ′′(si)) =
θ′(σ′′(renρ(si))) = θ′(σ′′(ρ(si))). Therefore, the following rewrite step can be proven

e′|p′i = θ′(σ′′(ρ(si))) →Λ,R′ θ′(renρ(t
′)) = renρ(σ

′(t′)) = renρ(t)

and thus e′ →p′i,R
′ e′[renρ(t)]p′i . Then, it is immediate to see that e′[renρ(t)]p′i =

renρ(e[t]pi
).

Let us now consider the S-closedness of e[t]pi
. Since R′ is S ′-closed, renρ(t

′) is also
S ′-closed. By Lemma 37, t′ is S-closed. Since σ′(x) is S-closed for all x ∈ Dom(σ′),
by definition of closedness, σ′(t′) = t is also S-closed. Now we distinguish two cases:

pi = Λ. Then e[t]pi
is trivially S-closed since t is S-closed.

pi 6= Λ. Let j ∈ {1, . . . , m} such that pj < pi and there is no k ∈ {1, . . . , m} with
pj < pk < pi. Let e|pj

= γ(sj) where y 7→ si ∈ γ, and consider the set Py =
{pj .q ∈ {p1, . . . , pm} | sj|q = y}. Now we have two possibilities:

Py is a singleton. Then e[t]pi
is trivially S-closed, since (pi, si) ∈ CSet(S, e) and

t is S-closed.

Py is not a singleton. In this case, we have e = e[θ(si), . . . , θ(si)]Py
. By consider-

ing again the reduction sequences θ(si) →∗ t for each si, we get

e[θ(si), . . . , θ(si)]Py
→ · · · → e[t, . . . , t]Py

and, by definition of closedness, it is immediate to see that e[t, . . . , t]Py
is

S-closed. Moreover, we can construct the following reduction sequence:

e′[θ′(σ′′(ρ(si))), . . . , θ
′(σ′′(ρ(si)))]P ′

y
→ . . . → e′[renρ(t), . . . , renρ(t)]P ′

y

where P ′
y corresponds to the positions of Py in e after renaming. Then, we

have

e′[renρ(t), . . . , renρ(t)]P ′

y
= renρ(e[t, . . . , t]Py

).
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Putting all pieces together, we conclude that there exists a reduction sequence

e →+ e[t, . . . , t]P →∗ true

in R, where P = {pi} or P = Py, such that there exists a reduction sequence

e′ →+ e′[renρ(t), . . . , renρ(t)]P ′

in R′, where P ′ = {p′i} or P ′ = P ′
y, respectively. Since e →+ e[t, . . . , t]P has reduced

at least one needed redex in e and e′[renρ(t), . . . , renρ(t)]P ′ = renρ(e[t, . . . , t]P ), by
applying the induction hypothesis to e[t, . . . , t]P →∗ true in R, we get

e′[renρ(t), . . . , renρ(t)]P ′ →∗ true

in R′. By composing this sequence with the previous sequence

e′ →+ e′[renρ(t), . . . , renρ(t)]P ′

we get the desired result.

2

The completeness of NN-PE is a direct consequence of the previous proposition and the
soundness and completeness of needed narrowing.

Theorem 41 (completeness) Let R be an inductively sequential program. Let e be an
equation, V ⊇ Var(e) a finite set of variables, S a finite set of operation-rooted terms, and
ρ an independent renaming of S. Let R′ be a NN-PE of R w.r.t. S (under ρ) such that
R′∪{e′} is S ′-closed, where e′ = renρ(e) and S ′ = ρ(S). If e ;

∗
σ true is a needed narrowing

derivation for e in R, then there exists a needed narrowing derivation e′ ;
∗
σ′ true in R′ such

that σ′ ≤ σ [V ].

Proof. Since e ;
∗
σ true, by the soundness of needed narrowing (claim 1 of Theorem 4), we

have σ(e) →∗ true. Since e′ is S ′-closed and σ is constructor, by definition of closedness, σ(e′)
is also S ′-closed and σ(e′) = renρ(σ(e)). By Proposition 40, there exists a rewrite sequence
σ(e′) →∗ true in R′. Therefore, since σ is a solution of e′ in R′ and R′ is inductively
sequential (Theorem 17), by the completeness of needed narrowing (claim 2 of Theorem 4),
there exists a needed narrowing derivation e′ ;

∗
σ′ true such that σ′ ≤ σ [V ]. 2
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6.3 Strong Correctness

Finally, the strong correctness of the transformation can be easily proved as a direct
consequence of Theorems 24 and 41, together with the independence of solutions computed
by needed narrowing.

Theorem 20 (strong correctness) Let R be an inductively sequential program. Let e be
an equation, V ⊇ Var(e) a finite set of variables, S a finite set of operation-rooted terms,
and ρ an independent renaming of S. Let R′ be a NN-PE of R w.r.t. S (under ρ) such
that R′ ∪ {e′} is S ′-closed, where e′ = renρ(e) and S ′ = ρ(S). Then, e ;

∗
σ true is a needed

narrowing derivation for e in R iff there exists a needed narrowing derivation e′ ;
∗
σ′ true in

R′ such that σ′ = σ [V ] (up to renaming).
Proof. We consider the two directions separately:

Strong soundness. We prove the claim by contradiction. Assume that there exists some
substitution σ′ computed by needed narrowing for e′ in R′ such that there is no substi-
tution θ computed by needed narrowing for e in R with θ = σ′ [V ] (up to renaming).

By Theorem 24 (soundness of NN-PE) and the assumption above, we conclude that
there must be some substitution σ computed by needed narrowing for e in R such that
σ < σ′ [V ]. Then, by Theorem 41, there exists a substitution θ′ computed by needed
narrowing for e′ in R′ such that θ′ ≤ σ [V ]. Since θ′ ≤ σ [V ] and σ < σ′ [V ], we
have θ′ < σ′ [V ] which contradicts the independence of solutions computed by needed
narrowing (claim 3 of Theorem 4).

Strong completeness. The proof is perfectly analogous, by considering the completeness of
NN-PE (Theorem 41) in the place of the soundness of NN-PE (Theorem 24).

2

7 Experimental Results

In this section, we report on some experiments which highlight the practical advantages of
our approach and demonstrate that NN-PE can not only produce better specialized programs
in comparison with lazy narrowing, but it also leads to better specialization times.

A partial evaluator for functional logic programs based on needed narrowing as well as on
lazy narrowing has been implemented in the Indy system7 [2] in order to compare the run
time of the partial evaluator and the effects of both narrowing strategies on the specialized
programs.

We have measured the improvements by some experiments which we summarize in
Tables 1 and 2. Here we have benchmarked the speed and specialization achieved by our

7The Indy system gives the user the choice of the narrowing strategy as well as the unfolding rule which
controls the construction of the computation trees and which ensures the finiteness of the unfolding process.
In the experiments, we use the homeomorphic embedding ordering on comparable ancestors of selected
redexes. This expands derivations while new redexes are less than previous comparable redexes (i.e., with
the same root function symbol) appeared in the same branch (using the homeomorphic embedding ordering).
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Original LN-PE NN-PE
Benchmarks Size LN-Size LN-St NN-Size NN-St Speedup

ackermann 4 20 2690 17 1370 1.96
allones 6 4 140 4 80 1.75
applast 5 4 340 4 190 1.78
exam 5 5 180 3 80 2.25
fibonacci 5 15 960 15 730 1.31
kmp 12 14 1290 14 1100 1.17
palindrome 12 19 1810 19 1400 1.29
sumprod 8 18 1110 18 880 1.26
matmult 10 24 1610 24 1190 1.35
sumleq 7 6 92 6 50 1.85

Table 1: NN-PE vs. LN-PE: size of specialized code and specialization times (in ms.)

Goal: LN-Rt NN-Rt Speedup

ackermann(5) ≤ (5 + 5) ≈ true 83 67 1.24
(20− X) + ((20− X) + (20− X)) ≤ 40 + 40 ≈ true 43 15 2.87
(20 + Y) + (Y + 20) ≤ 20 + 20 ≈ true 73 37 1.97
10 + X ≤ (X + 2) + X ≈ true 22 6.7 3.28
(X− 10) + ((X− 10) + (X− 10)) ≤ 20 + 20 ≈ true 87 22 3.95

Table 2: NN-PE vs. LN-PE: relative runtimes

implementation (including size and execution time of specialized code). Times were meas-
ured on a HP 712/60 workstation, running under HP Unix v10.01. They are expressed in
milliseconds and are the average of 10 executions. The benchmarks used for the analysis
were: ackermann, the classical ackermann function; allones, which transforms all elements
of a list into 1; applast, which appends an element at the end of a given list and returns
the last element of the resulting list; exam, the program of Example 10; fibonacci, fibon-
acci’s function; kmp, the specialization of a semi-näıve string pattern matcher; palindrome,
a program to check whether a given list is a palindrome; sumprod, which obtains the sum
and the product of the elements of a list; matmul, a program for matrix multiplication, and
sumleq, the program of Example 2 containing the rules for “+”,“−”, and “6”. Some of
the examples are typical PD benchmarks (see [36, 37]) adapted to a functional logic syn-
tax, while others come from the literature of functional program transformations, such as
positive supercompilation [48], fold/unfold transformations [16, 18], and deforestation [49].
Runtime input goals were chosen to give a reasonably long overall time. The complete code
for benchmarks and the specialized goals can be found in Appendix A.

Table 1 compares the performances of NN-PE w.r.t. LN-PE. The columns “Size”, “LN-
Size” and “NN-Size” are the number of rewrite rules in the original program, the specialized
program using LN-PE and the program specialized by NN-PE, respectively. The columns
“LN-St” and “NN-St” are the corresponding specialization times. The column “Speedup”
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shows the relative improvement achieved by NN-PE for each benchmark, obtained as the
ratio (LN-St ÷ NN-St). In all benchmarks, the NN-PE specialization times were considerably
better, with an average speedup of 1.6 in comparison with LN-PE.

Table 2 summarizes our findings w.r.t. the quality of the specialization achieved. The
experiments reported in this table correspond to a combination of the benchmarks ackerman
and sumleq, which were executed using different running calls (including nested calls to these
functions). Remember that natural numbers are implemented by 0/s-terms. The columns
“LN-Rt” and “NN-Rt” show the runtimes for computing the first solution of each call in
the programs specialized using LN-PE and NN-PE, respectively. Runtimes are expressed as
percent of the time taken by the original program for the same goal. The column “Speedup”
shows the relative improvement for each call, obtained as the ratio (NN-Rt ÷ LN-Rt).
Our results show that the specialization achieved by using NN-PE in these experiments
is better, with an average speedup of 2.66 in comparison to LN-PE. These results point to
the superiority of the NN-PE strategy.

8 Conclusions

Few attempts have been made to investigate powerful and effective PE techniques which
can be applied to term rewriting systems, logic programs and functional programs. In
this paper, we have presented a partial evaluator for functional logic programs based on
needed narrowing and we have shown its strong correctness, i.e., the answers computed
by needed narrowing in the original and specialized programs for the considered queries
are identical (up to renaming). Furthermore, we have shown that the partial evaluation
process keeps the inductively sequential structure of programs so that the optimal needed
narrowing strategy can also be applied to the specialized programs. As a consequence, the
partial evaluation process preserves the desirable determinism property of functional logic
programs: deterministic evaluations w.r.t. the original program are still deterministic in the
specialized program. This property is nontrivial as witnessed by counterexamples for the
case of lazy narrowing. We have also empirically verified that the use of needed narrowing
in a partial evaluator speeds up the specialization time in comparison to lazy narrowing
and it does not remove indexing information from the program, which is needed to obtain
fast unification. Thus, we conclude that needed narrowing is the best known framework for
specialising functional logic programs. We are currently working on the development of some
abstract interpretation techniques for the detection and removal of redundant arguments
and useless clauses from the partially evaluated program in order to further enhance the
specialization.

We conclude by mentioning some further research. Needed narrowing is only defined
for functional logic programs with inductively sequential function definitions. Although this
class covers typical functional programs and many logic programs, it might be interesting to
consider the more general class of almost orthogonal programs where rules with overlapping
left-hand sides are allowed. In principle, needed narrowing can be extended to this class
(weakly needed or parallel narrowing [11]), but then some of the optimality properties are
lost. However, it seems that weakly needed narrowing is superior to lazy narrowing even
in this case, and, thus, it is interesting for future research to investigate the properties of a

36



partial evaluator based on such extensions of needed narrowing. Another interesting topic
is the inclusion of concurrency features as in the extension of needed narrowing proposed in
[27].
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A Benchmark Code and Specialized Goals

applast ackermann

applast(L,X) -> last(append(L,[X]) ackermann(N) -> ack(s(s(0)),N)

last([X]) -> X ack(0,N) -> s(N)

last([X|R]) -> last(R) ack(s(M),0) -> ack(M,s(0))

append([],Y) -> Y ack(s(M),s(N)) -> ack(M,ack(s(M),N))

append([X|R],Y) -> [X|append(R,Y)]

call: applast(L,X) call: ackermann(N)

allones sumleq

f(L) -> allones(length(L)) sum(0,X) -> X

allones(0) -> [] sum(s(X),Y) -> s(sum(X,Y))

allones(s(N)) -> [1|allones(N)] sub(X,0) -> X

length([]) -> 0 sub(s(X),s(Y)) -> sub(X,Y)

length([H|T]) -> sum(s(0),length(T)) leq(0,X) -> true

sum(0,Y) -> Y leq(s(X),0) -> true

sum(s(X),Y) -> s(sum(X,Y)) leq(s(X),s(Y)) -> leq(X,Y)

call: f(L) call: leq(X,sum(X,Y))

fibonacci sumprod

fib(0) -> s(0) sumprod(L) -> sum(sumlist(L),prodlist(L))

fib(s(0)) -> s(0) sumlist([]) -> 0

fib(s(s(N))) -> sum(fib(s(N)),fib(N)) sumlist([H|T]) -> sum(H,sumlist(T))

sum(0,Y) -> Y prodlist([]) -> s(0)

sum(s(X),Y) -> s(sum(X,Y)) prodlist([H|T]) -> prod(H,prodlist(T))

sum(0,Y) -> Y

sum(s(X),Y) -> s(sum(X,Y))

prod(0,Y) -> 0

prod(s(X),Y) -> sum(prod(X,Y),Y)

call: fib(N) call: sumprod(L)

exam matmult

f(0,0) -> s(f(0,0)) matmult([X|Xs],Y) -> [rowmult(X,Y)|matmult(Xs,Y)]

f(s(N),X) -> s(f(N,X)) matmult([],Y) -> []

g(0) -> g(0) rowmult(X,[Y|Ys]) -> [dotmult(X,Y)|rowmult(X,Ys)]

h(s(X)) -> 0 rowmult(X,[]) -> []

dotmult([X|Xs],[Y|Ys]) ->

plus(mult(X,Y),dotmult(Xs,Ys))

dotmult([],[]) -> 0

sum(0,X) -> X

sum(s(X),Y) -> s(sum(X,Y))

call: h(f(X,g(Y)) call: matmult([X,Y,Z],W)

kmp palindrome

match(P,S) -> loop(P,S,P,S) palindrome(L) -> eqlist(reverse(L),L)

loop([],SS,OP,OS) -> true reverse(L) -> rev(L,[])

loop([P|PP],[],OP,OS) -> false rev([],L) -> L

loop([P|PP],[S|SS],OP,OS) -> rev([X|L],Y) -> rev(L,[X|Y])

if(eq(P,S),loop(PP,SS,OP,OS),next(OP,OS)) eqlist([],[]) -> true

next(OP,[]) -> false eqlist([A|RA],[B|RB]) ->

next(OP,[S|SS]) -> loop(OP,SS,OP,SS) if(eq(A,B),eqlist(RA,RB),false)

if(true,A,B) -> A if(true,A,B) -> A

if(false,A,B) -> B if(false,A,B) -> B

eq(a,a) -> true eq(0,0) -> true

eq(b,b) -> true eq(0,s(M)) -> false

eq(a,b) -> false eq(s(N),0) -> false

eq(b,a) -> false eq(s(N),s(M)) -> eq(N,M)

call: match([a,a,b],S) call: palindrome([s(0)|L])


