
Parametri
 Order-Sorted Types in Logi
 Programming

Mi
hael Hanus

Fa
hberei
h Informatik, Universit�at Dortmund

W-4600 Dortmund 50, Germany

e-mail: mi
hael�ls5.informatik.uni-dortmund.de

In Pro
. TAPSOFT'91, Brighton, April 1991, Springer LNCS 494, pp. 181{200

This paper proposes a type system for logi
 programming where types are stru
tured in two ways.

Firstly, fun
tions and predi
ates may be de
lared with types
ontaining type parameters whi
h are

universally quanti�ed over all types. In this
ase ea
h instan
e of the type de
laration
an be used

in the logi
 program. Se
ondly, types are related by subset in
lusions. In this
ase a fun
tion or

predi
ate
an be applied to all subtypes of its de
lared type. While previous proposals for su
h type

systems have strong restri
tions on the subtype relation, we assume that the subtype order is spe
i�ed

by Horn
lauses for the subtype relation �. This allows the de
laration of a lot of interesting type

stru
tures, e.g., type
onstru
tors whi
h are monotoni
 as well as anti-monotoni
 in their arguments.

For instan
e, parametri
 order-sorted type stru
tures for logi
 programs with higher-order predi
ates

an be spe
i�ed in our framework.

This paper presents the de
larative and operational semanti
s of the typed logi
 language. The

operational semanti
s requires a uni�
ation pro
edure on well-typed terms. This uni�
ation pro
e-

dure is des
ribed by a set of transformation rules whi
h generate a set of type
onstraints from a

given uni�
ation problem. The solvability of these type
onstraints is de
idable for parti
ular type

stru
tures.

1 Introdu
tion

Types are important for programming languages be
ause typed programs are easier to read and

a lot of programming errors
an be dete
ted at
ompile time. Moreover,
ompilers
an generate

more eÆ
ient
ode if type information is available. Therefore various attempts have been made to

integrate types into the
lassi
ally untyped world of logi
 programming. These proposals
an be

divided into two groups. In the inferen
e-based approa
hes [Mis84℄ [Zob87℄ [XW88℄ [BG89℄ (among

others) types are not part of the program but are
onsidered as logi
al
onsequen
es of the program.

These approa
hes
onsider the type of a predi
ate as a superset of the su

ess set of the predi
ate

whi
h is
omputed by abstra
t interpretation te
hniques. If the type of a predi
ate is empty, then

this predi
ate
annot su

eed and hen
e it is interpreted as a programming error. But in many

ases the inferen
e of types from a
ompletely untyped logi
 program does not yield suÆ
ient results

be
ause an untyped logi
 program does not
ontain the type information expe
ted by the programmer

[Nai87℄.

The de
laration-based approa
hes try to over
ome this problem by permitting the addition of

type de
larations to the logi
 program. A type
he
ker
ompares the appli
ation of a fun
tion or

predi
ate in a program
lause with the programmer's de
laration and reports an error if it is used in

a wrong
ontext. In these approa
hes the type de
larations are a part of the program's semanti
s and

may in
uen
e the exe
ution of the program. For instan
e, the polymorphi
 type system of My
roft

and O'Keefe [MO84℄ is motivated from ML and the type information is only used for
ompile-time

he
ks, i.e., the types are not visible at run time (but to ensure this property more restri
tions on the

programs are ne
essary than des
ribed in their paper). An extension of their type system [Han89a℄

allows the appli
ation of higher-order programming te
hniques [Han89b℄ but needs type information

at run time to ensure that \well-typed programs do not go wrong". This is also true for order-sorted

type systems where types may be related by an in
lusion relation [SNGM89℄. But it has been shown

that type information at run time is not super
uous but may avoid unne
essary
omputations and

redu
e the sear
h spa
e [SS85℄ [HV87℄.

Smolka [Smo89℄ and Hill and Topor [HT90℄ have proposed de
larative type systems for logi

programming whi
h integrate parametri
 and order-sorted polymorphism. Both approa
hes have

several restri
tions on the
ombination of parametri
 and order-sorted types. For instan
e, they

require that type
onstru
tors like list and pair must be monotoni
 in their arguments, i.e., list(�

1

)

is a subtype of list(�

2

) if �

1

is a subtype of �

2

. But this restri
tion is a severe limitation if we want to

use higher-order programming te
hniques: Warren [War82℄ has shown how to simulate higher-order

programming in �rst-order logi
, and the adaptation of this te
hnique to a polymorphi
ally typed

logi
 language is shown in [Han89b℄. In this
ase there is a type
onstru
tor pred1 denoting the type

of unary predi
ates. But pred1 is not monotoni
: pred1(int) is a subtype of pred1(nat) be
ause all

unary predi
ates de�ned on integers
an be used if a unary predi
ate de�ned on naturals is required

provided that nat is a subtype of int (
f. [CW85℄).

In order to solve this problem, we present a generalized de
laration-based type system. We allow

the spe
i�
ation of a subtype order by arbitrary Horn
lauses for the subtype relation �. Hen
e

the user
an de
lare type
onstru
tors whi
h are monotoni
 or anti-monotoni
 in their arguments.

Figure 1 shows an example of a typed logi
 program in our framework. It
ontains the basi
 types

zero, posint and nat, where zero and posint are subtypes of nat, and the type
onstru
tors list

and pred1 of arity 1 whi
h are monotoni
 and anti-monotoni
 in their arguments, respe
tively. The

subtype order spe
i�ed by this program is the least quasi-ordering on the type expressions whi
h

satis�es all subtype axioms. Another example showing the appli
ation of higher-order programming

te
hniques will be presented in se
tion 7.

Similarly to order-sorted logi
, the spe
i�ed type stru
ture in
uen
es the operational semanti
s

of the program, i.e., the uni�
ation pro
edure must
onsider the types of the terms to be uni�ed.

For instan
e, if we have to prove the literal

?- plus(X,Y,Z)

and we know that variable X has type posint, i.e., it is only allowed to bind X to positive numbers

(be
ause of its usage in another literal), then the �rst
lause for plus must not be applied to this

literal sin
e 0 has type zero whi
h is in
ompatible with posint. Thus a typed uni�
ation may avoid

unne
essary
omputations. The main result of this paper is a uni�
ation pro
edure whi
h takes two

well-typed literals as input and produ
es a solvable set of type
onstraints i� the literals are uni�able.

The solvability of these type
onstraints is de
idable for parti
ular type stru
tures. This uni�
ation

pro
edure
an be used for a sound and
omplete resolution pro
edure for typed logi
 programs.

This paper is organized as follows. The next two se
tions de�ne the syntax and the de
larative

2

type zero, posint, nat, list/1, pred1/1

subtype zero � nat

posint � nat

� � �) list(�) � list(�)

� � �) pred1(�) � pred1(�)

fun
 0: ! zero

fun
 s: nat ! posint

fun
 [℄ : ! list(�)

fun
 [..|..℄: �; list(�) ! list(�)

pred plus : nat; nat; nat

pred member: �; list(�)

plus(0,N,N)

plus(s(N1),N2,s(N3)) plus(N1,N2,N3)

member(E,[E|L℄)

member(E,[F|L℄) member(E,L)

Figure 1: A logi
 program with parametri
 and order-sorted types

semanti
s of typed logi
 programs. Sin
e our approa
h is de
laration-based, types are not only sets

of terms but they are present in all interpretations of the program similarly to [Smo89℄ or [HT90℄.

Se
tion 4 de�nes the typed Horn
lause
al
ulus whi
h is a sound and
omplete method to prove

valid atoms. Se
tion 5 presents the uni�
ation pro
edure on typed terms whi
h
an be used for

the resolution method for typed logi
 programs presented in se
tion 6. A new appli
ation of our

framework is presented in se
tion 7. The proofs of the theorems are omitted from this paper. They

an be found in [Han91℄.

2 The typed logi
 language

For the de�nition of types we assume familiarity with basi
 notions from algebrai
 spe
i�
ations as

to be found in [EM85℄. A type signature is a single-sorted signature H. Constants in H are
alled

basi
 types and n-ary fun
tions in H are
alled type
onstru
tors of arity n. For instan
e, the

�rst line in �gure 1 spe
i�es a type signature with zero, posint, nat as basi
 types and two type

onstru
tors list and pred1 or arity 1.

By X we denote an in�nite set of type parameters

1

. T

H

(X) denotes the term algebra over H

and X , i.e., the set of all well-formed type expressions with type parameters from X .

A type substitution � is an H-homomorphism �:T

H

(X) ! T

H

(X) where �(�) 6= � only for

�nitely many � 2 X . A type substitution repla
es type parameters by other type expressions. We

use the following notation for the
lass of all type substitutions:

TS(H;X) := f�:T

H

(X)! T

H

(X) j � is a type substitutiong

1

In order to avoid
onfusion with variables o

urring in
lauses of logi
 programs, we use the notion \type param-

eters" for variables whi
h are quanti�ed over types.

3

In
lusion relations between types are spe
i�ed by Horn
lauses for the binary predi
ate�. A subtype

de
laration is a formula

�

1

� �

0

1

; : : : ; �

n

� �

0

n

) �

0

� �

0

0

where �

i

; �

0

i

are type expressions from T

H

(X) (i = 0; : : : ; n). If S is a set of subtype de
larations, �

S

denotes the least quasi-ordering generated by S, i.e., � �

S

�

0

is true i� � � �

0

is a logi
al
onsequen
e

of the Horn
lause program

S [f() � � �); (� � �; � �
) � �
)g

where �, � and
 are di�erent type parameters from X .

A type spe
i�
ation is a pair (H;S) where H is a type signature and S is a set of subtype

de
larations. For instan
e, the parts pre
eded by the keywords \type" and \subtype" in �gure 1 are

a type spe
i�
ation.

� = (H;S; Fun
; Pred) is
alled a polymorphi
 signature for logi
 programs if

� (H;S) is a type spe
i�
ation with T

H

(;) 6= ;

� Fun
 is a set of fun
tion de
larations of the form f :�

1

; : : : ; �

n

! � with �

i

; � 2 T

H

(X)

(n � 0)

� Pred is a set of predi
ate de
larations of the form p:�

1

; : : : ; �

n

with �

i

2 T

H

(X) (n � 0)

In addition, we assume that �
ontains at most one type de
laration for ea
h fun
tion and predi
ate

symbol, i.e., we ex
lude overloading similarly to [Smo89℄ and [HT90℄. However, this restri
tion does

not imply that a fun
tion or predi
ate
an only be applied to arguments of a �xed type: if the de
lared

type
ontains type parameters, then ea
h instan
e of this type (repla
ement of type parameters by

other type expressions) is a valid type for the fun
tion or predi
ate (parametri
 polymorphism), and

if some argument types have subtypes, then the fun
tion or predi
ate
an also be applied to these

subtypes (in
lusion polymorphism).

In the following we �x a set X of type parameters and a polymorphi
 signature � =

(H;S; Fun
; Pred). Let V ar be a set of variable names di�erent from symbols in � and X . A

set V with elements of the form x:� where x 2 V ar and � 2 T

H

(X) is
alled a set of typed vari-

ables if � = �

0

whenever x:�; x:�

0

2 V . If � 2 TS(H;X) is a type substitution and V a set of typed

variables, then the appli
ation of � to V yields a new set of typed variables de�ned by

�(V) := fx:�(�) j x:� 2 V g

The set Term

�

(V) of terms of type � with variables from V is the least set satisfying the

following
onditions:

� x 2 Term

�

(V) if x:�

x

2 V and �

x

�

S

�

� f(t

1

; : : : ; t

n

) 2 Term

�

(V) if f :�

1

; : : : ; �

n

! �

0

2 Fun
 (n � 0), � 2 TS(H;X), t

i

2

Term

�(�

i

)

(V) (i = 1; : : : ; n) and �(�

0

) �

S

�

4

Term(V) denotes the set of all (well-typed) terms with variables from V , i.e., Term(V) :=

S

�2T

H

(X)

Term

�

(V). Elements of Term(V) are also
alled (�; V)-terms.

The de�nition of the other synta
ti
 elements of typed logi
 programs is straightforward: A (�; V)-

atom has the form p(t

1

; : : : ; t

n

) where p:�

1

; : : : ; �

n

2 Pred, � 2 TS(H;X) and t

i

2 Term

�(�

i

)

(V)

(i = 1; : : : ; n). A (�; V)-goal is a �nite set of (�; V)-atoms. A (�; V)-
lause is a pair P G where

the head P is a (�; V)-atom and the body G is a (�; V)-goal. A �-term (atom, goal,
lause) is a

(�; V)-term (atom, goal,
lause) for some set of typed variables V . If s is a term, atom, goal et
.,

then var(s) denotes the set of all typed variables o

urring in s.

A typed logi
 program (�;P) is a polymorphi
 signature � together with a set of �-
lauses

P. Figure 1
ontains an example of a typed logi
 program where the variables have the following

types:

V = fN:nat; N1:nat; N2:nat; N3:nat; E:�; F:�; L:list(�)g

3 De
larative semanti
s

Similarly to [Poi86℄ and [Han89a℄, we use a two-level approa
h for the de
larative semanti
s of typed

logi
 programs. The �rst level interprets the type spe
i�
ation (H;S) by a H-algebra and a quasi-

ordering satisfying �

S

. Type parameters vary over all elements of this H-algebra. From su
h an

interpretation and the given polymorphi
 signature we derive a dependent order-sorted signature

whi
h will be interpreted as usual [SNGM89℄. Hen
e models for typed logi
 programs
onsists of

two parts: a model for the spe
i�ed type stru
ture and a model for the derived order-sorted logi

program. In the following we present the detailed de�nitions.

A (H;S)-type stru
ture A (interpretation of a type spe
i�
ation (H;S))
onsists of a set of sort

symbols S

A

, a mapping A

k

: (S

A

)

n

! S

A

for ea
h n-ary fun
tion symbol k in H (n � 0) and a quasi-

ordering �

A

� S

A

� S

A

satisfying all axioms from S. If � = (H;S; Fun
; Pred) is a polymorphi

signature, then a (H;S)-type stru
ture A determines the following sets of fun
tion and predi
ate

types:

Fun

A

:= ff :�(�

f

) j f :�

f

2 Fun
; �:X ! S

A

is a type parameter assignmentg

Pred

A

:= fp:�(�

p

) j p:�

p

2 Pred; �:X ! S

A

is a type parameter assignmentg

(where �(�

f

) and �(�

p

) denotes the
omponentwise appli
ation of � to �

f

and �

p

, respe
tively).

A (H;S)-type stru
ture A
an be extended to a �-interpretation by interpreting the order-sorted

signature (S

A

;�

A

; Fun

A

; P red

A

) as usual [Smo86℄ [SNGM89℄: A �-interpretation A
onsists of

a (H;S)-type stru
ture, a family of sets fA

�

j � 2 S

A

g, a mapping A

f

:D

A

f

! C

A

for ea
h fun
tion

symbol f in � and a relation A

p

� D

A

p

for ea
h predi
ate symbol p in �, where the following

onditions hold:

� C

A

: =

S

�2S

A

A

�

is
alled the
arrier of A

� A

�

� A

�

0

if � �

A

�

0

� D

A

f

� (C

A

)

n

if f has arity n

� D

A

p

� (C

A

)

n

if p has arity n

5

� If f :�

1

; : : : ; �

n

! � 2 Fun

A

, then A

�

1

� � � � � A

�

n

� D

A

f

and A

f

(A

�

1

� � � � � A

�

n

) � A

�

� If p:�

1

; : : : ; �

n

2 Pred

A

, then A

�

1

� � � � � A

�

n

� D

A

p

In order to
ompare di�erent interpretations, we de�ne homomorphisms between them. If A and B

are two �-interpretations, a �-homomorphism h from A into B is a mapping h:S

A

[C

A

! S

B

[C

B

with

� h(S

A

) � S

B

and h(C

A

) � C

B

� h(A

k

(�

1

; : : : ; �

n

)) = B

k

(h(�

1

); : : : ; h(�

n

)) for all n-ary type
onstru
tors k and all �

1

; : : : ; �

n

2 S

A

� h(A

�

) � B

h(�)

for all � 2 S

A

� h(D

A

f

) � D

B

f

and h(A

f

(a

1

; : : : ; a

n

)) = B

f

(h(a

1

); : : : ; h(a

n

)) for all (a

1

; : : : ; a

n

) 2 D

A

f

� h(D

A

p

) � D

B

p

and (h(a

1

); : : : ; h(a

n

)) 2 B

p

for all (a

1

; : : : ; a

n

) 2 A

p

Note that if A and B have identi
al type stru
tures and h is the identity on S

A

, then h is an order-

sorted homomorphism in the sense of [Smo86℄ and [SNGM89℄. It is easy to prove that the
lass of

all �-interpretations together with the �-homomorphisms is a
ategory.

A homomorphism in our typed framework
onsists of a mapping between type stru
tures and a

mapping between appropriate order-sorted stru
tures. Consequently, a variable assignment in the

typed framework maps type parameters into types and typed variables into obje
ts of appropriate

types: If A is a �-interpretation, then an assignment for (X ; V) in A is a mapping Æ:X [V !

S

A

[C

A

where Æ(�) 2 S

A

for all type parameters � 2 X and Æ(x) 2 A

^

Æ(�)

for all x:� 2 V (

^

Æ denotes

the extension of Æ to T

H

(X) whi
h uniquely exists [EM85℄).

T is
alled the free term interpretation over X and V if the following
onditions hold:

1. S

T

= T

H

(X), T

k

(�

1

; : : : ; �

n

) = k(�

1

; : : : ; �

n

) for all n-ary type
onstru
tors k and all type

expressions �

1

; : : : ; �

n

2 T

H

(X), and �

T

=�

S

, i.e., the type stru
ture of T is the initial term

model (least Herbrand model) of the type spe
i�
ation (H;S)

2. T

�

:= Term

�

(V) for all � 2 T

H

(X), i.e., the
arrier of T is the set of all well-typed terms with

variables from V

3. D

T

f

:=

S

f :�

1

;:::;�

n

!�2Fun

T

T

�

1

� � � � T

�

n

4. T

f

(t

1

; : : : ; t

n

) := f(t

1

; : : : ; t

n

) for all n-ary fun
tion symbols f and (t

1

; : : : ; t

n

) 2 D

T

f

5. D

T

p

:=

S

p:�

1

;:::;�

n

2Pred

T

T

�

1

� � � � T

�

n

6. T

p

:= ; for all n-ary predi
ate symbols p

It is easy to show that T is a �-interpretation. We denote this �-interpretation by T

�

(X ; V).

Lemma 3.1 (Free term interpretation) Let A be a �-interpretation and Æ be an assignment for

(X ; V) in A. There exists a unique �-homomorphism h from T

�

(X ; V) into A with h(�) = Æ(�) for

all � 2 X and h(x) = Æ(x) for all x:� 2 V .

6

The lemma shows that any variable assignment Æ
an be extended to a �-homomorphism in a unique

way. In the following we denote this �-homomorphism again by Æ.

We are not interested in all interpretations of a polymorphi
 signature but only in those interpre-

tations that satisfy the
lauses of a given typed logi
 program. In order to formalize that we de�ne

validity of atoms, goals and
lauses relative to a given �-interpretation A:

� Let Æ be an assignment for (X ; V) in A.

A; Æ j= L if L = p(t

1

; : : : ; t

n

) is a (�; V)-atom with (Æ(t

1

); : : : ; Æ(t

n

)) 2 A

p

A; Æ j= G if G is a (�; V)-goal with A; Æ j= L for all L 2 G

A; Æ j= L G if L G is a (�; V)-
lause where A; Æ j= G implies A; Æ j= L

� A; V j= F if F is a (�; V)-atom, -goal or -
lause with A; Æ j= F for all assignments Æ for

(X ; V) in A

We say \L is valid in A" if A is a �-interpretation with A; var(L) j= L (analogously for goals and

lauses). A �-interpretation A is
alledmodel for a typed logi
 program (�;P) if all
lauses from P

are valid in A. A (�; V)-goal G is
alled valid in (�;P) relative to V if A; V j= G for every model

A of (�;P). We shall write: (�;P; V) j= G. Validity of atoms and
lauses in (�;P) is analogously

de�ned.

This notion of validity extends validity in untyped Horn
lause logi
 to the typed
ase: In untyped

Horn
lause logi
 an atom, goal or
lause is said to be true i� it is true for all variable assignments.

In the typed
ase an atom, goal or
lause is said to be true i� it is true for all assignments of type

parameters and typed variables. The reason for the de�nition of validity relative to a set of variables

is that
arrier sets in our interpretations may be empty in
ontrast to untyped Horn logi
. This is

also the
ase in many-sorted logi
 [GM84℄. Validity relative to variables is di�erent from validity

in the sense of untyped logi
. An example for su
h a di�eren
e
an be found in [Han89a℄, p. 231.

Validity in our sense is equivalent to validity in the sense of untyped logi
 if the types of the variables

denote non-empty sets in all interpretations. But a requirement for non-empty
arrier sets is not

reasonable in the
ontext of polymorphi
 types.

Furthermore, note that due to our two-level semanti
s �-interpretations may
ontain more types

than spe
i�ed in �. For instan
e, if the typed logi
 program (�;P)
ontains only one type int,

the predi
ate de
laration p:� and the (�; fi:intg)-
lause p(i) , then (�;P; fx:�g) j= p(x) does

not hold. But the (�; fx:�g)-atom p(x) is valid in the initial model of (�;P). This is similarly

to untyped logi
 programming where 8xp(x) is true in the least Herbrand model of the program

fp(a) g but 8xp(x) is not a logi
al
onsequen
e of fp(a) g.

Let V; V

0

be sets of typed variables. A typed substitution � is a �-homomorphism � from

T

�

(X ; V) into T

�

(X ; V

0

) where �(�) 6= � and �(x) 6= x only for �nitely many � 2 X and x:� 2

V . Therefore a typed substitution is a
ombination of a substitution on type expressions and a

substitution whi
h repla
es typed variables by well-typed terms. A typed substitution keeps the set

of type parameters X but may
hange the set of typed variables be
ause the types of the variables

in
uen
e validity. We extend typed substitutions on �-atoms by:

�(p(t

1

; : : : ; t

n

)) = p(�(t

1

); : : : ; �(t

n

))

7

Furthermore we de�ne:

Sub

�

(X ; V; V

0

) := f� j � is a typed substitution from T

�

(X ; V) into T

�

(X ; V

0

)g

�

1

=

V

�

2

if �

1

2 Sub

�

(X ; V

1

; V

0

), �

2

2 Sub

�

(X ; V

2

; V

0

) with V � V

1

\ V

2

and �

1

(x) = �

2

(x)

for all x:� 2 V and �

1

(�) = �

2

(�) for all type parameters � o

urring in V

By lemma 3.1, typed substitutions are determined by their behaviour on type parameters and typed

variables. Therefore we represent a typed substitution � by the following set:

f�=�(�) j �(�) 6= �; � 2 Xg [fx=�(x) j �(x) 6= x; x:� 2 V g

For instan
e, the appli
ation of the typed substitution

� = f�=nat; E=0g

to the (�; fE:�; L:list(�)g)-atom member(E,L) yields the (�; fL:list(nat)g)-atom member(0,L).

4 The typed Horn
lause
al
ulus

This se
tion presents an inferen
e system for proving validity in typed logi
 programs. In
ontrast

to the untyped Horn
lause
al
ulus it is ne
essary to
olle
t all variables used in a derivation

sin
e validity depends on the types of variables. Let (�;P) be a typed logi
 program. The typed

Horn
lause
al
ulus
onsists of the inferen
e rules in �gure 2. We write (�;P; V) ` L if

(�;P; V) ` L ;
an be dedu
ed by these inferen
e rules. The following theorem states soundness

and
ompleteness of the typed Horn
lause
al
ulus:

Theorem 4.1 Let (�;P) be a typed logi
 program, V be a set of typed variables and L be a

(�; V)-atom. Then: (�;P; V) ` L () (�;P; V) j= L

Axioms:

(�;P; V) ` L G

if L G 2 P

is a (�; V)-
lause

Substitution rule:

(�;P; V) ` L G

(�;P; V

0

) ` �(L) �(G)

if � 2 Sub

�

(X ; V; V

0

)

Cut rule:

(�;P; V) ` L G [fL

0

g; (�;P; V) ` L

0

 G

0

(�;P; V) ` L G [G

0

Figure 2: The typed Horn
lause
al
ulus

5 Typed uni�
ation

The SLD-resolution pro
edure [AvE82℄ is an eÆ
ient method to prove validity of goals and therefore

it is used as the operational semanti
s of programming languages based on Horn
lause logi
. The

basi
 operation in a resolution step is the
omputation of a uni�er for two atoms, i.e., a substitution

whi
h makes the atoms identi
al. Unfortunately, the
lassi
al uni�
ation pro
edure [Rob65℄
annot

be applied in our typed framework be
ause the
omputed substitutions may be ill-typed.

8

Example 5.1 Consider the type stru
ture de�ned in �gure 1 and the two atoms

plus(0; N; N) plus(X; Y; Z)

w.r.t. the typed variables fN:nat; X:posint; Y:posint; Z:posintg. The substitution
omputed by the

lassi
al (untyped) uni�
ation pro
edure would bind variable X to 0. But this is not a typed substi-

tution be
ause a variable whi
h is
onstrained to be a positive integer must not be bound to a term

of type zero. In this example there is no typed substitution whi
h makes the atoms identi
al and

therefore the uni�
ation pro
edure should fail.

From a pra
ti
al point of view it is important that the uni�
ation pro
edure may fail be
ause of

in
ompatible types sin
e in this
ase the sear
h spa
e
an be redu
ed. Thus the integration of types

into the
omputation pro
ess yields a more eÆ
ient program exe
ution be
ause variables
an be

onstrained to types and to values in a typed uni�
ation pro
edure [SS85℄ [HV87℄.

In this se
tion we will present a uni�
ation pro
edure for our typed logi
. The uni�
ation pro
e-

dure takes two well-typed atoms or terms as input and
omputes a solvable set of type
onstraints

(subtype relations) i� the atoms or terms are uni�able. In order to use the improved
omputational

power of typed logi
 programs (redu
tion of the sear
h tree), it is ne
essary to de
ide the solvability

of a set of type
onstraints. Depending on the type stru
ture, su
h de
ision pro
edures may not

exist. But there exist de
ision pro
edures for restri
ted and interesting
lasses of type stru
tures

whi
h
an be used in our typed framework.

For a pra
ti
al uni�
ation algorithm it is essential that the uni�ability of two variables
an be

de
ided only by their types. We want to avoid situations where two terms have in
ompatible types

but may have instan
es whi
h are identi
al. Therefore we will require that no term has two types

whi
h are in
ompatible. Formally, we
all � a polymorphi
 signature with least types if there

exists a type �

0

with �

0

�

S

� , �

0

�

S

�

0

and t 2 Term

�

0

(V) whenever t 2 Term

�

(V) \ Term

�

0

(V).

Our typed uni�
ation algorithm is only
omplete for polymorphi
 signatures with least types. We

will dis
uss this requirement later.

We des
ribe the typed uni�
ation by a set of transformation rules whi
h generate a set of type

onstraints from a set of equations between well-typed terms. In the following we denote by E or E

0

an equation system w.r.t. V whi
h is a �nite multiset of elements of the form

t:�

:

= t

0

:�

0

or x:�

:

= t

where x; t; t

0

are (�; V)-terms, x is a variable and �; �

0

are type expressions. By C or C

0

we denote

a type
onstraint system w.r.t. V whi
h is a �nite multiset of elements of the form

� � �

0

or t:�

where �; �

0

are type expressions and t is a (�; V)-term. We omit V if it is
lear from the
ontext.

We
all a typed substitution � 2 Sub

�

(X ; V; V

0

) a solution of an equation system E and a type

onstraint system C w.r.t. V if it is a solution of ea
h element in E and C, where � is a solution of

� t:�

:

= t

0

:�

0

if �(t) = �(t

0

) and �(t) 2 Term

�(�)

(V

0

) \ Term

�(�

0

)

(V

0

),

� x:�

:

= t if �(x) = �(t) and �(x) 2 Term

�(�)

(V

0

),

9

Uni�
ation of types

C; fx:�

x

:

= t:�g [E

tu

�! C [f� � �

x

; � � �g; fx:�

:

= t:�g [E

if � is a new type parameter and �

x

6= �

De
omposition of equations

C; ff(t

1

; : : : ; t

n

):�

:

= f(t

0

1

; : : : ; t

0

n

):�

0

g [E

tu

�! C [f�

0

� �; �

0

� �

0

g; ft

i

:�

i

:

= t

0

i

:�

i

g

i=1;:::;n

[E

if f :�

1

; : : : ; �

n

! �

0

is a new variant of the type de
laration for f in �

Isolation of variables

C; fx:�

:

= t:�g [E

tu

�! C; fx:�

:

= t:�g [fx=tg(E)

if x o

urs in E but not in t

Commutation of variable equations

C; ft:�

:

= x:�

0

g [E

tu

�! C; fx:�

0

:

= t:�g [E

if t is not a variable

Deletion of equations

C; fx:�

:

= x:�g [E

tu

�! C [fx:�g;E

Figure 3: Transformation rules for typed uni�
ation

� � � �

0

if �(�) �

S

�(�

0

),

� t:� if �(t) 2 Term

�(�)

(V

0

).

We
all the pair C;E solvable if there is a solution of C;E.

Initially, E
ontains only equations of the form t:�

:

= t

0

:�

0

and C
ontains the type
onstraints

for the variables in V (e.g., if we want to unify two terms t; t

0

2 Term(V), then C = V and

E = ft:�

:

= t

0

:�g where � and � are new type parameters). First we transform the pair C;E by

the rules in �gure 3. In the �rst rule for typed uni�
ation a new type parameter is generated whi
h

represents the
ommon subtype of �

x

and � . In order to relate solutions of the original type
onstraint

and equation system with solutions of the transformed one, we need the notion of the \extension"

of a typed substitution. Let �; �

0

2 Sub

�

(X ; V; V

0

) be typed substitutions. If the only di�eren
e

between � and �

0

is the behaviour on some type parameters � where �(�) = �, then �

0

is
alled

extension of �.

Example 5.2 Consider the type stru
ture de�ned in �gure 1 and the type
onstraint and equation

system

fN:natg ; f0:zero

:

= N:natg (1)

whi
h will be transformed into the system

fN:nat; � � zero; � � natg ; fN:�

:

= 0:�g (2)

by the rules in �gure 3. The typed substitution � = fN=0g is a solution of (1) and not of (2). But �

an be extended to the typed substitution �

0

= f�=zero; N=0g whi
h is a solution of (2).

10

Deletion of type
onstraints for variables

C [fx:�

0

g; fx:�

x

:

= t:�g [E

s

�! C [f� � �

x

; � � �

0

g; fx:�

:

= t:�g [E

if � is a new type parameter

Deletion of type
onstraints in equations

C; fx:�

x

:

= t:�g [E

s

�! C [ft:�

x

g; fx:�

x

:

= tg [E

if x does not o

ur in C

De
omposition of term type
onstraints

C [ff(t

1

; : : : ; t

n

):�g;E

s

�! C [ft

1

:�

1

; : : : ; t

n

:�

n

; �

0

� �g;E

if f :�

1

; : : : ; �

n

! �

0

is a new variant of the type de
laration for f in �

Deletion of multiple variable type
onstraints

C [fx:�; x:�

0

g;E

s

�! C [fx:�; � � �; � � �

0

g;E

if � is a new type parameter

Figure 4: Transformation rules for simplifying type
onstraints on terms

The following theorem states some important properties of the transformation rules for typed

uni�
ation.

Theorem 5.3 (Typed Uni�
ation) Let � be a polymorphi
 signature with least types and

tu

�!

�

be the re
exive and transitive
losure of the relation de�ned in �gure 3.

1. If C;E

tu

�!

�

C

0

;E

0

, then ea
h solution of C

0

;E

0

is a solution of C;E and ea
h solution of C;E

an be extended to a solution of C

0

;E

0

.

2. Ea
h derivation w.r.t.

tu

�! terminates.

3. Let C;E be solvable and C;E

tu

�!

�

C

0

;E

0

where C

0

;E

0

is irredu
ible, i.e., no rule is appli
able

to C

0

;E

0

. Then E

0

has the form fx

1

:�

1

:

= t

1

:�

1

; : : : ; x

k

:�

k

:

= t

k

:�

k

g where x

1

; : : : ; x

k

are pairwise

distin
t variables whi
h do not o

ur in t

1

; : : : ; t

k

. We
all a pair C

0

;E

0

with this property in

normal form.

The normal form of a type
onstraint and equation system C;E may
ontain
omplex type

onstraints on stru
tured terms whi
h
an be easily simpli�ed. Therefore we apply the transformation

rules in �gure 4 to systems in normal form in order to obtain a type
onstraint and equation system

whi
h has a very simple form. The next theorem states important properties of these simpli�
ation

rules:

Theorem 5.4 (Simpli�
ation) Let � be a polymorphi
 signature with least types,

s

�!

�

be the

re
exive and transitive
losure of the relation de�ned in �gure 4 and C;E be in normal form.

1. If C;E

s

�!

�

C

0

;E

0

, then ea
h solution of C

0

;E

0

is a solution of C;E and ea
h solution of C;E

an be extended to a solution of C

0

;E

0

.

2. Ea
h derivation w.r.t.

s

�! terminates.

11

3. Let C;E be solvable and C;E

s

�!

�

C

0

;E

0

where C

0

;E

0

is irredu
ible, i.e., no rule from �gure 4

is appli
able to C

0

;E

0

. Then E

0

has the form fx

1

:�

1

:

= t

1

; : : : ; x

k

:�

k

:

= t

k

g where x

1

; : : : ; x

k

are

pairwise distin
t variables whi
h do not o

ur in t

1

; : : : ; t

k

, and C has the form

f�

1

� �

0

1

; : : : ; �

l

� �

0

l

g [fy

1

:�

y

1

; : : : ; y

m

:�

y

m

g

where y

1

; : : : ; y

m

are pairwise distin
t variables di�erent from x

1

; : : : ; x

k

. We
all a pair C

0

;E

0

with this property in solved form.

Example 5.5 Consider the following polymorphi
 signature:

type s

0

, s

1

, s

2

subtype s

0

� s

1

s

0

� s

2

fun
 a0: ! s

0

fun
 f : s

1

; s

2

! s

0

and the type
onstraint and equation system

fX:�; Y:�g ; ff(X; Y):s

0

:

= f(Y; a0):s

0

g

We obtain the following system in normal form after applying the rules in �gure 3 (we omit multiple

o

urren
es of the same
onstraint):

fX:�; Y:�; s

0

� s

0

g ; fX:s

1

:

= a0:s

1

; Y:s

2

:

= a0:s

2

g

The appli
ation of the simpli�
ation rules in �gure 4 yields the following system in solved form:

fs

0

� s

0

;
 � �;
 � s

1

; Æ � �; Æ � s

2

; s

0

�
; s

0

� Æg ; fX:

:

= a0; Y:Æ

:

= a0g

The type
onstraints in this system are solvable and f
=s

0

; �=s

0

; Æ=s

0

; �=s

0

; X=a0; Y=a0g is a solution

of this system and f�=s

0

; �=s

0

; X=a0; Y=a0g is a solution of the original system.

Now we are in the following position. In order to unify two typed terms, we transform the type

onstraints of the variables together with an equation between the two terms into a redu
ed type

onstraint and equation system by the rules for typed uni�
ation in �gure 3 and simpli�
ation in

�gure 4. If the redu
ed system is not in solved form, then the two terms are not uni�able by

theorems 5.3 and 5.4. Otherwise the system has the solved form

f�

1

� �

0

1

; : : : ; �

l

� �

0

l

g [fy

1

:�

y

1

; : : : ; y

m

:�

y

m

g ; fx

1

:�

1

:

= t

1

; : : : ; x

k

:�

k

:

= t

k

g

whi
h is solvable i� the subtype
onstraints for the relation � are solvable. Hen
e to de
ide the

uni�ability of two typed terms, we must de
ide the solvability of a type
onstraint system of the

form

CS = f� � �

0

j �; �

0

2 T

H

(X)g

Generally, we allow arbitrary Horn
lauses for the de�nition of � and therefore this problem is

unde
idable. Fortunately, there are restri
ted but interesting type stru
tures for whi
h positive

results are known:

12

1. Smolka [Smo89℄ allows subtype relations between arbitrary type
onstru
tors (e.g., between ba-

si
 types and polymorphi
 types), but he requires that all type
onstru
tors must be monotoni

in their arguments and he has some further requirements on the type stru
ture (see [Smo89℄

for details). Under these
onditions the solvability of CS is de
idable if CS does not
ontain

type parameters. If CS
ontains type parameters, the solvability is an open problem in his

framework.

2. Hill and Topor [HT90℄ also require the monotoni
ity of all type
onstru
tors and they allow

only subtype relations between type
onstru
tors of the same arity. The solvability of CS is

de
idable under these restri
tions.

3. Fuh and Mishra [FM88℄ have worked on the problem of polymorphi
 type inferen
e for a

fun
tional language whi
h in
ludes subtypes. In their approa
h they have also treated the

problem of �nding a solution of a set of subtype
onstraints. They have developed a solving

algorithm for the
ase where there are only subtype relations between basi
 types and all

type
onstru
tors (like \!" for fun
tion spa
e and pair for produ
ts) are monotoni
 or anti-

monotoni
 in their arguments. Their algorithm is divided into three parts:

(a) mat
h is the �rst part whi
h transforms the subtype
onstraints into subtype
onstraints

where the left-hand side and the right-hand side have the same shape (e.g., � � list(nat)

is transformed into list(�) � list(nat) by substituting � by list(�)).

(b) simplify redu
es the subtype
onstraints into a set of subtype
onstraints between basi

types and type parameters by
onsidering the (anti-) monotoni
ity property of the type

onstru
tors (e.g., list(�) � list(nat) is redu
ed to � � nat).

(
)
onsistent
he
ks whether there exists a substitution for the type parameters su
h that all

basi
 subtype
onstraints are satis�ed.

Hen
e we
an use their algorithm to de
ide the uni�ability of terms in our typed framework if

there are only subtype relations between basi
 types and all type
onstru
tors are monotoni

or anti-monotoni
 in their arguments, i.e., if all subtype de
larations have the form

� � �

0

where � and �

0

are basi
 types

or

�

1

� �

1

; : : : ; �

n

� �

n

) h(�

1

; : : : ; �

n

) � h(�

1

; : : : ; �

n

)

or

�

1

� �

1

; : : : ; �

n

� �

n

) h(�

1

; : : : ; �

n

) � h(�

1

; : : : ; �

n

)

(or mixtures of the last two
ases). Thus we have found a uni�
ation algorithm for the important

ase of logi
 programs with higher-order programming te
hniques and a parametri
 order-sorted

type system (see also se
tion 7).

Sin
e we are mainly interested in type systems with these restri
tions, we will dis
uss the

restri
tion to \polymorphi
 signatures with least types" w.r.t. su
h type stru
tures. Sin
e all

subtype relations between types are
onsequen
es of in
lusions between basi
 types, we assume

that the set of basi
 types with its subtype relation
an be extended to a latti
e by augmenting

13

bottom and top elements ? and > whi
h are
onsidered as type errors (sin
e there are no

terms of this type). Unfortunately, this is not suÆ
ient for least types. For example,
onsider

a polymorphi

onstant like

fun
 [℄: ! list(�)

Then the term [℄ has types list(zero) and list(posint) but there is no valid
ommon subtype

of these two types. Hen
e the signature of �gure 1 does not have least types. Smolka [Smo89℄

solves this problem by introdu
ing a bottom type ? whi
h is a subtype of any type, i.e., list(?)

is the least type of [℄. But this
auses the problem that there are subtype relations between

basi
 types and type
onstru
tors whi
h we want to avoid in order to apply Fuh and Mishra's

algorithm. Another solution
an be found in Reynolds' polymorphi
 typed lambda
al
ulus

[Rey74℄ where a type must be spe
i�ed if a polymorphi
 fun
tion should be applied, i.e., the

�rst argument of a polymorphi
 fun
tion is always a type. Although we
an not deal with types

at the obje
t level in our framework, we
an simulate this idea by
hanging the de
laration of

the empty list into

fun
 [℄: � ! list(�)

Now the argument of [℄ indi
ates the type instantiation of the polymorphi

onstant, i.e., the

term [℄(X) has type list(posint) if variable X has type posint. Therefore the least type of the

term [℄(: : :)
an be
omputed from the least type of the argument.

Thus in order to satisfy the
ondition for least types, we transform typed logi
 programs in the

following way. For ea
h fun
tion originally de
lared by f :�

1

; : : : ; �

n

! � where f�

1

; : : : ; �

k

g

(k > 0) are the type parameters o

urring in � but not in �

1

; : : : ; �

n

, we do the following:

Change the de
laration of f into

f :�

1

; : : : ; �

k

; �

1

; : : : ; �

n

! �

and add k new variables of appropriate types (the
urrent instan
es of the �

i

) as new arguments

in ea
h o

urren
e of f in the program
lauses. Sin
e this transformation
an automati
ally

be done, we omit it in the examples of this paper.

We will use the typed uni�
ation pro
edure presented in this se
tion to unify an atom in a goal with

a head of a
lause. In order to apply the typed uni�
ation pro
edure for this
ase we introdu
e a

new basi
 type bool and de
lare ea
h predi
ate symbol of type

p: �

1

; : : : ; �

n

as a fun
tion symbol of type

p: �

1

; : : : ; �

n

! bool

Then we
an unify two (�; V)-atoms A

1

and A

2

as follows: Transform the pair

V ; fA

1

:bool

:

= A

2

:boolg

by applying the rules for typed uni�
ation and, if a normal form is obtained, the rules for simpli�-

ation. If the result of this transformation is a pair C;E in solved form, we write

V ; fA

1

:bool

:

= A

2

:boolg

u

�! V

0

;C

0

;E

14

where V

0

= fy

1

:�

y

1

; : : : ; y

m

:�

y

m

g, C

0

= f�

1

� �

0

1

; : : : ; �

l

� �

0

l

g and V

0

[C

0

= C. The set of equations

E
an be interpreted as an expli
it representation of a typed uni�er if the
orresponding set of type

onstraints is solvable. Therefore we de�ne the solutions of the type
onstraint system C

0

by

Sol(C

0

) := f� 2 TS(H;X) j � is a solution of all
onstraints in C

0

g

If � 2 Sol(C

0

) and E = fx

1

:�

1

:

= t

1

; : : : ; x

k

:�

k

:

= t

k

g, then

�

�

E

:= f�=�(�) j �(�) 6= �; � 2 Xg [fx

1

=t

1

; : : : ; x

k

=t

k

g 2 Sub

�

(X ; V; �(V

0

))

is
alled the typed substition
orresponding to � and E. The following lemma shows that �

�

E

is indeed a well-de�ned typed substition:

Lemma 5.6 Let V ; fA

1

:bool

:

= A

2

:boolg

u

�! V

0

;C

0

;E and � 2 Sol(C

0

) be a solution of C

0

. Then

�

�

E

is a typed substition from Sub

�

(X ; V; �(V

0

)) with �

�

E

(A

1

) = �

�

E

(A

2

).

The next lemma shows that the typed uni�
ation algorithm
omputes a
omplete set of uni�ers:

Lemma 5.7 Let � be a polymorphi
 signature with least types, A and A

0

be (�; V)-atoms and

� 2 Sub

�

(X ; V; V

0

) be a typed substitution with �(A) = �(A

0

). Then there is a derivation

V ; fA:bool

:

= A

0

:boolg

u

�! V

0

;C

0

;E

and � 2 Sol(C

0

) and � 2 Sub

�

(X ; �(V

0

); V

0

) with � Æ �

�

E

=

V

�.

6 Resolution

The resolution method in untyped Horn logi
 (see [Llo87℄) is an eÆ
ient pro
edure to prove validity

of goals w.r.t. Horn
lause programs. It is the basi
 operational prin
iple of logi
 programming

languages like Prolog. Therefore we want to adopt this method for typed logi
 programs. Sin
e

types in
uen
e validity or, from an operational point of view, types restri
t the set of appli
able

lauses in a resolution step, it is ne
essary to modify the resolution method from untyped Horn logi
.

In our framework we have to repla
e the untyped uni�
ation pro
edure in a resolution step by a

typed one. In the last se
tion we have presented a uni�
ation pro
edure for typed terms: it takes a

set of
onstraints (initially the type de
larations for variables) and a set of equations and produ
es

a new set of type
onstraints and a new set of equations in solved form (if a uni�er exists).

We
all a �-
lause a variant of another �-
lause if it is obtained by repla
ing type parameters

and typed variables by other type parameters and typed variables, respe
tively, su
h that di�erent

variables are repla
ed by new di�erent variables. Let (�;P) be a typed logi
 program, V be a set

of typed variables, and G [fLg be a (�; V)-goal. Then a resolution step is de�ned by the ternary

relation

V ;G [fLg

r

�!

�;P

�

�

E

�(V

0

); �(G [G

0

)

where L

0

 G

0

is a (�; V)-
lause whi
h is a variant of a
lause from P and has no variables in
ommon

with G [fLg, and there exists a uni�
ation V ; fL:bool

:

= L

0

:boolg

u

�! V

0

;C

0

;E with � 2 Sol(C

0

).

Note that �

�

E

is a typed substitution from Sub

�

(X ; V; �(V

0

)) by lemma 5.6.

15

A resolution is a sequen
e of the form

V

0

;G

0

r

�!

�;P

�

1

V

1

;G

1

r

�!

�;P

�

2

� � �

r

�!

�;P

�

n

V

n

;G

n

where V

i

is a set of typed variables and G

i

is a (�; V

i

)-goal (for i = 0; : : : ; n). This resolution will be

also denoted by

V

0

;G

0

r

�!

�;P

n

� V

n

;G

n

where � := �

n

Æ � � � Æ �

1

. The resolution is
alled su

essful if G

n

= ;. In this
ase n is
alled the

length of the resolution, and � is
alled a
omputed answer. We repla
e

r

�!

�;P

n

by

r

�!

�;P

�

if the

pre
ise value of n is not needed.

Theorem 6.1 (Soundness of resolution) Let (�;P) be a typed logi
 program, V be a set of

typed variables and G be a (�; V)-goal. If there is a su

essful resolution V ;G

r

�!

�;P

�

� V

0

; ;, then

(�;P; V

0

) j= �(G).

Similarly to the untyped
ase, resolution is only
omplete in the sense that every
orre
t answer

is an instan
e of a
omputed answer:

Theorem 6.2 (Completeness of resolution) Let � be a polymorphi
 signature with least types,

(�;P) be a typed logi
 program, V be a �nite set of typed variables and G be a (�; V)-goal. If

� 2 Sub

�

(X ; V; V

0

) is a typed substitution with (�;P; V

0

) j= �(G), then there exist a set of typed

variables V

0

� V and a resolution V

0

;G

r

�!

�;P

�

�

0

V

1

; ;. Furthermore, there is a typed substitution

� 2 Sub

�

(X ; V

1

; V

0

) with � Æ �

0

=

V

�.

These two theorems justify the implementation of resolution with our typed uni�
ation pro
edure

as a proof method for logi
 programs with parametri
 and order-sorted types. For the
omputation of

a typed uni�er in ea
h resolution step our method presented in se
tion 5
an be used. This uni�
ation

pro
edure transforms the uni�
ation problem into a set of type
onstraints. In the des
ription of

the resolution method we have assumed that a solution of these type
onstraints is immediately

omputed in ea
h resolution step. But it is also possible to
olle
t all generated type
onstraints in

the resolution pro
ess and solve this
onstraints after deriving the goal to the empty goal. Su
h a

method is similar to \
onstraint logi
 programming" [JL87℄ and may save unne
essary ba
ktra
king

steps over di�erent solutions of the type
onstraints. However, it must be
he
ked whether the type

onstraints are solvable in ea
h resolution step. Otherwise we lose the advantage of redu
ing the

sear
h tree by integrating types into the resolution pro
ess.

7 Appli
ations: Higher-order programming

Higher-order programming is an important programming te
hnique used in fun
tional programming

languages be
ause it leads to smaller and more readable programs. Many resear
hers have also tried

to integrate higher-order features into logi
 programming languages. A semanti
ally
lean integra-

tion of su
h features into logi
 programming needs a uni�
ation pro
edure on lambda expressions.

A logi
 language with su
h a feature has been proposed by Miller and Nadathur [MN86℄. Sin
e

higher-order uni�
ation is a
omplex task and unde
idable in general, it has been argued that it is

16

type zero, posint, nat, list/1, pred1/1

subtype zero � nat

posint � nat

� � �) list(�) � list(�)

� � �) pred1(�) � pred1(�)

fun
 0: ! zero

fun
 s: nat ! posint

fun
 [℄ : ! list(�)

fun
 [..|..℄: �; list(�) ! list(�)

fun
 �even : ! pred1(nat)

pred has property: list(�); pred1(�)

pred apply1: pred1(�); �

pred even : nat

even(0)

even(s(s(N))) even(N)

has property([℄,P)

has property([E|L℄,P) apply1(P,E), has property(L,P)

apply1(�even,N) even(N)

Figure 5: A typed logi
 program with higher-order predi
ates

suÆ
ient to simulate higher-order programming te
hniques by a �rst-order spe
i�
ation of an apply

predi
ate [War82℄ sin
e there is a systemati
 and eÆ
ient method to translate lambda expressions

into Prolog [CvER89℄. Although this method has been used to implement a polymorphi
ally typed

fun
tional-logi
 language with higher-order obje
ts [BG86℄, it has been shown in [Han89b℄ that this

approa
h is in
ompatible with polymorphi
 type systems for logi
 programming like [MO84℄ and

[Smo89℄. Sin
e some restri
tions of these type systems are dropped in our framework and we do not

require the monotoni
ity of type
onstru
tors, we
an use Warren's method to integrate higher-order

programming te
hniques into a logi
 language with a parametri
 order-sorted type system.

We demonstrate Warren's idea by a simple example. For this purpose we want to de�ne a binary

predi
ate has property whi
h is satis�ed if all elements of a list (�st argument) have a
ertain

property (se
ond argument). The property is des
ribed as a unary predi
ate (
f. [SS86℄, p. 281).

In order to treat unary predi
ates as obje
ts, we de�ne for ea
h unary predi
ate p of type \�" a

orresponding
onstant �p of type \pred1(�)". pred1 is a type
onstru
tor whi
h denotes the type

of unary predi
ates and is anti-monotoni
 in its argument be
ause all unary predi
ates de�ned on a

type �
an be used if a unary predi
ate de�ned on a subtype is required. The relation between ea
h

unary predi
ate p and its fun
tional abstra
tion �p is spe
i�ed by Horn
lauses for the predi
ate

apply1. Figure 5
ontains the
omplete typed logi
 program for this example. Note that the
lause

for apply1 is not well-typed in the sense of [MO84℄ and [Smo89℄ be
ause in the head of this
lause

apply1 is used with an instan
e of its de
lared type whi
h is forbidden in these type systems.

In order to show an appli
ation of our typed uni�
ation pro
edure we de�ne an additional pred-

17

i
ate whi
h is satis�ed if a �xed list of positive integers satis�es a
ertain property:

pred listprop: pred1(posint)

listprop(P) has property([s(s(0)), s(s(s(s(0)))), s(s(0))℄, P)

If we want to prove the goal

listprop(�even)

this atom has to be uni�ed with the head of the
lause, i.e., the typed uni�
ation pro
edure is started

with the following type
onstraint and equation system:

fP:pred1(posint)g ; flistprop(�even):bool

:

= listprop(P):boolg

The appli
ation of the rules for typed uni�
ation and simpli�
ation in �gures 3 and 4 yields the

following system in solved form:

fbool � bool; pred1(nat) � �; � � pred1(posint)g ; fP:�

:

= �eveng

The type substitution f�=pred1(posint)g is a solution of the last type
onstraint system sin
e

pred1(nat) � pred1(posint) is a logi
al
onsequen
e of the spe
i�
ation for � in �gure 5. This

solution
an be
omputed by the algorithm in [FM88℄.

This example shows that it is possible to treat higher-order obje
ts in our typed framework.

Generally, it is possible to translate arbitrary lambda expressions into
lauses for an apply predi
ate

[CvER89℄. More details about this method of higher-order logi
 programming in a polymorphi
ally

typed framework
an be found in [Han89b℄.

8 Con
lusions and related work

We have presented a de
larative type system for logi
 programs whi
h
ombines parametri
 and

in
lusion polymorphism. In order to drop limitations of other type systems with a similar goal,

we have assumed that the in
lusion order is spe
i�ed by Horn
lauses for the subtype relation �.

This allows the de
laration of type stru
tures where the type
onstru
tors are not required to be

monotoni
. Therefore logi
 programs with a parametri
 order-sorted type stru
ture in
luding higher-

order predi
ates
an be spe
i�ed in our framework.

We have de�ned the semanti
s of our type system in a model-theoreti
 way. Parametri
 types

are interpreted as a universal quanti�
ation over all types, and order-sorted type stru
tures are

interpreted as order-sorted algebras [SNGM89℄. On the operational side we have shown that the

well-known resolution prin
iple
an be used to prove goals if the untyped uni�
ation is repla
ed by a

uni�
ation pro
edure whi
h
onsiders the types of the terms. We have presented su
h a uni�
ation

pro
edure for our typed framework. It takes a pair of terms together with the variable types as input

and produ
es a set of subtype
onstraints as the result if the terms are uni�able. The satis�ability of

su
h subtype
onstraints is de
idable for parti
ular
lasses of type stru
tures, e.g., where only basi

types are related by subtype in
lusion and all type
onstru
tors are monotoni
 or anti-monotoni
 in

their arguments. This in
ludes the
lass of typed logi
 programs with higher-order obje
ts.

18

Smolka [Smo89℄ and Hill and Topor [HT90℄ have also proposed typed logi
 languages with para-

metri
 and order-sorted types. In their framework the heads of
lauses de�ning polymorphi
 predi-

ates must be of the most general type and all type
onstru
tors must be monotoni
 in their argu-

ments. This ex
ludes an important programming te
hnique as shown in se
tion 7. Our framework

drops the �rst restri
tion and assumes that the subtype relation is de
lared by Horn
lauses. There-

fore we only require that the subtype relation is a quasi-ordering (whi
h
an be spe
i�ed by Horn

lauses) and not a partial order as required in [Smo89℄ and [HT90℄. This
auses no problems in the

semanti
s sin
e quasi-orderings are suÆ
ient for order-sorted logi
 [Smo86℄.

Another approa
h to polymorphi
 type systems with subsorts for logi
 programming has been

presented in [Han90℄ where subsort relationships are des
ribed by equations. This has the advantage

that well-known equation solving te
hniques
an be used for the typed uni�
ation pro
edure but the

disadvantage that the
ombination of polymorphism and subtyping is more restri
ted. Moreover,

the semanti
s of our presented framework is a dire
t extension of order-sorted logi
 (\subsorts are

subsets") in
ontrast to [Han90℄.

There are a lot of dire
tions for further work. For instan
e, we have
ited the de
idability

results of Fuh and Mishra [FM88℄ whi
h are restri
ted to type stru
tures where all type
onstru
tors

are monotoni
 or anti-monotoni
 in their arguments and no other subtype relations between type

onstru
tors exists. But it seems possible to extend this algorithm to the
ase where subtype relations

between type
onstru
tors of the same arity are allowed, sin
e Hill and Topor have developed positive

results for similar type stru
tures (with monotoni
 type
onstru
tors). Another resear
h dire
tion is

the improvement of the type
he
ks in the uni�
ation pro
edure. For a lot of
ases it seems that the

type
he
ks
an be simpli�ed (e.g., for monomorphi
 goals [Smo89℄) or
ompletely omitted (for type

stru
tures without subtypes and with restri
tions on the use of polymorphi
 predi
ates [Han89b℄).

The development of su
h optimizations is important for an eÆ
ient implementation of our typed

logi
 language.

Referen
es

[AvE82℄ K.R. Apt and M.H. van Emden. Contributions to the Theory of Logi
 Programming.

Journal of the ACM, Vol. 29, No. 3, pp. 841{862, 1982.

[BG86℄ P.G. Bos
o and E. Giovannetti. IDEAL: An Ideal Dedu
tive Appli
ative Language. In

Pro
. IEEE Internat. Symposium on Logi
 Programming, pp. 89{94, Salt Lake City, 1986.

[BG89℄ R. Barbuti and R. Gia
obazzi. A Bottom-Up Polymorphi
 Type Inferen
e in Logi

Programming. Te
hni
al Report 27/89, Dip. di Informati
a, Universit�a di Pisa, 1989.

[CvER89℄ M.H.M. Cheng, M.H. van Emden, and B.E. Ri
hards. On Warren's Method for Fun
-

tional Programming in Logi
. Report LP-12 DCS-122-IR, Univ. of Vi
toria, 1989.

[CW85℄ L. Cardelli and P. Wegner. On Understanding Types, Data Abstra
tion, and Polymor-

phism. a
m
omputing surveys, Vol. 17, No. 4, pp. 471{523, 1985.

[EM85℄ H. Ehrig and B. Mahr. Fundamentals of Algebrai
 Spe
i�
ation 1: Equations and Initial

Semanti
s, volume 6 of EATCS Monographs on Theoreti
al Computer S
ien
e. Springer,

1985.

[FM88℄ Y.-C. Fuh and P. Mishra. Type Inferen
e with Subtypes. In Pro
. ESOP 88, Nan
y, pp.

94{114. Springer LNCS 300, 1988.

[GM84℄ J.A. Goguen and J. Meseguer. Completeness of Many-Sorted Equational Logi
. Report

No. CSLI-84-15, Stanford University, 1984.

19

[Han89a℄ M. Hanus. Horn Clause Programs with Polymorphi
 Types: Semanti
s and Resolution.

In Pro
. of the TAPSOFT '89, pp. 225{240. Springer LNCS 352, 1989. Extended version

to appear in Theoreti
al Computer S
ien
e.

[Han89b℄ M. Hanus. Polymorphi
 Higher-Order Programming in Prolog. In Pro
. Sixth Interna-

tional Conferen
e on Logi
 Programming (Lisboa), pp. 382{397. MIT Press, 1989.

[Han90℄ M. Hanus. Logi
 Programs with Equational Type Spe
i�
ations. In Pro
. of the 2nd

International Conferen
e on Algebrai
 and Logi
 Programming, pp. 70{85. Springer LNCS

463, 1990.

[Han91℄ M. Hanus. Parametri
 Order-Sorted Types in Logi
 Programming. Te
hni
al Report,

FB Informatik, Univ. Dortmund, 1991.

[HT90℄ P.M. Hill and R.W. Topor. A Semanti
s for Typed Logi
 Programs. Report TR-90-11,

Computer S
ien
e Department, University of Bristol, 1990.

[HV87℄ M. Huber and I. Varsek. Extended Prolog with Order-Sorted Resolution. In Pro
. 4th

IEEE Internat. Symposium on Logi
 Programming, pp. 34{43, San Fran
is
o, 1987.

[JL87℄ J. Ja�ar and J.-L. Lassez. Constraint Logi
 Programming. In Pro
. of the 14th ACM

Symposium on Prin
iples of Programming Languages, pp. 111{119, Muni
h, 1987.

[Llo87℄ J.W. Lloyd. Foundations of Logi
 Programming. Springer, se
ond, extended edition,

1987.

[Mis84℄ P. Mishra. Towards a theory of types in Prolog. In Pro
. IEEE Internat. Symposium on

Logi
 Programming, pp. 289{298, Atlanti
 City, 1984.

[MN86℄ D.A. Miller and G. Nadathur. Higher-Order Logi
 Programming. In Pro
. Third Inter-

national Conferen
e on Logi
 Programming (London), pp. 448{462. Springer LNCS 225,

1986.

[MO84℄ A. My
roft and R.A. O'Keefe. A Polymorphi
 Type System for Prolog. Arti�
ial Intel-

ligen
e, Vol. 23, pp. 295{307, 1984.

[Nai87℄ L. Naish. Spe
i�
ation = Program+ Types. In Pro
. Foundations of Software Te
hnology

and Theoreti
al Computer S
ien
e, pp. 326{339. Springer LNCS 287, 1987.

[Poi86℄ A. Poign�e. On Spe
i�
ations, Theories, and Models with Higher Types. Information and

Control, Vol. 68, No. 1-3, 1986.

[Rey74℄ J.C. Reynolds. Towards a Theory of Type Stru
ture. In Pro
. Colloque sur la Program-

mation, pp. 408{425. Springer LNCS 19, 1974.

[Rob65℄ J.A. Robinson. A Ma
hine-Oriented Logi
 Based on the Resolution Prin
iple. Journal

of the ACM, Vol. 12, No. 1, pp. 23{41, 1965.

[Smo86℄ G. Smolka. Order-Sorted Horn Logi
: Semanti
s and Dedu
tion. SEKI Report SR-86-17,

FB Informatik, Univ. Kaiserslautern, 1986.

[Smo89℄ G. Smolka. Logi
 Programming over Polymorphi
ally Order-Sorted Types. Dissertation,

FB Informatik, Univ. Kaiserslautern, 1989.

[SNGM89℄ G. Smolka, W. Nutt, J.A. Goguen, and J. Meseguer. Order-Sorted Equational Computa-

tion. In Hassan A��t-Ka
i and Mauri
e Nivat, editors, Resolution of Equations in Algebrai

Stru
tures, Volume 2, Rewriting Te
hniques,
hapter 10, pp. 297{367. A
ademi
 Press,

New York, 1989.

[SS85℄ M. S
hmidt-S
hauss. A Many Sorted Cal
ulus with Polymorphi
 Fun
tions Based on

Resolution and Paramodulation. In Pro
. 9th IJCAI. W. Kaufmann, 1985.

[SS86℄ L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[War82℄ D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Ma
hine

Intelligen
e 10, pp. 441{454, 1982.

[XW88℄ J. Xu and D.S. Warren. A Type Inferen
e System For Prolog. In Pro
. 5th Conferen
e

on Logi
 Programming & 5th Symposium on Logi
 Programming (Seattle), pp. 604{619,

1988.

[Zob87℄ J. Zobel. Derivation of Polymorphi
 Types for Prolog Programs. In Pro
. Fourth Inter-

national Conferen
e on Logi
 Programming (Melbourne), pp. 817{838. MIT Press, 1987.

20

