
CPM: A Declarative Package Manager
with Semantic Versioning

– System Description –

Michael Hanus Jonas Oberschweiber

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. We present CPM, a package manager for the declarative
multi-paradigm language Curry. Although CPM inherits many ideas
from package managers for other programming languages, a distinguish-
ing feature of CPM is its support to check the rules of semantic version-
ing, a convenient principle to associate meaningful version numbers to
different software releases. Although the correct use of version numbers is
important in software package systems where packages depend on other
packages with specific releases, it is often used as an informal agreement
but usually not checked by package managers. CPM is different in this as-
pect: it provides support for checking the semantic requirements implied
by the semantic versioning scheme. Since these semantic requirements
are undecidable in general, CPM uses the property-based testing tool
CurryCheck to check the semantic equivalence of two different versions
of a software package. Thus, CPM provides a good compromise between
the use and formal verification of the semantic versioning rules.

1 Introduction

Complex software systems are usually not built from scratch but re-use vari-
ous components. To structure such systems, software packages with well-defined
APIs (application programming interfaces) are used. A software package con-
sists of one or more modules and is used as a building block of a larger system.
Hence, a software system or complex package depend on other packages. Since
packages change over time, e.g., new functionality is added, more efficient imple-
mentations are developed, or the usage of operations (i.e., the API) is changed,
it is important to use an appropriate version of a package. Finding them and
managing these dependencies is a non-trivial problem. As a solution to it, pack-
age managers use version numbers associated to package releases and allow to
express such dependencies as relations on version numbers.

Semantic versioning is a recommendation to associate meaningful version
numbers to software packages. In the semantic versioning standard,1 a version
number consists of major, minor, and patch number, separated by dots, and an
optional pre-release specifier consisting of alphanumeric characters and hyphens

1 http://www.semver.org

http://www.semver.org

appended with a hyphen (and optional build metadata, which we do not con-
sider here). For instance, 0.1.2 and 1.2.3-alpha.2 are valid version numbers.
Furthermore, an ordering is defined on version numbers where major, minor,
and patch numbers are compared in lexicographic order and pre-releases are
considered unstable so that they are smaller than their non-pre-release versions.
For instance, 0.1.2 < 0.3.1 < 1.1.2-beta < 1.1.2. Furthermore, semantic ver-
sioning requires that the major version number is incremented when the API
functionality of a package is changed, the minor version number is incremented
when new API functionality is added and existing API operations are back-
ward compatible, and the patch version number is incremented when the API
functionality is unchanged (only bug fixes, code refactorings, etc).

The advantage of semantic versioning is an increased flexibility to choose
packages when building larger software systems. For instance, if package A re-
quires some functionality which has been introduced in version 1.4.1 of package
B, one can specify that A depends on B in a version greater than or equal to
1.4.1 but less than 2.0.0. Thanks to semantics versioning, a package manager
can choose newer versions of B (as long as they are smaller than 2.0.0), when
they become available, in order to build A.

However, semantic versioning requires that, if some operation f is defined in
two versions of a package with identical major version numbers, these two defi-
nitions are semantically equivalent. Since this property is obviously undecidable
in general, the developer is responsible for this semantic compatibility so that
this is not checked in contemporary package management systems. Improving
this situation is the objective of the Curry package manager CPM.

In order to check the semantic equivalence of a unary operation f defined in
versions v1 and v2 of some package, one can rename the definitions of f in these
packages to fv1 and fv2 , respectively, and check the property ∀x.fv1(x) = fv2(x).2

Ideally, one should prove this property. Since fully automatic proof techniques
are available only for limited domains, CPM uses property-based testing instead.
Property-based testing automates the checking of properties by random or sys-
tematic generation of test inputs. It has been introduced with the QuickCheck
tool [6] for the functional language Haskell and adapted to many other languages,
like CurryCheck [8] for the functional logic language Curry. Although property-
based testing provides no formal guarantees, in practice it is quite successful if
the generated input data is well distributed.

In the following, we briefly survey Curry and CurryCheck before we provide
an overview of CPM and its implementation of semantic versioning checking.

2 Functional Logic Programming and Curry

Functional logic languages combine the most important features of functional
and logic programming in a single language (see [7] for a recent survey). In par-
ticular, the functional logic language Curry [11] conceptually extends Haskell

2 Although this property is necessary, it is not sufficient to ensure semantic equivalence
in functional logic programs [5]. Nevertheless, we use it here for the sake of simplicity.

with common features of logic programming, i.e., non-determinism, free vari-
ables, and constraint solving. The syntax of Curry is close to Haskell. In addi-
tion to Haskell, Curry applies rules with overlapping left-hand sides in a (don’t
know) non-deterministic manner (whereas Haskell always selects the first match-
ing rule) and allows free (logic) variables in conditions and right-hand sides of
rules. Function calls are evaluated lazily where free variables as demanded argu-
ments are non-deterministically instantiated [2].

Example 1. The following simple program shows the functional and logic fea-
tures of Curry. It defines an operation “++” to concatenate two lists, which is
identical to the Haskell encoding. The operation ins inserts an element at some
(unspecified) position in a list:

(++) :: [a] → [a] → [a] ins :: a → [a] → [a]

[] ++ ys = ys ins x ys = x : ys

(x:xs) ++ ys = x : (xs ++ ys) ins x (y:ys) = y : ins x ys

Note that ins is a non-deterministic operation since it might deliver more than
one result for a given argument, e.g., the evaluation of ins 0 [1,2] yields the val-
ues [0,1,2], [1,0,2], and [1,2,0]. Curry has many other features not described
here, like monadic I/O and modules as in Haskell, set functions [4] to encapsulate
non-deterministic search, and functional patterns [3] to specify complex trans-
formations in a high-level manner. For instance, we can provide an alternative
and more compact definition of ins with a functional pattern:

ins’ x (xs++ys) = xs++[x]++ys

3 Property-based Testing with CurryCheck

Property-based testing [6] is a useful technique to improve the reliability of
software packages. Basically, properties are expressions parameterized over input
data. CurryCheck [8] is a property-based test tool for Curry which automates the
tests whether properties hold on various inputs. CurryCheck extracts and tests
all properties, i.e., top-level entities with result type Prop, contained in a source
program. For instance, if we add to the program of Example 1 the property

concIsAssoc :: [Int] → [Int] → [Int] → Prop

concIsAssoc xs ys zs = (xs++ys)++zs -=- xs++(ys++zs)

and run CurryCheck on this program, the associativity property of list concate-
nation is tested by systematically enumerating lists of integers for the parameters
xs, ys, and zs. The property “-=-” has the type a→ a→ Prop and is satisfied if
both arguments have a single identical value.

To check laws involving non-deterministic operations, one can use the prop-
erty “<~>” which is satisfied if both arguments have identical result sets. For
instance, the requirement that list insertion increments the list length can be
expressed by the property

insLength x xs = length (ins x xs) <~> length xs + 1

Since the left argument of “<~>” evaluates to many (identical) values, the set-
based interpretation of “<~>” is relevant here. This is reasonable since, from a

declarative programming point of view, it is irrelevant how often some result
is computed. The semantic equivalence of ins and ins’ defined above can be
checked with the property

insSameAsIns’ x xs = ins x xs <~> ins’ x xs

4 CPM: The Curry Package Manager

The Curry Package Manager CPM3 is a tool to distribute and install Curry soft-
ware packages and manage version dependencies between them. A CPM package
consists of at least one or more Curry modules and a package specification, a
file in JSON format containing the package’s metadata. Beyond some standard
fields, like author, name, or synopsis, the metadata of each package contains
the version number of the package (in semantic versioning format) and a list
of dependency constraints. A dependency constraint consists of the name of an-
other package and a disjunction of conjunctions of version relations, which are
comparison operators (<, <=, >, >=, =) together with a version number. Conjunc-
tions are separated by commas, and disjunctions are separated by ||. Hence, the
dependency constraint

"B" : ">= 2.0.0, < 3.0.0 || > 4.1.0"

expresses the requirement that the current package depends on package B with
major version 2 or in a version greater than 4.1.0.

CPM has various commands to manage the set of all packages and install
and upgrade individual packages. Since CPM uses a central index of all known
packages4 and their versions, an important command is cpm update which down-
loads the newest version of this index. The command cpm list shows a table
of all packages (sorted by various criteria which can be specified as command
options), cpm search allows to search for a term within all packages, and cpm info

shows detailed information of a package.
The command cpm install installs a package by resolving all dependency

constraints of the current package and all dependent packages. This is a classic
constraint satisfaction problem. CPM uses a lazy functional approach based on
[12] to solve all dependency constraints and find appropriate package versions. If
there is a solution to these constraints, CPM automatically installs local copies of
all required packages (either from a cache or by downloading them from a central
repository). If there are several possible versions of some package to install, CPM
uses the newest one. There is also a command cpm upgrade to replace already
installed packages by newer versions, if possible. The details of these processes
are outside the scope of this paper and are described in [13]. Since the number
of packages in the current CPM index is limited, we tested our dependency
resolution algorithm on a large set of packages (the central package index of
npm, the Node package manager) and obtained acceptable run times on realistic
examples (see [13] for details).

3 http://curry-language.org/tools/cpm
4 Currently, CPM manages more than 50 packages and 400 modules.

http://curry-language.org/tools/cpm

CPM also supports package testing, documentation, and compilation. The
command cpm test applies CurryCheck to all source modules of the package (or
to some test suite specified in the package’s metadata). The command cpm doc

generates the documentation of a package, i.e., the API documentation (in
HTML format) automatically extracted from source programs and, if provided,
manuals in PDF format. If the package’s metadata specifies a main module and
the name of an executable, the package and all its dependencies are compiled
by the command cpm install, which also installs the generated binary in the
bin directory of CPM. Hence, complete Curry applications can be wrapped in a
package so that they are easily installed by a single command.

As mentioned above, CPM adheres to the semantic versioning standard as
sketched in Section 1. CPM supports the automated checking of the rules of
semantic versioning by the command cpm diff. For instance, to compare the
current package to a previous version 1.2.4 of the same package, one can invoke
the command

> cpm diff 1.2.4

This starts a complex comparison process which is described in the next section.

5 Semantic Versioning Checking

Semantic versioning checking is the process to compare the APIs of two ver-
sions of some package and report possible violations according to the semantic
versioning standard. In the case of Curry, the API of a package is the set of
all public data types and operations occurring in the exported modules5 of this
package. The semantic versioning checker of CPM performs the following steps:

1. The signatures of all API data types and operations occurring in both ver-
sions of the package are compared. If there are any syntactic differences
and the major version numbers of the packages are identical, a violation is
reported.

2. If there is some API entity f occurring in version a1.b1.c1 but not in version
a2.b2.c2, then a violation is reported if a1 and a2 are identical but b1 is not
greater than b2.

3. If the major version numbers of the packages are identical, then, for all API
operations occurring in both package versions, the behavior of both versions
of such an operation is compared (see below). A violation is reported if any
difference is detected.

The implementation of the first two steps can be achieved by a straightforward
syntactic comparison of the packages. To implement step 3, i.e., to compare the
behavior of some operation f defined in versions v1 and v2 of some package,
the code of both packages is copied and all modules of these packages (and

5 The metadata of a package can also specify a subset of all modules as “exported” so
that only operations in these modules can be used by other packages. If this is not
explicitly declared, all modules of the package are considered as exported.

all packages on which these packages depend) are renamed with the version
number as a prefix. For instance, a module M occurring in package version 1.2.3

is copied and renamed into module V-1-2-3-M. Thus, if there is a unary operation
f occurring in module M in package versions 1.2.3 and 1.2.4 to compare, one
can access both versions of this operation by the qualified name V-1-2-3-M.f and
V-1-2-4-M.f. Thus, CPM generates a new “comparison” module which contains
the following code:

import qualified V_1_2_3_M

import qualified V_1_2_4_M

check_M_f x = V_1_2_3_M.f x <~> V_1_2_4_M.f x

Due to the use of the property “<~>”, CPM can also compare the computed
results of non-deterministic operations. If this module is passed to CurryCheck
and the property is satisfied for all generated test inputs, we have some confidence
about the semantic equivalence of f in both packages. This approach works under
the following assumptions:

1. The input and result types of V-1-2-3-M.f and V-1-2-4-M.f are identical.
2. The operations to be compared are terminating on all input values.

Unfortunately, the first assumption is not satisfied if f works on a type T defined
in module M, since the comparison module contains two copies of this type:
V-1-2-3-M.T and V-1-2-4-M.T. In order to generate a single property to compare
both versions of f, CPM generates a bijective mapping between both renamed
types

t_T :: V_1_2_4_M.T → V_1_2_3_M.T

This operation can inductively be defined for all data constructors of type T,
since the structure of T must be identical in both versions (otherwise, semantic
versioning is syntactically violated). If f is of type T → T, then CPM generates
the following property to compare both versions of f:

check_M_f x = V_1_2_3_M.f (t_T x) <~> t_T (V_1_2_4_M.f x)

If the second assumption (termination) is not satisfied, the property tester might
not terminate. To avoid this situation, CPM analyzes the operations to be com-
pared before the comparison properties are generated. For this purpose, CPM
exploits the Curry analysis framework CASS [10], which provides a simple termi-
nation analysis, and generates the above properties only for operations which are
definitely terminating. CPM also accepts specific pragmas where the program-
mer can annotate operations as terminating for cases where the termination
checker is not powerful enough.

Unfortunately, this is not sufficient to check operations that are intention-
ally non-terminating since they generate infinite data structures. In order to
check such operations, e.g., stream generators, CPM analyzes the “productiv-
ity” of these operations and compare finite approximations of their results. For
instance, consider the following operations which generate infinite lists of as-
cending integers starting from the given argument:

ints :: Int → [Int] ints2 :: Int → [Int]

ints n = n : ints (n+1) ints2 n = n : ints2 (n+2)

Although these operations compute different infinite lists, this difference cannot
be detected by the property

checkInts x = ints x <~> ints2 x

since its evaluation does not terminate. However, both operations are root-
productive: there is no infinite sequence of evaluation steps which does not pro-
duce a constructor at the root. A productive operation is one which is root-
productive and all operations occurring in derivations of this operations are also
productive. Hence, ints and ints2 are productive whereas loop defined by

loop n = loop (n+1)

is not productive. The productivity property of operations can be approximated
by a program analysis with a fixpoint computation on all program rules (see [9]
for details).

CPM implements such a program analysis and uses its result to compare also
non-terminating but productive operations. For this purpose, it limits the size
of the data structures to be compared. For instance, the size of a potentially
infinite list can be limited by an operation which has a first “size” argument
(represented as a Peano number with the constructors Z and S):

limitList Z _ = []

limitList (S n) [] = []

limitList (S n) (x:xs) = x : limitList n xs

Now one can check the observable equivalence of ints and ints2 by the following
property:

limitCheckInts n x = limitList n (ints x) <~> limitList n (ints2 x)

For this property, CurryCheck finds a counter-example for the input arguments
n=(S (S Z)) and x=1. With this approach, CPM can also compare different ver-
sions of non-terminating but productive operations. Hence, the overall strategy
of CPM to compare two different versions of an operation f is as follows:

1. If f is terminating, the results of both versions are directly compared (with
a type mapping, if required).

2. If f is non-terminating but productive, the results of both versions are limited
to a given size, where the size parameter is also part of the test inputs.

3. If f is non-terminating and not productive, both versions are not compared
and a warning is issued.

If CPM cannot automatically derive the productivity of an operation, the pro-
grammer can explicitly annotate operations as productive so that they are
checked with the strategy explained above. More details about this analysis
and its implementation can be found in [9].

6 Concluding Remarks

We have presented a software package manager for Curry with support for se-
mantic versioning. Although there exist many package managers which use sim-
ilar versioning schemes, to the best of our knowledge, CPM is the first package

manager which provides automated support for semantic versioning checking.
The Elm package manager6 also performs semantic versioning checks but this is
based on simple syntactic API comparisons. Hence, it can not detect semantic
differences when API types are unchanged, like replacing a decrement by an
increment operation.

We have shown that declarative languages in combination with powerful
property testing tools are a good basis for automated semantic versioning check-
ing. Hence, our approach can also be transferred to Haskell with QuickCheck
[6], Prolog with PrologCheck [1], or Erlang with PropEr [14]. For a fully au-
tomatic tool, it is necessary to ensure the termination of the checking process.
Although this can be achieved by time limits, more powerful checks require a
careful program analysis, as we have done with analyzing the productivity of
possibly non-terminating operations.

CPM’s semantic versioning checking is a tool that can be used by the package
developer to check the changes introduced in a new version of the package. Since
it is a fully automatic tool, it can also be used in the workflow to publish new
package versions in the central repository of CPM, which is not yet implemented
but a topic for future work.

References

1. C. Amaral, M. Florido, and V. Santos Costa. PrologCheck - property-based testing
in Prolog. In Proc. of the 12th International Symposium on Functional and Logic
Porgramming (FLOPS 2014), pages 1–17. Springer LNCS 8475, 2014.

2. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776–822, 2000.

3. S. Antoy and M. Hanus. Declarative programming with function patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pages 6–22. Springer LNCS 3901, 2005.

4. S. Antoy and M. Hanus. Set functions for functional logic programming. In Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’09), pages 73–82. ACM Press, 2009.

5. S. Antoy and M. Hanus. Contracts and specifications for functional logic pro-
gramming. In Proc. of the 14th International Symposium on Practical Aspects of
Declarative Languages (PADL 2012), pages 33–47. Springer LNCS 7149, 2012.

6. K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random test-
ing of Haskell programs. In International Conference on Functional Programming
(ICFP’00), pages 268–279. ACM Press, 2000.

7. M. Hanus. Functional logic programming: From theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS
7797, 2013.

8. M. Hanus. CurryCheck: Checking properties of Curry programs. In Proceedings of
the 26th International Symposium on Logic-Based Program Synthesis and Trans-
formation (LOPSTR 2016). Springer LNCS 10184, 2016.

9. M. Hanus. Semantic versioning checking in a declarative package manager. In Tech-
nical Communications of the 33rd International Conference on Logic Programming
(ICLP 2017), OpenAccess Series in Informatics (OASIcs), 2017.

6 http://elm-lang.org/

http://elm-lang.org/

10. M. Hanus and F. Skrlac. A modular and generic analysis server system for func-
tional logic programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation (PEPM’14), pages 181–188. ACM Press,
2014.

11. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Avail-
able at http://www.curry-language.org, 2016.

12. T. Nordin and A.P. Tolmach. Modular lazy search for constraint satisfaction prob-
lems. Journal of Functional Programming, 11(5):557–587, 2001.

13. J. Oberschweiber. A package manager for Curry. Master’s thesis, University of
Kiel, 2016.

14. M. Papadakis and K. Sagonas. A PropEr integration of types and function speci-
fications with property-based testing. In Proc. of the 10th ACM SIGPLAN Work-
shop on Erlang, pages 39–50, 2011.

http://www.curry-language.org

	CPM: A Declarative Package Manager with Semantic Versioning – System Description –

