
A Modular and Generic Analysis Server System
for Functional Logic Programs

Michael Hanus Fabian Skrlac
University of Kiel, Germany

{mh|fre}@informatik.uni-kiel.de

Abstract
We present the design, implementation, and application of a sys-
tem, called CASS, for the analysis of functional logic programs.
The system is generic so that various kinds of analyses (e.g.,
groundness, non-determinism, demanded arguments) can be eas-
ily integrated. In order to analyze larger applications consisting of
dozens or hundreds of modules, CASS supports a modular and in-
cremental analysis of programs. Moreover, it can be used by dif-
ferent programming tools, like documentation generators, analysis
environments, program optimizers, as well as Eclipse-based devel-
opment environments. For this purpose, CASS can also be invoked
as a server system to get a language-independent access to its func-
tionality. CASS is completely implemented in the functional logic
language Curry as a master/worker architecture to exploit parallel
or distributed execution environments.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Multiparadigm languages;
D.3.4 [Programming Languages]: Processors—Preprocessors;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Program analysis

Keywords Functional logic programming languages; program
analysis; implementation

1. Introduction
Automated program analyses are useful for various purposes. For
instance, compilers can benefit from their results to improve the
translation of source into target programs. Analysis information
can be helpful to programmers to reason about the behavior and
operational properties of their programs. Moreover, this informa-
tion can also be documented by program documentation tools or
interactively shown to developers in dedicated programming en-
vironments. On the one hand, declarative programming languages
provide interesting opportunities to analyze programs. On the other
hand, their complex or abstract execution model demands good tool
support to develop reliable programs. Examples are the detection of
type errors in languages with higher-order features and the detec-
tion of mode problems in the use of Prolog predicates.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543744

This work is related to functional logic languages that combine
the most important features of functional and logic programming
in a single language (see [5, 16] for recent surveys). In particular,
these languages provide higher-order functions and demand-driven
evaluation from functional programming together with logic pro-
gramming features like non-deterministic search and computing
with partial information (logic variables). This combination has
led to new design patterns and better abstractions for application
programming. Moreover, program implementation and analysis as-
pects for functional as well as logic languages can be considered in
a unified framework.

Automated program analyses have already been used for func-
tional logic programming in various situations. For instance, Cur-
ryDoc [13] is an automatic documentation tool for the functional
logic language Curry that analyzes Curry programs to document
various operational aspects, like the non-determinism behavior or
completeness issues. CurryBrowser [14] is an interactive analysis
environment that unifies various program analyses in order to rea-
son about Curry applications. KiCS2 [8], a recent implementation
of Curry that compiles into Haskell, includes an analyzer to clas-
sify higher-order and deterministic operations in order to support
their efficient implementation which results in highly efficient tar-
get programs. Similar ideas are applied in the implementation of
Mercury [30] which uses mode and determinism information to re-
order predicate calls. Non-determinism information as well as in-
formation about definitely demanded arguments has been used to
improve the efficiency of functional logic programs with flexible
search strategies [15]. A recent Eclipse-based development envi-
ronment for Curry [26] also supports the access to analysis infor-
mation during interactive program development.

These kinds of program analyses and their different implemen-
tations demand a unifying framework. This is the motivation for
the current work. We present CASS (Curry Analysis Server Sys-
tem) which is intended to be a central component of current and fu-
ture tools for functional logic programs. CASS provides a generic
interface to support the integration of various program analyses.
Although the current implementation is strongly related to Curry,
CASS can also be used for similar declarative programming lan-
guages, like TOY [24]. The analyses are performed on an interme-
diate format into which source programs can be compiled. CASS
supports the analysis of larger applications by a modular and in-
cremental analysis. The analysis results for each module are per-
sistently stored and recomputed only if it is necessary. Since CASS
is implemented in Curry, it can be used as a library in tools im-
plemented in Curry. CASS can also be invoked as a server system
providing a text-based communication protocol in order to interact
with tools implemented in other languages, like the Eclipse plug-in
for Curry. CASS is implemented as a master/worker architecture,
i.e., it can distribute the analysis work to different processes in or-
der to exploit parallel or distributed execution environments.

In the next section, we review some features of Curry. Section 3
discusses the basic ideas of our analysis framework and shows
how various kinds of program analyses can be implemented and
integrated into CASS. Some uses of CASS are presented in Sec-
tion 4 before its implementation is sketched in Section 5 and eval-
uated in Section 6. Section 7 concludes with a discussion of re-
lated work. Due to lack of space, we have to omit some details
which can be found in a long version of this paper available at
http://www.curry-language.org/tools/cass.

2. Curry and FlatCurry
In this section we review some aspects of Curry that are necessary
to understand the functionality and implementation of our analysis
tool. More details about Curry’s computation model and a complete
description of all language features can be found in [12, 20].

Curry is a declarative multi-paradigm language combining in a
seamless way features from functional, logic, and concurrent pro-
gramming. Curry has a Haskell-like syntax1 [27] extended by the
possible inclusion of free (logic) variables in conditions and right-
hand sides of defining rules. Curry also offers standard features of
functional languages, like polymorphic types, modules, or monadic
I/O which is identical to Haskell’s I/O concept.

A Curry program consists of the definition of functions or oper-
ations and the data types on which the functions operate. Functions
are defined by conditional equations with constraints in the condi-
tions. They are evaluated lazily and can be called with partially
instantiated arguments. As an example, consider the following pro-
gram:
data Bool = True | False
data List a = [] | a : List a

(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

last xs | _ ++ [x] =:= xs = x where x free
The data type declarations define True and False as Boolean values
and [] (empty list) and : (non-empty list) as the constructors
for polymorphic lists (a is a type variable ranging over all types
and the type “List a” is usually written as [a] for conformity
with Haskell). The (optional) type declaration (“::”) of the list
concatenation operation (++) specifies that (++) takes two lists
as input and produces an output list, where all list elements are
of the same (unspecified) type.2 The definition of the operation
last demonstrates the logic programming features of Curry: the
last element x of a list xs is computed by solving the equational
constraint “_ ++ [x] =:= xs”. Note that, in contrast to Prolog, logic
(free) variables must be explicitly declared by “free” (except for
anonymous variables denoted by “_”).

The operational semantics of Curry [1, 12] is a conservative ex-
tension of lazy functional programming (if free variables do not
occur in the program or the initial goal) and (concurrent) logic pro-
gramming. To describe this semantics, compile programs, or im-
plement analyzers and similar tools, an intermediate representation
of Curry programs has been shown to be useful. Programs of this
intermediate language, called FlatCurry, contain a single rule for
each function where the pattern matching strategy is represented
by case expressions. The basic structure of FlatCurry is defined as
follows:3

1 Variables and function names usually start with lowercase letters and the
names of type and data constructors start with an uppercase letter. The
application of f to e is denoted by juxtaposition (“f e”).
2 Curry uses curried function types where α->β denotes the type of all
functions mapping elements of type α into elements of type β.
3 ok denotes a sequence of objects o1, . . . , ok .

P ::= D1 . . . Dm

D ::= f x1 . . . xn = e

p ::= c x1 . . . xn
e ::= x (variable)

| c e1 . . . en (constructor application)
| f e1 . . . en (function application)
| case e0 of {pk → ek} (rigid case distinction)
| fcase e0 of {pk → ek} (flexible case distinction)
| e1 or e2 (non-deterministic choice)
| let xk free in e (free variable introduction)

A program P consists of a sequence of function definitions D
with pairwise different variables in the left-hand sides. The right-
hand sides are expressions e composed by variables, constructor
and function calls, case expressions, disjunctions, and introduc-
tion of free (unbound) variables. A case expression has the form
(f)case e of {c1 xn1 → e1, . . . , ck xnk → ek}, where e is an
expression, c1, . . . , ck are different constructors of the type of e,
and e1, . . . , ek are expressions. The pattern variables xni are lo-
cal variables which occur only in the corresponding subexpression
ei. The difference between case and fcase shows up when the ar-
gument e is a free variable: case suspends (which corresponds to
residuation) whereas fcase non-deterministically binds this vari-
able to the pattern in a branch of the case expression (which corre-
sponds to narrowing).

The higher-order constructs of Curry are translated into
FlatCurry by defunctionalization [29]. Thus, lambda abstractions
are transformed into top-level functions and there is a predefined
operation apply to apply an expression of functional type to an ar-
gument (see [16, 31] for more details).

Note that it is possible to translate other functional logic lan-
guages, like TOY [24], or even Haskell into this intermediate for-
mat. Since our analysis tool is solely based on FlatCurry, it can also
be used for other source languages provided that there is a transla-
tor from such languages into FlatCurry.

Mature implementations of Curry, like PAKCS [19] or KiCS2
[8], provide support for meta-programming by a library containing
data types for representing FlatCurry programs and an I/O action
for reading a module and translating its contents into the corre-
sponding data term. For instance, a module of a Curry program is
represented as an expression of type
data Prog =

Prog String [String] [TypeDecl] [FuncDecl] [OpDecl]
where the arguments of the data constructor Prog are the module
name, the names of all imported modules, the list of all type,
function, and infix operator declarations. Furthermore, a function
declaration is represented as
data FuncDecl =

Func QName Int Visibility TypeExpr Rule
where the arguments are the qualified name (of type QName, i.e.,
a pair of module and function name), arity, visibility (Public or
Private), type, and rule (of the form “Rule arguments expr”) of
the function. Finally, the data type for expressions just reflects its
formal definition:4

data Expr = Var Int
| Lit Literal
| Comb CombType QName [Expr]
| Case CaseType Expr [(Pattern,Expr)]
| Or Expr Expr
| Free [Int] Expr

data CombType = FuncCall | ConsCall

data CaseType = Rigid | Flex

data Pattern = Pattern QName [Int]

4 We present a slightly simplified version of the actual type definitions.

http://www.curry-language.org/tools/cass

Thus, variables are numbered, literals (like numbers or characters)
are distinguished from combinations (Comb) which have a first argu-
ment to distinguish constructor applications and applications of de-
fined functions. The remaining data type declarations for represent-
ing FlatCurry programs are similar but we omit them for brevity.

3. Implementing Program Analyses
In this section we show how a program analysis is represented and
implemented so that it can be used in the analysis system CASS.

3.1 Modeling Program Analyses
There are various frameworks and methods to analyze programs.
Imperative programs are often analyzed by the use of control-flow
graphs: the program is translated into a graph structure representing
the potential control flow during run time, and a program analysis
associates analysis information with execution points in the graph.
This information can be taken into account by a code generator to
produce efficient target code. Due to the fact that the control-flow
graph typically contains cycles, the program analysis is performed
by a fixpoint analysis according to the graph structure.

In declarative programs, the control flow is often not directly
related to the program structure, e.g., due to demand-driven eval-
uation strategies. Program analyses for such languages often as-
sociates analysis information with the individual operations (func-
tions, predicates) of the program. For instance, strictness analysis
[25] computes for each function the arguments that must be eval-
uated in order to compute a value for a function call, or minimal
function graphs [23] associates input/output pairs approximating
possible function calls and their results in a given program.

For our analysis framework, we follow a similar approach. If F
is the set of functions defined in a program and A an abstract do-
main representing analysis information, then a program analysis is
a mapping α : F → A which assigns to each operation f ∈ F
an abstract value α(f) ∈ A. Since this is the formal basis of our
generic analysis framework, the abstract domainA can vary for dif-
ferent program analyses. For a determinism analysis,A could con-
tain the values det and nondet, where α(f) = det indicates that
the operation f is deterministic, i.e., returns at most one value for
a given argument value. For a demandedness or strictness analysis,
the abstract domain might be 2Nat, i.e., the analysis associates with
each operation the set of demanded arguments represented by their
position indices. Type inference can also be considered a program
analysis [9] where the abstract domain contains all type expressions
defined by the type system.

This interpretation of program analysis is appropriate for vari-
ous reasons:

1. It is rather general so that quite different kinds of program
analyses can be covered by appropriate domains, as discussed
by the examples above.

2. The association of analysis information to operations con-
tains useful information for a variety of applications (e.g., pro-
gram understanding, code generation, program optimization),
as shown later.

3. It is also a key to an efficient modular analysis: In many cases,
the analysis results of an operation f depend on the analysis
information associated with the operations called by f . For
instance, if an operation f calls an operation g, the determinism
status of f depends on the determinism status of g. Thus, if
we know the determinism status of all operations called by f ,
the determinism status of f can be easily computed. Due to
recursive calls, a fixpoint computation is required in general.
However, recursive calls do not occur over module boundaries
(at least, if cyclic module imports are not allowed, as in Curry).

As a consequence, one can directly use the analysis results of
imported operations so that fixpoint computations are required
only during the analysis inside a module. Hence, the overall
analysis can be performed in a modular manner, as we will see
later.

This view of program analysis demands a bottom-up analysis of
programs. First, the properties of base operations are analyzed, then
the properties of the operations using the base operations, and so
on. In contrast, a top-down analysis starting with an initial (“main”)
expression is not supported by our framework. On the one hand,
one can argue that a bottom-up analysis is sufficient for interac-
tive systems where the initial expression is not known at analysis
time. On the other hand, it is sometimes possible to express “top-
down oriented” analyses, like a groundness analysis in logic pro-
gramming, in a bottom-up manner by choosing appropriate abstract
domains. For instance, [7] presents a type and effect system to an-
alyze groundness and non-determinism information in functional
logic programs. This can be implemented as a bottom-up analysis,
as discussed later in this paper.

A further important issue of our framework is the fact that we
do not fix a particular semantical model on which we base our
analysis. In order to prove the correctness of a program analysis,
one has to define a concrete semantics which is approximated by
abstract operations that operate on abstract values [10]. In order to
cover various program analyses, the concrete semantics depends on
the individual program analyses.

For example, consider a determinism analysis, as introduced
above, where the abstract value α(f) = det should indicate the fact
that all applications of f to some values (i.e., ground constructor
terms) are evaluated in a deterministic manner. Hence, an appropri-
ate concrete semantics for this analysis is a small-step operational
semantics where the notion of a non-deterministic step is explicit.
For instance, needed narrowing [6] or the small-step operational se-
mantics described in [1] model the operational behavior of contem-
porary functional logic languages by a (non-deterministic) “single-
step” evaluation relation “⇒.” Now, we can define α(f) = det as
the property that f is a deterministic operation, i.e., all evaluations
of (f t1 . . . tn), where t1, . . . , tn are ground constructor terms, are
deterministic. To be more precise, if there are two evaluations

(f t1 . . . tn)⇒ e1 ⇒ · · · ⇒ ek ⇒ e

(f t1 . . . tn)⇒ e1 ⇒ · · · ⇒ ek ⇒ e′

then e = e′ holds. Below we will show an implementation of this
determinism analysis in our framework.

As a further example, consider a demandedness analysis (also
called strictness analysis in functional programming). In this case,
the abstract values associated with an operation could be the set of
demanded arguments of this operation. Here, “demanded” means
that if this argument is undefined, the result of applying the oper-
ation to this argument is also undefined. In this case, a small-step
operational semantics is not useful since it does not make the no-
tion of “undefined” explicit. More appropriate is a declarative or
denotational semantics with an explicit notion of undefined values.
For instance, CRWL [11] is a standard declarative (i.e., strategy-
independent) semantics for functional logic programs. In this se-
mantics, the signature of functional logic programs is extended by
a special symbol ⊥ to represent undefined values. Hence, terms
with occurrences of ⊥ are called “partial terms.” CRWL defines
a calculus for approximation statements of the form e → t with
the intended meaning “the partial constructor term t approximates
the value of the expression e.” In particular, if e → ⊥ is the only
CRWL-statement for an expression e, then e is always undefined.
Thus, the correctness of a demandedness analysis can be stated
as follows: i is a demanded argument of f if, for all expressions
e1, . . . , ei−1, ei+1, . . . , en, (f e1 . . . ei−1 ⊥ ei+1 . . . en) → ⊥ is

the only statement derivable by CRWL. Thus, it is safe to evaluate
a demanded argument before calling the operation. Such an opti-
mization can improve the time and space behavior of functional
logic programs, in particular, for non-deterministic computations
[15].

As a consequence of the potential variety of semantical models
and correctness requirements, we do not consider these aspects in
this paper, since our main interest is to support the implementation
of such program analyses in a practical system. Hence, we sketch
in the following the steps required to implement a specific program
analysis with our system.

3.2 Determinism Analysis
As discussed above, a program analysis associates with each oper-
ation analysis information describing some aspect of its semantics.
Since most interesting semantic aspects are not computable, they
are approximated by some abstract domain where each abstract
value describes some set of concrete values [10]. For instance, the
abstract value det of a determinism analysis denotes the set of all
deterministic operations.

In order to approximate deterministic operations, a useful infor-
mation is the property whether an operation is defined by “overlap-
ping rules”, i.e., whether more than one rule defining this operation
is applicable for some ground call to this operation. An example
for an operation that is defined by overlapping rules is the “choice”
operation
x ? y = x
x ? y = y

To implement an “overlapping rules” analysis, one can use Bool as
the abstract domain so that the abstract value False is interpreted
as “defined by non-overlapping rules” and True is interpreted as
“defined by overlapping rules”. The “overlapping rules” analysis
has the type
FuncDecl → Bool

which means that we associate a Bool value with each function def-
inition. In contrast to the formal framework described above, we as-
sociate abstract values with function definitions rather than function
names. This simplifies the implementation since we do not have to
look up information in the program in order to compute analysis
results, since the function definitions contain all information that is
necessary for this example.

Overlapping rules are represented by Or constructors when
source programs are mapped to FlatCurry programs [2, 3]. For in-
stance, the above choice operation is mapped into the FlatCurry
definition
x1 ? x2 = x1 or x2

Thus, we can implement the “overlapping rules” analysis by look-
ing for occurrences of the data constructor Or in the definition of
each function. Based on the data type definitions sketched in Sec-
tion 2 and some standard functions, we can implement this analysis
as follows:
isOverlapping :: FuncDecl → Bool
isOverlapping (Func _ _ _ _ (Rule _ e)) = orInExpr e

orInExpr :: Expr → Bool
orInExpr (Var _) = False
orInExpr (Lit _) = False
orInExpr (Comb _ _ es) = any orInExpr es
orInExpr (Case _ e bs) = orInExpr e

|| any (orInExpr . snd) bs
orInExpr (Or _ _) = True
orInExpr (Free _ e) = orInExpr e

As discussed above, a determinism analysis could be based on the
abstract domain described by the data type
data DetDom = Det | NonDet

Here, Det is interpreted as “the operation always evaluates in a
deterministic manner on ground values” (see above for a precise
specification). However, NonDet is interpreted as “the operation
might evaluate in different ways for given ground values.” The
apparent imprecision is due to the approximation of the analysis.
For instance, if the function f is defined by overlapping rules and
the function g might call f, then g is judged as non-deterministic
(since it is generally undecidable whether f is actually called by g
in some run of the program). Our analysis has to take into account
such dependencies. To do so, the determinism analysis requires to
examine the current function as well as all directly or indirectly
called functions for overlapping rules. Due to recursive function
definitions, this analysis cannot be done in one shot—it requires a
fixpoint computation. CASS provides such fixpoint computations
and requires only the implementation of an operation of type
FuncDecl → [(QName,a)] → a

where “a” denotes the type of abstract values. The second argu-
ment of type [(QName,a)] represents the currently known analysis
values for the functions directly used in this function declaration.
One might ask why this information is not represented as a map-
ping from function names to analysis results, i.e., why the second
argument has not the type
(QName → a)

The reason is that typical analyses which take dependencies into
account are all or any analyses, i.e., the analysis information about
an operation combine information about all or any of the operations
on which they depend. If we represent this analysis information as
a mapping, we might also need the information about the domain of
this mapping. Therefore, it is easier to work on a list representation
where all this information is directly available.

In our example, the determinism analysis can be implemented
by the following operation:
detFunc :: FuncDecl → [(QName,DetDom)] → DetDom
detFunc (Func f _ _ _ (Rule _ e)) calledFuncs =

if orInExpr e || freeVarInExpr e ||
any (==NonDet) (map snd calledFuncs)

then NonDet
else Det

Thus, it computes the abstract value NonDet if the function it-
self is defined by overlapping rules or contains free variables that
might cause non-deterministic guessing (we omit the definition of
freeVarInExpr since it is quite similar to orInExpr), or if it de-
pends on some non-deterministic function.

The actual analysis is performed by defining some start value for
all functions (the “bottom” value of the abstract domain, here: Det)
and performing a fixpoint computation for the abstract values of
these functions. CASS uses a working list approach as default but
also supports other methods to compute fixpoints. The termination
of the fixpoint computation can be ensured by standard assumptions
in abstract interpretation [10], e.g., by choosing a finite abstract
domain and monotonic operations, or by widening operations.

3.3 Integrating an Analysis into CASS
To support the inclusion of different analyses in CASS, there is
an abstract type “Analysis a” denoting a program analysis with
abstract domain “a”. Furthermore, CASS offers several constructor
operations for various kinds of analyses. Each analysis has a name
provided as a first argument to these constructors. The name is used
to store the analysis information persistently and to pass specific
analysis tasks to workers (see below for more details). For instance,
a simple function analysis which depends only on a given function
definition can be defined by the analysis constructor
funcAnalysis :: String → (FuncDecl → a)

→ Analysis a

The arguments are the analysis name and the actual analysis func-
tion. For instance, the “overlapping rules” analysis can be specified
as
overlapAnalysis :: Analysis Bool
overlapAnalysis =

funcAnalysis "Overlapping" isOverlapping
Another analysis constructor supports the definition of a function
analysis with dependencies:
dependencyFuncAnalysis :: String → a
→ (FuncDecl → [(QName,a)] → a) → Analysis a

Here, the second argument specifies the start value of the fixpoint
analysis, i.e., the bottom element of the abstract domain. Thus, the
complete determinism analysis can be specified as
detAnalysis :: Analysis DetDom
detAnalysis =

dependencyFuncAnalysis "Deterministic" Det detFunc
It should be noted that this definition is sufficient to execute the
analysis with CASS since the analysis system takes care of comput-
ing fixpoints, calling the analysis functions with appropriate values,
analyzing imported modules, etc. Thus, the programmer can con-
centrate on implementing the logic of the analysis and is freed from
many tedious implementation details.

If we have defined an analysis in this way, we have to register
it so that CASS knows about its existence and can call it in the
right way. In principle, this registration could be done dynamically,
but currently only a static registration is supported for the sake of
simplicity. For this purpose, the implementation of CASS contains
a constant
registeredAnalysis :: [RegisteredAnalysis]

keeping the information about all available analyses. To register a
new analysis, it has to be added to this list of registered analyses
(as described below) and CASS has to be recompiled.

Abstract values, like values of type Bool or DetDom, are program
entities that might be difficult to interpret for the user of CASS.
Therefore, each analysis must be registered in CASS together with
a “show” function that maps abstract values into strings to be
shown to the user.5 An analysis can be registered with the auxiliary
operation
cassAnalysis :: Analysis a → (a → String)

→ RegisteredAnalysis
that has the specification of the program analysis and a show func-
tion as arguments. The explicit definition of the show function for
each analysis allows for some flexibility in the presentation of the
analysis information. Thus, different analyses can use the same ab-
stract domain, like Bool, with different intended meanings. For in-
stance, our overlapping analysis has the show function
showOverlap True = "overlapping"
showOverlap False = "non-overlapping"

so that it can be registered with
cassAnalysis overlapAnalysis showOverlap

in the CASS implementation.

3.4 Analysis of Types
Sometimes one is also interested in analyzing information about
data types rather than functions. For instance, the Curry implemen-
tation KiCS2 [8] has an optimization for higher-order deterministic
operations. This optimization requires some information about the
higher-order status of data types, i.e., whether a term of some type
might contain functional values.

5 Alternative visualizations of analysis information, e.g., as graphs, are
planned for the future.

CASS supports such analyses by appropriate analysis construc-
tors. A simple type analysis which depends only on a given type
declaration can be specified by
typeAnalysis :: String → (TypeDecl → a)

→ Analysis a
A more complex type analysis depending also on information about
the types used in the type declaration can be specified by
dependencyTypeAnalysis :: String → a
→ (TypeDecl → [(QName,a)] → a) → Analysis a

Similarly to a function analysis, the second argument is the start
value of the fixpoint analysis and the third argument computes
the abstract information about the type names used in the type
declaration.

The remaining entities in a Curry program that might be ana-
lyzed are data constructors. Since their definition only contains the
argument types, it may seem uninteresting to provide a useful anal-
ysis for them. However, sometimes it is interesting to analyze their
context so that there is an analysis constructor of type
constructorAnalysis :: String
→ (ConsDecl → TypeDecl → a) → Analysis a

Thus, the analysis operation gets for each constructor declaration
also the corresponding type declaration as an argument. This in-
formation could be used to compute the sibling constructors, e.g.,
the sibling for the constructor True is False. The information about
sibling constructors is useful to check whether a function is com-
pletely defined, i.e., contains a case distinction for all possible pat-
terns. For instance, the operation (in FlatCurry notation)
not x = case x of True → False

False → True
is completely defined whereas
cond b x = case b of True → x

is incompletely defined since it fails on False as the first argument.
To check this property, information about sibling constructors is
obviously useful. But how can we provide the information about
sibling constructors, which is computed by a type analysis, in a
“complete pattern” analysis for functions? For this purpose, CASS
supports the combination of different analyses.

3.5 Analysis Combinators
Sometimes it is useful to define an analysis based on information
computed by another analysis. We already discussed the use of
sibling constructors in an analysis for complete pattern matching.
Another example is the use of the “overlapping rules” analysis
in the determinism analysis. For such purposes, CASS supports
“analysis combinators” to implement the combination of different
analyses. Thus, an analysis developer can define an analysis that is
based on information computed by another analysis.

To make analysis combination possible, we need to pass infor-
mation computed by one analysis into another analysis. For this
purpose, there is an abstract type “ProgInfo a” to represent the
analysis information of type “a” for a given module and its im-
ports. In order to look up analysis information about some entity,
there is an operation
lookupProgInfo:: QName → ProgInfo a → Maybe a

Now, CASS provides the analysis constructor operation
combinedFuncAnalysis :: String
→ Analysis b → (ProgInfo b → FuncDecl → a)
→ Analysis a

to implement a function analysis depending on some other analysis.
The second argument is some base analysis computing abstract
values of type “b”. The analysis function (third argument) gets,
in contrast to a simple function analysis, the analysis information
computed by this base analysis as its first argument.

For instance, if the sibling constructor analysis is defined as
siblingCons :: Analysis [QName]
siblingCons = constructorAnalysis . . .

then the pattern completeness analysis might be defined by
patCompAnalysis :: Analysis Bool
patCompAnalysis =

combinedFuncAnalysis "PatComplete" siblingCons
isPatComplete

isPatComplete :: ProgInfo [QName] → FuncDecl → Bool
isPatComplete siblinginfo fundecl = . . .

Thus, one can use the (type analysis) information about sibling con-
structors (siblinginfo) inside the definition of pattern complete-
ness.

Similarly, CASS supports various other analysis combinators,
e.g., to combine type analyses, dependency analyses, etc.

4. Using the Analysis System
As mentioned above, a program analysis is useful for various pur-
poses, e.g., the implementation and transformation of programs,
tool and documentation support for programmers, etc. Therefore,
the results computed by some analysis registered in CASS can be
accessed in various ways. Currently, there are three methods:

Batch mode: CASS is started with a module and analysis name.
Then this analysis is applied to the module and the results are
printed (using the analysis-specific show function, see above).

API mode: If the analysis information should be used in an appli-
cation implemented in Curry, the application program could use
the CASS interface operations to start an analysis and use the
computed results for further processing.

Server mode: If the analysis results should be used in an applica-
tion implemented in some language that does not have a direct
interface to Curry, one can start CASS in a server mode. In this
case, one can connect to CASS via some socket using a simple
communication protocol that is specified in the documentation
of CASS.

In the following, we discuss the use of CASS with these methods.
The use of CASS in batch mode is obvious. This mode is useful to
get a quick access to analysis information so that one can experi-
ment with different abstractions, fixpoint computations, etc.

If one wants to access CASS inside an application implemented
in Curry, one can use some interface operation of CASS. For
instance, CASS provides an operation
analyzeGeneric :: Analysis a → String

→ IO (Either (ProgInfo a) String)
to apply an analysis (first argument) to some module (whose name
is given in the second argument). The result is either the analysis
information computed for this module or an error message in case
of some execution error. This access to CASS is used in the doc-
umentation generator CurryDoc [13] to describe some operational
aspects of functions (e.g., pattern completeness, non-determinism,
solution completeness), the Curry compiler KiCS2 [8] to get infor-
mation about the determinism and higher-order status of functions,
the non-determinism optimizer described in [15] to obtain informa-
tion about demanded arguments and non-deterministic functions,
and in the CurryBrowser [14], which allows the user to browse
through the modules of a Curry application and apply and visualize
various analyses for each module or function.

The server mode of CASS is used in a recently developed
Eclipse plug-in for Curry [26] which also supports the visualization
of analysis results inside Eclipse. Since this plug-in is implemented
in a Java-based framework, the access to CASS is implemented via
a textual protocol over a socket connection. This protocol has a

command GetAnalysis to query the names of all available analy-
ses. This command is used to initialize the analysis selection menus
in the Eclipse plug-in. Furthermore, there are commands to analyze
a complete module or individual entities inside a module. The anal-
ysis results are returned as plain strings or in XML format.

5. Implementation
As mentioned above, CASS is implemented in Curry using the
features for meta-programming as sketched in Section 2. Since
the analysis programmer only provides operations to analyze a
function, type, or data constructor, as shown in Section 3, the main
task of CASS is to supply these operations with the appropriate
parameters in order to compute the analysis results.

CASS is intended to analyze larger applications consisting of
many modules. Thus, a simple implementation by concatenating
all modules into one large program to be analyzed would not be
efficient enough. Hence, CASS performs a separate analysis of
each module by the following steps:

1. The imported modules are analyzed.

2. The analysis information of the interface of the imported mod-
ules are loaded.

3. The module is analyzed. If the analysis is a dependency analy-
sis, it is evaluated by a fixpoint computation where the specified
start value is used as initial values for the locally defined (i.e.,
non-imported) entities.

Obviously, this scheme can be simplified in case of a simple anal-
ysis without dependencies, since such an analysis does not require
the imported entities. For a combined analysis, the base analysis is
performed before the main analysis is executed.

In order to speed up the complete analysis process, CASS im-
plements a couple of improvements to this general analysis pro-
cess sketched above. First, the analysis information for each mod-
ule is persistently stored. Hence, before a module is analyzed, it
is checked whether there already exists a storage with the analy-
sis information of this module and whether the time stamp of this
information is newer than the source program with all its direct
or indirect imports. If the storage is found and is still valid, the
stored information is used. Otherwise, the information is computed
as described above and then persistently stored. This has the ad-
vantage that, if only the main module has changed and needs to be
re-analyzed, the analysis time of a large application is still small.

To exploit multi-core or distributed execution environments, the
implementation of CASS is designed as a master/worker architec-
ture where a master process coordinates all analysis activities and
each worker is responsible to analyze a single module. Thus, when
CASS is requested to analyze some module, the master process
computes all import dependencies together with a topological or-
der of all dependencies. The standard prelude module (without im-
port dependencies) is the first module to be analyzed and the main
module is the last one. The master process iterates on the following
steps until all modules are analyzed:

• If there is a free worker and all imports of the first module are
already analyzed, pass the first module to the free worker and
delete it from the list of modules.
• If the first module contains imports that are not yet analyzed,

wait for the termination of an analysis task of a worker.
• If a worker has finished the analysis of a module, mark all

occurrences of this module as “analyzed.”

Since contemporary Curry implementations do not support thread
creation, the workers are implemented as processes that are started

Application: KiCS2 REPL CASS CurryBrowser ModuleDB
Modules: 32 46 71 85
Analysis: Demand Ground Demand Ground Demand Ground Demand Ground
1 worker 8.32 8.50 10.19 10.27 19.22 19.36 29.61 30.79

2 workers: 5.97 5.98 6.85 6.95 12.32 12.49 20.16 20.51
4 workers: 5.58 5.57 6.14 6.24 10.21 10.66 18.30 18.19

Re-analyze: 1.41 1.39 1.24 1.26 1.99 2.00 2.44 2.43

Table 1. Using CASS in different contexts

at the beginning and terminated at the end of the entire execution.
The number of workers can be defined by some system parameter.

The current distribution of CASS6 contains fourteen program
analyses, including the analyses discussed in Section 3. Further
analyses include a “solution completeness” analysis (which checks
whether a function might suspend due to residuation), a “right-
linearity” analysis (used to improve the implementation of func-
tional patterns [4]), an analysis of demanded arguments (used
to optimize non-deterministic computations [15]), or a combined
groundness/non-determinism analysis based on a type and effect
system [7].

6. Practical Evaluation
We have already discussed some practical applications of CASS in
Section 4. These applications demonstrate that the current imple-
mentation with a module-wise analysis, storing analysis informa-
tion persistently, and incremental re-analysis is good enough to use
CASS in practice. In order to get some ideas about the efficiency of
the current implementation, we made some benchmarks and report
their results in this section. Since all analyses contained in CASS
have been developed and described elsewhere (see the references
above), we do not evaluate their precision but only their execution
efficiency.

CASS is intended to analyze larger systems. Thus, we omit the
data for analyzing single modules but present the analysis times
for four different Curry applications: the interactive environment
(read/eval/print loop) of KiCS2, the analysis system presented in
this paper, the interactive analysis environment CurryBrowser [14],
and the module database,7 a web application generated from an
entity/relationship model with the web framework Spicey [18].
In order to get an impression of the size of each application, the
number of modules (including imported system modules) is shown
for each application. Typically, most modules contain 100-300 lines
of code, where the largest one has more than 900 lines of code.

Table 1 contains the elapsed time (in seconds) needed to analyze
these applications for different numbers of workers. We ran two
kinds of fixpoint analysis: an analysis of demanded arguments
[15] and a groundness analysis [7]. Each analysis has always been
started from scratch, i.e., all persistently stored information were
deleted at the beginning, except for the last row which shows the
times to re-analyze the application where only the main module has
been changed. In this case, the actual analysis time is quite small
but most of the total time is spent to check all module dependencies
for possible updates. The benchmarks were executed on a Linux
machine running Ubuntu 12.04 with an Intel Core i5 (2.53GHz)
processor with four cores where CASS was compiled with KiCS2
(Version 0.3.1).

The speedup related to the number of workers is not optimal.
This might be due to the fact that the dependencies between the

6 CASS is part of the distributions of the Curry systems KiCS2 [8] and
PAKCS [19].
7 http://mdb.ps.informatik.uni-kiel.de/

modules are complex so that there are not many opportunities for
an independent analysis of modules, i.e., workers might have to
wait for the termination of the analysis of modules which are im-
ported by many other modules. Nevertheless, the approach shows
that there is a potential to exploit the computing power offered by
modern computers. Furthermore, the absolute run times are accept-
able. It should also be noted that, during system development, the
times are lower due to the persistent storing of analysis results.

7. Conclusions and Related Work
In this paper we presented CASS, a tool to analyze functional logic
programs. CASS supports various kinds of program analyses by
a general notion of analysis functions that map program entities
into analysis information. In order to implement an analysis that
also depends on information about other entities used in a defini-
tion, CASS supports “dependency analyses” that require a fixpoint
computation to yield the final analysis information. Moreover, dif-
ferent analyses can be combined so that one can define an anal-
ysis that is based on the results of another analysis. Using these
different constructions, the analysis developer can concentrate on
defining the logic of the analysis and is freed from the details to
invoke the analysis on modules and complete application systems.
To analyze larger applications efficiently, CASS performs a modu-
lar and incremental analysis where already computed analysis in-
formation is persistently stored. Thus, CASS does not support top-
down or goal-oriented analyses but only bottom-up analyses which
is acceptable for large applications or interactive systems with un-
known initial goals. The implementation of CASS supports differ-
ent modes of use (batch, API, server) so that the registered analyses
can be accessed by various systems, like compilers, program opti-
mizers, documentation generators, or programming environments.
Currently, CASS produces output in textual form. The support for
other kinds of visualizations is a topic for future work.

The analysis of programs is an important topic for all kinds
of languages so that there is a vast body of literature. Most of
such works is related to the development and application of various
analysis methods (where some of them related to functional logic
programs have already been discussed in this paper), but there
are less works on the development or implementation of program
analyzers. An example of such an approach, that is in some aspects
similar to our work, is Hoopl [28]. Hoopl is a framework for
data flow analysis and transformation. Like CASS, Hoopl eases
the definition of analyses by offering high-level abstractions and
releases the user from tasks like writing fixpoint computations. In
contrast to our work, Hoopl works on a generic representation of
data flow graphs, whereas CASS performs incremental, module-
wise analyses on an already existing representation of functional
logic programs.

Another related system is Ciao [22], a logic programming sys-
tem with an advanced preprocessor to analyze, optimize, and ver-
ify logic programs [21]. Similarly to CASS, the Ciao preprocessor
also analyzes declarative programs in a modular and incremental
manner. However, the Ciao preprocessor does not offer a high-level

http://mdb.ps.informatik.uni-kiel.de/

generic interface to implement new program analyses in a type safe
manner, which is the main objective of the strongly typed analysis
constructors provided by CASS.

There are only a few approaches or tools directly related to the
analysis of combined functional logic programs, as already dis-
cussed in this paper. The examples in this paper show that this
combination is valuable since analysis aspects of pure functional
and pure logic languages can be treated in this combined frame-
work, like demand and higher-order aspects from functional pro-
gramming and groundness and determinism aspects from logic pro-
gramming. An early system in this direction is CIDER [17]. CIDER
supports the analysis of single Curry modules together with some
graphical tracing facilities. A successor of CIDER is CurryBrowser
[14], already mentioned above, which supports the analysis and
browsing of larger applications. CASS can be considered as a more
efficient and more general implementation of the analysis compo-
nent of CurryBrowser.

For future work, we will add further analyses in CASS with
more advanced abstract domains. Since this might lead to analyses
with substantial run times, the use of parallel architectures might
be more relevant. Thus, it would also be interesting to develop
advanced methods to analyze module dependencies in order to
obtain a better distribution of analysis tasks between the workers.

Acknowledgements. The authors are grateful to Heiko Hoffmann
for his contribution to an initial version of the analysis system and
to Sandra Dylus for her suggestions to improve this paper.

References
[1] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational

semantics for declarative multi-paradigm languages. Journal of Sym-
bolic Computation, 40(1):795–829, 2005.

[2] S. Antoy. Definitional trees. In Proc. of the 3rd International Confer-
ence on Algebraic and Logic Programming, pages 143–157. Springer
LNCS 632, 1992.

[3] S. Antoy. Constructor-based conditional narrowing. In Proc. of the 3rd
International ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming (PPDP 2001), pages 199–206. ACM
Press, 2001.

[4] S. Antoy and M. Hanus. Declarative programming with function
patterns. In Proceedings of the International Symposium on Logic-
based Program Synthesis and Transformation (LOPSTR’05), pages 6–
22. Springer LNCS 3901, 2005.

[5] S. Antoy and M. Hanus. Functional logic programming. Communica-
tions of the ACM, 53(4):74–85, 2010. .

[6] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy.
Journal of the ACM, 47(4):776–822, 2000. .

[7] B. Braßel and M. Hanus. Nondeterminism analysis of functional logic
programs. In Proceedings of the International Conference on Logic
Programming (ICLP 2005), pages 265–279. Springer LNCS 3668,
2005.

[8] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new
compiler from Curry to Haskell. In Proc. of the 20th International
Workshop on Functional and (Constraint) Logic Programming (WFLP
2011), pages 1–18. Springer LNCS 6816, 2011. .

[9] P. Cousot. Types as abstract interpretations. In Proc. of the 24th ACM
Symposium on Principles of Programming Languages (Paris), pages
316–331, 1997.

[10] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction of approxima-
tion of fixpoints. In Proc. of the 4th ACM Symposium on Principles of
Programming Languages, pages 238–252, 1977.

[11] J. González-Moreno, M. Hortalá-González, F. López-Fraguas, and
M. Rodríguez-Artalejo. An approach to declarative programming
based on a rewriting logic. Journal of Logic Programming, 40:47–
87, 1999.

[12] M. Hanus. A unified computation model for functional and logic
programming. In Proc. of the 24th ACM Symposium on Principles
of Programming Languages (Paris), pages 80–93, 1997. .

[13] M. Hanus. CurryDoc: A documentation tool for declarative programs.
In Proc. 11th International Workshop on Functional and (Constraint)
Logic Programming (WFLP 2002), pages 225–228. Research Report
UDMI/18/2002/RR, University of Udine, 2002.

[14] M. Hanus. CurryBrowser: A generic analysis environment for Curry
programs. In Proc. of the 16th Workshop on Logic-based Methods in
Programming Environments (WLPE’06), pages 61–74, 2006.

[15] M. Hanus. Improving lazy non-deterministic computations by demand
analysis. In Technical Communications of the 28th International Con-
ference on Logic Programming, volume 17, pages 130–143. Leibniz
International Proceedings in Informatics (LIPIcs), 2012. .

[16] M. Hanus. Functional logic programming: From theory to Curry. In
Programming Logics - Essays in Memory of Harald Ganzinger, pages
123–168. Springer LNCS 7797, 2013.

[17] M. Hanus and J. Koj. CIDER: An integrated development environment
for Curry. In Proc. of the International Workshop on Functional
and (Constraint) Logic Programming (WFLP 2001), pages 369–373.
Report No. 2017, University of Kiel, 2001.

[18] M. Hanus and S. Koschnicke. An ER-based framework for declarative
web programming. In Proc. of the 12th International Symposium on
Practical Aspects of Declarative Languages (PADL 2010), pages 201–
216. Springer LNCS 5937, 2010. .

[19] M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj,
P. Niederau, R. Sadre, and F. Steiner. PAKCS: The Portland
Aachen Kiel Curry System. Available at http://www.informatik.
uni-kiel.de/~pakcs/, 2013.

[20] M. Hanus (ed.). Curry: An integrated functional logic language (vers.
0.8.3). Available at http://www.curry-language.org, 2012.

[21] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Inte-
grated program debugging, verification, and optimization using ab-
stract interpretation (and the ciao system preprocessor). Science of
Computer Programming, 58(1-2):115–140, 2005.

[22] M. Hermenegildo, F. Bueno, M. Carro, P. López-García, E. Mera,
J. Morales, and G. Puebla. An overview of Ciao and its design
philosophy. Theory and Practice of Logic Programming, 12(1-2):219–
252, 2012.

[23] N. Jones and A. Mycroft. Data flow analysis of applicative programs
using minimal function graphs. In Proc. 13th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 296–
306, 1986.

[24] F. López-Fraguas and J. Sánchez-Hernández. TOY: A multiparadigm
declarative system. In Proc. of RTA’99, pages 244–247. Springer
LNCS 1631, 1999.

[25] A. Mycroft. The theory and practice of transforming call-by-need into
call-by-value. In Proc. International Symposium on Programming,
pages 269–281. Springer LNCS 83, 1980.

[26] M. Palkus. An Eclipse-based integrated development environment for
Curry. Master’s thesis, Christian-Albrechts-Universität zu Kiel, 2012.

[27] S. Peyton Jones, editor. Haskell 98 Language and Libraries—The
Revised Report. Cambridge University Press, 2003.

[28] N. Ramsey, J. Dias, and S. Peyton Jones. Hoopl: a modular, reusable
library for dataflow analysis and transformation. In Proceedings of
the 3rd ACM SIGPLAN Symposium on Haskell (Haskell 2010), pages
121–134. ACM Press, 2010. .

[29] J. Reynolds. Definitional interpreters for higher-order programming
languages. In Proceedings of the ACM Annual Conference, pages 717–
740. ACM Press, 1972.

[30] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of
Mercury, an efficient purely declarative logic programming language.
Journal of Logic Programming, 29(1-3):17–64, 1996.

[31] D. Warren. Higher-order extensions to Prolog: are they needed? In
Machine Intelligence 10, pages 441–454, 1982.

http://www.informatik.uni-kiel.de/~pakcs/
http://www.informatik.uni-kiel.de/~pakcs/
http://www.curry-language.org

	Introduction
	Curry and FlatCurry
	Implementing Program Analyses
	Modeling Program Analyses
	Determinism Analysis
	Integrating an Analysis into CASS
	Analysis of Types
	Analysis Combinators

	Using the Analysis System
	Implementation
	Practical Evaluation
	Conclusions and Related Work

