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Abstract

We present an efficient implementation method for a language that amalgamates func-
tional and logic programming styles. The operational semantics of the language consists
of resolution to solve predicates and narrowing and rewriting to evaluate functional ex-
pressions. The implementation is based on an extension of the Warren Abstract Machine
(WAM). This extension causes no overhead for pure logic programs and allows the ex-
ecution of functional programs by narrowing and rewriting with the same efficiency as
their relational equivalents. Moreover, there are many cases where functional programs
are more efficiently executed than their relational equivalents.

1 Introduction

During the last years a lot of approaches have been proposed in order to amalgamate
functional and logic programming languages [7] [1]. Such integrations have several advan-
tages:
1. Functional and logic programming styles can be used in one language.
2. It extends logic programming by allowing nested expressions, i.e., it is not necessary
to flatten complex expressions as in Prolog.
3. Tt extends functional programming by solving equations between functional expres-
sions.
4. Tt allows the programmer to specify functional dependencies between data. This
information can be used for a more efficient implementation.
5. Large parts of logic programs are functional computations. In an integrated lan-
guage these parts are defined as functions which can be more efficiently executed
than their relational equivalents.

Point 1 is a matter of taste, and point 2 is no real argument since nested expressions can be
flattened by a preprocessor [4]. But the last three arguments show that an integration of
functional and logic languages yields a proper extension of each of these language types.
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For instance, consider the following logic program for the addition of natural numbers
where numbers are represented as terms constructed by 0 and s:

add(0, N, N) <
add(N, 0, N) <
add(s(M), N, s(L)) < add(M, N, L)
add(N, sM), s(L)) <« add(, M, L)

If the literal add(0,0,Z) should be proved, then a backtrack point (also called “choice
point” in [33]) must be generated since there are two alternative proofs yielding the result
{Z/0} in both cases. The equivalent functional program is

O+N = N

N+0 =

s(M) + N = s(M + N)
N+sM = s +M

The equation 0 + 0 = Z can be solved in a determinstic way by applying one of the first
two equations to the left-hand side. A creation of a backtrack point is unnecessary since
“+” is a function which has a unique result. One could argue that a Prolog compiler
can also optimize the code for the predicate add but this requires some sort of mode
information which is not available if the equation X + Y = s(0) should also be solved
(where X and Y are free variables). A genuine integration of functional and logic languages
permits such goals and has no fixed modes for the application of functions. In this paper
we present such a language together with an implementation which avoids the creation of
backtrack points if it is not necessary.

Another advantage of an integrated functional and logic language is the reduction
of the search space by functional computations: Fribourg [8] has given examples for
terminating functional-logic programs where equivalent Prolog programs do not terminate
or need more computation steps. This aspect is also covered by our language and we will
discuss this point in more detail in subsequent sections.

A lot of the proposed integrations of functional and logic languages are based on Horn
clause logic with equality [31] which offers predicates defined by Horn clauses for logic pro-
gramming and functions defined by (conditional) equations for functional programming.
The declarative semantics is the well-known Horn clause logic [25] with the restriction
that the equality predicate is always interpreted as identity. The operational semantics is
based on resolution for predicates (like in logic languages) and rewriting for functions (like
in functional languages). Since it is also required to solve equations between functional
expressions, a new inference rules is added: narrowing is a combination of unification
and rewriting, i.e., a subterm of the goal is unified with the left-hand side of an equation
such that the instantiated subterm can be rewritten with that equation and the unifier
is applied to the whole goal. This general strategy has been refined by Hdlldobler [19]
to the innermost basic narrowing strategy where exactly one possible subterm must be
narrowed in a computation step. This strategy has the same efficiency as SLD-resolution,
but Hoélldobler has shown that goals can also be simplified by rewriting before a narrowing
step is performed. This loses no solutions and is more efficient than Prolog’s computation
strategy.



However, the discussion about the better efficiency of functional computations is only
relevant if there is a good implementation technique for narrowing and rewriting. Up
to now most of the proposed systems are implemented by an interpreter which can not
compete with present Prolog implementations based on a compilational approach [33].
Merely [3], [24], [27] and [26] contain approaches to compile (lazy) narrowing rules into
code of an abstract machine, but the integration of rewriting is not addressed in these
papers. This paper presents an implementation technique for a functional and logic
programming language with the following properties:

e The operational semantics of the language is based on resolution, narrowing and

rewriting.

e Pure logic programs without functions are compiled in the same way as in Pro-
log systems based on the Warren Abstract Machine (WAM) [33], i.e., there is no
overhead because of the functional part.

e There is a particular technique to deal with occurrences (references to subterms)
where the next narrowing or rewrite rule can be applied. Thus functional programs
are executed by narrowing and rewriting at least with almost the same efficiency
as their relational equivalents by resolution. Moreover, there are large classes of
programs where the functional versions are more efficiently executed by narrowing
and rewriting than the relational versions by resolution.

e There are no modes for the execution of functions. Similarly to logic programming,
functions can be evaluated with ground or non-ground terms at each argument po-
sition. However, functions are evaluated by determinstic rewriting if the arguments
are ground, and in other cases (non-deterministic) narrowing is applied. This is au-
tomatically decided at run time, i.e., user annotations are not necessary to specify
where rewriting or narrowing should be applied.

Our implementation is based on an extension of the WAM [33] and therefore we assume
familiarity with the basic concepts of this machine. The techniques presented in this paper
are based on a previous proposal [12] but have the following basic differences: The current
implementation simplifies the goal by rewriting before each narrowing step (normalized
narrowing) whereas in [12] rewriting is only applied before an entire narrowing derivation
is computed. Furthermore, we present new techniques for the management of occurrences
which speeds up the execution time up to 30% and saves up to 40% of the heap space
because of a delayed copying of function symbols onto the heap.

This paper is organized as follows. In the next section we define the operational
semantics implemented by our system. The techniques for the efficient management of
occurrences are shown in section 3 and details about our abstract machine are presented in
section 4. For the sake of simplicity we introduce the basic implementation techniques only
for unconditional equations. The necessary extensions to deal with conditional equations
are shown in section 5. Section 6 shows some results of our implementation.

2 The implemented operational semantics

We have mentioned in the introduction that our approach to integrate functional and logic
programming languages is based on Horn clause logic with equality (see [31] for details)
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which extends pure Horn logic by allowing user definitions for the binary predicate
Since Horn clause logic with equality interprets this predicate as identity, we can define
functions by this feature. For instance, the following clauses define a function isort
on lists which produces a sorted permutation of the argument list by the insertion sort
method (we use the Prolog notation for lists [6] and we assume that the ordering predicates
=< and > are defined elsewhere):

isort ([1) = [1

isort([E|L]) = insert(E,isort(L))

insert (E, [1) = [E]

insert(E,[FIL]) = [E,F|L] «— E=<F

insert (E, [FIL])

[Flinsert(E,L)] <+ E > F

w_"

Clauses for the predicate are also called conditional equations. If the condition
is empty, we call it also unconditional equation. Note that this program is neither
a valid K-LEAF program [3] (since the left-hand side of the two conditional equations
are identical) nor a valid BABEL program (since the conditions of the two conditional
equations are “propositional satisfiable” [28]). But it is allowed in our language since
we only require the confluence of the term rewriting relation generated by the (condi-
tional) equations (the insert equation system is confluent since “E =< F and E > F” is
unsatisfiable).

Our source language ALF (“Algebraic Logic Functional language”) consists of Horn
clauses for user-defined predicates and equations for user-defined functions (the left-hand
sides can also be non-linear in contrast to K-LEAF and BABEL). Furthermore, ALF has
a (parametrized) module system and a many-sorted type structure. Since these features
have no influence on the execution of ALF-programs, we omit the details here and refer
the interested reader to [12] and [15]. An important aspect of the language is the distinc-
tion between constructors and functions. A constructor must not be the outermost
symbol of the left-hand side of a conditional equation, i.e., constructor terms are always
irreducible. This distinction is specified by the user [12] and necessary for the notion of
innermost occurrences [8].

The declarative semantics of ALF is the well-known Horn clause logic with equality
as to be found in [31]. As mentioned in the introduction, the operational semantics of
ALF is based on resolution for predicates and rewriting and innermost basic narrowing for
functions. In order to give a precise definition of the operational semantics, we represent
a goal by a skeleton and an environment part [19]: the skeleton is a goal composed of
terms and literals occurring in the original program, and the environment is a substitution
which has to be applied to the goal in order to obtain the actual goal. The initial goal
G is represented by the pair < G;id > where id is the identity substitution. We define
the following inference rules to derive a new goal from a given one (if 7 is a position in
a term ¢, then t/m denotes the subterm of ¢ at position 7 and t[r < s] denotes the term
obtained by replacing the subterm ¢/7 by sin t): Let < Ly,..., L, ; 0 > be a given goal
(Li,..., L, are the skeleton literals and o is the environment).

1. If Ly is an equation s =t and there is a mgu o’ for o(s) and o(¢), then the goal

<Ly,....L, ; 0’ oo >

4



is derived by reflection.

2. If Ly is not an equation and there is a new variant L < C of a program clause and
o' is a mgu for o(L;) and L, then the goal

<C,Ly,...,L,; 0’00 >

is derived by resolution.

3. Let m be a leftmost-innermost position in the first skeleton literal L, i.e., the sub-
term L;/7 has a defined function symbol at the top and all argument terms consist
of variables and constructors (cf. [8]).

(a) If there is a new variant [ = r < C' of a program clause and o(L/7) and [ are
unifiable with mgu o', then the goal

<C,Lyr«7r],Lyy....,L,; 0’00 >

is derived by innermost basic narrowing.
(b) If z is a new variable and ¢’ is the substitution {z <— o(L;/7)}, then the goal

< Ly[r«x],Ly,...,Ly ; 0’00 >

is derived by innermost reflection (this corresponds to the elimination of an
innermost redex [19]).

4. If 7 is a non-variable position in L;, [ = r < (' is a new variant of a program
clause and ¢’ is a substitution with o(L;/7) = ¢'(l) and the goal < C' ; ¢’ > can
be derived to the empty goal without instantiating any variables from o (L), then
the goal

< Lyfr «0o'(r)), Lay..., Ly ; 0>

is derived by rewriting (thus rewriting is only applied to the first literal, but this is
no restriction since a conjunction like Ly, Lo, L3 can also be written as an equation
and(Ly,and(Lsy, L3)) = true).

5. If L, is an equation and the two sides have different constructors at the same outer-
most position (a position not belonging to arguments of functions), then the whole
goal is rejected, i.e., the proof fails.

The complete operational semantics of ALF is shown in figure 1. The innermost reflection
rule must only be applied to partial functions, i.e., functions which are not reducible for all
ground terms of appropriate sorts [19]. The attribute basic of a narrowing step emphasizes
that a narrowing step is only applied at an occurrence of the original program and not
at occurrences introduced by substitutions [21]. The restriction to basic occurrences is
important for an efficient implementation of narrowing and rewriting (see below). The
rewriting rule has the disadvantage that terms from the environment part can be moved
to the skeleton part, but it has been shown that such terms can be safely moved back to
the environment part [30]. Therefore environment terms are never moved to the skeleton
part in our implementation.



Start: Apply rewriting as long as possible (from innermost to outermost positions).
If the goal is not rejected then:
Narrow: If possible, apply the innermost basic narrowing rule and go to Start.
If possible, apply the innermost refiection rule and goto Narrow.
If the first literal of the goal is an equation
then: If possible, apply the reflection rule and go to Start.
else:  If possible, apply the resolution rule and go to Start.

Otherwise: fail (and try an alternative proof)

Figure 1: Operational semantics of ALF

This operational semantics is sound and complete if the term rewriting relation gener-
ated by the conditional equations is canonical and the condition and the right-hand side
of each conditional equation do not contain extra-variables [19]. If these restrictions are
not satisfied, it may be possible to transform the program into an equivalent program
for which this operational semantics is complete. For instance, Bertling and Ganzinger
[2] have proposed a method to transform conditional equations with extra-variables such
that narrowing and reflection will be complete. Therefore we allow extra-variables in con-
ditional equations. For instance, our operational semantics is complete for the following
set, of equations defining quicksort, which can be proved by the CEC completion system
[2] (we omit the definition of =< and >):

conc([]1,L) =L
conc([E|R],L) = [Elconc(R,L)]
split(E, [1) = (0,0

split (E, [FIL])
split(E, [FIL])

gsort ([]1)
gsort ([E|L])

([FIL11,L2) «+ E > F, split(E,L)
(L1,[FIL2]) +« E =< F, split(E,L)

(L1,L2)
(L1,L2)

(]
conc(gsort(Ll), [Elgsort(L2)]) <« split(E,L) = (L1,L2)

(‘,” is defined as an infix operator for building pairs of lists). Note that this is not a valid
K-LEAF or BABEL program since the extra-variables L1 and L2 occur in the right-hand
side of the defining equations. In order to avoid the extra-variables one has to replace the
last equation by

gsort([E|IL]) = conc(qgsort(splitl(E,L)), [Elgsort(split2(E,L))])

and redefine the split function. This solution is less efficient (because the list L must be
processed twice) and simplification orderings fail to prove the termination of the rewrite
relation [2]. These drawbacks may be accepted, but there are other examples where the
use of extra-variables cannot be avoided with simple transformations. The function last
computes the last element of a given list. It can be explicitly defined or, if conc is defined
as above, by the simple conditional equation

last(L) = E <« conc(L1,[E]) =L



In this case last (L) is evaluated by searching the right instantiations of L1 and E (note
that there is at most one solution if L is given). The use of extra-variables gives us the
full power of logic programming inside functional programming. Hence ALF allows extra-
variables in conditional equations. If such a conditional equation is applied in a rewrite
step, only the first solution to the extra-variables is considered. This is sufficient because
all equations are required to be confluent.

It is also possible to specify additional equational clauses which are only used for
rewriting. For instance, Fribourg [8] has shown that the addition of inductive axioms for
rewriting is useful to reduce the search space. In this case the proved goals are valid with
respect to the least Herbrand model but may be invalid in the class of all models. Therefore
an ALF-program consists of three groups of clauses: relational clauses which define all
predicates except “=", conditional equations used for narrowing and conditional equations
used for rewriting (Fribourg’s SLOG language allows only unconditional equations for
rewriting). Usually, all conditional equations in an ALF-program are used for narrowing
and rewriting, but the programmer can specify that some equations should only be applied
for narrowing or rewriting, respectively. For instance, the inductive axiom rev(rev(L))
= L can be used for rewriting to reduce the search space (the function rev reverses all
elements in a list). To use it as a narrowing rule makes no sense since this would expand
the search space.

Similarly to Prolog, the program clauses in ALF are ordered and the different choices
for clauses in a computation step are implemented by a backtracking strategy. Note that
backtracking is only necessary in the resolution and narrowing rule but not in rewrit-
ing since simplification by rewriting produces unique terms independently of the chosen
clauses (because of the confluence of the term rewriting relation). Therefore rewriting is
a deterministic process and the simplification of a goal by rewriting before a narrowing
step means that in ALF deterministic computations are performed whenever possible and
nondeterministic computations (narrowing/resolution) are only used when it is not avoid-
able. The Andorra computation model [17] is related to ALF’s operational semantics.
But in contrast to the Andorra model the rewriting mechanism of ALF yields determinis-
tic computations also when more than one clause matches (see add example in section 1)
and may delete goals with infinite or nondeterministic computations. E.g., if Xx0 = 0 is
a defining equation for the function *, then a term like ¢ * 0 will be simplified to 0, i.e.,
the entire subterm ¢ will be deleted. This is important if ¢# contains unevaluated functions
with variable arguments.

In order to demonstrate the improved efficiency of this operational semantics in com-
parison to Prolog’s computation strategy, consider the following equations for the con-
catenation function on lists:

conc([]1,L) = L
conc([E|R],L) = [Elconc(R,L)]

If a and b are constructors, then the goal
conc(conc([alV],W),Y) = [blZz]

is simplified by rewriting to the goal
[alconc(conc(V,W),Y)] = [blZ]



which is immediately rejected since a and b are different constructors. The equivalent
Prolog goal

append([a|V],W,L), append(L,Y,[blZ])

causes an infinite loop for any order of literals and clauses [29]. More details about the
advantages of rewriting and rejection in combination with narrowing can be found in [8]
and [19].

3 The management of occurrences

In this section we want to show the basic ideas to implement the operational semantics of
ALF in an efficient way. Since Prolog’s operational semantics is included in our language,
we have decided to extend the WAM in order to implement the new aspects of ALF. The
resolution and reflection rule can be directly implemented in the WAM since there is no
difference to Prolog. The implementation of rejection is also obvious (note the similarity
between unification and rejection). Therefore we discuss the implementation of narrowing
and rewriting in more detail. For the sake of simplicity we consider only unconditional
equations in this section. The necessary extensions to deal with conditional equations are
shown in section 5.

The WAM stores terms on the heap. In order to obtain an efficient implementation of
narrowing and rewriting, we need a fast access to the subterm where the next narrowing
or rewrite rule should be applied. A dynamic search through the argument term of the
current, literal is too expensive for this purpose. But since we use an innermost basic
strategy, all relevant occurrences of subterms can be determined at compile time. For
instance, consider the clause

fac(s(N)) = fac(N) * s(N)

If this equation is applied to reduce a term of the form fac(A), then we know by the
innermost basic strategy that the argument term A does not contain any occurrences
of functions belonging to the skeleton part. Therefore we replace the term fac(A) by
the right-hand side fac(N) * s(N) (after unifying A and s(N)) and then we reduce the
subterm fac(N). If this subterm is completely reduced to a term T, then the term T *
s (N) is the next term where an equation must be applied.

Hence we introduce a new data structure called occurrence stack. An occurrence
is a reference to a term on the heap. The occurrence stack contains all references to
subterms of an argument of the current literal where narrowing and rewrite rules could
be applied (in innermost order, i.e., the reference to the innermost term is always the
top element). For instance, if p(f(c(g(X)))) is the current skeleton literal, f and g
are functions and ¢ a constructor, then the occurrence stack contains a reference to the
subterm f (c(g(X))) and a reference to the subterm g(X) at the top. Now it is easy to
see that the compiler can generate all necessary instructions for the manipulation of the
occurrence stack. For instance, the right-hand side of the above equation for fac can be
translated into

<replace the term at the current occurrence by fac(N) * s(N)>
<push a reference to the subterm fac(N) onto the occurrence stack>



The right-hand side contains two functions, therefore an additional occurrence must be
pushed onto the occurrence stack. If the right-hand side does not contain a function
symbol (i.e., only constructors and variables), then an element must be popped from the
occurrence stack. For instance, the right-hand side of the clause fac(0) = s(0) is
translated into

<replace the term at the current occurrence by s(0)>
<pop a reference from the occurrence stack>

This has the effect that the computation proceeds at the next innermost occurrence stored
on the occurrence stack.

Before a literal is proved by resolution, all arguments must be evaluated by rewrit-
ing and narrowing. Therefore the arguments must be stored on the heap and the oc-
currence stack is initialized with the appropriate references. For instance, the literal
p(f(c(g(X)))) is translated into

<write the term f(c(g(X))) onto the heap>

<push reference to the term f(c(g(X))) onto the occurrence stack>
<push reference to the term g(X) onto the occurrence stack>

<start rewriting and narrowing>

Now a new problem occurs. Rewriting tries to simplify the current argument term by
applying rewrite rules from innermost to outermost positions in the term. If a subterm
cannot be rewritten, then the next innermost position is tried, i.e., an element is popped
from the occurrence stack. This is necessary as the following example shows: If the only
equations for f and g are

£f(Z) =0

g(0) =0
then the term g(X) cannot be rewritten (only narrowing could be applied), but the term
f(c(g(X))) can be simplified to 0.

Hence the rewriting process pops all elements from the occurrence stack and therefore
the stack is empty when rewriting is finished and a narrowing rule should be applied. In
order to avoid a dynamic search for the appropriate innermost occurrence, we introduce
a second stack for storing the deleted occurrences (in [12] all occurrences are stored on
one stack and therefore more time is needed to recompute the occurrences in case of
successful rewriting). This stack (called copy occurrence stack) contains all occurrences
if rewriting is finished and the original occurrence stack is empty. Thus the occurrence
stack can be reinstalled by a simple block-copy operation. There is only one case where
this method cannot be applied (but fortunately this case rarely occurs): If a rewrite rule
deletes a subterm because there are variables on the left-hand side which do not occur on
the right-hand side (as in the clause £ (Z) = 0) and the copy occurrence stack is not empty,
then some occurrences must be deleted from the copy occurrence stack. Since this is
expensive or requires additional information in the data structures, we have implemented
a simple solution: In this case the copy occurrence stack is marked as “invalid” which has
the consequence that a new occurrence stack for the current argument term is computed
before a narrowing rule is applied.

The presented technique for the management of occurrences has the advantage that



the next relevant subterm for rewriting or narrowing can be found in constant time and a
dynamic search for reducible subterms is not necessary. As a consequence we will see in
section 6 that functional programs are executed by rewriting and narrowing with almost
the same efficiency as their relational equivalents by resolution.

4 Details of the abstract machine

After discussing the basic ideas of the implementation in the previous section, we can
present more details about our abstract machine. The abstract machine for the efficient
execution of ALF-programs, called A-WAM, is an extension of the WAM. Hence the
main data areas of the A-WAM are the code area containing the compiled code of the
ALF-program, the local stack containing environments and backtrack points, the heap
containing terms constructed at run time, the trail containing variables bound during
unification, and the occurrence stack and the copy occurrence stack as described in the
last section. In contrast to the WAM, the trail contains also the contents of heap cells
which were replaced by an application of a rewrite or narrowing rule, and the terms in the
heap have an additional tag indicating whether they belong to the skeleton or environment
part of the goal. This is necessary because the basic occurrences must be recomputed in
some cases (cf. previous section).

The A-WAM has several additional registers and instructions for the implementation
of rewriting and narrowing. A description of these can be found in the appendix. In this
section we describe the A-WAM by selected examples.

An equational clause [ = r is always translated into the following scheme:

<unify or match the left-hand side [ with the current subterm>
<replace the current subterm by the right-hand side r>

<update the occurrence stack (delete or add occurrences)>
<proceed with rewriting/narrowing at new innermost occurrence>

The current subterm is referenced by the top element of the occurrence stack. Therefore
this top element is always stored in the particular A-WAM-register AD, i.e., the occurrence
stack is empty iff AQ is undefined. Similarly to the WAM, the arguments of a n-ary
predicate or function are passed through the argument registers A1,...,An. Hence the
get-instructions of the WAM can be used to unify the left-hand side of an equation. If
this equation is used as a rewrite rule, then the left-hand side must be matched with the
current subterm, i.e., variables in the current subterm must not be bound. One possible
implementation of this behaviour is the introduction of additional registers R and HR which
point to the local stack and heap, respectively. Before rewriting is called, R and HR are
set. to the top of the local stack and the top of the heap, respectively. If a variable is
bound to a term in the unification procedure, the WAM-instruction trail is called. Now
we modify the instruction trail such that this instruction causes a fail if the variable
to be bound is stored in the local stack before address R or in the heap before address HR.
With this small modification we need no additional instructions for matching but can use
the given get-instructions.

In order to replace the current subterm (pointed by register AQ) by a new term (the
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right-hand side of an equation), the A-WAM contains a duplicated set of put-instructions
with the suffix _occ which replace the current subterm in the heap by another term. For
instance, the instruction put_const_occ C writes the constant C on the heap at address AD
and stores the old value at occurrence A0 on the trail, and the instruction put_struct_occ
f/n puts a new structure on the top of the heap, replaces the heap cell at address AD by
a reference to this new structure and trails the old value at AO.

The A-WAM has three instructions for the manipulation of the occurrence stack:
load_occ R sets register AO to the value in register R, push_occ R pushes the value in R
onto the occurrence stack, and pop_occ pops an element from the occurrence stack and
stores its value in register AO.

Now we can show the translation of rewrite rules (remember that each equation
can be used as a rewrite rule as well as a narrowing rule). Consider the two rewrite rules
for the function rev:

rev([]) = []

rev([E|IR]) = conc(rev(R),[E])
The first rewrite rule is translated into

get_nil Al

put_nil_occ

pop_occ

execute_rewriting AO

The first instruction matches the current argument stored in Al with the constant []
representing the empty list. If this is successful, the second instruction replaces the current
subterm by the empty list. Now rewriting must proceed at the next innermost occurrence.
Therefore an element is popped from the occurrence stack by the third instruction and
the last instruction loads the argument registers with the components of the new current
subterm and jumps to the code of the appropriate rewrite rules. The second rewrite rule
for rev is translated into

get_list Al % match A1 with [E|R]
unify _variable X4
unify variable Al

put_list X3 % write [E] on the heap

unify_value X4

unify nil

put_struct_occ conc/2 % replace current subterm by conc(_, [E])

unify_variable X2

unify _value X3

push_occ AO % update occurrence stack

load_occ X2

execute_rewriting rev/1 9 jump to the rewrite rules for rev/1

Note that the subterm rev (R) is not written on the heap because this is the next innermost
subterm where a rewrite rule should be applied. Therefore a new unbound variable is
stored instead of this subterm and the argument register Al is set to the value of R
(this is different from the implementation presented in [12]). If a rewrite rule can be
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applied to rev(R), then the variable is overwritten by the right-hand side of the applied
rule. Otherwise rewriting must be applied at the next innermost position. Thus the last
alternative of the sequence of rewrite rules for rev is always the code sequence

put_function_occ rev/1

copy_pop_occ

execute_rewriting AO
The first instruction puts the structure rev/1 with the value of argument register A1 onto
the heap at address AQ if this heap cell contains an unbound variable. The second instruc-
tion pops an element from the occurrence stack and pushes it onto the copy occurrence
stack (as described in section 3). The last instruction proceeds with rewriting at the new
occurrence.

We have also mentioned in section 3 that the copy occurrence stack may become
invalid if the rewrite rule deletes a subterm in an argument. Therefore the instruction
invalid_os must be generated if a rewrite rule is applied where the right-hand side does
not contain all variables of the left-hand side. For instance, the rewrite rule £(Z) = 0 is
translated into

put_const_occ 0
pop_occ

invalid_os
execute_rewriting AO

The instruction invalid_os marks the copy occurrence stack as invalid if it is not empty.
In this case the occurrence stack must be recomputed before a narrowing rule is applied.

The translation of narrowing rules is similarly to rewrite rules. The only dif-
ference is that after an application of a narrowing rule we do not proceed with another
narrowing rule but must perform rewriting and rejection first. Hence the narrowing rule
conc([],L) = L is translated into

get_nil Al
put_value_occ A2
pop_occ
call_rewriting AO
rebuild_occ_stack
reject
execute_narrowing AO

The instruction call_rewriting AO sets the registers R and HR and jumps to the rewrite
code of the function at occurrence AOD. When the whole term is simplified by rewrit-
ing, execution continues with the instruction rebuild_occ_stack which moves the copy
occurrence stack to the occurrence stack (if it is valid) or recomputes the occurrence
stack. reject performs the rejection rule if the current literal is an equation, and
execute_narrowing AO tries to apply a narrowing rule at the occurrence AQ.

The indexing scheme for narrowing rules is similar to the WAM-translation scheme
for predicates, i.e., all narrowing rules for a function are connected with a chain of
try_me_else-, retry_me_else- and trust_me_else_fail-instructions. Moreover, in-
structions for indexing on the first argument are generated. For rewrite rules the same
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conc/2: r_try_me_else b2
switch_on_term cla,cl,c2,fail

cla: r_try_me_else c2a % Clause: conc([]1,L) =L
cl: get_nil A1l
put_value_occ A2
pop_occ
execute_rewriting AO
ca: r_trust_me_else_fail % Clause: conc([E|R],L) = [Elconc(R,L)]
c2: get_list Al

unify_variable X4
unify_variable Al
put_list_occ
unify_value X4
unify_variable X3

load_occ X3
execute_rewriting conc/2
b2: put_function_occ conc/2 7 go to next innermost position

copy_pop_occ
execute_rewriting AO

Figure 2: A-WAM-code of the rewrite rules for conc

scheme is generated, but all indexing instructions are replaced by “rewrite indexing in-
structions” which are prefixed by r_. This is due to the fact that rewriting is a determinis-
tic process and rewrite rules do not change the current literal before the right-hand side is
inserted. Therefore the A-WAM contains two registers RFP1 and RFP2 which contains the
address of an alternative rewrite rule (two registers are necessary because there may exist
two backtrack points for one clause due to the indexing scheme [33]). These registers are
set by the r_try...—instructions instead of creating a backtrack point. The instruction
fail, which is executed on failure, considers the values of RFP1 and RFP2: If one of these
registers is defined (not equal to “fail”), P is set to the last one, otherwise the computation
state is reset to the last backtrack point. The instruction execute_rewriting, which is
always executed at the end of a rewrite rule, sets RFP1 and RFP2 to “fail” which imple-
ments the determinstic behaviour of rewriting. The complete translation of the rewrite
rules for the function conc is shown in figure 2.

If an argument term of a literal in a goal contains function symbols, then this argument
term must be evaluated by rewriting and narrowing before the resolution rule is applied
to the literal. Therefore instructions for initializing the occurrence stack and rewriting
and narrowing instructions must be inserted in such literals. For instance, the literal
p(fac(s(0))) in a goal is translated into

put_structure s/1, X2 % store argument term fac(s(0))
unify_constant 0
put_structure fac/1, Y2
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unify_value X2

set_begin_of_term Y2 % store root of argument term
load_occ Y2 % initialize occurrence stack
call_rewriting AO, 2

rebuild_occ_stack

call_narrowing AQO, 2

put_value Y2, Al % restore argument term

call p/1, 1

The first 4 instructions are identical to the WAM-code with the only difference that the
root of the argument term is not stored in register A1 but in the permanent variable Y2.
This is necessary since argument registers are altered during rewriting and narrowing.
The A-WAM has a register TS which contains the root of the argument currently evalu-
ated by rewriting and narrowing. This register is used when the occurrence stack must
be recomputed after rewriting if the copy occurrence stack has been marked as invalid.
Therefore TS is initialized by the instruction set_begin_of_term with the appropriate
value. The second arguments of call_rewriting and call_narrowing are the number
of permanent variables which are still in use in the current environment (similar to the
WAM-instruction call).

Now we have shown how ALF-programs (with unconditional equations) can be trans-
lated into A-WAM-code. Note that the A-WAM-code for functions is very similar to the
WAM-code for the equivalent predicate (e.g., compare the code for the functions conc
and rev with the WAM-code for the naive reverse program). Thus functional programs
are executed with the same efficiency as their relational equivalents. Moreover, backtrack
points are not generated for rewriting and therefore many functional programs are more
efficiently executed. Before we present concrete results of our implementation, we will
show how conditional equations are implemented in our framework.

5 Conditional equations

Conditional equations causes a new problem since the condition must be proved before
the equation could be applied. To prove the condition rewriting and narrowing may be
recursively used. Hence the current occurrence stack must be saved before the condition is
proved and restored after the proof of the condition. To implement this recursive structure
of the narrowing process, the A-WAM contains not only one occurrence stack but a list (or
stack) of occurrence stacks. The last element of this list is always the current occurrence
stack belonging to the argument term currently evaluated by narrowing or rewriting.
Since rewriting may have a recursive structure too, the copy occurrence stack is also a
list of stacks where the last element is the current copy occurrence stack.

The A-WAM has two instructions to manipulate the list of occurrence stacks. The
instruction allocate_occ adds a new (empty) occurrence stack to the list of occurrence
stacks. It is used before a condition in a narrowing or rewrite rule will be proved. At the
end of the condition the instruction deallocate_occ is executed which deletes the last
element from the list of occurrence stacks. If a backtrack point has been created during
the proof of the condition, then the last occurrence stack is not deleted since it is needed
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on backtracking. Hence a backtrack point freezes the current occurrence stack (note the
similarity to environments and the allocate/deallocate-instructions in the WAM).
Consider the conditional equation £(N) = 0 < odd(g(N)). It is translated as a nar-

rowing rule into the following code:

allocate

get_variable X2, Al

allocate_occ

put_structure g/1, Y1

unify_value X2

set_begin_of_term Y1

load_occ Y1

call_rewriting AO, 1

rebuild_occ_stack

call_narrowing AO, 1

put_value Y1, Al
call odd/1, 1
deallocate_occ
put_const_occ 0
deallocate
pop_occ
call_rewriting AO
rebuild_occ_stack
reject

execute_narrowing AO

h
h

T

h

T

.

T

create a new occ. stack for the condition
create argument term g(N)

rewrite argument term g(N)

narrow argument term g(N)

delete occurrence stack for the condition

proceed with rewriting at next occurrence

proceed with narrowing

The compilation scheme for conditional rewrite rules is a little bit more complicated be-
cause it is sufficient to compute one solution for the condition (rewriting is a deterministic
process). Thus backtrack points generated during the proof of the condition can be safely
deleted. The second problem is that the indexing scheme for rewrite rules (r_try.. .-
instructions) does not generate backtrack points. Therefore a backtrack point must be
created at the beginning of the condition. Hence a conditional rewrite rule of the form [

L:

r < C

allocate

<get-instructions for [>
1_try_me_else L,A,N

allocate_occ

is translated into

<instructions for condition c¢>

deallocate_occ

1_trust_me_else fail

% create new backtrack point for condition
% create new occurrence stack

% delete occurrence stack for condition
% delete backtrack points for condition

<put..._occ-instructions for r>
<occurrence-stack-instructions for r>

deallocate
invalid_os

execute_rewriting AO
1 _trust_me_else fail

% if necessary
% delete backtrack points for condition
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deallocate
fail % try next rewrite rule

The instruction 1_try_me_else L,A,N creates a backtrack point similarly to
try_me_else L,A (A is the number of argument registers to be saved) and stores the
address of the last backtrack point in the environment (usually in the permanent variable
Y1). The additional argument N contains the size of the current environment (the WAM
accesses the size of the current environment via the continuation pointer CP which is not
possible in this context). The instruction 1_trust_me_else fail deletes all backtrack
points generated during the proof of the condition, i.e., the pointer to the last backtrack
point (WAM-register B) is set to Y1 (the backtrack point before the condition).

6 Results

The current implementation consists of two parts: a compiler written in Prolog which
translates ALF-programs into a compact bytecode representing A-WAM-programs, and
a bytecode emulator for the A-WAM written in C. The details of the implementation
together with a complete formal specification of the A-WAM in the style of [10] can be
found in [16]. In this section we present some results of our implementation.

First of all, let us remark that pure logic programs without equations are compiled
identical to the WAM, i.e., there is no overhead because of the functional part of our
language (only backtrack points are a little bit bigger because of the additional registers
of the A-WAM). Although the current implementation is a first prototype and not very
fast!, it is interesting to see the relation between execution times for functional programs
and their relational equivalents, because this shows the relationship between our imple-
mentation of narrowing and rewriting and the current techniques for logic programming.

The first example is the classical (but controversial) naive reverse benchmark. The
relational version is executed by resolution, the functional version by narrowing and rewrit-
ing. The following table shows the time for reversing a list of 30 elements in both directions
(all benchmarks were executed on a Sund4):

Naive reverse
Initial goal: rev([---1) = L |rev(L) = [---]
Relational “naive reverse”: | 18 msec 190 msec
Functional “naive reverse”: | 19 msec 210 msec

The next example demonstrates one advantage of integrating functions into logic pro-
gramming languages. In the first section we have shown clauses for defining the predicate
add and the function +. We have stated that the functional computation is more efficient
than the relational because no backtrack points must be generated for evaluating the
function by rewriting. The following table shows that this is true in our implementation

!The performance of our current implementation is approximately 38 KLips on a Sun4 for the naive
reverse benchmark; for typical logic programming examples with backtracking, like the permutation sort
program (see below), our implementation is approximately 6-7 times slower than a commercial Prolog
system (Quintus-Prolog 3.0).
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(in the implementation natural numbers are represented as terms constructed by s and
0):

Functional vs. relational computations
Initial goal: add(100,100,S) | 100 + 100 = S
Time used (msec): 16 8
Heap used (bytes): 2412 2420
Local stack used (bytes): 13352 124
Trail used (bytes): 808 0
Occurrence stack used (bytes): 0 0

This table contains the time and space used for computing the first solution to the initial
goal. The time and the local stack space shows the advantage of functional computations.

However, our implementation is not restricted to evaluate functions by rewriting, but
also narrowing steps are applied if rewriting fails and some variables of the goal must
be instantiated in order to proceed with rewriting. Fribourg [8] has shown that the
combination of narrowing and rewriting can reduce the search space in comparison to
resolution. At the end of section 2 we have presented an example where rewriting cuts
down an infinite search space to a finite one. It is also possible that a finite search space can
be dramatically reduced by rewriting. For instance, in the “permutation sort” program
a list is sorted by enumerating all permutations and checking whether they are sorted.
The relational version of the program ([32], p. 55) enumerates all permutations whereas
in the functional version not all permutations are enumerated since the generation of a
permutation is stopped (by rewriting the goal to “fail”) if two consecutive elements X
and Y have the wrong ordering Y < X (cf. [8], p. 182). Therefore we yield the following
execution times in seconds for different lengths of the input list in our system:

Functional vs. relational computations: permutation sort
Program: Initial goal: n=6 n=8 n=10
Relational ([32], p. 55) | psort([n,...,11,L) 0.65 37.92 3569.50
Functional ([8], p. 182) | psort([n,...,11) = L | 027 143 7.43

This is a typical example for the class of “generate-and-test” programs. The rewriting
process performs the “test part” of the program: if a portion of the potential solution is
generated by narrowing, rewriting immediately tests whether or not this can be a part
of the solution. Therefore narrowing and rewriting yield a more efficient control strategy
than SLD-resolution for equivalent relational programs. This is achieved in a purely
clean and declarative way without any user annotations to control the proof strategy or
transformations applied to the source program [5]. A more detailed discussion on this
advantage of a functional language based on rewriting and narrowing can be found in
[14].

We have also compared our implementation with other implementations of functional
languages with pattern matching. The following table contains the results of the naive
reverse benchmark for different implementations which we had available.
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Naive reverse for a list of 30 elements
System: Machine: | Time:
ALF Sun4 19 msec
Standard-ML (Edinburgh) | Sun3 54 msec
CAML V 2-6.1 Sun4 28 msec
OBJ3 Sun3 5070 msec
RAP 2.0 Sun4 4800 msec

OBJ3 [23] and RAP [9] are systems for executing equational specifications by rewriting
(and narrowing in case of RAP). Since these are based on an interpreter, we can observe
the impressive speeding up achieved by our compilational approach. Thus we conjecture
that our approach is also more efficient than the implementation technique proposed
by Josephson and Dershowitz [22] because they handle unification and control at the
interpretive level.

7 Conclusions

We have presented a method to compile a language that amalgamates functional and logic
programming styles into code of an abstract machine which can be easily implemented
on conventional architectures. The operational semantics of our language is based on
resolution for predicates and rewriting and narrowing to evaluate functional expressions.
We have shown that narrowing in combination with rewriting is more efficient than res-
olution for equivalent (flattened) relational programs. This was clear from a theoretical
point of view, but our implementation has shown that these advantages can also be used
in practical applications.

The integration of functions into logic programming leads to programs which are
more readable and easier to understand because functions need not be simulated by
predicates and nested functional expressions need not be flattened. Since the programmer
can express functional dependencies between data, this information could be used for a
better implementation. In our system a functional expression is simplified by rewriting
before a narrowing rule is applied. This reduces the search space (without “cuts”!) and
avoids the generation of superfluous backtrack points since rewriting is a deterministic
process. Thus the non-deterministic narrowing operation is rarely applied.

In some cases the positive effect of rewriting (search space reduction) can also be
achieved by analysing a logic program in order to find deterministic computations and
inserting “cuts” at appropriate program points. But this analysis may be expensive and do
not yield satisfactory results if a predicate is called in different modes: a call with ground
terms could have a deterministic computation while a call with non-ground terms may
have a non-deterministic computation. Such problems are solved by our implementation in
a clean and declarative way: Since rewriting is applied before each narrowing step, a goal
is simplified by deterministic rewriting as long as possible depending on the instantiation
state of the arguments. A similar behaviour can also be obtained in logic programs by
using other control strategies instead of Prolog’s fixed left-to-right strategy [29]. But
this requires the insertion of control annotations into the program (which may effect
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completeness because of floundering problems) and the extension of the WAM to deal
with such a flexible control strategy. In our declarative solution control annotations are
not necessary (see also [8]).

Currently we are working on better methods for code generation which can speed up
the rewriting part of the system. At the moment we are using the WAM-instructions for
rewriting as shown in this paper, but it is possible to generate particular code for fast
pattern matching (see, e.g., [18]). We are also working on the integration of types into
the computation process [11] [13] [20] since this allows a further reduction of the search
space.

Acknowledgements: The author is grateful to Renate Schéfers for many discussions on
the design of the A-WAM and to Andreas Schwab and the members of the project group
“PILS” for the implementation of the A-WAM.
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A Registers of the A-WAM

Name Function

P program pointer

CP continuation program pointer

E last environment

B last backtrack point

H top of heap

TR top of trail

S structure pointer

RW read /write mode for unify instructions

A1) A2, ... argument registers

X1, X2, ... temporary variables

R rewrite pointer (to the local stack)

HR heap rewrite pointer (to the heap)

oM top of current occurrence stack

OR top of current copy occurrence stack

AO actual occurrence (reference to the current subterm to be evaluated)
TS term start (root of the current argument term)

ov Is the current copy occ. stack valid? May be set to false during rewriting.
RFP1, RFP2 rewrite fail pointers (addresses of alternative rewrite rules)

The argument registers and temporary variables are identical to the WAM registers [33].

B New instructions of the A-WAM

In the following we list the new instructions of the A-WAM together with a short expla-
nation in alphabetical order.

‘ allocate_occ: ‘ This instruction is used before a condition in a narrowing or rewrite rule
will be proved. It saves the occurrences in A0 and TS onto the occurrence stack and adds
a new (empty) current occurrence stack to the list of all occurrence stacks.
‘call_narrowing AO,N:‘ Load the components of the structure at position AO into the
argument registers and call the narrowing rules for the function at occurrence AQ. N is the
number of permanent variables in the current environment.

‘ call_rewriting R: ‘ This instruction is used to rewrite the current argument term after

a narrowing rule has been applied. It starts rewriting at the innermost occurrence R (f/n
or A0) and continues with the next instruction (rebuild_occ_stack) if the rewriting
process is finished.

‘ call_rewriting R,N: ‘ This instruction is used to rewrite the current argument term in
a literal where N is the number of permanent variables in the current environment. It
starts rewriting at the innermost occurrence R (£/n or AQ) and continues with the next
instruction (rebuild_occ_stack) if the rewriting process is finished.

copy_pop_occ: | Push AD onto the current copy occurrence stack and execute pop_occ.

deallocate_occ:‘ Delete the last element from the list of occurrence stacks and load
registers A0 and TS from the previous occurrence stack. If a backtrack point has been
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created after the corresponding allocate_occ-instruction, it is not allowed to alter pre-
vious elements of the occurrence stack list since only the current occurrence stack has
been saved into the backtrack point. In this case deallocate_occ creates a copy of the
previous occurrence stack and adds this copy to the list of occurrence stacks.
execute_narrowing AO:‘ This instruction terminates a narrowing rule. The narrowing
rules for the function at occurrence AQ are executed if AO is defined, otherwise program
pointer P is set to CP.

‘execute_rewriting R: ‘ This instruction terminates a rewrite rule. Registers RFP1 and
RFP2 are set to “fail” and the rewrite rules for the function f/n are executed if R=f/n,
otherwise (R=A0) the rewrite rules for the function at occurrence A0 are executed.
‘inner_reflection: ‘ This is the last alternative in a sequence of narrowing rules for a
partial function. It implements the innermost reflection rule: The term at the actual oc-
currence AQ is marked as “environment” and the A-WAM-instruction sequence “pop_occ
; execute_narrowing AQ” is executed.

invalid_os: | Set register OV to false if the current copy occurrence stack is not empty.

load_occ R:|Set the actual occurrence register A0 to the contents of R.

1_trust_me_else fail:‘ Delete all backtrack points generated after the corresponding
1_try_me_else, i.e., the pointer to the last backtrack point (register B) is set to Y1.

‘ 1 _try_me_else L,A,N: ‘ Create a backtrack point and store the address of the last back-
track point in the permanent variable Y1. A is the number of argument registers to be
saved and N contains the number of permanent variables in the current environment.
Pop an element from the current occurrence stack and store the value in register
AQ. If the current occurrence stack is empty, set A0 to “undefined”.

push_occ R:|Push the contents of R onto the current occurrence stack.

put_..._occ R:‘ Substitute the current subterm at address A0 by R and store the old
value at AO on the trail. Furthermore, put_struct_occ f/n puts a new structure £/n on
the top of the heap and replaces the heap cell at address A0 by a reference to this new
structure.

‘put_funct ion_occ f/n: ‘ Put the structure £/n with the values of the argument registers
A1,... An onto the heap at address AQ if this heap cell contains an unbound variable. It is
used in the last alternative of the rewrite rules for £/n.

‘rebuild_occ_stack: ‘ Replace the current (empty) occurrence stack by the current copy
occurrence stack if OV is true, otherwise by a new occurrence stack for the term at position
TS (if the copy occurrence stack is invalid).

This instruction implements the reflection rule. It unifies the two sides of
an equation (the current literal) which must be a structure referenced by register TS.

If the current literal is an equation (referenced by register TS), then this in-
struction causes a failure if both sides have different constructors at the same outermost
position (a position not belonging to arguments of functions). Otherwise, no action is
taken.

The indexing instructions for rewrite rules are prefixed by r_. In contrast to
the indexing instructions of the WAM no backtrack point is generated but the address of
the alternative clause is stored in RFP1 or RFP2.

‘set_begin_of_term R:| Set the term start register TS to the contents of R.
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