
EÆ
ient Implementation of Narrowing and

Rewriting

Mi
hael Hanus

�

Te
hnis
he Fakult�at, Universit�at Bielefeld

W-4800 Bielefeld 1, Germany

e-mail: hanus�te
hfak.uni-bielefeld.de

in Pro
. International Workshop on Pro
essing De
larative Knowledge,

pp. 344-365, Springer LNAI 567, 1991

Abstra
t

We present an eÆ
ient implementation method for a language that amalgamates fun
-

tional and logi
 programming styles. The operational semanti
s of the language
onsists

of resolution to solve predi
ates and narrowing and rewriting to evaluate fun
tional ex-

pressions. The implementation is based on an extension of the Warren Abstra
t Ma
hine

(WAM). This extension
auses no overhead for pure logi
 programs and allows the ex-

e
ution of fun
tional programs by narrowing and rewriting with the same eÆ
ien
y as

their relational equivalents. Moreover, there are many
ases where fun
tional programs

are more eÆ
iently exe
uted than their relational equivalents.

1 Introdu
tion

During the last years a lot of approa
hes have been proposed in order to amalgamate

fun
tional and logi
 programming languages [7℄ [1℄. Su
h integrations have several advan-

tages:

1. Fun
tional and logi
 programming styles
an be used in one language.

2. It extends logi
 programming by allowing nested expressions, i.e., it is not ne
essary

to
atten
omplex expressions as in Prolog.

3. It extends fun
tional programming by solving equations between fun
tional expres-

sions.

4. It allows the programmer to spe
ify fun
tional dependen
ies between data. This

information
an be used for a more eÆ
ient implementation.

5. Large parts of logi
 programs are fun
tional
omputations. In an integrated lan-

guage these parts are de�ned as fun
tions whi
h
an be more eÆ
iently exe
uted

than their relational equivalents.

Point 1 is a matter of taste, and point 2 is no real argument sin
e nested expressions
an be

attened by a prepro
essor [4℄. But the last three arguments show that an integration of

fun
tional and logi
 languages yields a proper extension of ea
h of these language types.

�

on leave from Fa
hberei
h Informatik, Universit�at Dortmund, W-4600 Dortmund 50

For instan
e,
onsider the following logi
 program for the addition of natural numbers

where numbers are represented as terms
onstru
ted by 0 and s:

add(0, N, N)

add(N, 0, N)

add(s(M), N, s(L)) add(M, N, L)

add(N, s(M), s(L)) add(N, M, L)

If the literal add(0,0,Z) should be proved, then a ba
ktra
k point (also
alled \
hoi
e

point" in [33℄) must be generated sin
e there are two alternative proofs yielding the result

fZ/0g in both
ases. The equivalent fun
tional program is

0 + N = N

N + 0 = N

s(M) + N = s(M + N)

N + s(M) = s(N + M)

The equation 0 + 0 = Z
an be solved in a determinsti
 way by applying one of the �rst

two equations to the left-hand side. A
reation of a ba
ktra
k point is unne
essary sin
e

\+" is a fun
tion whi
h has a unique result. One
ould argue that a Prolog
ompiler

an also optimize the
ode for the predi
ate add but this requires some sort of mode

information whi
h is not available if the equation X + Y = s(0) should also be solved

(where X and Y are free variables). A genuine integration of fun
tional and logi
 languages

permits su
h goals and has no �xed modes for the appli
ation of fun
tions. In this paper

we present su
h a language together with an implementation whi
h avoids the
reation of

ba
ktra
k points if it is not ne
essary.

Another advantage of an integrated fun
tional and logi
 language is the redu
tion

of the sear
h spa
e by fun
tional
omputations: Fribourg [8℄ has given examples for

terminating fun
tional-logi
 programs where equivalent Prolog programs do not terminate

or need more
omputation steps. This aspe
t is also
overed by our language and we will

dis
uss this point in more detail in subsequent se
tions.

A lot of the proposed integrations of fun
tional and logi
 languages are based on Horn

lause logi
 with equality [31℄ whi
h o�ers predi
ates de�ned by Horn
lauses for logi
 pro-

gramming and fun
tions de�ned by (
onditional) equations for fun
tional programming.

The de
larative semanti
s is the well-known Horn
lause logi
 [25℄ with the restri
tion

that the equality predi
ate is always interpreted as identity. The operational semanti
s is

based on resolution for predi
ates (like in logi
 languages) and rewriting for fun
tions (like

in fun
tional languages). Sin
e it is also required to solve equations between fun
tional

expressions, a new inferen
e rules is added: narrowing is a
ombination of uni�
ation

and rewriting, i.e., a subterm of the goal is uni�ed with the left-hand side of an equation

su
h that the instantiated subterm
an be rewritten with that equation and the uni�er

is applied to the whole goal. This general strategy has been re�ned by H�olldobler [19℄

to the innermost basi
 narrowing strategy where exa
tly one possible subterm must be

narrowed in a
omputation step. This strategy has the same eÆ
ien
y as SLD-resolution,

but H�olldobler has shown that goals
an also be simpli�ed by rewriting before a narrowing

step is performed. This loses no solutions and is more eÆ
ient than Prolog's
omputation

strategy.

2

However, the dis
ussion about the better eÆ
ien
y of fun
tional
omputations is only

relevant if there is a good implementation te
hnique for narrowing and rewriting. Up

to now most of the proposed systems are implemented by an interpreter whi
h
an not

ompete with present Prolog implementations based on a
ompilational approa
h [33℄.

Merely [3℄, [24℄, [27℄ and [26℄
ontain approa
hes to
ompile (lazy) narrowing rules into

ode of an abstra
t ma
hine, but the integration of rewriting is not addressed in these

papers. This paper presents an implementation te
hnique for a fun
tional and logi

programming language with the following properties:

� The operational semanti
s of the language is based on resolution, narrowing and

rewriting.

� Pure logi
 programs without fun
tions are
ompiled in the same way as in Pro-

log systems based on the Warren Abstra
t Ma
hine (WAM) [33℄, i.e., there is no

overhead be
ause of the fun
tional part.

� There is a parti
ular te
hnique to deal with o

urren
es (referen
es to subterms)

where the next narrowing or rewrite rule
an be applied. Thus fun
tional programs

are exe
uted by narrowing and rewriting at least with almost the same eÆ
ien
y

as their relational equivalents by resolution. Moreover, there are large
lasses of

programs where the fun
tional versions are more eÆ
iently exe
uted by narrowing

and rewriting than the relational versions by resolution.

� There are no modes for the exe
ution of fun
tions. Similarly to logi
 programming,

fun
tions
an be evaluated with ground or non-ground terms at ea
h argument po-

sition. However, fun
tions are evaluated by determinsti
 rewriting if the arguments

are ground, and in other
ases (non-deterministi
) narrowing is applied. This is au-

tomati
ally de
ided at run time, i.e., user annotations are not ne
essary to spe
ify

where rewriting or narrowing should be applied.

Our implementation is based on an extension of the WAM [33℄ and therefore we assume

familiarity with the basi

on
epts of this ma
hine. The te
hniques presented in this paper

are based on a previous proposal [12℄ but have the following basi
 di�eren
es: The
urrent

implementation simpli�es the goal by rewriting before ea
h narrowing step (normalized

narrowing) whereas in [12℄ rewriting is only applied before an entire narrowing derivation

is
omputed. Furthermore, we present new te
hniques for the management of o

urren
es

whi
h speeds up the exe
ution time up to 30% and saves up to 40% of the heap spa
e

be
ause of a delayed
opying of fun
tion symbols onto the heap.

This paper is organized as follows. In the next se
tion we de�ne the operational

semanti
s implemented by our system. The te
hniques for the eÆ
ient management of

o

urren
es are shown in se
tion 3 and details about our abstra
t ma
hine are presented in

se
tion 4. For the sake of simpli
ity we introdu
e the basi
 implementation te
hniques only

for un
onditional equations. The ne
essary extensions to deal with
onditional equations

are shown in se
tion 5. Se
tion 6 shows some results of our implementation.

2 The implemented operational semanti
s

We have mentioned in the introdu
tion that our approa
h to integrate fun
tional and logi

programming languages is based on Horn
lause logi
 with equality (see [31℄ for details)

3

whi
h extends pure Horn logi
 by allowing user de�nitions for the binary predi
ate \=".

Sin
e Horn
lause logi
 with equality interprets this predi
ate as identity, we
an de�ne

fun
tions by this feature. For instan
e, the following
lauses de�ne a fun
tion isort

on lists whi
h produ
es a sorted permutation of the argument list by the insertion sort

method (we use the Prolog notation for lists [6℄ and we assume that the ordering predi
ates

=< and > are de�ned elsewhere):

isort([℄) = [℄

isort([E|L℄) = insert(E,isort(L))

insert(E,[℄) = [E℄

insert(E,[F|L℄) = [E,F|L℄ E =< F

insert(E,[F|L℄) = [F|insert(E,L)℄ E > F

Clauses for the predi
ate \=" are also
alled
onditional equations. If the
ondition

is empty, we
all it also un
onditional equation. Note that this program is neither

a valid K-LEAF program [3℄ (sin
e the left-hand side of the two
onditional equations

are identi
al) nor a valid BABEL program (sin
e the
onditions of the two
onditional

equations are \propositional satis�able" [28℄). But it is allowed in our language sin
e

we only require the
on
uen
e of the term rewriting relation generated by the (
ondi-

tional) equations (the insert equation system is
on
uent sin
e \E =< F and E > F" is

unsatis�able).

Our sour
e language ALF (\Algebrai
 Logi
 Fun
tional language")
onsists of Horn

lauses for user-de�ned predi
ates and equations for user-de�ned fun
tions (the left-hand

sides
an also be non-linear in
ontrast to K-LEAF and BABEL). Furthermore, ALF has

a (parametrized) module system and a many-sorted type stru
ture. Sin
e these features

have no in
uen
e on the exe
ution of ALF-programs, we omit the details here and refer

the interested reader to [12℄ and [15℄. An important aspe
t of the language is the distin
-

tion between
onstru
tors and fun
tions. A
onstru
tor must not be the outermost

symbol of the left-hand side of a
onditional equation, i.e.,
onstru
tor terms are always

irredu
ible. This distin
tion is spe
i�ed by the user [12℄ and ne
essary for the notion of

innermost o

urren
es [8℄.

The de
larative semanti
s of ALF is the well-known Horn
lause logi
 with equality

as to be found in [31℄. As mentioned in the introdu
tion, the operational semanti
s of

ALF is based on resolution for predi
ates and rewriting and innermost basi
 narrowing for

fun
tions. In order to give a pre
ise de�nition of the operational semanti
s, we represent

a goal by a skeleton and an environment part [19℄: the skeleton is a goal
omposed of

terms and literals o

urring in the original program, and the environment is a substitution

whi
h has to be applied to the goal in order to obtain the a
tual goal. The initial goal

G is represented by the pair < G; id > where id is the identity substitution. We de�ne

the following inferen
e rules to derive a new goal from a given one (if � is a position in

a term t, then t=� denotes the subterm of t at position � and t[� s℄ denotes the term

obtained by repla
ing the subterm t=� by s in t): Let < L

1

; : : : ; L

n

; � > be a given goal

(L

1

; : : : ; L

n

are the skeleton literals and � is the environment).

1. If L

1

is an equation s = t and there is a mgu �

0

for �(s) and �(t), then the goal

< L

2

; : : : ; L

n

; �

0

Æ � >

4

is derived by re
e
tion.

2. If L

1

is not an equation and there is a new variant L C of a program
lause and

�

0

is a mgu for �(L

1

) and L, then the goal

< C;L

2

; : : : ; L

n

; �

0

Æ � >

is derived by resolution.

3. Let � be a leftmost-innermost position in the �rst skeleton literal L

1

, i.e., the sub-

term L

1

=� has a de�ned fun
tion symbol at the top and all argument terms
onsist

of variables and
onstru
tors (
f. [8℄).

(a) If there is a new variant l = r C of a program
lause and �(L

1

=�) and l are

uni�able with mgu �

0

, then the goal

< C;L

1

[� r℄; L

2

; : : : ; L

n

; �

0

Æ � >

is derived by innermost basi
 narrowing.

(b) If x is a new variable and �

0

is the substitution fx �(L

1

=�)g, then the goal

< L

1

[� x℄; L

2

; : : : ; L

n

; �

0

Æ � >

is derived by innermost re
e
tion (this
orresponds to the elimination of an

innermost redex [19℄).

4. If � is a non-variable position in L

1

, l = r C is a new variant of a program

lause and �

0

is a substitution with �(L

1

=�) = �

0

(l) and the goal < C ; �

0

>
an

be derived to the empty goal without instantiating any variables from �(L

1

), then

the goal

< L

1

[� �

0

(r)℄; L

2

; : : : ; L

n

; � >

is derived by rewriting (thus rewriting is only applied to the �rst literal, but this is

no restri
tion sin
e a
onjun
tion like L

1

; L

2

; L

3

an also be written as an equation

and(L

1

; and(L

2

; L

3

)) = true).

5. If L

1

is an equation and the two sides have di�erent
onstru
tors at the same outer-

most position (a position not belonging to arguments of fun
tions), then the whole

goal is reje
ted, i.e., the proof fails.

The
omplete operational semanti
s of ALF is shown in �gure 1. The innermost re
e
tion

rule must only be applied to partial fun
tions, i.e., fun
tions whi
h are not redu
ible for all

ground terms of appropriate sorts [19℄. The attribute basi
 of a narrowing step emphasizes

that a narrowing step is only applied at an o

urren
e of the original program and not

at o

urren
es introdu
ed by substitutions [21℄. The restri
tion to basi
 o

urren
es is

important for an eÆ
ient implementation of narrowing and rewriting (see below). The

rewriting rule has the disadvantage that terms from the environment part
an be moved

to the skeleton part, but it has been shown that su
h terms
an be safely moved ba
k to

the environment part [30℄. Therefore environment terms are never moved to the skeleton

part in our implementation.

5

Start: Apply rewriting as long as possible (from innermost to outermost positions).

If the goal is not reje
ted then:

Narrow: If possible, apply the innermost basi
 narrowing rule and go to Start.

If possible, apply the innermost re
e
tion rule and goto Narrow.

If the �rst literal of the goal is an equation

then: If possible, apply the re
e
tion rule and go to Start.

else: If possible, apply the resolution rule and go to Start.

Otherwise: fail (and try an alternative proof)

Figure 1: Operational semanti
s of ALF

This operational semanti
s is sound and
omplete if the term rewriting relation gener-

ated by the
onditional equations is
anoni
al and the
ondition and the right-hand side

of ea
h
onditional equation do not
ontain extra-variables [19℄. If these restri
tions are

not satis�ed, it may be possible to transform the program into an equivalent program

for whi
h this operational semanti
s is
omplete. For instan
e, Bertling and Ganzinger

[2℄ have proposed a method to transform
onditional equations with extra-variables su
h

that narrowing and re
e
tion will be
omplete. Therefore we allow extra-variables in
on-

ditional equations. For instan
e, our operational semanti
s is
omplete for the following

set of equations de�ning qui
ksort, whi
h
an be proved by the CEC
ompletion system

[2℄ (we omit the de�nition of =< and >):

on
([℄,L) = L

on
([E|R℄,L) = [E|
on
(R,L)℄

split(E,[℄) = ([℄,[℄)

split(E,[F|L℄) = ([F|L1℄,L2) E > F, split(E,L) = (L1,L2)

split(E,[F|L℄) = (L1,[F|L2℄) E =< F, split(E,L) = (L1,L2)

qsort([℄) = [℄

qsort([E|L℄) =
on
(qsort(L1),[E|qsort(L2)℄) split(E,L) = (L1,L2)

(`,' is de�ned as an in�x operator for building pairs of lists). Note that this is not a valid

K-LEAF or BABEL program sin
e the extra-variables L1 and L2 o

ur in the right-hand

side of the de�ning equations. In order to avoid the extra-variables one has to repla
e the

last equation by

qsort([E|L℄) =
on
(qsort(split1(E,L)),[E|qsort(split2(E,L))℄)

and rede�ne the split fun
tion. This solution is less eÆ
ient (be
ause the list L must be

pro
essed twi
e) and simpli�
ation orderings fail to prove the termination of the rewrite

relation [2℄. These drawba
ks may be a

epted, but there are other examples where the

use of extra-variables
annot be avoided with simple transformations. The fun
tion last

omputes the last element of a given list. It
an be expli
itly de�ned or, if
on
 is de�ned

as above, by the simple
onditional equation

last(L) = E
on
(L1,[E℄) = L

6

In this
ase last(L) is evaluated by sear
hing the right instantiations of L1 and E (note

that there is at most one solution if L is given). The use of extra-variables gives us the

full power of logi
 programming inside fun
tional programming. Hen
e ALF allows extra-

variables in
onditional equations. If su
h a
onditional equation is applied in a rewrite

step, only the �rst solution to the extra-variables is
onsidered. This is suÆ
ient be
ause

all equations are required to be
on
uent.

It is also possible to spe
ify additional equational
lauses whi
h are only used for

rewriting. For instan
e, Fribourg [8℄ has shown that the addition of indu
tive axioms for

rewriting is useful to redu
e the sear
h spa
e. In this
ase the proved goals are valid with

respe
t to the least Herbrand model but may be invalid in the
lass of all models. Therefore

an ALF-program
onsists of three groups of
lauses: relational
lauses whi
h de�ne all

predi
ates ex
ept \=",
onditional equations used for narrowing and
onditional equations

used for rewriting (Fribourg's SLOG language allows only un
onditional equations for

rewriting). Usually, all
onditional equations in an ALF-program are used for narrowing

and rewriting, but the programmer
an spe
ify that some equations should only be applied

for narrowing or rewriting, respe
tively. For instan
e, the indu
tive axiom rev(rev(L))

= L
an be used for rewriting to redu
e the sear
h spa
e (the fun
tion rev reverses all

elements in a list). To use it as a narrowing rule makes no sense sin
e this would expand

the sear
h spa
e.

Similarly to Prolog, the program
lauses in ALF are ordered and the di�erent
hoi
es

for
lauses in a
omputation step are implemented by a ba
ktra
king strategy. Note that

ba
ktra
king is only ne
essary in the resolution and narrowing rule but not in rewrit-

ing sin
e simpli�
ation by rewriting produ
es unique terms independently of the
hosen

lauses (be
ause of the
on
uen
e of the term rewriting relation). Therefore rewriting is

a deterministi
 pro
ess and the simpli�
ation of a goal by rewriting before a narrowing

step means that in ALF deterministi

omputations are performed whenever possible and

nondeterministi

omputations (narrowing/resolution) are only used when it is not avoid-

able. The Andorra
omputation model [17℄ is related to ALF's operational semanti
s.

But in
ontrast to the Andorra model the rewriting me
hanism of ALF yields determinis-

ti

omputations also when more than one
lause mat
hes (see add example in se
tion 1)

and may delete goals with in�nite or nondeterministi

omputations. E.g., if X*0 = 0 is

a de�ning equation for the fun
tion *, then a term like t * 0 will be simpli�ed to 0, i.e.,

the entire subterm t will be deleted. This is important if t
ontains unevaluated fun
tions

with variable arguments.

In order to demonstrate the improved eÆ
ien
y of this operational semanti
s in
om-

parison to Prolog's
omputation strategy,
onsider the following equations for the
on-

atenation fun
tion on lists:

on
([℄,L) = L

on
([E|R℄,L) = [E|
on
(R,L)℄

If a and b are
onstru
tors, then the goal

on
(
on
([a|V℄,W),Y) = [b|Z℄

is simpli�ed by rewriting to the goal

[a|
on
(
on
(V,W),Y)℄ = [b|Z℄

7

whi
h is immediately reje
ted sin
e a and b are di�erent
onstru
tors. The equivalent

Prolog goal

append([a|V℄,W,L), append(L,Y,[b|Z℄)

auses an in�nite loop for any order of literals and
lauses [29℄. More details about the

advantages of rewriting and reje
tion in
ombination with narrowing
an be found in [8℄

and [19℄.

3 The management of o

urren
es

In this se
tion we want to show the basi
 ideas to implement the operational semanti
s of

ALF in an eÆ
ient way. Sin
e Prolog's operational semanti
s is in
luded in our language,

we have de
ided to extend the WAM in order to implement the new aspe
ts of ALF. The

resolution and re
e
tion rule
an be dire
tly implemented in the WAM sin
e there is no

di�eren
e to Prolog. The implementation of reje
tion is also obvious (note the similarity

between uni�
ation and reje
tion). Therefore we dis
uss the implementation of narrowing

and rewriting in more detail. For the sake of simpli
ity we
onsider only un
onditional

equations in this se
tion. The ne
essary extensions to deal with
onditional equations are

shown in se
tion 5.

The WAM stores terms on the heap. In order to obtain an eÆ
ient implementation of

narrowing and rewriting, we need a fast a

ess to the subterm where the next narrowing

or rewrite rule should be applied. A dynami
 sear
h through the argument term of the

urrent literal is too expensive for this purpose. But sin
e we use an innermost basi

strategy, all relevant o

urren
es of subterms
an be determined at
ompile time. For

instan
e,
onsider the
lause

fa
(s(N)) = fa
(N) * s(N)

If this equation is applied to redu
e a term of the form fa
(A), then we know by the

innermost basi
 strategy that the argument term A does not
ontain any o

urren
es

of fun
tions belonging to the skeleton part. Therefore we repla
e the term fa
(A) by

the right-hand side fa
(N) * s(N) (after unifying A and s(N)) and then we redu
e the

subterm fa
(N). If this subterm is
ompletely redu
ed to a term T, then the term T *

s(N) is the next term where an equation must be applied.

Hen
e we introdu
e a new data stru
ture
alled o

urren
e sta
k. An o

urren
e

is a referen
e to a term on the heap. The o

urren
e sta
k
ontains all referen
es to

subterms of an argument of the
urrent literal where narrowing and rewrite rules
ould

be applied (in innermost order, i.e., the referen
e to the innermost term is always the

top element). For instan
e, if p(f(
(g(X)))) is the
urrent skeleton literal, f and g

are fun
tions and
 a
onstru
tor, then the o

urren
e sta
k
ontains a referen
e to the

subterm f(
(g(X))) and a referen
e to the subterm g(X) at the top. Now it is easy to

see that the
ompiler
an generate all ne
essary instru
tions for the manipulation of the

o

urren
e sta
k. For instan
e, the right-hand side of the above equation for fa

an be

translated into

<repla
e the term at the
urrent o

urren
e by fa
(N) * s(N)>

<push a referen
e to the subterm fa
(N) onto the o

urren
e sta
k>

8

The right-hand side
ontains two fun
tions, therefore an additional o

urren
e must be

pushed onto the o

urren
e sta
k. If the right-hand side does not
ontain a fun
tion

symbol (i.e., only
onstru
tors and variables), then an element must be popped from the

o

urren
e sta
k. For instan
e, the right-hand side of the
lause fa
(0) = s(0) is

translated into

<repla
e the term at the
urrent o

urren
e by s(0)>

<pop a referen
e from the o

urren
e sta
k>

This has the e�e
t that the
omputation pro
eeds at the next innermost o

urren
e stored

on the o

urren
e sta
k.

Before a literal is proved by resolution, all arguments must be evaluated by rewrit-

ing and narrowing. Therefore the arguments must be stored on the heap and the o
-

urren
e sta
k is initialized with the appropriate referen
es. For instan
e, the literal

p(f(
(g(X)))) is translated into

<write the term f(
(g(X))) onto the heap>

<push referen
e to the term f(
(g(X))) onto the o

urren
e sta
k>

<push referen
e to the term g(X) onto the o

urren
e sta
k>

<start rewriting and narrowing>

Now a new problem o

urs. Rewriting tries to simplify the
urrent argument term by

applying rewrite rules from innermost to outermost positions in the term. If a subterm

annot be rewritten, then the next innermost position is tried, i.e., an element is popped

from the o

urren
e sta
k. This is ne
essary as the following example shows: If the only

equations for f and g are

f(Z) = 0

g(0) = 0

then the term g(X)
annot be rewritten (only narrowing
ould be applied), but the term

f(
(g(X)))
an be simpli�ed to 0.

Hen
e the rewriting pro
ess pops all elements from the o

urren
e sta
k and therefore

the sta
k is empty when rewriting is �nished and a narrowing rule should be applied. In

order to avoid a dynami
 sear
h for the appropriate innermost o

urren
e, we introdu
e

a se
ond sta
k for storing the deleted o

urren
es (in [12℄ all o

urren
es are stored on

one sta
k and therefore more time is needed to re
ompute the o

urren
es in
ase of

su

essful rewriting). This sta
k (
alled
opy o

urren
e sta
k)
ontains all o

urren
es

if rewriting is �nished and the original o

urren
e sta
k is empty. Thus the o

urren
e

sta
k
an be reinstalled by a simple blo
k-
opy operation. There is only one
ase where

this method
annot be applied (but fortunately this
ase rarely o

urs): If a rewrite rule

deletes a subterm be
ause there are variables on the left-hand side whi
h do not o

ur on

the right-hand side (as in the
lause f(Z) = 0) and the
opy o

urren
e sta
k is not empty,

then some o

urren
es must be deleted from the
opy o

urren
e sta
k. Sin
e this is

expensive or requires additional information in the data stru
tures, we have implemented

a simple solution: In this
ase the
opy o

urren
e sta
k is marked as \invalid" whi
h has

the
onsequen
e that a new o

urren
e sta
k for the
urrent argument term is
omputed

before a narrowing rule is applied.

The presented te
hnique for the management of o

urren
es has the advantage that

9

the next relevant subterm for rewriting or narrowing
an be found in
onstant time and a

dynami
 sear
h for redu
ible subterms is not ne
essary. As a
onsequen
e we will see in

se
tion 6 that fun
tional programs are exe
uted by rewriting and narrowing with almost

the same eÆ
ien
y as their relational equivalents by resolution.

4 Details of the abstra
t ma
hine

After dis
ussing the basi
 ideas of the implementation in the previous se
tion, we
an

present more details about our abstra
t ma
hine. The abstra
t ma
hine for the eÆ
ient

exe
ution of ALF-programs,
alled A-WAM, is an extension of the WAM. Hen
e the

main data areas of the A-WAM are the
ode area
ontaining the
ompiled
ode of the

ALF-program, the lo
al sta
k
ontaining environments and ba
ktra
k points, the heap

ontaining terms
onstru
ted at run time, the trail
ontaining variables bound during

uni�
ation, and the o

urren
e sta
k and the
opy o

urren
e sta
k as des
ribed in the

last se
tion. In
ontrast to the WAM, the trail
ontains also the
ontents of heap
ells

whi
h were repla
ed by an appli
ation of a rewrite or narrowing rule, and the terms in the

heap have an additional tag indi
ating whether they belong to the skeleton or environment

part of the goal. This is ne
essary be
ause the basi
 o

urren
es must be re
omputed in

some
ases (
f. previous se
tion).

The A-WAM has several additional registers and instru
tions for the implementation

of rewriting and narrowing. A des
ription of these
an be found in the appendix. In this

se
tion we des
ribe the A-WAM by sele
ted examples.

An equational
lause l = r is always translated into the following s
heme:

<unify or mat
h the left-hand side l with the
urrent subterm>

<repla
e the
urrent subterm by the right-hand side r>

<update the o

urren
e sta
k (delete or add o

urren
es)>

<pro
eed with rewriting/narrowing at new innermost o

urren
e>

The
urrent subterm is referen
ed by the top element of the o

urren
e sta
k. Therefore

this top element is always stored in the parti
ular A-WAM-register AO, i.e., the o

urren
e

sta
k is empty i� AO is unde�ned. Similarly to the WAM, the arguments of a n-ary

predi
ate or fun
tion are passed through the argument registers A1,: : :,An. Hen
e the

get-instru
tions of the WAM
an be used to unify the left-hand side of an equation. If

this equation is used as a rewrite rule, then the left-hand side must be mat
hed with the

urrent subterm, i.e., variables in the
urrent subterm must not be bound. One possible

implementation of this behaviour is the introdu
tion of additional registers R and HR whi
h

point to the lo
al sta
k and heap, respe
tively. Before rewriting is
alled, R and HR are

set to the top of the lo
al sta
k and the top of the heap, respe
tively. If a variable is

bound to a term in the uni�
ation pro
edure, the WAM-instru
tion trail is
alled. Now

we modify the instru
tion trail su
h that this instru
tion
auses a fail if the variable

to be bound is stored in the lo
al sta
k before address R or in the heap before address HR.

With this small modi�
ation we need no additional instru
tions for mat
hing but
an use

the given get-instru
tions.

In order to repla
e the
urrent subterm (pointed by register AO) by a new term (the

10

right-hand side of an equation), the A-WAM
ontains a dupli
ated set of put-instru
tions

with the suÆx o

 whi
h repla
e the
urrent subterm in the heap by another term. For

instan
e, the instru
tion put
onst o

 C writes the
onstant C on the heap at address AO

and stores the old value at o

urren
e AO on the trail, and the instru
tion put stru
t o

f/n puts a new stru
ture on the top of the heap, repla
es the heap
ell at address AO by

a referen
e to this new stru
ture and trails the old value at AO.

The A-WAM has three instru
tions for the manipulation of the o

urren
e sta
k:

load o

 R sets register AO to the value in register R, push o

 R pushes the value in R

onto the o

urren
e sta
k, and pop o

 pops an element from the o

urren
e sta
k and

stores its value in register AO.

Now we
an show the translation of rewrite rules (remember that ea
h equation

an be used as a rewrite rule as well as a narrowing rule). Consider the two rewrite rules

for the fun
tion rev:

rev([℄) = [℄

rev([E|R℄) =
on
(rev(R),[E℄)

The �rst rewrite rule is translated into

get nil A1

put nil o

pop o

exe
ute rewriting AO

The �rst instru
tion mat
hes the
urrent argument stored in A1 with the
onstant [℄

representing the empty list. If this is su

essful, the se
ond instru
tion repla
es the
urrent

subterm by the empty list. Now rewriting must pro
eed at the next innermost o

urren
e.

Therefore an element is popped from the o

urren
e sta
k by the third instru
tion and

the last instru
tion loads the argument registers with the
omponents of the new
urrent

subterm and jumps to the
ode of the appropriate rewrite rules. The se
ond rewrite rule

for rev is translated into

get list A1 % mat
h A1 with [E|R℄

unify variable X4

unify variable A1

put list X3 % write [E℄ on the heap

unify value X4

unify nil

put stru
t o

on
/2 % repla
e
urrent subterm by
on
(,[E℄)

unify variable X2

unify value X3

push o

 AO % update o

urren
e sta
k

load o

 X2

exe
ute rewriting rev/1 % jump to the rewrite rules for rev/1

Note that the subterm rev(R) is not written on the heap be
ause this is the next innermost

subterm where a rewrite rule should be applied. Therefore a new unbound variable is

stored instead of this subterm and the argument register A1 is set to the value of R

(this is di�erent from the implementation presented in [12℄). If a rewrite rule
an be

11

applied to rev(R), then the variable is overwritten by the right-hand side of the applied

rule. Otherwise rewriting must be applied at the next innermost position. Thus the last

alternative of the sequen
e of rewrite rules for rev is always the
ode sequen
e

put_fun
tion_o

 rev/1

opy_pop_o

exe
ute_rewriting AO

The �rst instru
tion puts the stru
ture rev/1 with the value of argument register A1 onto

the heap at address AO if this heap
ell
ontains an unbound variable. The se
ond instru
-

tion pops an element from the o

urren
e sta
k and pushes it onto the
opy o

urren
e

sta
k (as des
ribed in se
tion 3). The last instru
tion pro
eeds with rewriting at the new

o

urren
e.

We have also mentioned in se
tion 3 that the
opy o

urren
e sta
k may be
ome

invalid if the rewrite rule deletes a subterm in an argument. Therefore the instru
tion

invalid_os must be generated if a rewrite rule is applied where the right-hand side does

not
ontain all variables of the left-hand side. For instan
e, the rewrite rule f(Z) = 0 is

translated into

put_
onst_o

 0

pop_o

invalid_os

exe
ute_rewriting AO

The instru
tion invalid_os marks the
opy o

urren
e sta
k as invalid if it is not empty.

In this
ase the o

urren
e sta
k must be re
omputed before a narrowing rule is applied.

The translation of narrowing rules is similarly to rewrite rules. The only dif-

feren
e is that after an appli
ation of a narrowing rule we do not pro
eed with another

narrowing rule but must perform rewriting and reje
tion �rst. Hen
e the narrowing rule

on
([℄,L) = L is translated into

get_nil A1

put_value_o

 A2

pop_o

all_rewriting AO

rebuild_o

_sta
k

reje
t

exe
ute_narrowing AO

The instru
tion
all_rewriting AO sets the registers R and HR and jumps to the rewrite

ode of the fun
tion at o

urren
e AO. When the whole term is simpli�ed by rewrit-

ing, exe
ution
ontinues with the instru
tion rebuild_o

_sta
k whi
h moves the
opy

o

urren
e sta
k to the o

urren
e sta
k (if it is valid) or re
omputes the o

urren
e

sta
k. reje
t performs the reje
tion rule if the
urrent literal is an equation, and

exe
ute_narrowing AO tries to apply a narrowing rule at the o

urren
e AO.

The indexing s
heme for narrowing rules is similar to the WAM-translation s
heme

for predi
ates, i.e., all narrowing rules for a fun
tion are
onne
ted with a
hain of

try_me_else-, retry_me_else- and trust_me_else_fail-instru
tions. Moreover, in-

stru
tions for indexing on the �rst argument are generated. For rewrite rules the same

12

on
/2: r_try_me_else b2

swit
h_on_term
1a,
1,
2,fail

1a: r_try_me_else
2a % Clause:
on
([℄,L) = L

1: get_nil A1

put_value_o

 A2

pop_o

exe
ute_rewriting AO

2a: r_trust_me_else_fail % Clause:
on
([E|R℄,L) = [E|
on
(R,L)℄

2: get_list A1

unify_variable X4

unify_variable A1

put_list_o

unify_value X4

unify_variable X3

load_o

 X3

exe
ute_rewriting
on
/2

b2: put_fun
tion_o

on
/2 % go to next innermost position

opy_pop_o

exe
ute_rewriting AO

Figure 2: A-WAM-
ode of the rewrite rules for
on

s
heme is generated, but all indexing instru
tions are repla
ed by \rewrite indexing in-

stru
tions" whi
h are pre�xed by r_. This is due to the fa
t that rewriting is a determinis-

ti
 pro
ess and rewrite rules do not
hange the
urrent literal before the right-hand side is

inserted. Therefore the A-WAM
ontains two registers RFP1 and RFP2 whi
h
ontains the

address of an alternative rewrite rule (two registers are ne
essary be
ause there may exist

two ba
ktra
k points for one
lause due to the indexing s
heme [33℄). These registers are

set by the r_try: : :{instru
tions instead of
reating a ba
ktra
k point. The instru
tion

fail, whi
h is exe
uted on failure,
onsiders the values of RFP1 and RFP2: If one of these

registers is de�ned (not equal to \fail"), P is set to the last one, otherwise the
omputation

state is reset to the last ba
ktra
k point. The instru
tion exe
ute_rewriting, whi
h is

always exe
uted at the end of a rewrite rule, sets RFP1 and RFP2 to \fail" whi
h imple-

ments the determinsti
 behaviour of rewriting. The
omplete translation of the rewrite

rules for the fun
tion
on
 is shown in �gure 2.

If an argument term of a literal in a goal
ontains fun
tion symbols, then this argument

term must be evaluated by rewriting and narrowing before the resolution rule is applied

to the literal. Therefore instru
tions for initializing the o

urren
e sta
k and rewriting

and narrowing instru
tions must be inserted in su
h literals. For instan
e, the literal

p(fa
(s(0))) in a goal is translated into

put_stru
ture s/1, X2 % store argument term fa
(s(0))

unify_
onstant 0

put_stru
ture fa
/1, Y2

13

unify_value X2

set_begin_of_term Y2 % store root of argument term

load_o

 Y2 % initialize o

urren
e sta
k

all_rewriting AO, 2

rebuild_o

_sta
k

all_narrowing AO, 2

put_value Y2, A1 % restore argument term

all p/1, 1

The �rst 4 instru
tions are identi
al to the WAM-
ode with the only di�eren
e that the

root of the argument term is not stored in register A1 but in the permanent variable Y2.

This is ne
essary sin
e argument registers are altered during rewriting and narrowing.

The A-WAM has a register TS whi
h
ontains the root of the argument
urrently evalu-

ated by rewriting and narrowing. This register is used when the o

urren
e sta
k must

be re
omputed after rewriting if the
opy o

urren
e sta
k has been marked as invalid.

Therefore TS is initialized by the instru
tion set_begin_of_term with the appropriate

value. The se
ond arguments of
all_rewriting and
all_narrowing are the number

of permanent variables whi
h are still in use in the
urrent environment (similar to the

WAM-instru
tion
all).

Now we have shown how ALF-programs (with un
onditional equations)
an be trans-

lated into A-WAM-
ode. Note that the A-WAM-
ode for fun
tions is very similar to the

WAM-
ode for the equivalent predi
ate (e.g.,
ompare the
ode for the fun
tions
on

and rev with the WAM-
ode for the naive reverse program). Thus fun
tional programs

are exe
uted with the same eÆ
ien
y as their relational equivalents. Moreover, ba
ktra
k

points are not generated for rewriting and therefore many fun
tional programs are more

eÆ
iently exe
uted. Before we present
on
rete results of our implementation, we will

show how
onditional equations are implemented in our framework.

5 Conditional equations

Conditional equations
auses a new problem sin
e the
ondition must be proved before

the equation
ould be applied. To prove the
ondition rewriting and narrowing may be

re
ursively used. Hen
e the
urrent o

urren
e sta
k must be saved before the
ondition is

proved and restored after the proof of the
ondition. To implement this re
ursive stru
ture

of the narrowing pro
ess, the A-WAM
ontains not only one o

urren
e sta
k but a list (or

sta
k) of o

urren
e sta
ks. The last element of this list is always the
urrent o

urren
e

sta
k belonging to the argument term
urrently evaluated by narrowing or rewriting.

Sin
e rewriting may have a re
ursive stru
ture too, the
opy o

urren
e sta
k is also a

list of sta
ks where the last element is the
urrent
opy o

urren
e sta
k.

The A-WAM has two instru
tions to manipulate the list of o

urren
e sta
ks. The

instru
tion allo
ate_o

 adds a new (empty) o

urren
e sta
k to the list of o

urren
e

sta
ks. It is used before a
ondition in a narrowing or rewrite rule will be proved. At the

end of the
ondition the instru
tion deallo
ate_o

 is exe
uted whi
h deletes the last

element from the list of o

urren
e sta
ks. If a ba
ktra
k point has been
reated during

the proof of the
ondition, then the last o

urren
e sta
k is not deleted sin
e it is needed

14

on ba
ktra
king. Hen
e a ba
ktra
k point freezes the
urrent o

urren
e sta
k (note the

similarity to environments and the allo
ate/deallo
ate-instru
tions in the WAM).

Consider the
onditional equation f(N) = 0 odd(g(N)). It is translated as a nar-

rowing rule into the following
ode:

allo
ate

get_variable X2, A1

allo
ate_o

 %
reate a new o

. sta
k for the
ondition

put_stru
ture g/1, Y1 %
reate argument term g(N)

unify_value X2

set_begin_of_term Y1

load_o

 Y1

all_rewriting AO, 1 % rewrite argument term g(N)

rebuild_o

_sta
k

all_narrowing AO, 1 % narrow argument term g(N)

put_value Y1, A1

all odd/1, 1

deallo
ate_o

 % delete o

urren
e sta
k for the
ondition

put_
onst_o

 0

deallo
ate

pop_o

all_rewriting AO % pro
eed with rewriting at next o

urren
e

rebuild_o

_sta
k

reje
t

exe
ute_narrowing AO % pro
eed with narrowing

The
ompilation s
heme for
onditional rewrite rules is a little bit more
ompli
ated be-

ause it is suÆ
ient to
ompute one solution for the
ondition (rewriting is a deterministi

pro
ess). Thus ba
ktra
k points generated during the proof of the
ondition
an be safely

deleted. The se
ond problem is that the indexing s
heme for rewrite rules (r_try: : :-

instru
tions) does not generate ba
ktra
k points. Therefore a ba
ktra
k point must be

reated at the beginning of the
ondition. Hen
e a
onditional rewrite rule of the form l

= r
 is translated into

allo
ate

<get-instru
tions for l>

l_try_me_else L,A,N %
reate new ba
ktra
k point for
ondition

allo
ate_o

 %
reate new o

urren
e sta
k

<instru
tions for
ondition
>

deallo
ate_o

 % delete o

urren
e sta
k for
ondition

l_trust_me_else fail % delete ba
ktra
k points for
ondition

<put..._o

-instru
tions for r>

<o

urren
e-sta
k-instru
tions for r>

deallo
ate

invalid_os % if ne
essary

exe
ute_rewriting AO

L: l_trust_me_else fail % delete ba
ktra
k points for
ondition

15

deallo
ate

fail % try next rewrite rule

The instru
tion l_try_me_else L,A,N
reates a ba
ktra
k point similarly to

try_me_else L,A (A is the number of argument registers to be saved) and stores the

address of the last ba
ktra
k point in the environment (usually in the permanent variable

Y1). The additional argument N
ontains the size of the
urrent environment (the WAM

a

esses the size of the
urrent environment via the
ontinuation pointer CP whi
h is not

possible in this
ontext). The instru
tion l_trust_me_else fail deletes all ba
ktra
k

points generated during the proof of the
ondition, i.e., the pointer to the last ba
ktra
k

point (WAM-register B) is set to Y1 (the ba
ktra
k point before the
ondition).

6 Results

The
urrent implementation
onsists of two parts: a
ompiler written in Prolog whi
h

translates ALF-programs into a
ompa
t byte
ode representing A-WAM-programs, and

a byte
ode emulator for the A-WAM written in C. The details of the implementation

together with a
omplete formal spe
i�
ation of the A-WAM in the style of [10℄
an be

found in [16℄. In this se
tion we present some results of our implementation.

First of all, let us remark that pure logi
 programs without equations are
ompiled

identi
al to the WAM, i.e., there is no overhead be
ause of the fun
tional part of our

language (only ba
ktra
k points are a little bit bigger be
ause of the additional registers

of the A-WAM). Although the
urrent implementation is a �rst prototype and not very

fast

1

, it is interesting to see the relation between exe
ution times for fun
tional programs

and their relational equivalents, be
ause this shows the relationship between our imple-

mentation of narrowing and rewriting and the
urrent te
hniques for logi
 programming.

The �rst example is the
lassi
al (but
ontroversial) naive reverse ben
hmark. The

relational version is exe
uted by resolution, the fun
tional version by narrowing and rewrit-

ing. The following table shows the time for reversing a list of 30 elements in both dire
tions

(all ben
hmarks were exe
uted on a Sun4):

Naive reverse

Initial goal: rev([� � �℄) = L rev(L) = [� � �℄

Relational \naive reverse": 18 mse
 190 mse

Fun
tional \naive reverse": 19 mse
 210 mse

The next example demonstrates one advantage of integrating fun
tions into logi
 pro-

gramming languages. In the �rst se
tion we have shown
lauses for de�ning the predi
ate

add and the fun
tion +. We have stated that the fun
tional
omputation is more eÆ
ient

than the relational be
ause no ba
ktra
k points must be generated for evaluating the

fun
tion by rewriting. The following table shows that this is true in our implementation

1

The performan
e of our
urrent implementation is approximately 38 KLips on a Sun4 for the naive

reverse ben
hmark; for typi
al logi
 programming examples with ba
ktra
king, like the permutation sort

program (see below), our implementation is approximately 6-7 times slower than a
ommer
ial Prolog

system (Quintus-Prolog 3.0).

16

(in the implementation natural numbers are represented as terms
onstru
ted by s and

0):

Fun
tional vs. relational
omputations

Initial goal: add(100,100,S) 100 + 100 = S

Time used (mse
): 16 8

Heap used (bytes): 2412 2420

Lo
al sta
k used (bytes): 13352 124

Trail used (bytes): 808 0

O

urren
e sta
k used (bytes): 0 0

This table
ontains the time and spa
e used for
omputing the �rst solution to the initial

goal. The time and the lo
al sta
k spa
e shows the advantage of fun
tional
omputations.

However, our implementation is not restri
ted to evaluate fun
tions by rewriting, but

also narrowing steps are applied if rewriting fails and some variables of the goal must

be instantiated in order to pro
eed with rewriting. Fribourg [8℄ has shown that the

ombination of narrowing and rewriting
an redu
e the sear
h spa
e in
omparison to

resolution. At the end of se
tion 2 we have presented an example where rewriting
uts

down an in�nite sear
h spa
e to a �nite one. It is also possible that a �nite sear
h spa
e
an

be dramati
ally redu
ed by rewriting. For instan
e, in the \permutation sort" program

a list is sorted by enumerating all permutations and
he
king whether they are sorted.

The relational version of the program ([32℄, p. 55) enumerates all permutations whereas

in the fun
tional version not all permutations are enumerated sin
e the generation of a

permutation is stopped (by rewriting the goal to \fail") if two
onse
utive elements X

and Y have the wrong ordering Y < X (
f. [8℄, p. 182). Therefore we yield the following

exe
ution times in se
onds for di�erent lengths of the input list in our system:

Fun
tional vs. relational
omputations: permutation sort

Program: Initial goal: n = 6 n = 8 n = 10

Relational ([32℄, p. 55) psort([n,: : : ,1℄,L) 0.65 37.92 3569.50

Fun
tional ([8℄, p. 182) psort([n,: : : ,1℄) = L 0.27 1.43 7.43

This is a typi
al example for the
lass of \generate-and-test" programs. The rewriting

pro
ess performs the \test part" of the program: if a portion of the potential solution is

generated by narrowing, rewriting immediately tests whether or not this
an be a part

of the solution. Therefore narrowing and rewriting yield a more eÆ
ient
ontrol strategy

than SLD-resolution for equivalent relational programs. This is a
hieved in a purely

lean and de
larative way without any user annotations to
ontrol the proof strategy or

transformations applied to the sour
e program [5℄. A more detailed dis
ussion on this

advantage of a fun
tional language based on rewriting and narrowing
an be found in

[14℄.

We have also
ompared our implementation with other implementations of fun
tional

languages with pattern mat
hing. The following table
ontains the results of the naive

reverse ben
hmark for di�erent implementations whi
h we had available.

17

Naive reverse for a list of 30 elements

System: Ma
hine: Time:

ALF Sun4 19 mse

Standard-ML (Edinburgh) Sun3 54 mse

CAML V 2-6.1 Sun4 28 mse

OBJ3 Sun3 5070 mse

RAP 2.0 Sun4 4800 mse

OBJ3 [23℄ and RAP [9℄ are systems for exe
uting equational spe
i�
ations by rewriting

(and narrowing in
ase of RAP). Sin
e these are based on an interpreter, we
an observe

the impressive speeding up a
hieved by our
ompilational approa
h. Thus we
onje
ture

that our approa
h is also more eÆ
ient than the implementation te
hnique proposed

by Josephson and Dershowitz [22℄ be
ause they handle uni�
ation and
ontrol at the

interpretive level.

7 Con
lusions

We have presented a method to
ompile a language that amalgamates fun
tional and logi

programming styles into
ode of an abstra
t ma
hine whi
h
an be easily implemented

on
onventional ar
hite
tures. The operational semanti
s of our language is based on

resolution for predi
ates and rewriting and narrowing to evaluate fun
tional expressions.

We have shown that narrowing in
ombination with rewriting is more eÆ
ient than res-

olution for equivalent (
attened) relational programs. This was
lear from a theoreti
al

point of view, but our implementation has shown that these advantages
an also be used

in pra
ti
al appli
ations.

The integration of fun
tions into logi
 programming leads to programs whi
h are

more readable and easier to understand be
ause fun
tions need not be simulated by

predi
ates and nested fun
tional expressions need not be
attened. Sin
e the programmer

an express fun
tional dependen
ies between data, this information
ould be used for a

better implementation. In our system a fun
tional expression is simpli�ed by rewriting

before a narrowing rule is applied. This redu
es the sear
h spa
e (without \
uts"!) and

avoids the generation of super
uous ba
ktra
k points sin
e rewriting is a deterministi

pro
ess. Thus the non-deterministi
 narrowing operation is rarely applied.

In some
ases the positive e�e
t of rewriting (sear
h spa
e redu
tion)
an also be

a
hieved by analysing a logi
 program in order to �nd deterministi

omputations and

inserting \
uts" at appropriate program points. But this analysis may be expensive and do

not yield satisfa
tory results if a predi
ate is
alled in di�erent modes: a
all with ground

terms
ould have a deterministi

omputation while a
all with non-ground terms may

have a non-deterministi

omputation. Su
h problems are solved by our implementation in

a
lean and de
larative way: Sin
e rewriting is applied before ea
h narrowing step, a goal

is simpli�ed by deterministi
 rewriting as long as possible depending on the instantiation

state of the arguments. A similar behaviour
an also be obtained in logi
 programs by

using other
ontrol strategies instead of Prolog's �xed left-to-right strategy [29℄. But

this requires the insertion of
ontrol annotations into the program (whi
h may e�e
t

18

ompleteness be
ause of
oundering problems) and the extension of the WAM to deal

with su
h a
exible
ontrol strategy. In our de
larative solution
ontrol annotations are

not ne
essary (see also [8℄).

Currently we are working on better methods for
ode generation whi
h
an speed up

the rewriting part of the system. At the moment we are using the WAM-instru
tions for

rewriting as shown in this paper, but it is possible to generate parti
ular
ode for fast

pattern mat
hing (see, e.g., [18℄). We are also working on the integration of types into

the
omputation pro
ess [11℄ [13℄ [20℄ sin
e this allows a further redu
tion of the sear
h

spa
e.

A
knowledgements: The author is grateful to Renate S
h�afers for many dis
ussions on

the design of the A-WAM and to Andreas S
hwab and the members of the proje
t group

\PILS" for the implementation of the A-WAM.

Referen
es

[1℄ M. Bellia and G. Levi. The Relation between Logi
 and Fun
tional Languages: A

Survey. Journal of Logi
 Programming (3), pp. 217{236, 1986.

[2℄ H. Bertling and H. Ganzinger. Completion-Time Optimization of Rewrite-Time Goal

Solving. In Pro
. of the Conferen
e on Rewriting Te
hniques and Appli
ations, pp.

45{58. Springer LNCS 355, 1989.

[3℄ P.G. Bos
o, C. Ce

hi, and C. Moiso. An extension of WAM for K-LEAF: a WAM-

based
ompilation of
onditional narrowing. In Pro
. Sixth International Conferen
e

on Logi
 Programming (Lisboa), pp. 318{333. MIT Press, 1989.

[4℄ P.G. Bos
o, E. Giovannetti, and C. Moiso. Re�ned strategies for semanti
 uni�
ation.

In Pro
. of the TAPSOFT '87, pp. 276{290. Springer LNCS 250, 1987.

[5℄ M. Bruynooghe, D. De S
hreye, and B. Krekels. Compiling Control. Journal of Logi

Programming (6), pp. 135{162, 1989.

[6℄ W.F. Clo
ksin and C.S. Mellish. Programming in Prolog. Springer, third rev. and

ext. edition, 1987.

[7℄ D. DeGroot and G. Lindstrom, editors. Logi
 Programming, Fun
tions, Relations,

and Equations. Prenti
e Hall, 1986.

[8℄ L. Fribourg. SLOG: A Logi
 Programming Language Interpreter Based on Clausal

Superposition and Rewriting. In Pro
. IEEE Internat. Symposium on Logi
 Pro-

gramming, pp. 172{184, Boston, 1985.

[9℄ A. Geser and H. Hussmann. Experien
es with the RAP system { a spe
i�
ation

interpreter
ombining term rewriting and resolution. In Pro
. of ESOP 86, pp. 339{

350. Springer LNCS 213, 1986.

[10℄ M. Hanus. Formal Spe
i�
ation of a Prolog Compiler. In Pro
. of the Workshop

on Programming Language Implementation and Logi
 Programming, pp. 273{282,

Orl�eans, 1988. Springer LNCS 348.

[11℄ M. Hanus. Polymorphi
 Higher-Order Programming in Prolog. In Pro
. Sixth Inter-

national Conferen
e on Logi
 Programming (Lisboa), pp. 382{397. MIT Press, 1989.

[12℄ M. Hanus. Compiling Logi
 Programs with Equality. In Pro
. of the 2nd Int. Work-

shop on Programming Language Implementation and Logi
 Programming, pp. 387{

401. Springer LNCS 456, 1990.

19

[13℄ M. Hanus. A Fun
tional and Logi
 Language with Polymorphi
 Types. In Pro
. Int.

Symposium on Design and Implementation of Symboli
 Computation Systems, pp.

215{224. Springer LNCS 429, 1990.

[14℄ M. Hanus. A De
larative Approa
h to Improve Control in Logi
 Programming. Univ.

Dortmund, 1991.

[15℄ M. Hanus and A. S
hwab. ALF User's Manual. FB Informatik, Univ. Dortmund,

1991.

[16℄ M. Hanus and A. S
hwab. The Implementation of the Fun
tional-Logi
 Language

ALF. FB Informatik, Univ. Dortmund, 1991.

[17℄ S. Haridi and P. Brand. Andorra Prolog: An Integration of Prolog and Committed

Choi
e Languages. In Pro
. Int. Conf. on Fifth Generation Computer Systems, pp.

745{754, 1988.

[18℄ T. Heuillard. Compiling
onditional rewriting systems. In Pro
. 1st Int. Workshop

on Conditional Term Rewriting Systems, pp. 111{128. Springer LNCS 308, 1987.

[19℄ S. H�olldobler. From Paramodulation to Narrowing. In Pro
. 5th Conferen
e on Logi

Programming & 5th Symposium on Logi
 Programming (Seattle), pp. 327{342, 1988.

[20℄ M. Huber and I. Varsek. Extended Prolog with Order-Sorted Resolution. In Pro
.

4th IEEE Internat. Symposium on Logi
 Programming, pp. 34{43, San Fran
is
o,

1987.

[21℄ J.-M. Hullot. Canoni
al Forms and Uni�
ation. In Pro
. 5th Conferen
e on Auto-

mated Dedu
tion, pp. 318{334. Springer LNCS 87, 1980.

[22℄ A. Josephson and N. Dershowitz. An Implementation of Narrowing. Journal of Logi

Programming (6), pp. 57{77, 1989.

[23℄ C. Kir
hner, H. Kir
hner, and J. Meseguer. Operational Semanti
s of OBJ3 (Ex-

tended Abstra
t). In Pro
. of the 15th ICALP, pp. 287{301. Springer LNCS 317,

1988.

[24℄ H. Ku
hen, R. Loogen, J.J. Moreno-Navarro, and M. Rodr��guez-Artalejo. Graph-

based Implementation of a Fun
tional Logi
 Language. In Pro
. ESOP 90, pp. 271{

290. Springer LNCS 432, 1990.

[25℄ J.W. Lloyd. Foundations of Logi
 Programming. Springer, se
ond, extended edition,

1987.

[26℄ R. Loogen. From Redu
tion Ma
hines to Narrowing Ma
hines. In Pro
. of the

TAPSOFT '91, pp. 438{457. Springer LNCS 494, 1991.

[27℄ J.J. Moreno-Navarro, H. Ku
hen, R. Loogen, and M. Rodr��guez-Artalejo. Lazy Nar-

rowing in a Graph Ma
hine. In Pro
. Se
ond International Conferen
e on Algebrai

and Logi
 Programming, pp. 298{317. Springer LNCS 463, 1990.

[28℄ J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi
 Programming with Fun
tions

and Predi
ates: The Language BABEL. Te
hni
al Report DIA/89/3, Universidad

Complutense, Madrid, 1989.

[29℄ L. Naish. Negation and Control in Prolog. Springer LNCS 238, 1987.

[30℄ W. Nutt, P. Rety, and G. Smolka. Basi
 Narrowing Revisited. SEKI Report SR-87-

07, FB Informatik, Univ. Kaiserslautern, 1987.

[31℄ P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs

on Theoreti
al Computer S
ien
e. Springer, 1988.

[32℄ L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[33℄ D.H.D. Warren. An Abstra
t Prolog Instru
tion Set. Te
hni
al Note 309, SRI Inter-

national, Stanford, 1983.

20

A Registers of the A-WAM

Name Fun
tion

P program pointer

CP
ontinuation program pointer

E last environment

B last ba
ktra
k point

H top of heap

TR top of trail

S stru
ture pointer

RW read/write mode for unify instru
tions

A1, A2, : : : argument registers

X1, X2, : : : temporary variables

R rewrite pointer (to the lo
al sta
k)

HR heap rewrite pointer (to the heap)

OM top of
urrent o

urren
e sta
k

OR top of
urrent
opy o

urren
e sta
k

AO a
tual o

urren
e (referen
e to the
urrent subterm to be evaluated)

TS term start (root of the
urrent argument term)

OV Is the
urrent
opy o

. sta
k valid? May be set to false during rewriting.

RFP1, RFP2 rewrite fail pointers (addresses of alternative rewrite rules)

The argument registers and temporary variables are identi
al to the WAM registers [33℄.

B New instru
tions of the A-WAM

In the following we list the new instru
tions of the A-WAM together with a short expla-

nation in alphabeti
al order.

allo
ate_o

: This instru
tion is used before a
ondition in a narrowing or rewrite rule

will be proved. It saves the o

urren
es in AO and TS onto the o

urren
e sta
k and adds

a new (empty)
urrent o

urren
e sta
k to the list of all o

urren
e sta
ks.

all_narrowing AO,N: Load the
omponents of the stru
ture at position AO into the

argument registers and
all the narrowing rules for the fun
tion at o

urren
e AO. N is the

number of permanent variables in the
urrent environment.

all_rewriting R: This instru
tion is used to rewrite the
urrent argument term after

a narrowing rule has been applied. It starts rewriting at the innermost o

urren
e R (f/n

or AO) and
ontinues with the next instru
tion (rebuild_o

_sta
k) if the rewriting

pro
ess is �nished.

all_rewriting R,N: This instru
tion is used to rewrite the
urrent argument term in

a literal where N is the number of permanent variables in the
urrent environment. It

starts rewriting at the innermost o

urren
e R (f/n or AO) and
ontinues with the next

instru
tion (rebuild_o

_sta
k) if the rewriting pro
ess is �nished.

opy_pop_o

: Push AO onto the
urrent
opy o

urren
e sta
k and exe
ute pop_o

.

deallo
ate_o

: Delete the last element from the list of o

urren
e sta
ks and load

registers AO and TS from the previous o

urren
e sta
k. If a ba
ktra
k point has been

21

reated after the
orresponding allo
ate_o

-instru
tion, it is not allowed to alter pre-

vious elements of the o

urren
e sta
k list sin
e only the
urrent o

urren
e sta
k has

been saved into the ba
ktra
k point. In this
ase deallo
ate_o

reates a
opy of the

previous o

urren
e sta
k and adds this
opy to the list of o

urren
e sta
ks.

exe
ute_narrowing AO: This instru
tion terminates a narrowing rule. The narrowing

rules for the fun
tion at o

urren
e AO are exe
uted if AO is de�ned, otherwise program

pointer P is set to CP.

exe
ute_rewriting R: This instru
tion terminates a rewrite rule. Registers RFP1 and

RFP2 are set to \fail" and the rewrite rules for the fun
tion f/n are exe
uted if R=f/n,

otherwise (R=AO) the rewrite rules for the fun
tion at o

urren
e AO are exe
uted.

inner_refle
tion: This is the last alternative in a sequen
e of narrowing rules for a

partial fun
tion. It implements the innermost re
e
tion rule: The term at the a
tual o
-

urren
e AO is marked as \environment" and the A-WAM-instru
tion sequen
e \pop_o

; exe
ute_narrowing AO" is exe
uted.

invalid_os: Set register OV to false if the
urrent
opy o

urren
e sta
k is not empty.

load_o

 R: Set the a
tual o

urren
e register AO to the
ontents of R.

l_trust_me_else fail: Delete all ba
ktra
k points generated after the
orresponding

l_try_me_else, i.e., the pointer to the last ba
ktra
k point (register B) is set to Y1.

l_try_me_else L,A,N: Create a ba
ktra
k point and store the address of the last ba
k-

tra
k point in the permanent variable Y1. A is the number of argument registers to be

saved and N
ontains the number of permanent variables in the
urrent environment.

pop_o

: Pop an element from the
urrent o

urren
e sta
k and store the value in register

AO. If the
urrent o

urren
e sta
k is empty, set AO to \unde�ned".

push_o

 R: Push the
ontents of R onto the
urrent o

urren
e sta
k.

put_..._o

 R: Substitute the
urrent subterm at address AO by R and store the old

value at AO on the trail. Furthermore, put_stru
t_o

 f/n puts a new stru
ture f/n on

the top of the heap and repla
es the heap
ell at address AO by a referen
e to this new

stru
ture.

put_fun
tion_o

 f/n: Put the stru
ture f/n with the values of the argument registers

A1,: : :,An onto the heap at address AO if this heap
ell
ontains an unbound variable. It is

used in the last alternative of the rewrite rules for f/n.

rebuild_o

_sta
k: Repla
e the
urrent (empty) o

urren
e sta
k by the
urrent
opy

o

urren
e sta
k if OV is true, otherwise by a new o

urren
e sta
k for the term at position

TS (if the
opy o

urren
e sta
k is invalid).

refle
tion: This instru
tion implements the re
e
tion rule. It uni�es the two sides of

an equation (the
urrent literal) whi
h must be a stru
ture referen
ed by register TS.

reje
t: If the
urrent literal is an equation (referen
ed by register TS), then this in-

stru
tion
auses a failure if both sides have di�erent
onstru
tors at the same outermost

position (a position not belonging to arguments of fun
tions). Otherwise, no a
tion is

taken.

r_try...: The indexing instru
tions for rewrite rules are pre�xed by r_. In
ontrast to

the indexing instru
tions of the WAM no ba
ktra
k point is generated but the address of

the alternative
lause is stored in RFP1 or RFP2.

set_begin_of_term R: Set the term start register TS to the
ontents of R.

22

