
A Debugging Model for Fun
tional Logi

Programs

?

Mi
hael Hanus

1

and Berthold Josephs

2

1

Max-Plan
k-Institut f�ur Informatik, Im Stadtwald, D-66123 Saarbr�u
ken, Germany

e-mail: mi
hael�mpi-sb.mpg.de

2

Informatik V, Universit�at Dortmund, D-44221 Dortmund, Germany

In Pro
. Fifth International Symposium on Programming Language Implementation

and Logi
 Programming, Tallinn (Estonia), pp. 28{43, Springer LNCS 714, 1993

Abstra
t. This paper presents a box-oriented debugging model for the fun
-

tional logi
 language ALF. Due to the sophisti
ated operational semanti
s of

ALF whi
h is based on innermost basi
 narrowing with simpli�
ation, the de-

bugger must re
e
t the appli
ation of the di�erent
omputation rules during

program exe
ution. Hen
e our debugging model in
ludes not only one box

type as in Byrd's debugging model for logi
 programs but several di�erent

kinds of boxes
orresponding to the various
omputation rules of the fun
-

tional logi
 language (narrowing, simpli�
ation et
.). Moreover, additional

box types are introdu
ed in order to allow skips over (sometimes) uninter-

esting program parts like proofs of the
ondition in a
onditional equation.

Sin
e ALF is a genuine amalgamation of fun
tional and logi
 languages, our

debugging model subsumes operational aspe
ts of both kinds of languages.

As a
onsequen
e, it
an be also used for pure logi
 languages, pure fun
-

tional languages with eager evaluation, or fun
tional logi
 languages with a

less sophisti
ated operational semanti
s like SLOG or eager BABEL.

1 Introdu
tion

The interest in the amalgamation of fun
tional and logi
 programming languages

has been in
reased during the last years (see [5℄ for a survey). Su
h integrated lan-

guages have at least two advantages. In
omparison with pure fun
tional languages,

fun
tional logi
 languages have more expressive power due to the availability of fea-

tures like fun
tion inversion, partial data stru
tures and logi
 variables [25℄. In
om-

parison with pure logi
 languages, fun
tional logi
 languages have a more eÆ
ient

operational behavior sin
e fun
tions allow deterministi
 evaluations if arguments

are suÆ
iently instantiated [13℄. Re
ently, fun
tional logi
 languages be
ame rele-

vant for pra
ti
al appli
ations be
ause eÆ
ient implementations have been developed

[1, 4, 12, 19, 20, 21, 28℄. Therefore there is a need for debugging tools for su
h kind

of languages. Sin
e the operational semanti
s of these languages is di�erent from

pure logi
 languages, we
annot easily adopt an existing debugging framework from

?

Please address
orresponden
e to the �rst author. The resear
h des
ribed in this paper

was partially funded by the German Ministry for Resear
h and Te
hnology (BMFT)

under grant ITS 9103. The responsibility for the
ontents of this publi
ation lies with

the authors.

logi
 programming. Hen
e we develop a new debugging model for ALF, a fun
tional

logi
 language whi
h
ombines the nondeterministi

omputation prin
iple of logi

programming (resolution) with the deterministi

omputation prin
iple of fun
tional

programming (redu
tion). Our debugging model is based on Byrd's box model for

logi
 programs [3℄ but re�ned in two dire
tions. Firstly, the four ports of Byrd's

model are enri
hed by new ports in order to allow the observation of the head uni�-

ation [8, 24, 26℄ whi
h is very important in a language whi
h distinguishes between

mat
hing and uni�
ation. Se
ondly, new box types are introdu
ed in order to re
e
t

the di�erent
omputation rules of the fun
tional logi
 language.

In the next se
tion we give a des
ription of ALF's operational semanti
s. After a

short outline of the standard debugging model for pure logi
 programs in Se
tion 3

we present in Se
tion 4 the new debugging model
orresponding to ALF's exe
u-

tion prin
iples. Comments to the
urrent implementation are given in Se
tion 5 and

Se
tion 6 dis
usses appli
ations of the debugging model.

2 The exe
ution prin
iples of ALF

Di�erent exe
ution prin
iples have been proposed for fun
tional logi
 languages. A

sound and
omplete operational semanti
s is usually based on narrowing [9, 17℄. Sin
e

pure narrowing is extremely nondeterministi
 and
reates a huge sear
h spa
e, re�ned

narrowing strategies are used in fun
tional logi
 languages. For instan
e, SLOG [10℄

is based on innermost narrowing, K-LEAF [1℄ and BABEL [20℄ use a lazy strategy,

and ALF [11, 12℄
ombines innermost basi
 narrowing with simpli�
ation between

narrowing steps. Sin
e the latter strategy prefers deterministi

omputations, it
an

be shown that ALF programs are more eÆ
iently exe
uted than equivalent logi

programs [13℄. Therefore we are interested in this strategy and we will develop a

debugger for su
h kind of programs. However, we remark that this debugging model

is general enough to be appli
able to other fun
tional logi
 languages with an eager

evaluation prin
iple (
f. Se
tion 6.2). Before presenting the debugging model we

des
ribe ALF's operational semanti
s in more detail.

ALF is a
onstru
tor-based language, i.e., the user must spe
ify for ea
h symbol

whether it is a
onstru
tor or a de�ned fun
tion. Constru
tors must not be the

outermost symbol of the left-hand side of a de�ning equation, i.e.,
onstru
tor terms

are always irredu
ible. Hen
e
onstru
tors are used to build data types, and de�ned

fun
tions are operations on these data types.

An ALF program is a set of
onditional equations.

3

Equations de�ne fun
tions

and are used in two ways. In a narrowing step an equation is applied to
ompute

3

ALF has more features than presented in this paper, e.g., a module system with param-

eterization, a type system based on many-sorted logi
, predi
ates whi
h are resolved by

resolution et
. [11℄. We omit these features in this paper be
ause they have no interesting

in
uen
e on the debugging model (note that predi
ates
an also be
onsidered as Boolean

fun
tions).

2

module lists.

datatype elem = f a ; b ;
 g.

datatype list = f '.'(elem,list) ; [℄ g.

fun
 append: list, list -> list.

rules.

append([℄,L) = L.

append([E|R℄,L) = [E|append(R,L)℄.

end lists.

Figure 1. ALF program for
on
atenating lists

a solution of a goal (i.e., variables in the goal may be bound to terms), whereas in

a rewrite step an equation is applied to simplify a goal (i.e., without binding goal

variables). Therefore we distinguish between narrowing rules (equations applied in

narrowing steps) and rewrite rules (equations applied in rewrite steps). Usually, all

onditional equations of an ALF program are used as narrowing and rewrite rules,

but it is also possible to spe
ify additional rules whi
h are only used for rewriting.

Figure 1 shows an ALF module whi
h de�nes lists and a
on
atenation fun
tion

on lists. a, b and
 are the
onstru
tors of the data type elem and lists are de�ned

as in Prolog. The two equations (with empty
onditions) in this module de�ne the

fun
tion append for
on
atenating two lists.

The de
larative semanti
s of ALF is the well-known Horn
lause logi
 with equal-

ity as to be found in [23℄. The operational semanti
s of ALF is based on innermost

basi
 narrowing with normalization. In the following des
ription of this operational

semanti
s we distinguish two kinds of nondeterminism by the keywords \don't know"

and \don't
are": don't know indi
ates a bran
hing point in the
omputation where

all alternatives must be explored (by a ba
ktra
king strategy in our implementation);

don't
are indi
ates a bran
hing point where it is suÆ
ient to sele
t one alternative

and disregard all other possibilities. We represent a goal (a list of equations to be

solved) by a skeleton and an environment part [16, 22℄: the skeleton is a list of equa-

tions
omposed of terms o

urring in the original program, and the environment

is a substitution whi
h has to be applied to the equations in order to obtain the

a
tual goal. The initial goal G is represented by the pair hG; idi where id is the

identity substitution. The following s
heme des
ribes the operational semanti
s (if

� is a position in a term t, then tj

�

denotes the subterm of t at position � and t[s℄

�

denotes the term obtained by repla
ing the subterm tj

�

by s in t [6℄; � is
alled an

innermost position of t if the subterm tj

�

has a de�ned fun
tion symbol at the top

and all argument terms
onsist of variables and
onstru
tors). Let hE

1

; : : : ; E

n

; �i

be a given goal (E

1

; : : : ; E

n

are the skeleton equations and � is the environment):

1. Sele
t don't
are a non-variable position � in E

1

and a new variant l = r C

of a rewrite rule su
h that �

0

is a substitution with �(E

1

j

�

) = �

0

(l) and the goal

hC ; �

0

i
an be derived to the empty goal without instantiating any variables

3

from �(E

1

). Then

hE

1

[�

0

(r)℄

�

; E

2

; : : : ; E

n

; �i

is the next goal derived by rewriting; go to 1. Otherwise go to 2.

2. If the two sides of equation E

1

have di�erent
onstru
tors at the same outer

position (a position not belonging to arguments of fun
tions), then the whole

goal is reje
ted, i.e., the proof fails. Otherwise go to 3.

3. Let � be the leftmost-innermost position in E

1

(if there exists no su
h position

in E

1

, go to 4). Sele
t don't know (a) or (b):

(a) Sele
t don't know a new variant l = r C of a narrowing rule su
h that

�(E

1

j

�

) and l are uni�able with most general uni�er (mgu) �

0

. Then

hC;E

1

[r℄

�

; E

2

; : : : ; E

n

; �

0

Æ �i

is the next goal derived by innermost basi
 narrowing; go to 1. Otherwise:

fail.

(b) Let x be a new variable and �

0

be the substitution fx 7! �(E

1

j

�

)g. Then

hE

1

[x℄

�

; E

2

; : : : ; E

n

; �

0

Æ �i

is the next goal derived by innermost re
e
tion; go to 3 (this
orresponds

to the elimination of an innermost redex and it is only ne
essary in the

presen
e of partially de�ned fun
tions [16℄).

4. If E

1

is the equation s = t and there is a mgu �

0

for �(s) and �(t), then

hE

2

; : : : ; E

n

; �

0

Æ �i

is the next goal derived by re
e
tion; go to 1. Otherwise: fail.

In the a
tual ALF implementation the don't
are nondeterminism during rewriting

(step 1) is implemented by an innermost strategy, i.e., rewriting is performed from

innermost to outermost positions, and the don't know nondeterminism in narrowing

steps (step 3) is implemented by a ba
ktra
king strategy as in Prolog.

This operational semanti
s may look
ompli
ated at �rst sight, but it is a
on-

sistent realization of the exe
ution prin
iple \prefer deterministi

omputations as

long as possible" (i.e., apply deterministi
 rewrite steps before nondeterministi
 nar-

rowing steps). This yields an eÆ
ient operational behavior
ompared to Prolog's

nondeterministi
 resolution prin
iple but without loosing
ompleteness as in other

eÆ
ient approa
hes to exe
ute fun
tional logi
 programs (
f. [15℄). A more detailed

dis
ussion of the
ompleteness of this operational semanti
s and the advantages of

it in
omparison to other exe
ution prin
iples
an be found in [12, 13℄. We want

to point out that ALF's operational semanti
s
an be implemented with the same

eÆ
ien
y as
urrent Prolog implementations by extending Warren's Abstra
t Ma-

hine to deal with fun
tional
omputations [12, 14℄. Moreover, the sear
h spa
e of

ALF programs may be smaller than equivalent Prolog programs due to rewriting

and reje
tion. For instan
e, the exe
ution of the following goal fails w.r.t. the list

module (
f. Figure 1):

4

append(append([a|L1℄,L2),L3) = [b|L4℄

` rewriting the innermost
all to append:

append([a|append(L1,L2)℄,L3) = [b|L4℄

` rewriting the outermost
all to append:

[a|append(append(L1,L2),L3)℄ = [b|L4℄

` reje
tion (a and b are di�erent
onstru
tors):

fail

On the other hand the equivalent (
attened) Prolog goal

append([a|L1℄,L2,L), append(L,L3,[b|L4℄)

auses an in�nite loop for any order of literals and
lauses of the Prolog program for

append. This example shows that the simpli�
ation pro
ess followed by the reje
tion

rule is essential for the improved eÆ
ien
y of ALF programs (see [13℄ for more

details).

4

Therefore a debugger must show the (su

essful) appli
ation of rewriting

and reje
tion to the programmer. This requires an extension of the standard box-

oriented debugging model for Prolog [3, 8℄ to these new
omputation rules. Before

we show su
h an extended debugging model in Se
tion 4, we will shortly review the

standard debugging model for logi
 programs in the next se
tion.

3 The standard box-oriented debugger for logi
 programs

Byrd's debugging model [3℄ has been used as the standard sour
e-level debugger in

many Prolog systems. It is based on the idea that during the
omputation pro
ess

a box of the following kind is asso
iated to ea
h literal:

�

-

�

-

literal

REDO

EXITCALL

FAIL

This box is
reated when the literal should be proved for the �rst time. The box

is entered through the CALL port. If the literal is su

essfully proved, the box is

left through the EXIT port, otherwise (if the proof fails) through the FAIL port.

If it is ne
essary to �nd an alternative proof for this literal (due to the failure of a

subsequent literal), then the box is entered again through the REDO port. Depending

on su

ess or failure of �nding an alternative proof, the box is left through the EXIT

or FAIL port. Note that the boxes have a re
ursive stru
ture: if a
lause is used for

the proof of the literal, then new boxes are
reated inside this box for ea
h literal in

the body of the
lause.

The basi
 prin
iple of this debugging model is the observability of these four

ports: the ports are the only visible points in the
omputation pro
ess, i.e., the

4

For instan
e, \generate-and-test" programs are exe
uted in ALF with a lower
omplexity

than in Prolog.

5

debugger or tra
er

5

outputs the ports together with the literal. During the debugging

pro
ess, the user
an turn o� the observability of some ports or he
an skip from

one port to the next port of the same box in order to omit unne
essary details of a

sub
omputation.

It has been
riti
ized that this four-port debugging model is too weak to explain

the
ontrol
ow of logi
 programs to the user. For instan
e, the user
annot see the

reason of a failure, i.e., it is not visible whether there are no
lauses for a literal

or the
lause heads do not unify with the literal. Therefore several re�nements of

this standard debugging model have been proposed in order to visualize the head

uni�
ation pro
ess [8, 24, 26℄. Sin
e the di�eren
e between mat
hing and uni�
ation

is important in the operational semanti
s of fun
tional logi
 languages (
ompare

de�nition of rewriting and narrowing in Se
tion 2), we will also propose su
h a

re�ned debugging model in the next se
tion.

4 A debugging model for fun
tional logi
 programs

The standard box model for Prolog is used as an interfa
e between the program

exe
ution and the programmer. Ea
h box represents the proof of a literal and the

programmer
an stop and observe the proof at the ports of a box. Moreover, he
an

set spy points on some ports and skip from one port to another in order to skip over

uninteresting details of the exe
ution. In order to provide a similar debugging model

for ALF, it is ne
essary to introdu
e new box types for the di�erent
omputation

rules (simpli�
ation, reje
tion et
.) and for the new logi
al units in a proof (e.g.,

simpli�
ation of an entire literal, proving the
ondition in a
onditional equation).

Therefore the box-oriented debugger for ALF is based on the following box types:

Literal box: In order to allow the programmer to skip over the proof of a literal

(equation), there is a box for ea
h literal as in Byrd's box model [3℄. Sin
e a literal is

proved by applying simpli�
ation, reje
tion, narrowing, and re
e
tion, a literal box

ontains four other boxes whi
h
orrespond to the ongoing
omputation w.r.t. these

rules. Hen
e the literal box has the following stru
ture (if the literal does not
ontain

any de�ned fun
tion symbol, the simpli�
ation and narrow boxes are omitted):

-

�

-

-

-

� �

- -

�

-

�

6

LITERAL

FAIL-

LITERAL

ENTER-

simpli�
ation

t

1

= t

2

reje
tion

t

0

1

= t

0

2

REDO-

LITERAL

EXIT-

LITERAL

literal: t

1

= t

2

narrow

t

0

1

= t

0

2

re
e
tion

t

00

1

= t

00

2

5

Standard Prolog debuggers show a tra
e of the program exe
ution to the user. Therefore

this part of the debugger is also
alled tra
er. Although we will des
ribe only the tra
e

omponent of our debugger, we will use the more general term \debugger" in this paper.

6

Reje
tion box: This box
orresponds to an appli
ation of the reje
tion rule to

an equation. If the equation has di�erent
onstru
tors at the same outer posi-

tion, the equation is reje
ted, otherwise not reje
ted. For instan
e, the equation

[a|append(L,[℄)℄=[b|M℄ is reje
ted while the equation append(L,[℄)=[a|M℄ is

not reje
ted. The reje
tion box has no REDO port be
ause reje
tion is a determinis-

ti
 test:

�

-

-

NOT-REJECTED

REJECTED

ENTER-REJECTION

reje
tion: t

1

= t

2

Re
e
tion box: This box
orresponds to an appli
ation of the re
e
tion rule to an

equation. If the two sides of the equation are uni�able, the box is left with su

ess,

otherwise with failure. Similarly to the reje
tion box, this box has no REDO port:

�

-

-

ENTER-REFLECTION

EXIT-REFLECTION

FAIL-REFLECTION

re
e
tion: t

1

= t

2

Simpli�
ation box: This box
orresponds to the simpli�
ation of an entire term (or

equation). It
ontains a rewrite box for ea
h fun
tion symbol in the term in leftmost-

innermost order (e.g., a simpli�
ation box for append(append([a|V℄,W),Y)
ontains

a �rst rewrite box for append([a|V℄,W) and a se
ond rewrite box for the outermost

all to append). This box has no REDO port be
ause simpli�
ation is a deterministi

pro
ess. Moreover, it has no FAIL port be
ause simpli�
ation
omputes the normal

form of a term and hen
e it is always su

essful.

-- - ---

...........

t

1

rewrite

SIMPL.

ENTER- rewrite

t

2

rewrite

t

n

EXIT-

SIMPL.

simpli�
ation: t

Note that this box is not essentially ne
essary sin
e it represents no parti
ular
om-

putation rule of the operational semanti
s. However, this box is useful to stru
ture

the entire proof pro
ess: if the programmer is not interested in the details of the

simpli�
ation pro
ess between two narrowing steps, he
an simply skip from the

ENTER-SIMPLIFICATION port to the EXIT-SIMPLIFICATION port (see also Se
tion 5).

7

Rewrite box: This box
orresponds to the appli
ation of a rewrite rule at a sub-

term. It
ontains a box for ea
h rule de�ning the fun
tion at the subterm's head

(these inner boxes are similar to the OR-boxes of the re�ned box model in [26℄).

Su
h a rule
an be applied if the left-hand side mat
hes the subterm and the
on-

dition is provable. In this
ase the subterm is repla
ed by the right-hand side and

the right-hand side is simpli�ed by
reating a rewrite box for ea
h fun
tion sym-

bol o

urring in the right-hand side (in the following �gure it is assumed that the

right-hand side
ontains only one de�ned fun
tion symbol). The
ondition box in a

rule box is omitted if the rule does not
ontain a
ondition. The FAIL-MATCH port

of a rule box is
onne
ted to the TRY-MATCH port of the subsequent rule box. But

note that the FAIL-MATCH port of the last equation is
onne
ted to the exit port

of the whole rewrite box be
ause the subterm is in normal form if no equation is

appli
able.

?

-

-

-

-

-

-

-

?

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MATCH

FAIL-

MATCH

TRY-

REWRITE

ENTER-

left-

hand

side

ondition rewrite

REWRITE

EXIT-

EXIT-

BODY

rewrite: f(� � �)

Condition box: This box
overs the proof of the entire
ondition of a
onditional

rewrite or narrowing rule. It is introdu
ed in order to skip over the proof of the

ondition of a rule. This box simply
ontains the literals (equations) in the
ondition

(the REDO-COND port is not used in
ase of rewrite rules):

�

-

-

�

-

�

-

�

-

�

-

�

.

.

COND

FAIL-

COND

TEST-

1

literal literal

n

ondition:

1

; : : : ;

n

EXIT-

COND

REDO-

COND

Narrow box: The stru
ture of this box is very similar to the rewrite box but it has

in addition to the boxes for ea
h de�ning rule an innermost re
e
tion box as the

�nal rule whi
h is ne
essary for partially de�ned fun
tions. In
ontrast to the rewrite

8

box, the right-hand side of a narrowing rule
annot be represented by a sequen
e

of boxes
orresponding to the de�ned fun
tion symbols o

urring in the right-hand

side. This is due to the fa
t that after repla
ing the subterm by the right-hand side in

a narrowing step the whole term is simpli�ed and then
he
ked for reje
tion before

the next narrowing step takes pla
e. Sin
e the simpli�
ation pro
ess may
hange

the whole stru
ture of the term, the subterm where the next narrowing rule will be

applied is not �xed after the appli
ation of the narrowing rule. Hen
e the narrow

box as well as the simplify narrow box (see below) have the whole term or literal as

a parameter and the narrowing rule is applied at the leftmost-innermost position of

this term. Note that due to the innermost re
e
tion rule (whi
h is always appli
able)

narrowing
annot fail. However, an ALF programmer
an expli
itly prevent the

appli
ation of the innermost re
e
tion rule by de
laring a fun
tion as \total". It is

a programming error if no narrowing rule is appli
able to total fun
tions. In order

to show su
h errors to the programmer, the debugging model
ontains also a FAIL

port in the narrow box.

?

- -

- -

� �

--

�

-

?

-

-

� �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

UNIFY

FAIL-

UNIFY

TRY-

NARROW

ENTER-

left-

hand

side

ondition

simplify-

narrow

EXIT-

BODY

REDO-

BODY

EXIT-

NARROW

narrow: t

innermost re
e
tion

FAIL-

NARROW

REDO

NARROW

Simplify narrow box: As mentioned above this box
overs the simpli�
ation, reje
-

tion and narrowing performed after ea
h narrowing rule. Hen
e it has the following

stru
ture:

-

-

�

-

�

-

�

-

�

-

�

SI.-NA.

FAIL-

SI.-NA.

ENTER-

simpli�
ation reje
tion narrow

REDO-

SI.-NA.

EXIT-

SI.-NA.

simplify-narrow: t

9

Now we have des
ribed all box types of ALF's debugging model. At �rst sight the

in
reased number of boxes seems to be
onfusing. But we think that these boxes

are ne
essary to give the user the right impression of the program exe
ution and to

allow him to skip over unne
essary details. Sin
e this debugging model
an be
on-

sidered as a pre
ise des
ription of ALF's operational semanti
s, there is no learning

overhead when this debugger is used. Moreover, we believe that the use of this de-

bugging model simpli�es the learning of the exe
ution prin
iples of fun
tional-logi

languages. These prin
iples are ne
essarily more
omplex than the exe
ution of pure

fun
tional or pure logi
 languages. However, the advantages of these prin
iples are

onvin
ing: more expressive power than fun
tional languages due to the presen
e of

logi
 variables [25℄ and more eÆ
ien
y than logi
 languages due to the integration of

a deterministi
 simpli�
ation pro
ess [13℄. In Se
tion 6 we will see how the debugging

model
an be simpli�ed if a less sophisti
ated operational semanti
s is used.

5 Implementation

The debugging model presented in the previous se
tion is implemented as an ex-

tended interpreter for ALF programs. The implementation language is also ALF in

order to test the ALF system and to demonstrate that ALF
an be used for larger

appli
ations. The fun
tionality of the
urrent ALF debugger is similar to standard

Prolog debuggers. For instan
e, it allows

{ to turn o�/on the observability of some ports,

{ to set spy points on de�ned fun
tions,

{ to skip over sub
omputations inside a box (i.e., to skip from one box port to the

next port in this box),

et
. (see [18℄ for details). In the
urrent implementation the debugger shows the

literal or the subterm
orresponding to the
omputation step. Additionally, at the

TRY-MATCH port the left-hand side of the applied rule is printed before it is mat
hed

against the
urrent subterm in a rewrite step (similarly for the TRY-UNIFY port).

Although this information is suÆ
ient in many
ases, sometimes the programmer

wants to see the entire rule whi
h is
urrently used. This
an be supported by

showing the entire rule in rewrite/narrow boxes as in the Coda debugger [24℄.

Finally, we want to present the
urrent debugging model from a user's

point of view by showing some example tra
es. The �rst example is a
om-

plete tra
e of the append program introdu
ed in Se
tion 2. The initial goal is

append(append([a|V℄,W),Y)=[b|Z℄. This goal will be disproved due to the rewrit-

ing and reje
tion rule as shown at the end of Se
tion 2. The full tra
e is lengthy

sin
e all rewrite rules for append must be applied to the subterms of this goal:

?- append(append([a|V℄,W),Y)=[b|Z℄.

ENTER-LITERAL: append(append([a|V℄,W),Y)=[b|Z℄ ?

ENTER-SIMPLIFICATION: append(append([a|V℄,W),Y)=[b|Z℄ ?

10

ENTER-REWRITE: append([a|V℄,W) ?

TRY-MATCH: append([℄,L) WITH: append([a|V℄,W) ?

FAIL-MATCH: append([a|V℄,W) ?

TRY-MATCH: append([E|R℄,L) WITH: append([a|V℄,W) ?

ENTER-REWRITE: append(V,W) ?

TRY-MATCH: append([℄,L) WITH: append(V,W) ?

FAIL-MATCH: append(V,W) ?

TRY-MATCH: append([E|R℄,L) WITH: append(V,W) ?

FAIL-MATCH: append(V,W) ?

EXIT-REWRITE: append(V,W) ?

EXIT-REWRITE-BODY: append([a|V℄,W) ?

EXIT-REWRITE: [a|append(V,W)℄ ?

ENTER-REWRITE: append([a|append(V,W)℄,Y) ?

TRY-MATCH: append([℄,L) WITH: append([a|append(V,W)℄,Y) ?

FAIL-MATCH: append([a|append(V,W)℄,Y) ?

TRY-MATCH: append([E|R℄,L) WITH: append([a|append(V,W)℄,Y) ?

ENTER-REWRITE: append(append(V,W),Y) ?

TRY-MATCH: append([℄,L) WITH: append(append(V,W),Y) ?

FAIL-MATCH: append(append(V,W),Y) ?

TRY-MATCH: append([E|R℄,L) WITH: append(append(V,W),Y) ?

FAIL-MATCH: append(append(V,W),Y) ?

EXIT-REWRITE: append(append(V,W),Y) ?

EXIT-REWRITE-BODY: append([a|append(V,W)℄,Y) ?

EXIT-REWRITE: [a|append(append(V,W),Y)℄ ?

EXIT-SIMPLIFICATION: [a|append(append(V,W),Y)℄=[b|Z℄ ?

ENTER-REJECTION: [a|append(append(V,W),Y)℄=[b|Z℄ ?

REJECTED: [a|append(append(V,W),Y)℄=[b|Z℄ ?

FAIL-LITERAL: [a|append(append(V,W),Y)℄=[b|Z℄ ?

goal failed: append(append([a|V℄,W),Y)=[b|Z℄

However, this is the extreme
ase for our debugging model. Usually, the observability

of several ports (like TRY-MATCH) is swit
hed o� and the user skips over entire

sub
omputations whi
h is possible due to the re�ned box stru
ture of our debugging

model. For instan
e, it is often the
ase that the user wants to skip the entire

simpli�
ation pro
ess. Then the above tra
e is redu
ed as follows (the user
ommand

skip does not show a sub
omputation inside a box and for
es the debugger to stop

at the next port of the
urrent box):

?- append(append([a|V℄,W),Y)=[b|Z℄.

ENTER-LITERAL: append(append([a|V℄,W),Y)=[b|Z℄ ?

ENTER-SIMPLIFICATION: append(append([a|V℄,W),Y)=[b|Z℄ ? skip

EXIT-SIMPLIFICATION: [a|append(append(V,W),Y)℄=[b|Z℄ ?

ENTER-REJECTION: [a|append(append(V,W),Y)℄=[b|Z℄ ?

REJECTED: [a|append(append(V,W),Y)℄=[b|Z℄ ?

FAIL-LITERAL: [a|append(append(V,W),Y)℄=[b|Z℄ ?

goal failed: append(append([a|V℄,W),Y)=[b|Z℄

11

Another example tra
e will be shown in the next se
tion.

6 Appli
ation of the debugging model

In this se
tion we point out some aspe
ts related to the appli
ation of our debugging

model.

6.1 Filtering

Due to the in
reased number of ports in our debugging model, too many details

of the
omputation pro
ess are usually presented to the user. Therefore it is ne
es-

sary to �lter the standard output in order to
on
entrate on the relevant part of the

omputation pro
ess. One possible implementation of �ltering is a programmable de-

bugger where the user
an
on�gure the debugger to his requests [7℄. This
ould also

be implemented on the basis of our debugging model. Another mu
h simpler solution

is to turn o� the observability of ports in whi
h the user is not interested. There-

fore, in a typi
al
on�guration of our debugger the observability of the TRY-MATCH,

TRY-UNIFY and EXIT-BODY ports in rewrite and narrow boxes is swit
hed o� (the

user
an turn on and o� the observability of parti
ular ports during the debugging

session). The ports ENTER-REJECTION, NOT-REJECTED, ENTER-REFLECTION and

EXIT-REFLECTION are also turned o� sin
e these belongs to elementary operations

and the user is usually interested in failure situations, i.e., in the ports REJECTED

and FAIL-REFLECTION. The following tra
e shows the
omputation of the initial goal

append(_,[T℄)=[a,b℄ for su
h a
on�guration. The goal is provable if the variable T

is the last element of the given list at the right-hand side. During this tra
e the user

skips the simpli�
ation pro
ess of the initial goal and the simpli�
ation/narrowing

pro
ess after the appli
ation of the se
ond narrowing rule for append:

?- append(_,[T℄)=[a,b℄.

ENTER-LITERAL: append(_,[T℄)=[a,b℄ ?

ENTER-SIMPLIFICATION: append(_,[T℄)=[a,b℄ ? skip

EXIT-SIMPLIFICATION: append(_,[T℄)=[a,b℄ ?

ENTER-NARROW: append(_,[T℄)=[a,b℄ ?

EXIT-NARROW: [T℄=[a,b℄ ?

FAIL-REFLECTION: [T℄=[a,b℄ ?

REDO-NARROW: append(_,[T℄)=[a,b℄ ?

ENTER-SIMP.-NARR.: [E1|append(R1,[T℄)℄=[a,b℄ ? skip

EXIT-SIMP.-NARR.: [E1,T℄=[a,b℄ ?

EXIT-NARROW: [E1,T℄=[a,b℄ ?

EXIT-LITERAL: [a,b℄=[a,b℄ ?

goal proved: append([a℄,[b℄)=[a,b℄

The standard tra
e without �ltering
onsists of 40 steps for the same example. This

�ltered tra
e shows that our debugging model
an be adjusted to a good re
e
tion

12

of the operational prin
iples of fun
tional logi
 languages. The experien
es with the

urrent implementation of the debugger give us the persuasion that this model is

suitable for debugging larger programs and also for understanding the
ontrol
ow

of fun
tional logi
 programs.

6.2 Debugging other de
larative languages

The presented debugging model is adjusted to the operational semanti
s of ALF

whi
h
onsists of the inferen
e rules rewriting, reje
tion, innermost basi
 narrow-

ing, innermost re
e
tion and re
e
tion. These inferen
e rules model a
omplete and

eÆ
ient exe
ution me
hanism for fun
tional logi
 programs. If one is interested in

similar languages with a more restri
ted operational semanti
s, our debugging model

an also be applied. But in this
ase the stru
ture of our model
an be simpli�ed as

shown in the following.

ALF is a genuine amalgamation of fun
tional and logi
 languages, i.e., pure logi

programming and (�rst-order) fun
tional programming are
ontained in ALF. This

is also re
e
ted by our debugging model. For instan
e, a pure logi
 ALF program

ontains only Boolean fun
tions, has no nested fun
tional expressions, and has only

narrowing rules of the form

p

0

(� � �)=true :- p

1

(� � �)=true,: : :,p

k

(� � �)=true.

Therefore all boxes ex
ept the narrow and re
e
tion box
an be omitted for su
h pro-

grams (the innermost re
e
tion boxes inside narrow boxes are also super
uous). The

result is a restri
ted debugging model whi
h is very
lose to the extended debuggers

for Prolog [8, 24, 26℄.

The other extreme is a pure fun
tional ALF program whi
h
onsists of a set of

rewrite rules and has no narrowing rules. Moreover, the initial goal is ground, i.e., no

logi
al variables o

ur during program exe
ution. Consequently, the literal, re
e
-

tion, narrow, and simplify narrow boxes
an be omitted. In this restri
ted debugging

model the user
an observe the evaluation of ea
h fun
tion
all and the mat
hing

of a fun
tion
all with the left-hand sides of the
orresponding rules. Therefore it is

very similar to symboli
 debuggers proposed for fun
tional languages with pattern

mat
hing and eager evaluation like Standard-ML [27℄.

Our debugging model
an also be used for other fun
tional logi
 languages whi
h

use some variant of innermost narrowing as their operational semanti
s. For instan
e,

SLOG [10℄ exe
utes fun
tional logi
 programs by innermost narrowing and rewriting.

SLOG di�ers from ALF in the innermost re
e
tion rule whi
h is not in
luded in

SLOG sin
e it is assumed that all fun
tions in SLOG are totally de�ned. Therefore

our debugging model
an be applied to SLOG with the di�eren
e that the innermost

re
e
tion boxes inside narrow boxes are deleted. Further simpli�
ations are possible

for fun
tional logi
 languages based on innermost narrowing without simpli�
ation

like eager BABEL [19, 20℄. In this
ase the simpli�
ation, rewrite, reje
tion, and

simplify narrow boxes
an also be omitted.

13

7 Con
lusions

We have presented a debugging model for the fun
tional logi
 language ALF, a lan-

guage that
ombines nondeterministi
 sear
h as in logi
 languages with deterministi

redu
tion as in fun
tional languages. This debugging model re
e
ts the di�erent
om-

putations rules of the operational semanti
s and allows the user to skip over logi
ally

related parts of the exe
ution pro
ess. Beyond the possibility of debugging a faulty

ALF program, the debugging model
an also be used to explain the operational prin-

iples of fun
tional logi
 languages. Note that for pure fun
tional programs where a

ground term is redu
ed to normal form the operational semanti
s of ALF is identi-

al to the redu
tion prin
iple of fun
tional languages with pattern mat
hing sin
e

narrowing is not applied. Hen
e our debugging model
an also used for fun
tional

languages. Moreover, we have shown that our debugging model is general enough to

be applied to other fun
tional logi
 languages with an eager evaluation strategy like

SLOG or eager BABEL.

There are several dire
tions for further work. On the one hand the implemen-

tation of the debugger must be improved in order to use it for large appli
ations.

For this purpose the debugger must be integrated into the A-WAM [12℄, the ab-

stra
t ma
hine into whi
h ALF programs are
ompiled. This
an be done similarly

to the integration of debuggers in WAM-based Prolog implementations [2℄. Another

important topi
 is the extension of the debugging features. For instan
e, for larger

appli
ations it is useful to integrate user-de�ned pre- and post
onditions for fun
-

tions into the debugging pro
ess instead of the simple spy points. Su
h appli
ations

require a more
exible and programmable debugger [7℄. Su
h debuggers are based

on the idea to show the user only distin
t events of the program exe
ution. Sin
e

we have de�ned the prin
iple events whi
h are observable by the programmer, our

debugging model
an be seen as a �rst step to develop advan
ed symboli
 debuggers

for fun
tional logi
 languages.

Referen
es

1. P.G. Bos
o, C. Ce

hi, and C. Moiso. An extension of WAM for K-LEAF: a WAM-

based
ompilation of
onditional narrowing. In Pro
. Sixth International Conferen
e

on Logi
 Programming (Lisboa), pp. 318{333. MIT Press, 1989.

2. K.A. Buettner. Fast De
ompilation of Compiled Prolog Clauses. In Pro
. Third In-

ternational Conferen
e on Logi
 Programming (London), pp. 663{670. Springer LNCS

225, 1986.

3. L. Byrd. Understanding the Control Flow of Prolog Programs. In Pro
. of the Work-

shop on Logi
 Programming, Debre
en, 1980.

4. M.M.T. Chakravarty and H.C.R. Lo
k. The Implementation of Lazy Narrowing. In

Pro
. of the 3rd Int. Symposium on Programming Language Implementation and Logi

Programming, pp. 123{134. Springer LNCS 528, 1991.

5. D. DeGroot and G. Lindstrom, editors. Logi
 Programming, Fun
tions, Relations, and

Equations. Prenti
e Hall, 1986.

14

6. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,

Handbook of Theoreti
al Computer S
ien
e, Vol. B, pp. 243{320. Elsevier, 1990.

7. M. Du
ass�e. A general tra
e query me
hanism based on Prolog. In Pro
. of the 4th

International Symposium on Programming Language Implementation and Logi
 Pro-

gramming, pp. 400{414. Springer LNCS 631, 1992.

8. M. Eisenstadt. A Powerful Prolog Tra
e Pa
kage. InAdvan
es in Arti�
ial Intelligen
e,

pp. 149{158. Elsevier S
ien
e Publishers, 1985.

9. M.J. Fay. First-Order Uni�
ation in an Equational Theory. In Pro
. 4th Workshop on

Automated Dedu
tion, pp. 161{167, Austin (Texas), 1979. A
ademi
 Press.

10. L. Fribourg. SLOG: A Logi
 Programming Language Interpreter Based on Clausal

Superposition and Rewriting. In Pro
. IEEE Internat. Symposium on Logi
 Program-

ming, pp. 172{184, Boston, 1985.

11. M. Hanus. Compiling Logi
 Programs with Equality. In Pro
. of the 2nd Int. Work-

shop on Programming Language Implementation and Logi
 Programming, pp. 387{401.

Springer LNCS 456, 1990.

12. M. Hanus. EÆ
ient Implementation of Narrowing and Rewriting. In Pro
. Int. Work-

shop on Pro
essing De
larative Knowledge, pp. 344{365. Springer LNAI 567, 1991.

13. M. Hanus. Improving Control of Logi
 Programs by Using Fun
tional Logi
 Languages.

In Pro
. of the 4th International Symposium on Programming Language Implementa-

tion and Logi
 Programming, pp. 1{23. Springer LNCS 631, 1992.

14. M. Hanus. In
remental Rewriting in Narrowing Derivations. In Pro
. of the 3rd In-

ternational Conferen
e on Algebrai
 and Logi
 Programming, pp. 228{243. Springer

LNCS 632, 1992.

15. M. Hanus. On the Completeness of Residuation. In Pro
. of the 1992 Joint Inter-

national Conferen
e and Symposium on Logi
 Programming, pp. 192{206. MIT Press,

1992.

16. S. H�olldobler. Foundations of Equational Logi
 Programming. Springer LNCS 353,

1989.

17. J.-M. Hullot. Canoni
al Forms and Uni�
ation. In Pro
. 5th Conferen
e on Automated

Dedu
tion, pp. 318{334. Springer LNCS 87, 1980.

18. B. Josephs. The development of a debugger for the fun
tional logi
 language ALF (in

German). Diploma thesis, Univ. Dortmund, 1992.

19. H. Ku
hen, R. Loogen, J.J. Moreno-Navarro, and M. Rodr��guez-Artalejo. Graph-based

Implementation of a Fun
tional Logi
 Language. In Pro
. ESOP 90, pp. 271{290.

Springer LNCS 432, 1990.

20. R. Loogen. From Redu
tion Ma
hines to Narrowing Ma
hines. In Pro
. of the TAP-

SOFT '91, pp. 438{457. Springer LNCS 494, 1991.

21. A. M�u
k. Compilation of Narrowing. In Pro
. of the 2nd Int. Workshop on Program-

ming Language Implementation and Logi
 Programming, pp. 16{29. Springer LNCS

456, 1990.

22. W. Nutt, P. R�ety, and G. Smolka. Basi
 Narrowing Revisited. Journal of Symboli

Computation, Vol. 7, pp. 295{317, 1989.

23. P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs

on Theoreti
al Computer S
ien
e. Springer, 1988.

24. D. Plummer. Coda: An Extended Debugger for PROLOG. In Pro
. 5th Conferen
e on

Logi
 Programming & 5th Symposium on Logi
 Programming (Seattle), pp. 496{511.

MIT Press, 1988.

25. U.S. Reddy. Narrowing as the Operational Semanti
s of Fun
tional Languages. In

Pro
. IEEE Internat. Symposium on Logi
 Programming, pp. 138{151, Boston, 1985.

15

26. A. S
hleierma
her and J.F.H. Winkler. The Implementation of ProTest a Prolog-

Debugger for a Re�ned Box Model. Software - Pra
ti
e & Experien
e, Vol. 20, No. 10,

pp. 985{1006, 1990.

27. A.P. Tolma
h and A.W. Appel. Debugging Standard ML Without Reverse Engineer-

ing. In Pro
. ACM Lisp and Fun
tional Programming Conferen
e '90, pp. 1{12, Ni
e,

1990.

28. D. Wolz. Design of a Compiler for Lazy Pattern Driven Narrowing. In Re
ent Trends

in Data Type Spe
i�
ation, pp. 362{379. Springer LNCS 534, 1990.

16

