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This paper proposes a type system for logic programming where types are structured in two ways.
Firstly, functions and predicates may be declared with types containing type parameters which are
universally quantified over all types. In this case each instance of the type declaration can be used
in the logic program. Secondly, types are related by subset inclusions. In this case a function or
predicate can be applied to all subtypes of its declared type. While previous proposals for such type
systems have strong restrictions on the subtype relation, we assume that the subtype order is specified
by Horn clauses for the subtype relation <. This allows the declaration of a lot of interesting type
structures, e.g., type constructors which are monotonic as well as anti-monotonic in their arguments.
For instance, parametric order-sorted type structures for logic programs with higher-order predicates
can be specified in our framework.

This paper presents the declarative and operational semantics of the typed logic language. The
operational semantics requires a unification procedure on well-typed terms. This unification proce-
dure is described by a set of transformation rules which generate a set of type constraints from a
given unification problem. The solvability of these type constraints is decidable for particular type
structures.

1 Introduction

Types are important for programming languages because typed programs are easier to read and
a lot of programming errors can be detected at compile time. Moreover, compilers can generate
more efficient code if type information is available. Therefore various attempts have been made to
integrate types into the classically untyped world of logic programming. These proposals can be
divided into two groups. In the inference-based approaches [Mis84] [Zob87] [XW88] [BG89] (among
others) types are not part of the program but are considered as logical consequences of the program.
These approaches consider the type of a predicate as a superset of the success set of the predicate
which is computed by abstract interpretation techniques. If the type of a predicate is empty, then
this predicate cannot succeed and hence it is interpreted as a programming error. But in many
cases the inference of types from a completely untyped logic program does not yield sufficient results
because an untyped logic program does not contain the type information expected by the programmer
[Nai87].

The declaration-based approaches try to overcome this problem by permitting the addition of
type declarations to the logic program. A type checker compares the application of a function or

predicate in a program clause with the programmer’s declaration and reports an error if it is used in



a wrong context. In these approaches the type declarations are a part of the program’s semantics and
may influence the execution of the program. For instance, the polymorphic type system of Mycroft
and O'Keefe [MO84] is motivated from ML and the type information is only used for compile-time
checks, i.e., the types are not visible at run time (but to ensure this property more restrictions on the
programs are necessary than described in their paper). An extension of their type system [Han89a]
allows the application of higher-order programming techniques [Han89b] but needs type information
at run time to ensure that “well-typed programs do not go wrong”. This is also true for order-sorted
type systems where types may be related by an inclusion relation [SNGMS89]. But it has been shown
that type information at run time is not superfluous but may avoid unnecessary computations and
reduce the search space [SS85] [HV87].

Smolka [Smo89] and Hill and Topor [HT90] have proposed declarative type systems for logic
programming which integrate parametric and order-sorted polymorphism. Both approaches have
several restrictions on the combination of parametric and order-sorted types. For instance, they
require that type constructors like list and pair must be monotonic in their arguments, i.e., list(r)
is a subtype of list(7z) if 7y is a subtype of 7. But this restriction is a severe limitation if we want to
use higher-order programming techniques: Warren [War82] has shown how to simulate higher-order
programming in first-order logic, and the adaptation of this technique to a polymorphically typed
logic language is shown in [Han89b|. In this case there is a type constructor predl denoting the type
of unary predicates. But predl is not monotonic: predl(int) is a subtype of predl(nat) because all
unary predicates defined on integers can be used if a unary predicate defined on naturals is required
provided that nat is a subtype of int (cf. [CW85]).

In order to solve this problem, we present a generalized declaration-based type system. We allow
the specification of a subtype order by arbitrary Horn clauses for the subtype relation <. Hence
the user can declare type constructors which are monotonic or anti-monotonic in their arguments.
Figure 1 shows an example of a typed logic program in our framework. It contains the basic types
zero, posint and nat, where zero and posint are subtypes of nat, and the type constructors list
and predl of arity 1 which are monotonic and anti-monotonic in their arguments, respectively. The
subtype order specified by this program is the least quasi-ordering on the type expressions which
satisfies all subtype axioms. Another example showing the application of higher-order programming

techniques will be presented in section 7.

Similarly to order-sorted logic, the specified type structure influences the operational semantics
of the program, i.e., the unification procedure must consider the types of the terms to be unified.

For instance, if we have to prove the literal
?- plus(X,Y,Z)

and we know that variable X has type posint, i.e., it is only allowed to bind X to positive numbers
(because of its usage in another literal), then the first clause for plus must not be applied to this
literal since 0 has type zero which is incompatible with posint. Thus a typed unification may avoid
unnecessary computations. The main result of this paper is a unification procedure which takes two
well-typed literals as input and produces a solvable set of type constraints iff the literals are unifiable.
The solvability of these type constraints is decidable for particular type structures. This unification

procedure can be used for a sound and complete resolution procedure for typed logic programs.

This paper is organized as follows. The next two sections define the syntax and the declarative



type zero, posint, nat, list/1, predl/1
subtype zero < nat

posint < nat

a<p = list(a) <list(p)

f<a = predl(a)<predl(B)

func 0: — zero

func s: nat — posint

func (1 : — list(a)
func C..1..]: a, listla) — list(«)
pred plus : nat, nat, nat

pred member: «, list(q)

plus (0,N,N) <«
plus(s(N1),N2,s(N3)) <+ plus(N1i,N2,N3)

member (E, [E|L]) <«
member (E, [F|L]) < member(E,L)

Figure 1: A logic program with parametric and order-sorted types

semantics of typed logic programs. Since our approach is declaration-based, types are not only sets
of terms but they are present in all interpretations of the program similarly to [Smo89] or [HT90].
Section 4 defines the typed Horn clause calculus which is a sound and complete method to prove
valid atoms. Section 5 presents the unification procedure on typed terms which can be used for
the resolution method for typed logic programs presented in section 6. A new application of our
framework is presented in section 7. The proofs of the theorems are omitted from this paper. They

can be found in [Han91].

2 The typed logic language

For the definition of types we assume familiarity with basic notions from algebraic specifications as
to be found in [EM85]. A type signature is a single-sorted signature H. Constants in H are called
basic types and n-ary functions in H are called type constructors of arity n. For instance, the
first line in figure 1 specifies a type signature with zero, posint, nat as basic types and two type

constructors [ist and predl or arity 1.

By X we denote an infinite set of type parameters!. Ty (X) denotes the term algebra over H
and X, i.e., the set of all well-formed type expressions with type parameters from X.

A type substitution o is an H-homomorphism o: Ty (X) — Ty (X) where o(a) # « only for
finitely many o € X'. A type substitution replaces type parameters by other type expressions. We

use the following notation for the class of all type substitutions:

TS(H,X) :={0:Ty(X) = Tyu(X) | 0 is a type substitution}

'In order to avoid confusion with variables occurring in clauses of logic programs, we use the notion “type param-
eters” for variables which are quantified over types.



Inclusion relations between types are specified by Horn clauses for the binary predicate <. A subtype
declaration is a formula

/ !/ !/
TE < TiyeotsTn < T, = Tp < T

where 7;, 7/ are type expressions from Ty (X) (i =0,...,n). If S is a set of subtype declarations, <g
denotes the least quasi-ordering generated by S, i.e., 7 <g 7’ is true iff 7 < 7’ is a logical consequence

of the Horn clause program
SU{(=a<a),(a<BB<y=a<y)}

where «,  and 7 are different type parameters from X.

A type specification is a pair (#,S) where H is a type signature and S is a set of subtype
declarations. For instance, the parts preceded by the keywords “type” and “subtype” in figure 1 are
a type specification.

XY =(H,S, Func, Pred) is called a polymorphic signature for logic programs if
e (H,S) is a type specification with T5(0) # 0

e Func is a set of function declarations of the form f:r,..., 7, — 7 with 7;,7 € Ty(X)
(n > 0)

e Pred is a set of predicate declarations of the form p:7y,..., 7, with 7; € Ty(X) (n > 0)

In addition, we assume that ¥ contains at most one type declaration for each function and predicate
symbol, i.e., we exclude overloading similarly to [Smo89] and [HT90]. However, this restriction does
not imply that a function or predicate can only be applied to arguments of a fixed type: if the declared
type contains type parameters, then each instance of this type (replacement of type parameters by
other type expressions) is a valid type for the function or predicate (parametric polymorphism), and
if some argument types have subtypes, then the function or predicate can also be applied to these
subtypes (inclusion polymorphism,).

In the following we fix a set X of type parameters and a polymorphic signature ¥ =
(H,S, Func, Pred). Let Var be a set of variable names different from symbols in ¥ and X. A
set V' with elements of the form z:7 where x € Var and 7 € Ty(X) is called a set of typed vari-
ables if 7 = 7" whenever z:7,x:7" € V. If 0 € TS(H, X) is a type substitution and V" a set of typed
variables, then the application of o to V' yields a new set of typed variables defined by

o(V) :={z:wo(r) | i1 € V}

The set Term,(V) of terms of type 7 with variables from V is the least set satisfying the

following conditions:
e z€Term, (V)if:r, € Vand 7, <g 7

o f(t1,...,t,) € Term (V) if fim,...,7, — 790 € Func (n > 0), 0 € TS(H,X), t; €
Termy-y(V) (i=1,...,n) and o(r9) <s 7

i



Term(V) denotes the set of all (well-typed) terms with variables from V., i.e., Term(V) :=
Urer, (x) Term- (V). Elements of Term(V) are also called (X, V))-terms.

The definition of the other syntactic elements of typed logic programs is straightforward: A (X,V)-
atom has the form p(t,...,%,) where pimy,..., 7, € Pred, 0 € TS(H,X) and t; € Termgy(-(V)
(i=1,...,n). A (X,V)-goalis a finite set of (X, V)-atoms. A (X,V)-clause is a pair P <— G where
the head P is a (X, V)-atom and the body G is a (X, V)-goal. A X-term (atom, goal, clause) is a
(3, V)-term (atom, goal, clause) for some set of typed variables V. If s is a term, atom, goal etc.,

then var(s) denotes the set of all typed variables occurring in s.
A typed logic program (X, P) is a polymorphic signature ¥ together with a set of ¥-clauses
P. Figure 1 contains an example of a typed logic program where the variables have the following

types:
V' = {N:nat, Ni:nat, N2:nat, N3:nat, E:a, F:or, Lilist(a)}

3 Declarative semantics

Similarly to [Poi86] and [Han89al, we use a two-level approach for the declarative semantics of typed
logic programs. The first level interprets the type specification (#,S) by a H-algebra and a quasi-
ordering satisfying <s. Type parameters vary over all elements of this H-algebra. From such an
interpretation and the given polymorphic signature we derive a dependent order-sorted signature
which will be interpreted as usual [SNGM89]. Hence models for typed logic programs consists of
two parts: a model for the specified type structure and a model for the derived order-sorted logic

program. In the following we present the detailed definitions.

A (H,S)-type structure A (interpretation of a type specification (H, S)) consists of a set of sort
symbols Sy, a mapping Ag: (S4)™ — Sy4 for each n-ary function symbol k£ in H (n > 0) and a quasi-
ordering <4 C Sy x Sy satisfying all axioms from S. If ¥ = (H,S, Fune, Pred) is a polymorphic
signature, then a (#,S)-type structure A determines the following sets of function and predicate

types:
Funcy = {f:o(ry) | firy € Func,0: X — S4 is a type parameter assignment}

Predy = {pwo(ry) | p:1, € Pred,o: X — S, is a type parameter assignment}

(where o(7f) and o(7,) denotes the componentwise application of ¢ to 7; and 7,, respectively).
A (H,S)-type structure A can be extended to a Y-interpretation by interpreting the order-sorted
signature (S, <4, Funcy, Pred,) as usual [Smo86] [SNGM89]: A Y-interpretation A consists of
a (H,S)-type structure, a family of sets {4, | 7 € S4}, a mapping A;: D;ft — (O 4 for each function
symbol f in ¥ and a relation A, C D;;‘ for each predicate symbol p in ¥, where the following
conditions hold:

o C4:=U,es, Ar is called the carrier of A
L4 AT g AT’ if 7 SA 7!
e D# C (C4)" if f has arity n

° D;,“ C (Cy)™ if p has arity n



o If firy,..., 7, = T € Funcy, then A, x --- x A, QD}“ and Ap(A;, x---x A, ) C A,
o Ifpiry,..., 7, € Predy, then A, x .-+ x A, QD;,“

In order to compare different interpretations, we define homomorphisms between them. If A and B
are two Y-interpretations, a ¥-homomorphism A from A into B is a mapping h: S4UC 4 — SgUC5
with

h(SA) g SB and h(CA) Q CB
o h(Ak(m,...,7)) = Br(h(1), ..., h(r,)) for all n-ary type constructors k and all 7y, ..., 7, € Sy

e h(A,) C Bh(r) forall 7 € Sy

h(D7) C D and h(Ay(ay, ..., an)) = By(h(ar), ..., h(a,)) for all (ay,...,a,) € D}t

h(D;') € DF and (h(a1), ..., h(ay)) € B, for all (ay, ..., a,) € A,

Note that if A and B have identical type structures and h is the identity on S4, then h is an order-
sorted homomorphism in the sense of [Smo86] and [SNGMS89]. It is easy to prove that the class of
all X-interpretations together with the ¥-homomorphisms is a category.

A homomorphism in our typed framework consists of a mapping between type structures and a
mapping between appropriate order-sorted structures. Consequently, a variable assignment in the
typed framework maps type parameters into types and typed variables into objects of appropriate
types: If A is a Y-interpretation, then an assignment for (X',V) in A is a mapping : ¥ UV —
SaUC4 where §(a) € Sy for all type parameters v € X' and 6(x) € Ay, for all z:7 € V (6 denotes
the extension of 0 to T3/(X') which uniquely exists [EM85]).

T is called the free term interpretation over X and V if the following conditions hold:

1. Sy = Ty(X), Te(r1,..., 1) = k(m1,...,7,) for all n-ary type constructors k and all type
expressions 7, ..., 7, € Ty(X), and <= <g, i.e., the type structure of 7 is the initial term
model (least Herbrand model) of the type specification (H,S)

2. T; :==Term,(V) for all 7 € Ty(X), i.e., the carrier of T is the set of all well-typed terms with

variables from V/
3. D}- = Uf:’rl,...,’rn—H'EFuncT Tr X - Tr,
4. Tr(ty, ... tn) == f(t1,...,t,) for all n-ary function symbols f and (¢i,...,%,) € D}r
5. D] = Upir,.rpeprear Tn X+ Try
6. 7, := 0 for all n-ary predicate symbols p

It is easy to show that 7 is a Y-interpretation. We denote this Y-interpretation by T (X, V).

Lemma 3.1 (Free term interpretation) Let A be a Y-interpretation and ¢ be an assignment for
(X,V) in A. There exists a unique X-homomorphism h from Tx(X,V) into A with h(a) = §(«) for
all « € X and h(x) = §(z) for all 21 € V.



The lemma shows that any variable assignment § can be extended to a ¥-homomorphism in a unique

way. In the following we denote this ¥-homomorphism again by 4.

We are not interested in all interpretations of a polymorphic signature but only in those interpre-
tations that satisfy the clauses of a given typed logic program. In order to formalize that we define

validity of atoms, goals and clauses relative to a given Y-interpretation A:
e Let ¢ be an assignment for (X, V) in A.
A, ELif L=pt,... t,) is a (X, V)-atom with (§(¢1),...,0(t,)) € A,
A, 0 EGifGisa (X, V)-goal with A,0 =L forall L€ G
A0 E L+ Gif L+ Gisa (%,V)-clause where A, = G implies A,0 E L

e AV E Fif Fisa (X, V)-atom, -goal or -clause with A,d = F for all assignments ¢ for
(X,V)in A

We say “L is valid in A” if A is a S-interpretation with A, var(L) = L (analogously for goals and
clauses). A Y-interpretation A is called model for a typed logic program (3, P) if all clauses from P
are valid in A. A (3,V)-goal G is called valid in (X, P) relative to V if A,V |= G for every model
A of (3,P). We shall write: (¥',P,V) | G. Validity of atoms and clauses in (2, P) is analogously
defined.

This notion of validity extends validity in untyped Horn clause logic to the typed case: In untyped
Horn clause logic an atom, goal or clause is said to be true iff it is true for all variable assignments.
In the typed case an atom, goal or clause is said to be true iff it is true for all assignments of type
parameters and typed variables. The reason for the definition of validity relative to a set of variables
is that carrier sets in our interpretations may be empty in contrast to untyped Horn logic. This is
also the case in many-sorted logic [GM84]. Validity relative to variables is different from validity
in the sense of untyped logic. An example for such a difference can be found in [Han89al, p. 231.
Validity in our sense is equivalent to validity in the sense of untyped logic if the types of the variables
denote non-empty sets in all interpretations. But a requirement for non-empty carrier sets is not

reasonable in the context of polymorphic types.

Furthermore, note that due to our two-level semantics Y-interpretations may contain more types
than specified in 3. For instance, if the typed logic program (3,P) contains only one type int,
the predicate declaration p:a and the (X, {i:int})-clause p(i) <, then (X, P, {x:a}) E p(x) does
not hold. But the (X, {x:a})-atom p(x) is valid in the initial model of (X, P). This is similarly
to untyped logic programming where Vap(z) is true in the least Herbrand model of the program
{p(a) <} but Vzp(z) is not a logical consequence of {p(a) < }.

Let V, V' be sets of typed variables. A typed substitution o is a ¥-homomorphism o from
Tx(X,V) into Tx(X, V') where o(a) # « and o(z) # x only for finitely many o« € X and z:7 €
V. Therefore a typed substitution is a combination of a substitution on type expressions and a
substitution which replaces typed variables by well-typed terms. A typed substitution keeps the set
of type parameters X but may change the set of typed variables because the types of the variables

influence validity. We extend typed substitutions on X-atoms by:
o(p(ty,... tn)) =plo(tr),...,o(ts))

7



Furthermore we define:
Suby(X,V,V') .= {0 | ois a typed substitution from 7T5(X,V) into Tx(X,V’)}

o, =y o, if o1 € Subs(X,V1,V'), 09 € Subs (X, V5, V') with V- C Vi N V5 and o4(x) = o9(x)

for all z:7 € V and o4 (a) = o3(a) for all type parameters o occurring in V'

By lemma 3.1, typed substitutions are determined by their behaviour on type parameters and typed

variables. Therefore we represent a typed substitution ¢ by the following set:
{ajo(a) | o(a) #a, a € X}U{z/o(x) | o(x) #z, x:7 € V}
For instance, the application of the typed substitution
o = {a/nat, E/0}

to the (X, {E:«, L:list(«)})-atom member (E,L) yields the (X, {L:list(nat)})-atom member (0,L).

4 The typed Horn clause calculus

This section presents an inference system for proving validity in typed logic programs. In contrast
to the untyped Horn clause calculus it is necessary to collect all variables used in a derivation
since validity depends on the types of variables. Let (X,P) be a typed logic program. The typed
Horn clause calculus consists of the inference rules in figure 2. We write (¥,P,V) + L if
(3,P, V) L+ () can be deduced by these inference rules. The following theorem states soundness

and completeness of the typed Horn clause calculus:

Theorem 4.1 Let (3,P) be a typed logic program, V' be a set of typed variables and L be a
(X, V)-atom. Then: (Z,P,V)F L = (E,P,V)EL

if L« GeP
(E,P,V)F L+ G is a (X, V)-clause

Azioms:

(E,P,V)F L+ G
(X, P,V')Fo(L) + o(G)

if o € Subsy(X,V, V)

Substitution rule:

(S, P, V) L+ GU{L'}, (5,P,V)FL + G

Cut rule: EPNFL<GUG

Figure 2: The typed Horn clause calculus

5 Typed unification

The SLD-resolution procedure [AvES82] is an efficient method to prove validity of goals and therefore
it is used as the operational semantics of programming languages based on Horn clause logic. The
basic operation in a resolution step is the computation of a unifier for two atoms, i.e., a substitution
which makes the atoms identical. Unfortunately, the classical unification procedure [Rob65] cannot

be applied in our typed framework because the computed substitutions may be ill-typed.
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Example 5.1 Consider the type structure defined in figure 1 and the two atoms
plus(0,N,N) plus(X,Y,Z)

w.r.t. the typed variables {N:nat,X:posint,Y:posint, Z:posint}. The substitution computed by the
classical (untyped) unification procedure would bind variable X to 0. But this is not a typed substi-
tution because a variable which is constrained to be a positive integer must not be bound to a term
of type zero. In this example there is no typed substitution which makes the atoms identical and

therefore the unification procedure should fail.

From a practical point of view it is important that the unification procedure may fail because of
incompatible types since in this case the search space can be reduced. Thus the integration of types
into the computation process yields a more efficient program execution because variables can be

constrained to types and to values in a typed unification procedure [SS85] [HV87].

In this section we will present a unification procedure for our typed logic. The unification proce-
dure takes two well-typed atoms or terms as input and computes a solvable set of type constraints
(subtype relations) iff the atoms or terms are unifiable. In order to use the improved computational
power of typed logic programs (reduction of the search tree), it is necessary to decide the solvability
of a set of type constraints. Depending on the type structure, such decision procedures may not
exist. But there exist decision procedures for restricted and interesting classes of type structures

which can be used in our typed framework.

For a practical unification algorithm it is essential that the unifiability of two variables can be
decided only by their types. We want to avoid situations where two terms have incompatible types
but may have instances which are identical. Therefore we will require that no term has two types
which are incompatible. Formally, we call ¥ a polymorphic signature with least types if there
exists a type 1o with 7 <gs 7, 75 <s 7’ and ¢t € Term., (V') whenever ¢t € Term,.(V) N Term. (V).
Our typed unification algorithm is only complete for polymorphic signatures with least types. We

will discuss this requirement later.

We describe the typed unification by a set of transformation rules which generate a set of type
constraints from a set of equations between well-typed terms. In the following we denote by F or E’

an equation system w.r.t. ¥V which is a finite multiset of elements of the form

tr=t" or xT=t

where z,t,t" are (X, V)-terms, x is a variable and 7, 7" are type expressions. By C or C’" we denote
a type constraint system w.r.t. V' which is a finite multiset of elements of the form

r<71 or tr

where 7, 7" are type expressions and ¢ is a (3, V)-term. We omit V' if it is clear from the context.

We call a typed substitution o € Subs(X,V,V’) a solution of an equation system E and a type

constraint system C w.r.t. V if it is a solution of each element in F and C, where ¢ is a solution of

. if o(t) = o(t') and o(t) € Termq( (V') N Termq(V'),
° if o(x) = o(t) and o(x) € Termy(V'),

9



Unification of types

Ci{em, =tr}UE 2 Cu{a<m,a<t}{za=ta}UE

if a is a new type parameter and 7, # T
Decomposition of equations

Ci{f(tr,... tn):m = f(t),...,tL): T }UFE LN {ro <700 <7} {timi =thm}tizi, nUE

if fim,..., 7, — 79 is a new variant of the type declaration for f in X
Isolation of variables

Cilomr=tr}UE 2 O;{ar =tr}U{z/t}(E)

if x occurs in E but not in ¢
Commutation of variable equations

Ci{tr=axr}UE 2 C{o:r =t7}UE

if ¢ is not a variable
Deletion of equations
Ci{mr=xr}UE % CU{xThE

Figure 3: Transformation rules for typed unification

. if o(7) <s o(7"),
o if o(t) € Termy (V).

We call the pair C; E solvable if there is a solution of C'; F.

Initially, E' contains only equations of the form ¢:7 = #":7' and C' contains the type constraints
for the variables in V' (e.g., if we want to unify two terms ¢, € Term(V), then C = V and
E = {t:a = t":5} where « and /3 are new type parameters). First we transform the pair C; E by
the rules in figure 3. In the first rule for typed unification a new type parameter is generated which
represents the common subtype of 7, and 7. In order to relate solutions of the original type constraint
and equation system with solutions of the transformed one, we need the notion of the “extension”
of a typed substitution. Let 0,0’ € Subs(X,V,V’) be typed substitutions. If the only difference
between o and ¢’ is the behaviour on some type parameters o where o(a) = «, then o' is called

extension of o.

Example 5.2 Consider the type structure defined in figure 1 and the type constraint and equation
system
{N:nat} ; {0:zero = N:nat} (1)

which will be transformed into the system
{N:nat, o < zero,a < nat} ; {N:a = 0:r} (2)

by the rules in figure 3. The typed substitution o = {N/0} is a solution of (1) and not of (2). But o
can be extended to the typed substitution o’ = {«/zero,N/0} which is a solution of (2).

10



Deletion of type constraints for variables

Culer}{or, =t} UE 5 CU{a<m,a<7}{ra=tr}UE

if o is a new type parameter
Deletion of type constraints in equations

Ci{rr,=t7}UE =% CU{tr};{nm =t}UE

if x does not occur in C
Decomposition of term type constraints

CU{f(ts,....tn)ThHE S5 Cu {t1:11, ..ty o < TH E

if fim,..., 7, — 79 is a new variant of the type declaration for f in X
Deletion of multiple variable type constraints

CUulrr,zrh E 2% Cu{za,a<tm,a<7ThE

if o is a new type parameter

Figure 4: Transformation rules for simplifying type constraints on terms

The following theorem states some important properties of the transformation rules for typed

unification.

Theorem 5.3 (Typed Unification) Let ¥ be a polymorphic signature with least types and tu

be the reflexive and transitive closure of the relation defined in figure 3.

1. If C; E N C'; E', then each solution of C'; E' is a solution of C'; E' and each solution of C; E

can be extended to a solution of C'; E'.

2. Each derivation w.r.t. -“ terminates.

3. Let C; E be solvable and C; E Ny C"; E" where C"; E' is irreducible, i.e., no rule is applicable

to C'; E'. Then E' has the form {xy:1 = ty:1,. .., Tp:Ty = tx:7T } where 4, ..

., T} are pairwise

distinct variables which do not occur in ty,...,t,. We call a pair C'; E' with this property in

normal form.

The normal form of a type constraint and equation system C'; E may contain complex type

constraints on structured terms which can be easily simplified. Therefore we apply the transformation

rules in figure 4 to systems in normal form in order to obtain a type constraint and equation system

which has a very simple form. The next theorem states important properties of these simplification

rules:

Theorem 5.4 (Simplification) Let ¥ be a polymorphic signature with least types, =" be the

reflexive and transitive closure of the relation defined in figure 4 and C'; E' be in normal form.

1. IfC; E 25" O, E', then each solution of C'; E' is a solution of C; E and each solution of C; E

can be extended to a solution of C'; E'.

2. Each derivation w.r.t. — terminates.
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3. Let C; E be solvable and C; E =" C'; E' where C'; E' is irreducible, i.e., no rule from figure 4
is applicable to C'; E'. Then E' has the form {x 7 = ty,..., 2Ty = t;,} where xy,..., 1y are

pairwise distinct variables which do not occur in tq,...,t;, and C' has the form

{51 S 517 s 7& S 51,} U {yl:T]ﬂ? .. 'Jym:Tym}

where vy, ...,y are pairwise distinct variables different from xy,...,x;. We call a pair C'; E'

with this property in solved form.

Example 5.5 Consider the following polymorphic signature:

type S0, S1, S2
subtype s < s
S0 < So
func a0: — s
func f: s1, S99 — S

and the type constraint and equation system
{X:a, Y:5} 5 {£(X,Y):50 = £(Y,2a0):50}

We obtain the following system in normal form after applying the rules in figure 3 (we omit multiple

occurrences of the same constraint):
{X:a, Y: 03,50 < so} ; {X:s7 = a0:sy, Yisy = a0:s9}
The application of the simplification rules in figure 4 yields the following system in solved form:
{s0 < s0,y <,y <51,0 <B,0< 89,50 < 7,8 <d}; {Xy =a0, Y:0d =ald}

The type constraints in this system are solvable and {v/sq, a/so,d/s0, 3/S0,X/a0,Y/a0} is a solution
of this system and {«/sg, 3/s0,X/a0,Y/a0} is a solution of the original system.

Now we are in the following position. In order to unify two typed terms, we transform the type
constraints of the variables together with an equation between the two terms into a reduced type
constraint and equation system by the rules for typed unification in figure 3 and simplification in
figure 4. TIf the reduced system is not in solved form, then the two terms are not unifiable by

theorems 5.3 and 5.4. Otherwise the system has the solved form

{51 S 617 e 75! S gl,} U {yl:TyU . '7ym:7-ym} ; {1‘1:7'1 = tla vy T Ty = tk}

which is solvable iff the subtype constraints for the relation < are solvable. Hence to decide the
unifiability of two typed terms, we must decide the solvability of a type constraint system of the

form

CS={r<7 |77 eTyX))}

Generally, we allow arbitrary Horn clauses for the definition of < and therefore this problem is
undecidable. Fortunately, there are restricted but interesting type structures for which positive

results are known:
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1. Smolka [Smo89] allows subtype relations between arbitrary type constructors (e.g., between ba-
sic types and polymorphic types), but he requires that all type constructors must be monotonic
in their arguments and he has some further requirements on the type structure (see [Smo89]
for details). Under these conditions the solvability of C'S is decidable if C'S does not contain
type parameters. If C'S contains type parameters, the solvability is an open problem in his

framework.

2. Hill and Topor [HT90] also require the monotonicity of all type constructors and they allow
only subtype relations between type constructors of the same arity. The solvability of C'S is

decidable under these restrictions.

3. Fuh and Mishra [FM88]| have worked on the problem of polymorphic type inference for a
functional language which includes subtypes. In their approach they have also treated the
problem of finding a solution of a set of subtype constraints. They have developed a solving
algorithm for the case where there are only subtype relations between basic types and all
type constructors (like “—” for function space and pair for products) are monotonic or anti-

monotonic in their arguments. Their algorithm is divided into three parts:

(a) match is the first part which transforms the subtype constraints into subtype constraints
where the left-hand side and the right-hand side have the same shape (e.g., a < list(nat)
is transformed into list() < list(nat) by substituting a by list(3)).

(b) simplify reduces the subtype constraints into a set of subtype constraints between basic
types and type parameters by considering the (anti-) monotonicity property of the type
constructors (e.g., list(f3) < list(nat) is reduced to 5 < nat).

(c) consistent checks whether there exists a substitution for the type parameters such that all

basic subtype constraints are satisfied.

Hence we can use their algorithm to decide the unifiability of terms in our typed framework if
there are only subtype relations between basic types and all type constructors are monotonic

or anti-monotonic in their arguments, i.e., if all subtype declarations have the form

!

T<T where 7 and 7' are basic types

or
(631 Sﬂla"'aangﬁn = h(ala"'aan) Sh(ﬁlaaﬂn)

or
(03] Sﬂla"'aangﬁn = h(ﬁlaaﬁn) Sh(ala---aan)

(or mixtures of the last two cases). Thus we have found a unification algorithm for the important
case of logic programs with higher-order programming techniques and a parametric order-sorted

type system (see also section 7).

Since we are mainly interested in type systems with these restrictions, we will discuss the
restriction to “polymorphic signatures with least types” w.r.t. such type structures. Since all
subtype relations between types are consequences of inclusions between basic types, we assume

that the set of basic types with its subtype relation can be extended to a lattice by augmenting
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bottom and top elements | and T which are considered as type errors (since there are no
terms of this type). Unfortunately, this is not sufficient for least types. For example, consider

a polymorphic constant like

func [1: — list(a)

Then the term []1 has types list(zero) and list(posint) but there is no valid common subtype
of these two types. Hence the signature of figure 1 does not have least types. Smolka [Smo89]
solves this problem by introducing a bottom type L which is a subtype of any type, i.e., list(L)
is the least type of [1. But this causes the problem that there are subtype relations between
basic types and type constructors which we want to avoid in order to apply Fuh and Mishra’s
algorithm. Another solution can be found in Reynolds’ polymorphic typed lambda calculus
[Rey74] where a type must be specified if a polymorphic function should be applied, i.e., the
first argument of a polymorphic function is always a type. Although we can not deal with types
at the object level in our framework, we can simulate this idea by changing the declaration of

the empty list into

func [1: o — list(«)

Now the argument of [] indicates the type instantiation of the polymorphic constant, i.e., the
term [1(X) has type list(posint) if variable X has type posint. Therefore the least type of the

term [1(...) can be computed from the least type of the argument.

Thus in order to satisfy the condition for least types, we transform typed logic programs in the
following way. For each function originally declared by f:r,..., 7, — 7 where {ay,..., a;}
(k > 0) are the type parameters occurring in 7 but not in 7,...,7,, we do the following:

Change the declaration of f into
frag, ... T, Ty =T

and add k£ new variables of appropriate types (the current instances of the «;) as new arguments
in each occurrence of f in the program clauses. Since this transformation can automatically

be done, we omit it in the examples of this paper.

We will use the typed unification procedure presented in this section to unify an atom in a goal with
a head of a clause. In order to apply the typed unification procedure for this case we introduce a

new basic type bool and declare each predicate symbol of type

pT1y..., Ty

as a function symbol of type

DTy, ..., Ty — bool

Then we can unify two (X, V)-atoms A; and A, as follows: Transform the pair
V' {Ay:bool = Ay:bool}

by applying the rules for typed unification and, if a normal form is obtained, the rules for simplifi-

cation. If the result of this transformation is a pair C'; F in solved form, we write
Vi {A:bool = Ag:bool} 5 Vi Cp E
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where Vo = {y1:7,, ..., YTy b Co = {& < &1,...,& < &} and Vo U Cy = C. The set of equations
E can be interpreted as an explicit representation of a typed unifier if the corresponding set of type

constraints is solvable. Therefore we define the solutions of the type constraint system C; by
Sol(Cy) :=={p € TS(H,X) | ¢ is a solution of all constraints in Cp}
If ¢ € Sol(Cy) and E = {111y =t1,...,Tp:Tk = 11}, then

a% = {a/d(a) | p(a) # a,a € XY U{z/ty,...,x/tr} € Subs(X,V,p(Vh))

is called the typed substition corresponding to ¢ and E. The following lemma shows that a%
is indeed a well-defined typed substition:

Lemma 5.6 Let V;{A;:bool = Ay:bool} — Vy; Co; E and ¢ € Sol(Cy) be a solution of Cyy. Then
0% is a typed substition from Subs(X,V,$(Vy)) with o%(A;) = 05 (Ay).

The next lemma shows that the typed unification algorithm computes a complete set of unifiers:

Lemma 5.7 Let ¥ be a polymorphic signature with least types, A and A’ be (3,V)-atoms and
o € Subs(X,V, V') be a typed substitution with o0(A) = o(A’). Then there is a derivation

V; {A:bool = A’:bool} — Vy; Co; E

and ¢ € Sol(Cy) and 0 € Subs(X,p(Vy), V') with 0o 0% =y 0.

6 Resolution

The resolution method in untyped Horn logic (see [L1087]) is an efficient procedure to prove validity
of goals w.r.t. Horn clause programs. It is the basic operational principle of logic programming
languages like Prolog. Therefore we want to adopt this method for typed logic programs. Since
types influence validity or, from an operational point of view, types restrict the set of applicable
clauses in a resolution step, it is necessary to modify the resolution method from untyped Horn logic.
In our framework we have to replace the untyped unification procedure in a resolution step by a
typed one. In the last section we have presented a unification procedure for typed terms: it takes a
set of constraints (initially the type declarations for variables) and a set of equations and produces
a new set of type constraints and a new set of equations in solved form (if a unifier exists).

We call a ¥-clause a variant of another -clause if it is obtained by replacing type parameters
and typed variables by other type parameters and typed variables, respectively, such that different
variables are replaced by new different variables. Let (3,P) be a typed logic program, V' be a set
of typed variables, and G U {L} be a (X,V)-goal. Then a resolution step is defined by the ternary
relation

V:GU{L} Dsp ob ¢(V);0(GUG)

where L'<G" is a (X, V')-clause which is a variant of a clause from P and has no variables in common
with G U {L}, and there exists a unification V; {L:bool = L':bool} — Vy; Cy; E with ¢ € Sol(Cy).
Note that 0% is a typed substitution from Subs(X,V,$(Vy)) by lemma 5.6.
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A resolution is a sequence of the form
r r r
VoiGo —sp o1 VisGi —sp 02 - —np op Vi Gy

where V; is a set of typed variables and G; is a (X, V;)-goal (for i = 0,...,n). This resolution will be
also denoted by
Vo; Go L&,Pn o Vi Gp

where 0 := 0, 0---0 0. The resolution is called successful if G,, = (). In this case n is called the
length of the resolution, and o is called a computed answer. We replace L)z”pn by Lm,p* if the

precise value of n is not needed.

Theorem 6.1 (Soundness of resolution) Let (X,P) be a typed logic program, V' be a set of
typed variables and G be a (3,V)-goal. If there is a successtul resolution V; G %E,p* o V'; (0, then
(Z,P, V") Eo(G).

Similarly to the untyped case, resolution is only complete in the sense that every correct answer

is an instance of a computed answer:

Theorem 6.2 (Completeness of resolution) Let ¥ be a polymorphic signature with least types,
(3,P) be a typed logic program, V' be a finite set of typed variables and G be a (X,V)-goal. If
o € Subs(X,V, V') is a typed substitution with (X, P,V') = o(G), then there exist a set of typed
variables Vy O V and a resolution Vy; G Lm,p* oo Vi;0. Furthermore, there is a typed substitution
6 € Subs (X, V1, V") with § o 0y =y 0©.

These two theorems justify the implementation of resolution with our typed unification procedure
as a proof method for logic programs with parametric and order-sorted types. For the computation of
a typed unifier in each resolution step our method presented in section 5 can be used. This unification
procedure transforms the unification problem into a set of type constraints. In the description of
the resolution method we have assumed that a solution of these type constraints is immediately
computed in each resolution step. But it is also possible to collect all generated type constraints in
the resolution process and solve this constraints after deriving the goal to the empty goal. Such a
method is similar to “constraint logic programming” [JL87] and may save unnecessary backtracking
steps over different solutions of the type constraints. However, it must be checked whether the type
constraints are solvable in each resolution step. Otherwise we lose the advantage of reducing the

search tree by integrating types into the resolution process.

7 Applications: Higher-order programming

Higher-order programming is an important programming technique used in functional programming
languages because it leads to smaller and more readable programs. Many researchers have also tried
to integrate higher-order features into logic programming languages. A semantically clean integra-
tion of such features into logic programming needs a unification procedure on lambda expressions.
A logic language with such a feature has been proposed by Miller and Nadathur [MN86]. Since

higher-order unification is a complex task and undecidable in general, it has been argued that it is
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type zero, posint, nat, list/1, predl/1
subtype zero < nat

posint < nat

a<p = list(a) <list(p)

f<a = predl(a)<predl(B)

func 0: — zero

func s: nat — posint

func (1 : — list(a)
func C..1..]: a, list(a) — list(«)
func Aeven : — predl(nat)

pred has_property: list(a), predl(a)
pred applyl: predl(a), «

pred even : nat

even(0) <

even(s(s(N))) < even(N)

has_property([],P) <«
has property([E|L],P) <« applyl(P,E), has property(L,P)

applyl(Aeven,N) < even(N)

Figure 5: A typed logic program with higher-order predicates

sufficient to simulate higher-order programming techniques by a first-order specification of an apply
predicate [War82] since there is a systematic and efficient method to translate lambda expressions
into Prolog [CvERS89]. Although this method has been used to implement a polymorphically typed
functional-logic language with higher-order objects [BG86], it has been shown in [Han89b] that this
approach is incompatible with polymorphic type systems for logic programming like [MO84] and
[Smo89]. Since some restrictions of these type systems are dropped in our framework and we do not
require the monotonicity of type constructors, we can use Warren’s method to integrate higher-order
programming techniques into a logic language with a parametric order-sorted type system.

We demonstrate Warren’s idea by a simple example. For this purpose we want to define a binary
predicate has property which is satisfied if all elements of a list (fist argument) have a certain
property (second argument). The property is described as a unary predicate (cf. [SS86], p. 281).
In order to treat unary predicates as objects, we define for each unary predicate p of type “7” a
corresponding constant Ap of type “predl(r)”. predl is a type constructor which denotes the type
of unary predicates and is anti-monotonic in its argument because all unary predicates defined on a
type 7 can be used if a unary predicate defined on a subtype is required. The relation between each
unary predicate p and its functional abstraction Ap is specified by Horn clauses for the predicate
applyl. Figure 5 contains the complete typed logic program for this example. Note that the clause
for apply1 is not well-typed in the sense of [MO84] and [Smo89] because in the head of this clause
apply1l is used with an instance of its declared type which is forbidden in these type systems.

In order to show an application of our typed unification procedure we define an additional pred-
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icate which is satisfied if a fixed list of positive integers satisfies a certain property:

pred listprop: predl(posint)

listprop(P) < has_property([s(s(0)), s(s(s(s(0)))), s(s(0))], P)
If we want to prove the goal

listprop(leven)

this atom has to be unified with the head of the clause, i.e., the typed unification procedure is started

with the following type constraint and equation system:
{P:predl(posint)} ; {listprop(Aeven):bool = listprop(P):bool}

The application of the rules for typed unification and simplification in figures 3 and 4 yields the

following system in solved form:
{bool < bool, predl(nat) < a, o < predl(posint)} ; {P:a = leven}

The type substitution {«/predl(posint)} is a solution of the last type constraint system since
predl(nat) < predl(posint) is a logical consequence of the specification for < in figure 5. This
solution can be computed by the algorithm in [FMS88].

This example shows that it is possible to treat higher-order objects in our typed framework.
Generally, it is possible to translate arbitrary lambda expressions into clauses for an apply predicate
[CVvER89]. More details about this method of higher-order logic programming in a polymorphically
typed framework can be found in [Han89b].

8 Conclusions and related work

We have presented a declarative type system for logic programs which combines parametric and
inclusion polymorphism. In order to drop limitations of other type systems with a similar goal,
we have assumed that the inclusion order is specified by Horn clauses for the subtype relation <.
This allows the declaration of type structures where the type constructors are not required to be
monotonic. Therefore logic programs with a parametric order-sorted type structure including higher-

order predicates can be specified in our framework.

We have defined the semantics of our type system in a model-theoretic way. Parametric types
are interpreted as a universal quantification over all types, and order-sorted type structures are
interpreted as order-sorted algebras [SNGM89]. On the operational side we have shown that the
well-known resolution principle can be used to prove goals if the untyped unification is replaced by a
unification procedure which considers the types of the terms. We have presented such a unification
procedure for our typed framework. It takes a pair of terms together with the variable types as input
and produces a set of subtype constraints as the result if the terms are unifiable. The satisfiability of
such subtype constraints is decidable for particular classes of type structures, e.g., where only basic
types are related by subtype inclusion and all type constructors are monotonic or anti-monotonic in

their arguments. This includes the class of typed logic programs with higher-order objects.
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Smolka [Smo89] and Hill and Topor [HT90] have also proposed typed logic languages with para-
metric and order-sorted types. In their framework the heads of clauses defining polymorphic predi-
cates must be of the most general type and all type constructors must be monotonic in their argu-
ments. This excludes an important programming technique as shown in section 7. Our framework
drops the first restriction and assumes that the subtype relation is declared by Horn clauses. There-
fore we only require that the subtype relation is a quasi-ordering (which can be specified by Horn
clauses) and not a partial order as required in [Smo89] and [HT90]. This causes no problems in the

semantics since quasi-orderings are sufficient for order-sorted logic [Smo86].

Another approach to polymorphic type systems with subsorts for logic programming has been
presented in [Han90] where subsort relationships are described by equations. This has the advantage
that well-known equation solving techniques can be used for the typed unification procedure but the
disadvantage that the combination of polymorphism and subtyping is more restricted. Moreover,
the semantics of our presented framework is a direct extension of order-sorted logic (“subsorts are

subsets”) in contrast to [Han90].

There are a lot of directions for further work. For instance, we have cited the decidability
results of Fuh and Mishra [FM88] which are restricted to type structures where all type constructors
are monotonic or anti-monotonic in their arguments and no other subtype relations between type
constructors exists. But it seems possible to extend this algorithm to the case where subtype relations
between type constructors of the same arity are allowed, since Hill and Topor have developed positive
results for similar type structures (with monotonic type constructors). Another research direction is
the improvement of the type checks in the unification procedure. For a lot of cases it seems that the
type checks can be simplified (e.g., for monomorphic goals [Smo89]) or completely omitted (for type
structures without subtypes and with restrictions on the use of polymorphic predicates [Han89b)).
The development of such optimizations is important for an efficient implementation of our typed

logic language.
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