
Call Pattern Analysis for Functional Logic Programs ∗

Michael Hanus
Institut für Informatik, CAU Kiel, Germany

mh@informatik.uni-kiel.de

Abstract
This paper presents a new program analysis framework to
approximate call patterns and their results in functional
logic computations. We consider programs containing non-
strict, nondeterministic operations in order to make the
analysis applicable to modern functional logic languages
like Curry or TOY. For this purpose, we present a new
fixpoint characterization of functional logic computations
w.r.t. a set of initial calls. We show how programs can
be analyzed by approximating this fixpoint. The results
of such an approximation have various applications, e.g.,
program optimization as well as verifying safety properties
of programs.

Categories and Subject Descriptors D.1.1 [Program-
ming Techniques]: Applicative (Functional) Program-
ming; D.1.6 [Programming Techniques]: Logic Program-
ming; D.2.4 [Software Engineering]: Software/Program
Verification—Correctness proofs; D.3.2 [Programming Lan-
guages]: Language Classifications—Multiparadigm lan-
guages; D.3.4 [Programming Techniques]: Processors—
Optimization; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs;
F.3.2 [Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages—Program Analysis

General Terms Languages

Keywords Functional Logic Programming, Program
Analysis

1. Introduction
Functional logic languages integrate the most important fea-
tures of functional and logic languages to provide a vari-
ety of programming concepts. For instance, the concepts of
demand-driven evaluation, higher-order functions, and poly-
morphic typing from functional programming are combined
with logic programming features like computing with partial

∗This work was partially supported by the German Research
Council (DFG) under grant Ha 2457/5-2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

PPDP’08, July 15–17, 2008, Valencia, Spain.
Copyright c© 2008 ACM 978-1-60558-117-0/08/07. . . $5.00

information (logic variables), constraint solving, and non-
deterministic search for solutions. This combination sup-
ports optimal evaluation strategies (Antoy 1997; Antoy et al.
2000) and leads to better abstractions in application pro-
grams (see (Hanus 2007) for a recent survey).

In this paper we propose a new method to analyze call
patterns of functional logic programs, i.e., we want to ap-
proximate the arguments of all function calls occurring in a
computation w.r.t. a program and a set of initial calls. Such
approximations are useful in various ways. For instance, they
can be used to optimize programs (e.g., partial evaluation,
eliminating unnecessary code (Peyton Jones 2007)), to catch
pattern-match errors due to partial function definitions at
compile time (Mitchell and Runciman 2007), or to verify
safety conditions of programs (e.g., which files or sockets
are accessed during a computation (Albert et al. 2005)).
The contributions of this work are:

1. We present a new fixpoint characterization of func-
tional logic computations w.r.t. a set of initial calls (Sec-
tion 3). We consider programs containing non-strict,
nondeterministic operations with call-time choice se-
mantics as in modern functional logic languages like
Curry (Hanus 1997, 2006) or TOY (López-Fraguas and
Sánchez-Hernández 1999).

2. We show the soundness of this fixpoint characterization
w.r.t. the rewriting logic CRWL (González-Moreno et al.
1999), a standard semantics for such kind of languages
(Hanus 2007).

3. We introduce a general framework to analyze call pat-
terns based on this fixpoint characterization (Section 4).
An example analysis with depth-bounded terms is pre-
sented in Section 5.

4. We discuss how this framework can be extended to fea-
tures occurring in application programs, like higher-order
functions and primitive operations to perform I/O, and
present a practical evaluation of a prototypical imple-
mentation (Section 6).

Due to lack of space, the proofs of the results presented in
this paper are omitted. They can be found in the full version
of the paper (Hanus 2008).

2. Basic Concepts
In this section we review some concepts and notations from
term rewriting (Baader and Nipkow 1998; Dershowitz and
Jouannaud 1990) and functional logic programming (Hanus
1994, 2007) that are used in this paper.

Although modern functional logic languages are strongly
typed, we ignore this aspect for the sake of simplicity. How-
ever, the distinction between defined functions and data con-
structors is important for the definition of the operational
semantics of such languages (Hanus 2007). Therefore, we
consider a signature Σ partitioned into a set C of construc-
tors and a set F of (defined) functions or operations. We
write c/n ∈ C and f/n ∈ F for n-ary constructor and oper-
ation symbols, respectively. Given a set of variables X , the
set of terms and constructor terms are denoted by T (Σ,X)
and T (C,X), respectively. We write Var(t) for the set of all
the variables occurring in a term t. A term is linear if it
does not contain multiple occurrences of a variable. A term
is operation-rooted (constructor-rooted) if its root symbol is
an operation (constructor).

A pattern is a linear term of the form f(t1, . . . , tn) where
f/n ∈ F is an operation symbol and t1, . . . , tn are con-
structor terms. A functional logic program is a constructor-
based rewrite system, i.e., a set of pairs of terms or rewrite
rules of the form l → r where l is a pattern. Tradition-
ally, term rewriting systems have the additional requirement
Var(r) ⊆ Var(l). However, in functional logic programming
variables occurring in Var(r) but not in Var(l), called extra
variables, are often useful. Therefore, we allow rewrite rules
with extra variables in functional logic programs.

Example 2.1. The following functional logic program is
based on the set of constructors C = {0/0, S/1} to repre-
sent natural numbers. It defines operations to add two nat-
ural numbers and to double the value of a number, and an
operation coin that returns one of the two values 0 or S(0).

add(0, x) → x
add(S(x), y) → S(add(x, y))

double(x) → add(x, x)

coin → 0
coin → S(0)

Note that an operation like coin is not admissible in purely
functional programs since it has more than one normal form.
However, in the context of functional logic programming
such nondeterministic operations are permitted and use-
ful for programming (González-Moreno et al. 1999; Hanus
2007). Actually, it has been shown that logic variables and
nondeterministic functions have the same expressive power
(Antoy and Hanus 2006) although we consider both concepts
for the sake of simplicity.

To formally define computations w.r.t. a given program,
additional notions are necessary. A position p in a term t
is represented by a sequence of natural numbers. Positions
are used to identify specific subterms. Thus, t|p denotes the
subterm of t at position p, and t[s]p denotes the result of
replacing the subterm t|p with the term s (see (Dershowitz
and Jouannaud 1990) for details). The set of all positions of
a term t is denoted by Pos(t), and the set of all positions
of operation-rooted subterms of a term t is denoted by
FPos(t). A substitution is an idempotent mapping σ : X →
T (Σ,X) such that its domain Dom(σ) = {x | σ(x) 6= x}
is finite. We denote a substitution σ by the finite set {x 7→
σ(x) | x ∈ Dom(σ)}. In particular, ∅ denotes the identity

substitution. Substitutions are extended to morphisms on
terms in the obvious way.

In classical term rewriting, a rewrite step t →p,l→r,σ t′

w.r.t. a given rewrite system R is defined if there are a po-
sition p in t, a rule l → r ∈ R, and a substitution σ with
t|p = σ(l) such that t′ = t[σ(r)]p (where we omit the sub-
scripts if they are not relevant). However, this classical no-
tion of term rewriting is not suitable for functional logic pro-
grams that contain nondeterministic, non-strict functions
defined by non-confluent programs. For instance, classical
rewriting allows the following sequence of rewrite steps w.r.t.
Example 2.1:

double(coin) → add(coin, coin)
→ add(0, coin)
→ add(0, S(0))
→ S(0)

This result is not intended since the operation double should
return only even numbers. In order to cover this intended
behavior, González-Moreno et al. (1999) have proposed
the rewriting logic CRWL (Constructor-based conditional
ReWriting Logic) as a logical (execution- and strategy-
independent) foundation for declarative programming with
non-strict and nondeterministic operations. This rewriting
logic specifies the call-time choice semantics where the val-
ues of the arguments of an operation are determined before
the operation is evaluated. To deal with non-strict oper-
ations, CRWL considers signatures Σ⊥ that are extended
by a special symbol ⊥ to represent undefined values. We
define C⊥ = C ∪ {⊥} so that T (C⊥,X) denotes the set of
partial constructor terms, e.g., S(S(⊥)) denotes a number
greater than 1 where the exact value is undefined. Such par-
tial terms are considered as finite approximations of possibly
infinite values. CRWL defines the deduction of approxima-
tion statements1 e � t with the intended meaning “the
partial constructor term t approximates the value of e”. To
model call-time choice semantics, rewrite rules are only ap-
plied to partial values. Hence, the following notation for par-
tial constructor instances of a set of rules R is useful:

[R]⊥ = {σ(l)→ σ(r) | l→ r ∈ R, σ : X → T (C⊥,X)}

Then CRWL is defined by the following set of inference
rules (where the program is represented by a TRS R):

e � ⊥ for any e ∈ T (Σ⊥,X)

x � x for any variable x ∈ X
e1 � t1 · · · en � tn

c(e1, . . . , en) � c(t1, . . . , tn)
for any c/n ∈ C,
ti ∈ T (C⊥,X)

e1 � t1 · · · en � tn r � t
f(e1, . . . , en) � t

if f(t1, . . . , tn)→ r ∈ [R]⊥
and t 6= ⊥

The first rule specifies that ⊥ approximates any expression.
The condition t 6= ⊥ in the last rule avoids unnecessary
applications of this rule since this case is already covered
by the first rule. The restriction to partial constructor
instances in this rule formalizes non-strict functions with a
call-time choice semantics. Functions might have non-strict
arguments that are not evaluated since the corresponding
actual arguments can be derived to ⊥ by the first rule. If the

1 For the sake of simplicity, we consider only unconditional rules
in contrast to the original presentation of CRWL.

value of an argument is required to evaluate the right-hand
side of a function’s rule, it must be evaluated to a partial
constructor term before it is passed to the right-hand side
(since [R]⊥ contains only partial constructor instances),
which corresponds to a call-time choice semantics. Note
that this does not prohibit the use of lazy implementations
since this semantical behavior can be enforced by sharing
unevaluated expressions. Actually, González-Moreno et al.
(1999) define a lazy narrowing calculus that reflects this
behavior.2

In order to apply our program analysis to functional logic
programs as discussed above, we intend to use CRWL as
its foundation. However, it has been noted (López-Fraguas
et al. 2007) that this calculus has some drawbacks compared
to classical definitions of rewriting where computation steps
can be directly applied to any subterm rather than decom-
posing terms until the function call appears at the top level.
Therefore, we use in the following an alternative definition
of rewrite steps conform with CRWL computations. This
rewrite relation, s � t, is defined by the following rules:

e � e[⊥]p if p ∈ FPos(e)
e[f(t1, . . . , tn)]p � e[r]p if f(t1, . . . , tn)→ r ∈ [R]⊥

The first rule allows the approximation of any (in particular,
non-demanded) function call by ⊥. The second rule corre-
sponds to classical rewrite steps except that arguments must
be already evaluated to partial values, which corresponds to
a call-time choice semantics. As usual, we denote by �∗ the
reflexive-transitive closure of the relation �.

Note that a similar rewrite relation has been proposed
by López-Fraguas et al. (2007) but with the difference that
also constructor terms can be approximated by ⊥. Hence,
the rewrite relation of (López-Fraguas et al. 2007), which we
denote by �c , is defined as follows:

e �c e[⊥]p if p ∈ Pos(e)
e[f(t1, . . . , tn)]p �c e[r]p if f(t1, . . . , tn)→ r ∈ [R]⊥

Note that only the first rule differs from our relation � by
allowing also the replacement of constructor-rooted terms
and variables by ⊥. The equivalence of the rewrite relation
�c and CRWL is shown in (López-Fraguas et al. 2007). How-
ever, our rewrite relation � restricts the nondeterministic
choices due to the approximation of values since it does not
allow the approximation of constructor terms.3 In order to
justify the use of our rewrite relation, we establish a precise
connection between the values computable by both rewrite
relations. Basically, we show that the restriction of our rela-
tion � does does not change the applicability of rewrite
rules but computes better approximations of constructor
terms. For this purpose, we define the usual approximation
ordering on partial expressions.

Definition 2.2. The set of partial expressions T (Σ⊥,X)
is ordered by the approximation ordering v which is de-

2 There are also lazy narrowing calculi that model sharing by
graph structures, e.g., (Echahed and Janodet 1998). Since this
requires the handling of complex graph structures and their
approximations, we base our development on the conceptually
simpler rewriting logic CRWL.
3 The advantage of such a restriction has been also recognized in
(Cleva et al. 2004) in the context of CRWL.

fined as the least partial ordering satisfying ⊥ v t and
f(s1, . . . , sn) v f(t1, . . . , tn) if s1 v t1, . . . , sn v tn, for all
si, ti, t ∈ T (Σ⊥,X) and f/n ∈ Σ. 2

Now we can establish the relation between CRWL and
� by stating that our relation � computes the same or
better approximations of constructor terms than �c (which
is equivalent to �, see (López-Fraguas et al. 2007, Theorem
1)).

Theorem 2.3. Let e ∈ T (Σ⊥,X) and t ∈ T (C⊥,X).

1. If e �∗ t, then e �c ∗ t.
2. If e �c ∗ t, then e �∗ t′ for some t′ ∈ T (C⊥,X) with
t v t′.

Although our rewrite relation � has less nondeterministic
choices than �c or CRWL, there is still an apparent non-
determinism due to the choice between function evaluation
or approximation of functions by ⊥ in the rules defining �.
This might cause an approximation of many partial values
in a program analysis framework based on this semantics.
However, this potential disadvantage can be avoided in the
analysis by computing only maximal elements w.r.t. an in-
formation ordering on abstract values, as we will see below.

For the purpose of our analysis of functional logic pro-
grams, it is sufficient to use the rewrite relation � as a ba-
sis. Although concrete functional logic languages use sophis-
ticated narrowing strategies to evaluate programs (Hanus
2007), narrowing derivations have a strong correspondence
to rewriting derivations, i.e., each narrowing derivation usu-
ally corresponds to a rewriting derivation after applying the
substitutions computed by narrowing. Thus, if we approxi-
mate the call patterns occurring in all rewriting derivations
(as done in the following), we obtain also approximations of
all possible call patterns occurring in narrowing derivations.

3. Fixpoint Semantics for Functional
Logic Computations

In this section we develop a fixpoint characterization of func-
tional logic computations that will be later used to approx-
imate the call patterns occurring in concrete computations.
From now on, we assume a fixed signature Σ = F ∪C and a
set of variables X .

In contrast to related abstractions of term rewriting sys-
tems (e.g., (Alpuente et al. 2002; Bert and Echahed 1995;
Bert et al. 1993)), we intend to approximate only those call
patterns that might occur in concrete computations for spe-
cific applications, i.e., starting from some set of initial func-
tion calls. Therefore, we assume a given set

M⊆ {f(t1, . . . , tn) | f/n ∈ F , t1, . . . , tn ∈ T (C,X)}

of initial or main calls, i.e., functions applied to constructor
terms from which any concrete computation starts. Having
only constructor terms as arguments is not a restriction,
since nested function calls can be easily removed by intro-
ducing new auxiliary functions.

Our fixpoint semantics is based on interpretations that
consist of pairs or equations of expressions describing the
computed input/output relation of all functions. Thus, the
base domain is the set of equations

E = {f(t1, . . . , tn)
.
= t | f/n ∈ F , t1, . . . , tn, t ∈ T (C⊥,X)}

Note that we allow partial constructor terms in order to deal
with the partial construction of the input/output relation
during the fixpoint computation. A particular interpretation
is a subset of E .

An important aspect of our semantics is the stepwise
extension of the set of initial calls with more function calls
occurring during the computation. For this purpose, we have
to evaluate concrete terms occurring in a program w.r.t. a
current interpretation as defined next.

Definition 3.1 (Evaluation of terms). Let I ⊆ E be an
interpretation. The evaluation of a term t w.r.t. I is a
mapping evalI : T (Σ,X)→ 2T (C⊥,X) defined by

evalI(x) = {x}
evalI(c(e1, . . . , en)) = {c(t1, . . . , tn) | ti ∈ evalI(ei),

i = 1, . . . , n}
evalI(f(e1, . . . , en)) = {⊥} ∪ {t | ti ∈ evalI(ei), i = 1, . . . , n,

f(t1, . . . , tn)
.
= t ∈ I} 2

For instance, consider the interpretation

I = {coin .
= 0, coin

.
= S(0),

double(0)
.
= 0, double(S(0))

.
= S(S(0))}

Then

evalI(coin) = {⊥, 0, S(0)}

and

evalI(double(coin)) = {⊥, 0, S(S(0))} .

Note that evalI(double(coin)) does not contain S(0) since
this value does not occur in any right-hand side of a double
equation in interpretation I.

Obviously, partial constructor terms are always evaluated
to their own values, as formally stated in the following
proposition.

Proposition 3.2. evalI(t) = {t} for all t ∈ T (C⊥,X) and
interpretations I ⊆ E.

A specific term evaluation that is sometimes used is the
interpretation where all function calls are replaced by ⊥.

Definition 3.3 (Bottom evaluation).
Let e ∈ T (Σ,X). Then the bottom evaluation e⊥ of e is
defined by e⊥ = t for {t} = eval∅(e). 2

Proposition 3.4. e⊥ ∈ evalI(e) for all e ∈ T (Σ,X) and
interpretations I ⊆ E.

Now we are able to define a transformation on interpreta-
tions (similarly to the immediate consequence operator in
logic programming) that covers information about potential
function calls and their computed results.

Definition 3.5 (Transformation TR,M). Let R be a func-
tional logic program and M a set of main calls. The set of
initial equations M⊥ is defined by

M⊥ = {s .
= ⊥ | s ∈M}

The transformation TR,M on interpretations I ⊆ E is de-
fined as follows:

TR,M(I) =

M⊥ ∪ {s
.
= r′ | s .

= t ∈ I, s→ r ∈ [R]⊥, r
′ ∈ evalI(r)}

∪ {f(t1, . . . , tn)
.
= ⊥ | s .

= t ∈ I, s→ r ∈ [R]⊥,

p ∈ FPos(r) with r|p = f(e1, . . . , en),
ti ∈ evalI(ei), i = 1, . . . , n}

As usual, we define

TR,M ↑ 0 = ∅
TR,M ↑ k = TR,M(TR,M ↑ (k − 1)) (for k > 0)

2

Informally speaking, the transformation TR,M adds to the
set of initial equations in each iteration

1. better approximations of the rules’ right-hand sides (s
.
=

r′) and

2. new function calls occurring in right-hand sides
(f(t1, . . . , tn)

.
= ⊥).

As we will see later, the least fixpoint of the transforma-
tion TR,M contains the information about all function calls
and all results computed during derivations starting from
the main calls. Thus, the construction described by TR,M is
similar to the notion of minimal function graphs introduced
in (Jones and Mycroft 1986) to analyze (strict) functional
programs and relating program analysis frameworks based
on operational (Cousot and Cousot 1977) and denotational
semantics. Minimal function graphs have been also used to
optimize logic programs (e.g., (Gallagher and Bruynooghe
1991; Winsborough 1992)). Although all these frameworks
are based on a common principle (incremental computation
of all reachable calls and their results), the concrete com-
putational methods are different. In our case, we have to
model CRWL computations that might be non-strict, i.e.,
functions might reduce on arguments that have no value.
For this purpose, our transformation TR,M evaluates (by
evalI) arbitrary argument expressions to partial construc-
tor terms before adding the new function calls so that it
will be checked (in the next iteration step) whether these
calls can be evaluated by applying a rewrite rule or stay un-
evaluated in the interpretation. The modelling of interpreta-
tions as sets of equations provides an intuitive understand-
ing of the elements of an interpretation: If an interpretation
computed from a set of initial calls contains an equation
f(t1, . . . , tn)

.
= t, then the call f(t1, . . . , tn) might occur in

a computation of some initial call and t is an approximated
result value of this call. Before stating this intuition more
formally, we provide an example computation w.r.t. TR,M.

Example 3.6. Consider the program of Example 2.1 ex-
tended by the rule

main→ double(coin)

If the set of main calls is M = {main}, the transformation
TR,M computes the following sequence of interpretations,

where we write Ti for TR,M ↑ i.
T0 = ∅
T1 = {main .

= ⊥}
T2 = T1 ∪ {coin

.
= ⊥, double(⊥)

.
= ⊥}

T3 = T2 ∪ {add(⊥,⊥)
.
= ⊥, coin .

= 0, coin
.
= S(0)}

T4 = T3 ∪ {double(0)
.
= ⊥, double(S(0))

.
= ⊥}

T5 = T4 ∪ {add(0, 0)
.
= ⊥, add(S(0), S(0))

.
= ⊥}

T6 = T5 ∪ {add(0, 0)
.
= 0, add(0, S(0))

.
= ⊥,

add(S(0), S(0))
.
= S(⊥)}

T7 = T6 ∪ {add(0, S(0))
.
= S(0),

double(0)
.
= 0, double(S(0))

.
= S(⊥)}

T8 = T7 ∪ {add(S(0), S(0))
.
= S(S(0)),

main
.
= 0,main

.
= S(⊥)}

T9 = T8 ∪ {double(S(0))
.
= S(S(0))}

T10 = T9 ∪ {main
.
= S(S(0))}

T11 = T10

Thus, a fixpoint is reached after 11 iterations. Note that the
fixpoint contains 0 and S(S(0)) as values of main but not
S(0), as expected for functional logic programs with call-time
choice semantics.

Next we state the formal properties of the transformation
TR,M. In the following we assume a fixed functional logic
program R and a set of main calls M. The first important
property of TR,M ensures the existence of a fixpoint.

Proposition 3.7. The mapping TR,M is continuous on 2E .

Thus, the mapping TR,M has a least fixpoint TR,M ↑ ω
which is the least upper bound of {TR,M ↑ k | k ≥ 0}.

Definition 3.8. The least fixpoint semantics of a program
R w.r.t. a set of main callsM is defined as CR,M = TR,M ↑
ω. 2

The following theorems justify the use of this fixpoint se-
mantics to analyze programs, i.e., they show that interest-
ing properties of concrete computations are correctly rep-
resented by CR,M. The first theorem shows that the least
fixpoint contains all function calls (where unevaluated argu-
ments are approximated by ⊥) occurring in computations
starting from main calls. For this purpose, we denote by

calls(s) = {t|p | s �∗ t, p ∈ FPos(t)}

the set of all function calls occurring in derivations starting
with the term s.

Theorem 3.9 (Call covering). Let s ∈ M be an initial call
and f(e1, . . . , en) ∈ calls(s). Then f(e⊥1 , . . . , e

⊥
n)

.
= ⊥ ∈

CR,M.

The next theorem states the soundness of the least fixpoint
w.r.t. the rewrite relation �, i.e., each equation contained
in the least fixpoint corresponds to a rewriting derivation.

Theorem 3.10 (Soundness). If s
.
= t ∈ CR,M, then s �∗

t.

Since we have constructed the least fixpoint w.r.t. a set of
main calls, it represents all those rewriting derivations that
start from these main calls. This is formally stated in the
next theorem. Since operation-rooted subterms occurring

during derivations might contain unevaluated arguments, we
interpret these arguments w.r.t. evalCR,M .

Theorem 3.11 (Completeness). Let s ∈ M be an initial
call and f(e1, . . . , en) ∈ calls(s). If f(e1, . . . , en) �∗ u,
then there exist ti ∈ evalCR,M(ei), i = 1, . . . , n, such that

f(t1, . . . , tn)
.
= u⊥ ∈ CR,M.

This theorem implies that the least fixpoint contains all
values of the main calls.

Corollary 3.12. If s ∈ M, t ∈ T (C⊥,X) with s �∗ t,
then s

.
= t ∈ CR,M.

The bottom elements of the least fixpoint could indicate
unsuccessful computations, i.e., computations that do not
deliver a result since no rule is applicable at some point or
since they loop. Since the least fixpoint contains all approx-
imations of result values, one can infer unsuccessful compu-
tations only if the bottom element is maximal. Therefore, we
define the notion of maximal elements of an interpretation.

Definition 3.13. s
.
= t ∈ I is called maximal in an inter-

pretation I ⊆ E if there is no s
.
= t′ ∈ I with t′ 6= t and

t v t′. The set of all maximal elements of an interpretation
I ⊆ E is denoted by max(I). 2

Corollary 3.14. If s ∈M and s
.
= ⊥ ∈ max(CR,M), then

s is not evaluable to a value, i.e., there is no t ∈ T (C,X)
with s �∗ t.

The latter corollary is useful to detect unsuccessful compu-
tations at compilation time if we can provide an appropriate
and computable approximation of CR,M. This is the purpose
of the next section.

4. Abstraction of Functional Logic
Computations

Abstract interpretation (Cousot and Cousot 1977; Nielson
et al. 1999) is a framework to construct program analyses by
approximating the concrete transformation function of the
operational semantics in order to obtain an approximation
of the program’s behavior. Since we already developed a
fixpoint characterization of functional logic computations,
we can easily apply the abstract interpretation framework
in order to analyze functional logic programs.

We are mainly interested in the call patterns and in-
put/output relation of functions occurring in the pro-
gram. We already described this information by interpre-
tations where the basic elements are equations of the form
f(t1, . . . , tn)

.
= t with f ∈ F and t1, . . . , tn, t ∈ T (C⊥,X),

i.e., the concrete semantics is based on partial constructor
terms. Therefore, an approximation of the concrete seman-
tics can be based on abstract partial constructor terms. In
order to provide a general framework that can be used with
different abstract domains, we assume an abstract domain
AC representing abstract partial constructor terms and a
concretization function τ : AC → 2T (C⊥,X) that maps ab-
stract partial constructor terms into sets of concrete terms.
To ensure finite computations on the abstract domain, one
could require that AC is finite. However, this is not strictly
necessary since there exist other methods to ensure termi-

nating abstract computations even in the presence of infinite
abstract domains (Cousot and Cousot 1977).

The concrete domain E is the powerset 2E ordered by set
inclusion as already introduced in Section 3. Similarly, the
abstract domain A is the powerset of the base set

{f(a1, . . . , an)
.
= a | f ∈ F , a1, . . . , an, a ∈ AC}

ordered by some set ordering. Based on the concretization
function τ , we define a Galois insertion of A into E by

α(I) = {f(a1, . . . , an)
.
= a | f(t1, . . . , tn)

.
= t ∈ I

for all t1 ∈ τ(a1), . . . , tn ∈ τ(an), t ∈ τ(a)}
γ(A) = {f(t1, . . . , tn)

.
= t | f(a1, . . . , an)

.
= a ∈ A,

t1 ∈ τ(a1), . . . , tn ∈ τ(an), t ∈ τ(a)}

The theory of abstract interpretation shows that an optimal
abstract version TαR,M : A → A of TR,M can be defined
by TαR,M = α ◦ TR,M ◦ γ. In general, weaker abstract
transformations are sufficient to ensure the correctness of
abstract interpretation, i.e., if there is a continuous mapping
Tα : A→ A with α ◦ TR,M ◦ γ v Tα, then the least fixpoint
(lfp) of TR,M is correctly approximated by the least fixpoint
of Tα, i.e., CR,M v γ(lfp(Tα)).

In order to define a mapping Tα for a specific abstract
domain AC, one could try to follow the definition of TR,M
and replace the operations on concrete terms, like pattern
matching for rule application or eval by corresponding ab-
stract versions. In particular, the following abstract values
and operations are sufficient to define a mapping Tα:

1. Abstract bottom element ⊥α with ⊥ ∈ τ(⊥α)

2. Abstract variable >α with τ(>α) = T (C⊥,X)

3. Abstract constructor application cα : ACn → AC for
each n-ary constructor c such that τ(cα(a1, . . . , an)) ⊇
{c(t1, . . . , tn) | ti ∈ τ(ai), i = 1 . . . , n}

4. Abstract matching matchα : T (C,X), AC → Sub(AC) ∪
{fail} that approximates the concrete matching of linear
constructor terms, where Sub(AC) denotes the set of
all abstract substitutions that are mappings from X into
abstract values from AC with a finite domain.

The abstract bottom element is necessary when introducing
unknown values during a fixpoint computation. The abstract
variable is necessary for free variables occurring in a rewrite
rule. In a concrete computation, such free variables are in-
stantiated to all possible partial constructor terms (compare
the definition of [R]⊥) so that we need an element in the ab-
stract domain to capture the set of these values.

Based on these abstract entities, the definition of an
abstract version TαR,M : A → A of TR,M is straightforward
by abstracting each base operation. First, we define the
abstract initial equations Mα

⊥ for the set M of main calls
by (the abstract evaluation of terms evalα∅ will be defined
below)

Mα
⊥ = {f(evalα∅(∅, t1), . . . , evalα∅(∅, tn))

.
= ⊥α |

f(t1, . . . , tn) ∈M}

We define TαR,M for all I ∈ A as follows (here we use
a straightforward extension of matchα where we apply it
to (abstract) constructor terms wrapped with a top-level

operation symbol):

TαR,M(I) =

Mα
⊥ ∪ {s

.
= a | s .

= t ∈ I, l→ r ∈ R,
matchα(l, s) = σ 6= fail, a ∈ evalαI (σ, r)}

∪ {f(a1, . . . , an)
.
= ⊥α | s .

= t ∈ I, l→ r ∈ R,
matchα(l, s) = σ 6= fail,
p ∈ FPos(r) with r|p = f(t1, . . . , tn),
ai ∈ evalαI (σ, ti), i = 1, . . . , n}

To distinguish between variables occurring in a rule’s left-
hand side and extra variables, we pass the abstract substi-
tution of the rule matching to the abstract evaluation of a
(concrete) term which is defined by

evalαI (σ, x) = {σ(x)} if x ∈ Dom(σ)

evalαI (σ, x) = {>α} if x 6∈ Dom(σ)

evalαI (σ, c(t1, . . . , tn)) = {cα(a1, . . . , an) | ai ∈ evalαI (σ, ti),
i = 1, . . . , n}

evalαI (σ, f(t1, . . . , tn)) = {⊥α} ∪ {a | ai ∈ evalαI (σ, ti),
i = 1, . . . , n,
f(a1, . . . , an)

.
= a ∈ I}

Note that we abstract extra variables by >α, i.e., the set
of all constructor terms. One can have the impression that
this is a weak approximation, since many implementations
of functional logic languages (e.g., based on needed narrow-
ing (Antoy et al. 2000)) instantiate such variables only to
those constructor terms that can be unified with the left-
hand side of some rule. However, it has been shown (Antoy
and Hanus 2006) that this is equivalent to a demand-driven
instantiation to all constructor terms and, actually, there are
implementations where extra variables are replaced by oper-
ations that nondeterministically evaluate to all constructor
terms (Braßel and Huch 2007a). Therefore, our abstraction
is reasonable and makes the analysis less dependent on par-
ticular implementation strategies.

In the next section, we show the application of this
abstract interpretation framework with a specific abstract
domain.

5. Abstract Interpretation with
Depth-bounded Terms

An interesting finite abstraction of an infinite set of con-
structor terms are sets of terms up to a particular depth k,
e.g., as already used in the abstract diagnosis of functional
programs (Alpuente et al. 2002) or in the abstraction of
term rewriting systems (Bert and Echahed 1995; Bert et al.
1993). Although this domain is useful in practice only for
depth k = 1 (due to its quickly growing size for k > 1), we
present the general case since we use it also with k > 1 in
our initial experiments (see below). This domain is discussed
here to provide a concrete application of our analysis frame-
work. The application of our framework with other more
sophisticated domains is left for future work.

In the domain of depth-bounded terms, subterms that
exceed the given depth k are replaced by the specific con-
stant > that represents any term, i.e., the abstract domain
of depth-k terms is the set AC = T (C⊥ ∪ {>},∅) together

with the concretization function

τ(⊥) = {⊥}
τ(>) = T (C⊥,X)

τ(c(t1, . . . , tn)) = {c(t′1, . . . , t′n) | t′i ∈ τ(ti), i = 1, . . . , n}

Furthermore, the abstract entities according to the previous
section are defined as follows:

1. Abstract bottom element: ⊥α = ⊥
2. Abstract variable: >α = >
3. Abstract constructor application:

cα(t1, . . . , tn) = cutk(c(t1, . . . , tn))

where the cut operation cutk is defined by

cutk(⊥) = ⊥
cut0(t) = > if t 6= ⊥

cutk(c(t1, . . . , tn)) = c(cutk−1(t1), . . . , cutk−1(tn))
if k > 0

4. Abstract matching of linear constructor terms against
depth-k terms:

matchα(x, t) = {x 7→ t}
matchα(c(t1, . . . , tn),⊥) = fail

matchα(c(t1, . . . , tn),>) =
{x 7→ > | x ∈ Var(c(t1, . . . , tn)}

matchα(c(· · ·), d(· · ·)) = fail if c 6= d

matchα(c(t1, . . . , tn), c(s1, . . . , sn)) =8><>:
σ1 ◦ · · · ◦ σn if matchα(ti, si) = σi

σi 6= fail, i = 1, . . . , n

fail otherwise

As shown in Section 4, these definitions are sufficient to de-
fine a transformation on A whose least fixpoint approximates
all concrete computations. Since the abstract domain is fi-
nite, the abstract least fixpoint can be computed in a finite
number of steps.

Example 5.1. Consider the program and main call of
Example 3.6. With a depth bound of 3, our abstract se-
mantics computes exactly the same fixpoint as shown in
Example 3.6. With a depth bound of 1 (i.e., each term is
abstracted to its top-level constructor), the following fixpoint
is computed:

{add(⊥,⊥)
.
= ⊥,

add(0, 0)
.
= ⊥,

add(0, 0)
.
= 0,

add(S(>), S(>))
.
= ⊥,

add(S(>), S(>))
.
= S(⊥),

add(S(>), S(>))
.
= S(>),

add(>, S(>))
.
= ⊥,

add(>, S(>))
.
= S(⊥),

add(>, S(>))
.
= S(>),

coin
.
= ⊥,

coin
.
= 0,

coin
.
= S(>),

double(⊥)
.
= ⊥,

double(0)
.
= ⊥,

double(0)
.
= 0,

double(S(>))
.
= ⊥,

double(S(>))
.
= S(⊥),

double(S(>))
.
= S(>),

main
.
= ⊥,

main
.
= 0,

main
.
= S(⊥),

main
.
= S(>)}

In this example, the computed abstract information is not
very useful. More interesting examples are situations where
one has not the complete concrete information available at
analysis time. This is the case when unknown values, e.g.,
logic variables are present. For instance, consider the rule

main→ add(x, add(y, S(z)))

where x, y, z are extra variables. With a depth bound of 1,
our abstract semantics computes the fixpoint as follows for
the set of main calls {main}:
T0 = ∅
T1 = {main .

= ⊥}
T2 = T1 ∪ {add(>,⊥)

.
= ⊥, add(>, S(>))

.
= ⊥}

T3 = T2 ∪ {add(>,⊥)
.
= S(⊥), add(>, S(>))

.
= S(⊥),

add(>, S(>))
.
= S(>)}

T4 = T3 ∪ {add(>,⊥)
.
= S(>), add(>, S(⊥))

.
= ⊥,

main
.
= S(⊥),main

.
= S(>)}

T5 = T4 ∪ {add(>, S(⊥))
.
= S(⊥)}

T6 = T5 ∪ {add(>, S(⊥))
.
= S(>)}

T7 = T6

Thus, the fixpoint contains the equation main
.
= S(>) which

shows that the result of evaluating the main call is always
headed by the constructor S, i.e., it is a positive number.

As one can see in these examples, the abstract semantics
contains many elements where one is less evaluated than
the other. For instance, the previous example contains the
elements

add(>,⊥)
.
= ⊥

add(>, S(>))
.
= ⊥

add(>, S(>))
.
= S(>)

where the first two contain less information than the last
element. This is due to the fact that we do not know at
analysis time how far a function call will be evaluated dur-
ing run time. Since more elements in the abstract seman-
tics require more computation and one is usually interested
in more precise values for call patterns, it is reasonable to
transfer the approximation ordering of Definition 2.2 also to
abstract values, i.e., compute only the maximal elements of
the abstract semantics and remove smaller elements (e.g.,
the first two elements above) during the fixpoint computa-
tion. The positive effect of this improvement will be shown
in the practical evaluation below.

As a further example, consider the function

f(0) → 0
f(S(x)) → f(f(x))

from (Bert et al. 1993). With a depth bound of 1 and the
set of main calls {f(x)}, the least fixpoint of our abstract

semantics contains the equation f(>)
.
= 0 indicating that f

is a constant function.
The final example in this section includes nondeterminis-

tic operations as well as extra variables. The operation half
(taken from (Antoy 1997)) is nondeterministic due to two
possible roundings of odd numbers, and the main operation
checks whether doubling a half of some natural number is
one (where double is defined as above):

half (0) → 0
half (S(0)) → 0
half (S(0)) → S(0)

half (S(S(x))) → S(half (x))

isOne(0) → False
isOne(S(0)) → True

isOne(S(S(x))) → False

main → isOne(double(half (x))

With a depth bound of 2, our analysis computes a fixpoint
with main

.
= False as the only maximal equation for main.

Thus, the soundness of our analysis implies that doubling a
half of a natural is always different from one. Note that the
consideration of a call-time choice semantics is relevant here
since main might reduce to True w.r.t. a traditional term
rewriting semantics.

Although our semantics is designed to compute call
patterns w.r.t. some main calls, the examples show that
we can also use our semantics to approximate the com-
plete input/output relation for all functions in the sense of
(Alpuente et al. 2002): we just have to put an initial call of
the form f(x1, . . . , xn) (where the arguments xi are pairwise
distinct variables) for each n-ary function f into the set of
main calls.

6. Extensions for Application Programs
Our analysis presented so far is based on programs described
by first-order constructor-based term rewriting systems. In
order to apply our analysis to realistic functional logic pro-
grams, we have to support two additional concepts appar-
ent in modern functional logic languages like Curry (Hanus
1997, 2006): higher-order functions and primitive opera-
tions. This will be discussed in this section.

6.1 Higher-order Features

Higher-order features of functional (logic) languages can
be supported through a transformation into first-order pro-
grams by defining a predicate apply that implements the ap-
plication of an arbitrary function occurring in the program
to an expression. This technique is also known as “defunc-
tionalization” (Reynolds 1972) (and conceptually also used
in logic languages (Warren 1982)) and enough to support the
higher-order features of current functional (logic) languages
(e.g., lambda abstractions can be replaced by new function
definitions). For instance, consider a program with the op-
erations add and double of Example 2.1 and the following
rules (here we use the Curry/Haskell notation for lists):

map(f, []) → []
map(f, x : xs) → apply(f, x) : map(f, xs)

main(xs) → map(apply(add, S(0)),map(double, xs))

map is the standard higher-order function that applies a
function to each element of a list. The application operation
is defined by the following rules that can be automatically
derived from the program:

apply(add, x1) → add(x1)
apply(add(x1), x2) → add(x1, x2)

apply(double, x1) → double(x1)
apply(map, x1) → map(x1)

apply(map(x1), x2) → map(x1, x2)
apply(main, x1) → main(x1)

Thus, for each n-ary function, n corresponding apply rules
are defined. After adding the apply rules to the program, we
obtain a standard program, i.e., a first-order term rewriting
system4 so that we can apply our analysis to it. For instance,
a depth-k analysis with a depth bound of 2 computes the
following least fixpoint:

A = {main .
= S(>) : (> : >), main

.
= S(>) : [], . . .}

Thus, one can infer that the first element of the computed
list is always a positive integer. Furthermore, the equations
for apply contained in A reflect the functions that are used
in a higher-order manner, e.g., all apply equations contained
in A have left-hand sides of the form apply(add(S(>)), . . .)
or apply(double, . . .) so that we know that only the second
and third rule defining apply are used during run time.
This information could be used to optimize the code of
programs based on the defunctionalization technique, e.g., as
in Prolog-based implementations (Antoy and Hanus 2000).

6.2 Primitive Operations

Real world programs contain various calls to primitive oper-
ations that are not explicitly defined by rewrite rules, e.g.,
arithmetic operations on integers or floats, I/O operations
etc. Although some of these operations can be conceptually
explained with infinite sets of rewrite rules (Bonnier and
Maluszynski 1988), we need a constructive method to deal
with such operations at analysis time. Since we only need
to approximate the meaning of such operations, we can ap-
proximate an n-ary primitive operation f by the following
rewrite rule:

f(x1, . . . , xn)→ x

(where x1, . . . , xn, x are pairwise different variables). This
rule specifies that the result of a call to the primitive func-
tion is arbitrary. Of course, one could add more precise de-
scriptions for specific functions and abstract domains, but
this “least specific” description is always sufficient, in par-
ticular, for input operations where one does not know the
user input at analysis time.

I/O operations can be treated in declarative languages
by the well-known monadic approach where I/O actions are
considered as transformations on the outside world (Wadler
1997). Thus, each I/O action takes a state of the world and
returns a pair consisting of the desired result value and a
new state of the world. For instance, the operation getChar
that reads and returns the next character from the keyboard
takes a state of the world and returns a character from the

4 Note that n-ary functions applied to less than n arguments
are considered as constructors so that the resulting program is
constructor-based.

Program Rules Depth FP Size MFP Size Speedup MFP Time
k (# equations) (# equations) (FP time / MFP time) (ms)

addadd 3 1 12 2 5.0 4
addlast 7 2 20 7 4.5 4
bertconc 3 1 12 2 15.0 1
bertf0 3 1 7 3 8.0 1
doublecoin 6 1 22 9 2.7 4
family 29 1 43 29 2.2 40
halfdouble 11 2 60 15 6.9 12
head 12 1 90 19 14.3 28
mapadddouble 12 2 424 35 102.4 72
readfile 34 8 160 17 28.5 16
risers 9 1 13 9 2.3 4
tails 15 1 31 7 13.3 4

Table 1. Analysis of example programs

input and a state of the world. Thus, we can approximate
this operation by the following rule (where we ignore the
fact that the state of the world is usually changed):

getChar(w)→ (c, w)

The basic sequence combinator on I/O actions is usually
called bind: bind(a, f, w) executes action a on the given
world w and applies the action function f to the result of the
first action. Since each action returns a value together with
a new state of the world, we use an auxiliary operation bind′

to decompose these items and apply the action function f ,
i.e., we define these operations by the following rules:

bind(a, f, w) → bind′(apply(a,w), f)

bind′((r, w), f) → apply(apply(f, r), w)

With this representation of primitive operations, we can ap-
ply our analysis also to programs with I/O operations. For
instance, consider the following program where themain call
reads a character from standard input and returns the con-
tents of a file with this name stored in the directory “/tmp”
(note that strings are represented as lists of characters):

conc([], ys) → ys
conc(x : xs, ys) → x : conc(xs, ys)

tmpDir → ’/’ : ’t’ : ’m’ : ’p’ : ’/’ : []

readTmpFile(c) → readF ile(conc(tmpDir, c : []))

main(w) → bind(getChar, readTmpFile, w)

where readF ile is a primitive to read the contents of a
file. Applying a depth-k analysis with bound 8 to this
program returns the following abstract equation for the
primitive readF ile (all other equations for readF ile contain
less information):

readF ile(’/’ : ’t’ : ’m’ : ’p’ : ’/’ : > : [],>)
.
= · · ·

Thus, we can infer that this program only accesses files in
the directory /tmp, as expected. Of course, verifying more
interesting safety properties requires other sophisticated do-
mains, e.g., regular types (Dart and Zobel 1992).

6.3 Practical Evaluation

In order to provide some data about the practical applica-
tion of our framework, we have implemented the proposed

fixpoint analysis as a prototype system. The analyzer is
generic w.r.t. the abstract domain, i.e., the operations im-
plementing the abstract domain as described in Section 4 are
passed to the generic fixpoint computation. The analyzer is
implemented in Curry in a straightforward way where the
depth-bounded term analysis, as described in Section 5, is
used as an abstract domain. It is not very efficient but a
high-level implementation to compare the analysis of sim-
ple programs. The analyzer is executed with the Curry im-
plementation KiCS (Braßel and Huch 2007b) that compiles
Curry programs into Haskell programs executed by the Glas-
gow Haskell Compiler.

Table 1 contains, for various example programs, the num-
ber of rewrite rules (including rules for primitive operations),
the depth bound used for the analysis, the number of equa-
tions of the least fixpoint (FP Size) and the least fixpoint
containing only maximal elements (MFP Size) as well as the
speedup obtained by computing only maximal elements in-
stead of all elements of the abstract semantics (see discussion
in Section 5 above), and the time in milliseconds to compute
the fixpoint of maximal elements (note that values lower
than 10 ms are not quite accurate). Timings were done on a
3.0 Ghz Linux PC (AMD Athlon). addadd is the double call
to add of Example 5.1, addlast concatenates a two-element
list at the end of an arbitrary list and checks whether the
resulting list is a one-element list, bertf0 and bertconc are
the two examples of (Bert et al. 1993), doublecoin was pre-
sented in Example 3.6, family is a family database rep-
resented by nondeterministic operations where a recursive
ancestor function is evaluated, halfdouble is the final ex-
ample of Section 5, head is an example to verify the cor-
rect use of the partially defined function head in various
situations, mapadddouble and readfile are the examples of
Sections 6.1 and 6.2, respectively, and risers and tails are
the examples of (Mitchell and Runciman 2007) to verify safe
pattern matching in Haskell by static analysis. All programs
are available with the implementation of the prototype.

7. Conclusions and Related Work
We have presented an approach to analyze call patterns and
their computed results occurring in functional logic compu-
tations. For this purpose, we have introduced a new fixpoint

characterization of functional logic computations w.r.t. a set
of main calls. An approximation of the concrete behavior
can be obtained by approximating the operations used to
compute this fixpoint. If the abstract domain of this ap-
proximation is finite, the complete approximation can be
computed in a finite amount of time. We have demonstrated
the application of this idea by a depth-bounded term anal-
ysis. Furthermore, it has been shown how to cover higher-
order features and primitive operations in order to approx-
imate realistic programs. The analysis results can be used
to optimize programs (e.g., for partial evaluation), to catch
pattern-match errors at compile time, or to verify safety
conditions of programs. We have implemented this fixpoint
analysis as a prototype system which is able to compute all
examples in this paper.

Although our approach is the first one to approximate
call patterns in functional logic computations, there are var-
ious related works. We have already mentioned the works on
minimal function graphs (e.g., (Gallagher and Bruynooghe
1991; Jones and Mycroft 1986; Winsborough 1992)) that
have similar aims as this paper, i.e., the computation of
function or predicate calls and their corresponding results.
Jones and Mycroft (1986) introduced this notion for strict
functional languages which has been also applied to logic
programs (e.g., (Gallagher and Bruynooghe 1991; Winsbor-
ough 1992)) or extended to lazy functional programs (Jones
and Andersen 2007). Some works proposed rather general
frameworks to compute minimal function graphs (Gallagher
and Bruynooghe 1991), but the application of this idea to a
concrete programming language must take into account the
details of its operational semantics. In the case of modern
functional logic languages, the combination of nondetermin-
istic and non-strict computations is essential. Although non-
deterministic computations are handled by logic programs
and non-strict computations by functional programs, the
combination of both requires a carefully designed calculus
(CRWL (González-Moreno et al. 1999)). Therefore, one can
not simply combine the works in both areas (Gallagher and
Bruynooghe 1991; Jones and Andersen 2007; Winsborough
1992) so that we defined an appropriate fixpoint character-
ization of the intermediate states of CRWL computations
starting from a set of initial calls.

Bert et al. (1993) proposed abstract rewriting (which was
extended in (Bert and Echahed 1995) to conditional term
rewriting systems). The objective of abstract rewriting is the
approximation of the top-level constructors of term evalu-
ations in order to improve E-unification. For this purpose,
they associate to a set of rewrite rules an abstract rewrite
system that is able to compute finite approximations of top-
level constructors. However, their framework is restricted
to constructor-based, confluent and terminating rewrite sys-
tems without partial functions and, therefore, too limited for
functional logic programming.

Alpuente et al. (2002) presented a fixpoint characteri-
zation of the input/output relation of functions defined by
term rewriting systems in order to detect program errors.
Their approach is not goal-oriented, i.e., does not approxi-
mate call patterns, and uses the classical notion of rewrit-
ing instead of a rewrite relation suitable for modern func-
tional logic languages with non-strict, nondeterministic op-
erations. A fixpoint characterization of functional logic pro-

grams based on CRWL was presented in (Molina-Bravo and
Pimentel 1997). Although it covers the input/output rela-
tion of functions similarly to our semantics, it is not goal-
oriented and, thus, not suitable to approximate call patterns.

Albert et al. (2005) proposed a method to verify safety
properties of logic programs in the spirit of proof-carrying
code. Their method derives call and success patterns w.r.t.
sophisticated abstract domains. Since they analyze logic
programs, their analysis is based on and/or graphs (as well
as similar methods for logic programs, e.g., (Bruynooghe
1991)). Such a method is not applicable to functional logic
programs due their demand-driven evaluation strategy.

A different method with similar goals has been presented
by Mitchell and Runciman (2007). In order to check a
Haskell program for the absence of pattern-match errors due
to functions with incomplete patterns in their definitions,
they propose a static checker that extracts constraints from
pattern-based definitions and tries to solve them by sim-
plification and fixpoint iteration. Since they do not use the
framework of abstract interpretation, the correctness of their
approach is not proved. Furthermore, they consider only the
restricted class of purely functional programs rather than
general functional logic programs as in this paper. However,
it is interesting to note that such kinds of pattern-match
errors can be also easily detected by our framework. For
instance, one can complete all partial function definitions
by rules for the missing patterns that rewrite to some error
function. For instance, if the function head that extracts the
first element of a list is defined by

head(x : xs) → x

one can complete its definition by adding the rule

head([]) → matchError

If our analysis shows that the function matchError will
not be called, i.e., there is no equation of the form
matchError

.
= · · · in the least fixpoint, the correctness

of our framework ensures the absence pattern-match er-
rors. Actually, we have successfully applied our analysis with
depth-bounded terms to the examples given in (Mitchell and
Runciman 2007), where it was sufficient to use a depth of
k = 1 (see Table 1).

For future work, we intend to implement the fixpoint
analysis more efficiently in order to apply it to larger pro-
grams. Furthermore, we want to apply this analysis with
other domains that could be more suitable to verify safety
properties of programs.

References
E. Albert, G. Puebla, and M. Hermenegildo. An abstract

interpretation-based approach to mobile code safety. Elec-
tronic Notes in Theoretical Computer Science, 132:113–
129, 2005.

M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and
S. Lucas. Abstract diagnosis of functional programs. In
Proc. of the 12th Int’l Workshop on Logic-Based Program
Synthesis and Transformation (LOPSTR 2002), pages 1–
16. Springer LNCS 2664, 2002.

S. Antoy. Optimal non-deterministic functional logic com-
putations. In Proc. International Conference on Algebraic

and Logic Programming (ALP’97), pages 16–30. Springer
LNCS 1298, 1997.

S. Antoy and M. Hanus. Compiling multi-paradigm declar-
ative programs into Prolog. In Proc. International Work-
shop on Frontiers of Combining Systems (FroCoS’2000),
pages 171–185. Springer LNCS 1794, 2000.

S. Antoy and M. Hanus. Overlapping rules and logic vari-
ables in functional logic programs. In Proceedings of
the 22nd International Conference on Logic Programming
(ICLP 2006), pages 87–101. Springer LNCS 4079, 2006.

S. Antoy, R. Echahed, and M. Hanus. A needed narrowing
strategy. Journal of the ACM, 47(4):776–822, 2000.

F. Baader and T. Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

D. Bert and R. Echahed. Abstraction of conditional
term rewriting systems. In Proc. of the 1995 Inter-
national Logic Programming Symposium, pages 147–161.
MIT Press, 1995.

D. Bert, R. Echahed, and M. Østvold. Abstract rewriting. In
Proc. Third International Workshop on Static Analysis,
pages 178–192. Springer LNCS 724, 1993.

S. Bonnier and J. Maluszynski. Towards a clean amalga-
mation of logic programs with external procedures. In
Proc. 5th Conference on Logic Programming & 5th Sym-
posium on Logic Programming (Seattle), pages 311–326.
MIT Press, 1988.

B. Braßel and F. Huch. On a tighter integration of functional
and logic programming. In Proc. APLAS 2007, pages
122–138. Springer LNCS 4807, 2007a.

B. Braßel and F. Huch. The Kiel Curry system KiCS.
In Proc. 17th International Conference on Applications
of Declarative Programming and Knowledge Management
(INAP 2007) and 21st Workshop on (Constraint) Logic
Programming (WLP 2007), pages 215–223. Technical Re-
port 434, University of Würzburg, 2007b.

M. Bruynooghe. A practical framework for the abstract in-
terpretation of logic programs. Journal of Logic Program-
ming (10), pages 91–124, 1991.

J.M. Cleva, J. Leach, and F.J. López-Fraguas. A logic
programming approach to the verification of functional-
logic programs. In Proceedings of the 6th International
ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, pages 9–19. ACM Press, 2004.

P. Cousot and R. Cousot. Abstract interpretation: A uni-
fied lattice model for static analysis of programs by con-
struction of approximation of fixpoints. In Proc. of the
4th ACM Symposium on Principles of Programming Lan-
guages, pages 238–252, 1977.

P.W. Dart and J. Zobel. A regular type language for
logic programs. In F. Pfenning, editor, Types in Logic
Programming, pages 157–187. MIT Press, 1992.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In
J. van Leeuwen, editor, Handbook of Theoretical Com-
puter Science, Vol. B, pages 243–320. Elsevier, 1990.

R. Echahed and J.-C. Janodet. Admissible graph rewrit-
ing and narrowing. In Proc. Joint International Con-

ference and Symposium on Logic Programming (JIC-
SLP’98), pages 325–340, 1998.

J.P. Gallagher and M. Bruynooghe. The derivation of an
algorithm for program specialisation. New Generation
Computing, 9(3/4):305–334, 1991.

J.C. González-Moreno, M.T. Hortalá-González, F.J. López-
Fraguas, and M. Rodŕıguez-Artalejo. An approach to
declarative programming based on a rewriting logic. Jour-
nal of Logic Programming, 40:47–87, 1999.

M. Hanus. Multi-paradigm declarative languages. In Pro-
ceedings of the International Conference on Logic Pro-
gramming (ICLP 2007), pages 45–75. Springer LNCS
4670, 2007.

M. Hanus. Call pattern analysis for functional logic
programs. Technical report 0803, Christian-Albrechts-
Universität Kiel, 2008.

M. Hanus. The integration of functions into logic program-
ming: From theory to practice. Journal of Logic Program-
ming, 19&20:583–628, 1994.

M. Hanus. A unified computation model for functional and
logic programming. In Proc. of the 24th ACM Symposium
on Principles of Programming Languages (Paris), pages
80–93, 1997.

M. Hanus (ed.). Curry: An integrated func-
tional logic language (vers. 0.8.2). Available at
http://www.informatik.uni-kiel.de/~curry, 2006.

N. Jones and N. Andersen. Flow analysis of lazy higher order
functional programs. Theoretical Computer Science, 375
(1-3):120–136, 2007.

N.D. Jones and A. Mycroft. Data flow analysis of applicative
programs using minimal function graphs. In Proc. 13th
ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 296–306, 1986.

F. López-Fraguas and J. Sánchez-Hernández. TOY: A mul-
tiparadigm declarative system. In Proc. of RTA’99, pages
244–247. Springer LNCS 1631, 1999.

F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-
Hernández. A simple rewrite notion for call-time choice
semantics. In Proceedings of the 9th ACM SIGPLAN
International Conference on Principles and Practice of
Declarative Programming (PPDP’07), pages 197–208.
ACM Press, 2007.

N. Mitchell and C. Runciman. A static checker for safe
pattern matching in Haskell. In Trends in Functional
Programming, volume 6, pages 15–30. Intellect, 2007.

J.M. Molina-Bravo and E. Pimentel. Modularity in
functional-logic programming. In Proc. of the Four-
teenth International Conference on Logic Programming
(ICLP’97), pages 183–197. MIT Press, 1997.

F. Nielson, H.R. Nielson, and C. Hankin. Principles of
Program Analysis. Springer, 1999.

S. Peyton Jones. Call-pattern specialization for Haskell
programs. In Proc. of the 12th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP
2007), pages 327–337, 2007.

J.C. Reynolds. Definitional interpreters for higher-order
programming languages. In Proceedings of the ACM
Annual Conference, pages 717–740. ACM Press, 1972.

P. Wadler. How to declare an imperative. ACM Computing
Surveys, 29(3):240–263, 1997.

D.H.D. Warren. Higher-order extensions to Prolog: are they
needed? In Machine Intelligence 10, pages 441–454, 1982.

W. Winsborough. Multiple specialization using minimal-
function graph semantics. Journal of Logic Programming,
13(2&3):259–290, 1992.

