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Abstract. The expressive power of functional logic languages supports high-
level specifications as well as efficient implementations of problems in the same
language. If specifications are executable, they can be used both as initial proto-
typical implementations and as contracts for checking the reliable execution of
implementations intended to satisfy the specification. In this paper, we propose
a practical framework to support this general approach to coding. We discuss
the notions of specifications and contracts for functional logic programming and
present a tool that supports the development of declarative programs based on
these notions.

1 Introduction

Functional logic programming languages [3,15] support a wide spectrum of program-
ming styles. One can apply logic programming features like nondeterminism and logic
variables to specify the basic knowledge about a problem and let the run-time system
search for appropriate solutions. Or one can use a deterministic (functional) program-
ming style to implement sophisticated and efficient algorithms [22].

The combination of both styles can be leveraged for increased reliability: high-level
(“obviously correct”) specifications can be formulated as functional logic programs.
Since these specifications are executable, they can serve as initial prototypical imple-
mentations. Executable specifications are useful to run experiments which may expose
defects and ultimately raise the confidence that a specification captures the intent. If
the direct execution of the specification is too inefficient, one can choose more efficient
data structures (e.g., balanced search trees instead of lists) and/or better algorithms for
production software. In this case, the initial specification remains valuable since one
can use it as an oracle to test the implementation on a large set of test data [8,13] or to
check, via run-time assertions, that the implementation behaves as intended on particu-
lar executions.

In this paper we show the feasibility of this idea by formalizing specifications, con-
tracts, and assertions, by showing some important relations between them, and by pro-
viding tools to support this approach to program design and development. The concrete
language for our presentation is the multi-paradigm declarative language Curry [17].
We demonstrate that Curry can be used as a wide-spectrum language [5] for software



development. In particular, we have implemented a tool that either transforms a speci-
fication into an executable program or, if the implementation of the specification is also
provided, into a contract attached to this implementation.

Although we assume familiarity with the general concepts of functional logic pro-
gramming [3,15], we review in the next section the concepts crucial for this paper.
Section 3 presents the fundamental notions of our framework. The corresponding tool
support is sketched in Section 4 together with some examples.

2 Functional Logic Programming and Curry

The declarative multi-paradigm language Curry [17] extends non-strict functional pro-
gramming languages such as Haskell [23] with logic programming features, e.g., non-
determinism and equational constraints. Consequently, Curry has a Haskell-like syntax3

extended by the possible inclusion of free (logic) variables in conditions and right-hand
sides of defining rules. The operational semantics is based on an optimal evaluation
strategy [1] which is a conservative extension of lazy functional programming and (con-
current) logic programming.

Expressions in Curry programs contain operations (defined functions), constructors
(introduced in data type declarations), and variables (arguments of operations or free
variables). The goal of a computation is to obtain a value of some expression, where
a value is an expression that does not contain any operation. Note that in a functional
logic language expressions might have more than one value due to nondeterministically
defined operations. For instance, Curry contains a choice operation defined by:
x ? = x

? y = y

Thus, the expression “0 ? 1” has two values: 0 and 1. If expressions have more than
one value, these values are typically constrained by conditions in the rules defining
operations according to the program intent. A rule has the form “f t1 . . . tn | c = e”
where c is a constraint, i.e., an expression of the built-in type Success. For instance,
the trivial constraint success is a value of type Success that denotes the always satis-
fiable constraint. An equational constraint e1 =:= e2 is satisfiable if both sides e1 and
e2 are reducible to unifiable values. Furthermore, if c1 and c2 are constraints, c1 & c2
denotes their concurrent conjunction (i.e., both constraints are concurrently evaluated)
and c1 &> c2 denotes their sequential conjunction (i.e., c2 is evaluated after the success-
ful evaluation of c1).

Nondeterministic expressions could cause a semantical ambiguity when bound to
variables. Consider the operations
coin = 0 ? 1

double x = x + x

Standard term rewriting produces, among others, the derivation
double coin → coin + coin → 0 + coin → 0 + 1 → 1

3 Variables and function names usually start with lowercase letters and the names of type and
data constructors start with an uppercase letter. The application of f to e is denoted by juxta-
position (“f e”).

2



whose result is unintended. Therefore, González-Moreno et al. [14] proposed the rewrit-
ing logic CRWL as a logical foundation for declarative programming with non-strict
and nondeterministic operations. This logic specifies the call-time choice semantics
[18] where values of the arguments of an operation are determined before the operation
is evaluated. In a lazy strategy, this is naturally obtained by sharing. For instance, the
two occurrences of coin in the derivation above are shared so that “double coin” has
only the results: 0 or 2. Since standard term rewriting does not conform to the intended
call-time choice semantics, other notions of rewriting have been proposed to formalize
this idea, like graph rewriting [11,12] or let rewriting [19]. For our purposes, it is suffi-
cient to use a simple reduction relation that we sketch without giving all details (which
can be found in [19]).

To cover non-strict computations, expressions can also contain the special symbol
⊥ to represent undefined or unevaluated values. A partial value is a value contain-
ing occurrences of ⊥. A partial constructor substitution is a substitution that replaces
variables by partial values. A context C[·] is an expression with some “hole”. Then the
reduction relation we use throughout this paper is defined as follows (conditional rules
are not considered for the sake of simplicity):

C[f σ(t1) . . . σ(tn)] → C[σ(r)] f t1 . . . tn → r program rule,
σ partial constructor substitution

C[e] → C[⊥]
The first rule models the call-time choice: if a rule is applied, the actual arguments of
the operation must have been evaluated to partial values. The second rule models non-
strictness by allowing the evaluation of any subexpression to an undefined value (which
is intended if the value of this subexpression is not demanded). As usual, ∗→ denotes
the reflexive and transitive closure of this reduction relation. The equivalence of this
rewrite relation and CRWL is shown in [19].

Sometimes we use let-expressions to enforce the call-time choice semantics. In
order to avoid the explicit handling of let-expressions in the reduction relation (as pro-
posed in [19]), we consider let-expressions as syntactic sugar for auxiliary functions.
For instance, the definition
f x = let z = coin∗x in z+coin

is syntactic sugar for
f x = g (coin∗x)
g z = z+coin

where g is a fresh name.

In nondeterministic programming, it is sometimes useful to examine the set of all
the values of some expression. A “set-of-values” operation applied to an arbitrary ar-
gument might produce results that depend on the degree of evaluation of the argument
(see [6] for a detailed discussion). Set functions overcome this problem [2]. For each
defined function f , fS denotes the corresponding set function. fS encapsulates the non-
determinism of f , but excludes the potential nondeterminism of the arguments to which
f is applied. For instance, consider the operation negOrPos defined by:
negOrPos x = −x ? x
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Then “negOrPosS 2” evaluates to the set {-2, 2}, i.e., the nondeterminism originating
from negOrPos is encapsulated into a set. However, “negOrPosS (1?2)” evaluates to
two different sets {-1, 1} and {-2, 2} due to its nondeterministic argument, i.e., the
nondeterminism originating from the argument produces different sets. The type set is
abstract, i.e., the implementation is hidden, but there are operations, e.g., to determine
whether a set is empty, isEmpty, or an element belongs to a set.

3 Specifications and Contracts

Our framework to support the development of reliable declarative programs is based on
the idea of using a single language for specifications, contracts, and implementations.
Specifications differ from programs because they may be nondeterministic and/or re-
fer to existentially quantified quantities. A functional logic language such as Curry is
appropriate to express specifications because it is nondeterministic and it has equation-
solving capabilities.

Using the same language makes specifications and implementations similar. In fact,
a specification is like any other operation but with a specific tag so that the specification
is more versatile:

– If there is only a specification but no implementation of an operation, the specifica-
tion can be used as an initial implementation for this operation.

– If there are both a specification and an implementation of an operation, the specifi-
cation can be used to check the implementation in two different ways:
Dynamic checking: If the implementation computes some result when the opera-

tion is executed, test whether this result conforms to the specification.
Static checking: If one formally proves that the implementation is correct w.r.t.

the specification, run-time checking is not necessary.

We distinguish between a specification and a contract for an operation. A specifica-
tion describes precisely the intended meaning of an operation. However, a contract
describes conditions that must be satisfied by the implementation. These conditions
can be weaker than a specification. Contracts have been introduced in the context of
imperative and object-oriented programming languages [21] to improve the quality of
software. Typically, a contract consists of both a pre- and a postcondition. The precon-
dition is an obligation for the arguments of an operation application. The postcondition
is an obligation for both the arguments of an operation application and the result of the
operation application to those arguments. Intuitively, the application of or call to each
operation must satisfy its precondition, and, if both the precondition is satisfied and the
operation returns a result, this result must satisfy the postcondition. When a contract is
checked at run-time, the pre- and postcondition are called assertions.

Specifications, preconditions, and postconditions are independent notions sepa-
rately useful for software development. A precondition for an operation states general
restrictions on arguments that must be satisfied in order to apply this operation. Hence,
a specification is intended only for inputs satisfying the precondition. Likewise, a post-
condition must only be satisfied for these inputs. In a strongly typed language, a type
restriction on arguments can be considered a precondition. In general, one is interested
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in preconditions that are more expressive than a traditional type system. For instance,
a precondition for a factorial function could require the argument to be non-negative.
A postcondition is some requirement on all the results of an operation. It could be a
type restriction, but it could also be much stronger. For instance, a postcondition for an
operation to sort a list of values could state that the length of the output list is identical
to the length of the input list. If a postcondition specifies all and only the intended re-
sults of an operation, it can be considered a specification. As we will see later, we can
exploit the logic programming features of our language to execute a postcondition as a
prototypical implementation by generating result values satisfying the postcondition.

The following definition fixes the notions discussed so far. For the sake of simplicity,
we formally define our notions only for unary operations, but the extension to operations
with several arguments is straightforward and, thus, it will be used in the subsequent
examples.

Definition 1 (Specification, Contract). Let f be an operation of type τ → τ ′. A spec-
ification for f is an operation fspec of type τ → τ ′. A precondition for f is an op-
eration fpre of type τ → Bool. A postcondition for f is an operation fpost of type
τ → τ ′ → Bool. A precondition and postcondition pair is also called a contract for
the operation. If a precondition is not explicitly defined, the most general precondition
“fpre _ = True” is assumed.

Similarly to other proposals for assertions or contracts for functional (logic) programs
(e.g., [7,9,16]), we define pre- and postconditions as Boolean-valued functions. An ex-
ception is [4] where constraints are used as conditions which was motivated by the
use of postconditions as specifications instead of an unequivocal specification as in this
work.

As an example, consider an operation, sort, to sort a list of integers. The type of
sort is:
sort :: [Int] → [Int]

Since we have no further requirements on arguments (apart from its type), our precon-
dition for sort is the constant operation4

sort’pre :: [Int] → Bool

sort’pre = True

As an example for a postcondition, we require that the length of the input and output
lists must be equal:
sort’post :: [Int] → [Int] → Bool

sort’post xs ys = length xs == length ys

However, an unequivocal specification states that the result of sort is a permutation in
ascending order of its input:
sort’spec :: [Int] → [Int]

sort’spec xs | sorted ys = ys where ys = perm xs

This specification requires the definition of permutations and sorted lists which are
easily formalized in Curry (“<=:” denotes the less-than-or-equal-to constraint):

4 Note that in the concrete syntax we use in our tool (see below) we write f’pre instead of fpre

(and similarly for postconditions and specifications).
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perm [] = []

perm (x:xs) = ndinsert x (perm xs)

where ndinsert x ys = x : ys

ndinsert x (y:ys) = y : ndinsert x ys

sorted [] = success

sorted [ ] = success

sorted (x:y:ys) = x<=:y & sorted (y:ys)

We can use the specification sort’spec to sort lists since it is a Curry program and,
as such, executable. Obviously, it is inefficient for large lists, so we implement it more
efficiently using the well-known quicksort algorithm:
sort :: [Int] → [Int]

sort [] = []

sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>x) xs)

If we apply our tool, DSDCurry, to this program, the specification is transformed into an
additional postcondition and all existing pre- and postconditions are attached to the sort
operation for dynamic assertion checking. The assertions checked during the execution
of this transformed program reveal an error in our implementation:
SortC> sort [5,1,2,6,5,3]

ERROR: Postcondition of operation ’sort’ violated for:

[5,1,2,6,5,3] → [1,2,3,5,6]

If we correct the error, by replacing the condition (>x) with (>=x), the transformed
program executes as intended and without error messages.

Before discussing some details of our tool, we have to define the precise meaning
of correct implementations and violated assertions. In imperative or strict functional
languages, this seems obvious. However, in a functional logic language like Curry, op-
erations might have multiple results or reduce to infinite structures (i.e., their evaluation
does not terminate). In order to support contract checking also in these situations, we
have to prepare an appropriate setup.

First, we consider the possible violation of contracts. Obviously, a precondition fpre

is violated for some expression e if fpre e is reducible to False, since we want to avoid
any calls on operations where the argument does not satisfy the precondition. For post-
conditions, the situation is less clear for nondeterministic functions. Consider a value v
such that fpre v is reducible to True, f v ∗→ v1, f v ∗→ v2, and fpost v v1

∗→ True, but
fpost v v2

∗→ False, i.e., one result, v1, satisfies the postcondition but another result for
the same input, v2, does not satisfy the postcondition. In a complete implementation, all
results of an operation could be produced. Therefore, we propose the strong view that
any result that a function produces must satisfy the function’s postcondition.

Definition 2 (Violation). Let f be an operation of type τ → τ ′, fpre and fpost be pre-
and postconditions for f , and e an expression of type τ . A violation of the precondition
fpre of f at e is a derivation of fpre e to False. A violation of the postcondition fpost

of f at e is a derivation of
let x = e in not (fpre x) | | fpost x (f x)

to False, where x is a fresh variable.

The definition of a postcondition violation considers the fact that a violation should
be reported only if the precondition holds for the given argument. Note that the
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let-expression is reasonable for nondeterministic arguments since the condition
“not (fpre e) || fpost e (f e)” is different from the one given in the above defi-
nition if e is nondeterministic. For instance, consider
id’post x y = x==y

id x = x

e = 0 ? 1

Then “id’post e (id e)” reduces to both True and False whereas
let x = e in id’post x (id x)

cannot reduce to False due to the call-time choice semantics. The intent is that the
postcondition should be satisfied for the same values used in the precondition; thus, our
definition captures this demand.

Next we have to define the correctness of an implementation w.r.t. a given specifi-
cation. A simple approach could require that the values of the specification are all and
only the values of the implementation. However, this is not reasonable for non-strict
languages. For instance, consider
nums’spec n = n : nums’spec (n+1)

Since nums’spec does not reduce to a value (its evaluation does not terminate), any
other operation (of the same type) that does not reduce to a value would be correct w.r.t.
this specification, e.g.:
nums n = n : nums n

Obviously, this is not intended. If we put the specification and the implementation in
an identical context (e.g., by applying “take 2” to nums’spec and nums), then we might
obtain different results. This motivates the following definition.

Definition 3 (Equivalence, Correctness). Let f1, f2 be operations of type τ → τ ′. f1
is equivalent to f2 iff, for any expressionE1,E1

∗→ v iffE2
∗→ v, where v is a value and

E2 is obtained from E1 by replacing any occurrence of f1 with f2. An implementation
f is correct w.r.t. a specification fspec iff f and fspec are equivalent when applied to
expressions satisfying fpre.

The correctness of an implementation w.r.t. a specification imposes an equality of two
sets of result values. The implementation could produce a value more or less times
than the specification in the sense that the same expression has “substantially” distinct
derivations to the same value. Furthermore, equivalent operations could differ in con-
texts that do not yield any result. For instance, the evaluation of one operation could
diverge where an equivalent operation might terminate with a failure or some excep-
tion.

Intuitively, two operations are equivalent if it is impossible to detect any difference
between them in any application context. If operations do not produce values or produce
some values as well as failures, the consideration of an application context is important.
For instance, consider the following alternative implementation of sorting a list based
on an operation idSorted that is the identity on sorted lists:
sort’ xs = idSorted (perm xs)

where idSorted [] = []

idSorted [x] = [x]

idSorted (x:y:ys) | x<=y = x : idSorted (y:ys)

7



Although this implementation only returns values that are sorted lists, it is not correct
w.r.t. the specification sort’spec. For instance, consider the operation head that returns
the first element of the list. Then there is a derivation
head (sort’ [2,3,1])

∗→ head (idSorted [2,3,1])
∗→ head (2 : idSorted [3,1])
∗→ 2

whereas “head (sort’spec [2,3,1])” cannot be reduced to 2. The implementation
sort’ is incorrect with respect to the specification of sort: if we want to compute the
minimum of a list by sorting the list and taking the first element, the previous derivation
shows that we obtain an unintended result.

Specifications can be used to verify programs. This is a complex task that could be
supported by proof systems. In this paper we exploit the property that specifications
are executable so that we can use them to detect an incorrect execution of the imple-
mentation. For this purpose, we use a specification as a contract for an implementation.
Thus, if we detect a violation at run-time, we can deduce that the implementation is not
correct. This demands for a postcondition that is generated from a specification. In a
naive approach, we could try to define such a postcondition as
fpost x y = y ∈ fspec

S x

i.e., the postcondition checks whether the actual result is in the set of all the results
according to the specification. Unfortunately, this simple definition does not work as
intended due to the following problems:

1. For partially defined operations, this postcondition could be violated even though
the implementation is correct. For instance, consider the simple example
head’spec (x: ) = x

head (x: ) = x

Obviously, head is correct w.r.t. head’spec. However, the set head’specS [] is
empty so that the condition “head [] ∈ head’specS []” could reduce to False.
Therefore, this condition should be checked only if the actual result is a value and
not a failure. However, the implementation of “∈” may not require the evaluation
of its left argument when its right argument is empty.5

2. The membership test requires the decision that two entities are equal. Since in func-
tional logic languages, this test is evaluated by strict equality on (finite) values, the
test will never be successful for operations delivering infinite structures.

The first problem can be handled by the addition of an equality test “y==y”. Since the
equality “==” compares values, the test is successful only if y is a value. This has the
consequence that postconditions are not checked for failure cases. From a conceptual
point of view, it would be better to exclude such cases by appropriate preconditions.
Since the test for such an exclusion is undecidable in general, we add this sufficient
condition to the postcondition.

The second problem can be handled in part by avoiding the comparison of complete
results, and comparing only some computed parts, instead. For this purpose, we define
a postcondition that is parametric w.r.t. some observation operation g.

5 Although this problem can be avoided by excluding the application head [] using an appro-
priate precondition, in general it is difficult to avoid failing computations by preconditions.
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Definition 4. Let fspec be a specification of type τ → τ ′ and g an operation of type
τ ′ → τ ′′. The postcondition fpostg generated from fspec w.r.t. g is defined by
fpost
g x y = let z = g y

g′ a = g (fspec a)

in z==z && z ∈ g′S x

If we use g = id (the identity function), the generated postcondition checks whether
a result y is a value and it is contained in the set of all the results according to the
specification. For instance, consider
f’spec = 0 ? 1

f = 1 ? 0

The generated postcondition fpostid requires that each value of the implementation f is
contained in the set {0, 1}.

If we know that a specification is deterministic, i.e., it yields at most one result for a
given input, then we can provide a simpler postcondition without using an observation
operation and set functions:
fpost x y = y == fspec x

Although this definition does not support the detection of violations for failed compu-
tations (if the evaluation of y fails, the evaluation of fpost x y also fails so that it will
never reduce to False), it might report violations when computing infinite structures, if
the equality is checked in a demand-driven manner (e.g., the expression [1..]==[2..]

evaluates to False). Hence, this optimized formulation is supported by our tool.
The use of a postcondition generated from a specification to check an implementa-

tion is justified by the following propositions. The first proposition shows that equiva-
lent operations have the same violations.

Proposition 1. Let fpost be a postcondition for f . If f is equivalent to f ′ and there is
a violation of the postcondition fpost for f at e, then there is also a violation of the
postcondition fpost for f ′ at e.

The next proposition shows that any postcondition fpost derived from a specification
fspec cannot cause any violation when fpost is used to check an execution of fspec.

Proposition 2. If fpostg is the postcondition generated from fspec w.r.t. some operation
g, then there is no e such that there is a violation of the postcondition fpostg for fspec at
e.

As a consequence, we can use the postcondition generated from fspec to detect an
incorrect implementation:

Corollary 1. Let fpostg be the postcondition generated from fspec w.r.t. some operation
g. If there is a violation of fpostg for f at e, then f is not correct w.r.t. fspec.

Similarly to testing, the correctness of an implementation cannot be determined by in-
dividual executions of a program. Nevertheless, we can infer from a satisfied postcon-
dition which is generated from fspec and an observation operation g that the observed
part of the computation is correct w.r.t. the specification:
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Proposition 3. Let fpostg be the postcondition generated from fspec w.r.t. some oper-
ation g and e an expression such that fpost

g e (f e)
∗→ True. Then there is a value s

with g (f e)
∗→ s and g (fspec e)

∗→ s.

Now we are ready to put this theoretical framework into a tool to support the develop-
ment of reliable declarative programs.

4 Tool Support

In this section we discuss a tool, DSDCurry6, based on the ideas described in the previ-
ous sections. Basically, the tool transforms a Curry moduleM containing specifications,
pre- and/or postconditions for some operations into a new Curry moduleMC providing
the same interface, but where some operations are checked against the provided spec-
ifications and/or contracts. Providing specifications and/or contracts is not mandatory.
However, when they are provided, they are used as follows in the transformed module:

– If there is a specification fspec, then a corresponding postcondition is generated
according to Definition 4 (if an observation operation is not provided by the pro-
grammer, the identity function id is used for g). If there is also a user-defined
postcondition, it is combined with the generated postcondition by conjunction.

– If there is only a specification fspec but no implementation7 of operation f is pro-
vided, then an implementation for f is generated by the rule f = fspec.

– If there is neither a specification nor an implementation but a postcondition fpost

for some operation f , the postcondition is used as a (weak) specification for f , i.e.,
an initial implementation is generated for f by the following definition:
f x | fpost x y = y where y free

– If there is a contract fpre/fpost for some operation f , the implementation of f is
replaced by
f x | checkPre "f" (fpre x) &> checkPost "f" (fpost x y)

= y

where y = f’ x

f’ . . .

where “f ′ . . .” contains the original definition of f with every occurrence of f
replaced by f ′. Thus, the original interface of any function is preserved by DSD-
Curry. The auxiliary operations checkPre and checkPost produce an error message
if their second argument evaluates to False. For instance, checkPre is defined by:8

checkPre fname checkresult =

if checkresult then success else

error ("Precondition of operation ’"++fname++"’ violated!")

6 The tool together with more examples is available at:
http://www.informatik.uni-kiel.de/~pakcs/dsdcurry/.

7 An operation defined by the rule “f = unknown” is considered as undefined. Such a vacuous
definition might be necessary if f is referenced in the definition of other operations in M .

8 The actual implementation provides more information, e.g., about the concrete arguments of
the pre- and postcondition.
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The postcondition checker, checkPost, is similarly defined. Note that the pre- and
postcondition checkers are constraints rather than Boolean operations. This is use-
ful for lazy assertion checking [16] since constraints can be concurrently evaluated.

We demonstrate the development of a simple program using DSDCurry. Consider the
specification sort’spec and the contract sort’pre/sort’post for sorting a list as shown
in Section 3. According to Definition 4, the specification and postcondition are com-
bined into a new postcondition of the form
sort’post x y = sort’post’org x y && y == y && y ∈ sort’specS x

where sort’post’org xs ys = length xs == length ys

where sort’post’org is the original, user-supplied postcondition. If we do not provide
any implementation of the operation sort, an implementation is generated from its
specification where contract checking is added:
sort x | checkPre "sort" (sort’pre x)

&> checkPost "sort" (sort’post x y)

= y

where y = sort’spec x

In principle, postcondition checking should be superfluous for specifications since any
user-defined postcondition should be a logical consequence of the specification. Never-
theless, it is included since this entailment is not checked at compile time by our tool.

This prototypical implementation is not efficient because it does not exploit any
knowledge about sorting algorithms developed over decades of research in computer
science. We improve the efficiency of this implementation by adopting one of these
algorithms known as straight selection sort. Informally, a list is sorted by selecting its
smallest element, sorting the remaining elements, and placing the smallest element in
front of the sorted remaining elements. If we know how to select the smallest element
of a list, the implementation of this sort method is straightforward by a case distinction
on the form of the input list:
sort [] = []

sort (x:xs) = min : sort rest where (min,rest) = minRest (x:xs)

Here, we assume that the essential operation of selecting the smallest element is en-
coded by the operation minRest that, for a non-empty input list, returns both the smallest
element and the remaining elements. Since finding the smallest element is a non-trivial
task, we define a contract for minRest:
minRest’pre = not . null

minRest’post xs (min,rest) = (min:rest) ∈ permS xs && all (>= min) xs

The precondition requires that minRest is only applied to non-empty lists. Since there
might be different methods to select a minimal element and return the remaining ones,
we do not put any requirements on the order of the remaining elements in the postcon-
dition, hence (min:rest) is some permutation of the input list. This is also the reason
why it would be too restrictive to provide a specification of minRest. However, we can
use the postcondition as an initial implementation.9 This implementation of minRest

has the undesirable consequence of producing many values, i.e., the minimal element

9 In this case, we slightly change the postcondition and replace the Boolean operation “∈” by a
constraint since the equality test implicitly performed by “∈” suspends on free variables [17].
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together with all permutations of the remaining elements. We can either restrict this im-
plementation to return only one value and ignore the others (for this reason, DSDCurry
has an option to enforce this behavior), or provide a more informed implementation of
the operation minRest as follows.

A direct implementation of minRest could be obtained via two auxiliary operations,
min and del, that return the minimal element of a list and delete an occurrence of an
element in a list, respectively:
minRest (x:xs) = let m = min x xs

in (m, del m (x:xs))

where min x [] = x

min x (y:ys) = if x<=y then min x ys else min y ys

del x (y:ys) = if x==y then ys else y : del x ys

If we transform this augmented program with DSDCurry, it works as intended without
any contract violation. We observe that our implementation of minRest, in the worst
case, performs two traversals of the input list, whereas it is possible to compute the
minimal element and the remaining elements with a single traversal. To improve the
performance, we re-code minRest as
minRest (x:xs) = mr x [] xs

where mr m r [] = (m,r)

mr m r (y:ys) = if m<=y then mr m (y:r) ys else mr y (m:r) ys

This implementation is more efficient, but also more complicated and its correctness is
not as apparent as before. Thus, we apply again our transformation tool to integrate the
contract into this implementation and execute the program to increase our confidence
in its correctness. Now that we are satisfied with the implementation, we could attempt
a formal correctness proof of this implementation. However, this is outside the scope of
this paper.

As a further example, consider a program to compute the infinite list, fibs, of all
the Fibonacci numbers. The specification maps the operation, fib, to compute the n-
th Fibonacci number defined by the immediate recursive definition, onto the list of all
naturals:
fibs’spec = map fib [0..]

where fib n | n == 0 = 0

| n == 1 = 1

| otherwise = fib (n−1) + fib (n−2)
The application of DSDCurry immediately gives us a correct implementation
of fibs from this specification, e.g., the expression “take 10 fibs” reduces to
[0,1,1,2,3,5,8,13,21,34]. Since each number in the list is computed by applying
operation fib, the implementation is quite inefficient due to the exponential complexity
of fib. Hence, we improve the implementation and construct the list (in linear time) by
creating the next element by adding the two previous ones:
fibs = fiblist 0 1 where fiblist x y = x : fiblist (x+y) y

When we execute “take 10 fibs” again after transforming our program with DSD-
Curry, a violation is reported for the third element, 2, of the result list. We made a typi-
cal error in iterative definitions by swapping some arguments. If we correct the program
to
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fibs = fiblist 0 1 where fiblist x y = x : fiblist y (x+y)

and transform and run it again, no more violations are reported.
Contract checking in the presence of infinite structures requires the lazy evalua-

tion of assertions. Thus, our simple implementation where the contract is completely
checked in the condition of an operation would lead to an infinite loop in the trans-
formed fibs operation. In general, the eager or strict checking of assertions might in-
fluence the execution behavior of a program. To avoid this problem, Chitil et al. [7]
proposed lazy assertions. Lazy assertions do not evaluate their arguments, but check
them when they become evaluated by the application program. Thus, as long as ev-
ery assertion is satisfied, program executions with or without lazy assertion checking
deliver the same results.

On the other hand, lazy assertion checking might not detect contract violations if
the assertion arguments are not sufficiently evaluated by the main program. Thus, it is
debatable whether full assertion checking should be avoided in order to preserve the
behavior of programs [9,16]. Lazy assertions do not modify the behavior, but a lazily
computed result cannot be trusted as long as some assertion has not been checked. As
a compromise between these conflicting goals, enforceable assertions are proposed in
[16]. These assertions behave like lazy assertions, but they can also be checked upon
an explicit request of the programmer, e.g., at the end of a program execution or at key
intermediate execution points.

Making the appropriate choice might be dependent on the application or require
some sophisticated program analysis. Therefore, DSDCurry supports strict, lazy, and
enforceable assertions by transformation options so that it can be easily adapted to
future insights.

5 Conclusions and Related Work

We have discussed some notions that are essential for a methodology intended to de-
velop reliable declarative programs. Specifications are executable so that they can be
used as initial prototypes as well as contracts for implementations that might later be
developed. We have shown some relationships between these notions that are the basis
of a transformation tool to support this development. Our tool, DSDCurry, transforms a
specification into an initial implementation, if an implementation is not provided, other-
wise it transforms the specification into a contract that checks the results computed by
the implementation. Furthermore, our tool supports various forms of contract checking,
such as eager, lazy, or enforceable assertions.

In principle, our method and tool support can be seen as a proposal to use Curry as
a wide-spectrum language. In contrast to a wide-spectrum language like CIP-L [5] that
supports the development of correct programs by applying a stepwise transformation
process to specifications, our approach is more flexible. It does not guarantee correct
implementations, but it allows very efficient implementations. The correctness is only
checked at each concrete program execution w.r.t. some observation operation.

The use of contracts or assertions to obtain more reliable programs has been pro-
posed for many programming languages and paradigms. Concepts for assertions in strict
languages, like imperative, logic, or strict functional languages, are easier to handle
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than in non-strict languages. For instance, [24] proposes an assertion language for (con-
straint) logic programming that is combined in [20] with a static verification framework.
[10] considered a strict language with side effects and proposed the evaluation of asser-
tions in parallel to the application program to exploit the power of multi-core computers.
In non-strict languages, one has the option between lazy assertions [7], which do not
change the meaning of a program (apart from reporting violated assertions) but might
not report some violations, and strict assertions which could influence the evaluation or-
der. Degen et al. [9] discussed the different approaches and came to the conclusion that
there seems to be no way to satisfy both objectives, meaning preservation and violation
reporting, in a non-strict language.

ESC/Haskell [25] is an approach to add pre- and postconditions to Haskell programs
which are checked at compile time by sophisticated program transformations. Similarly
to our approach, pre- and postconditions are arbitrary Boolean operations implemented
in the source language. These conditions are considered as violated if the evaluation
of an operation might fail due to incompletely defined operations (e.g., applying the
operation head to the empty list). Such an interpretation of pre- and postconditions is
too restrictive for functional logic languages where failures are used as a programming
technique. Moreover, we distinguish between precise specifications and (weak) post-
conditions. For instance, [25] considers a sorting algorithm as verified if the output is
a sorted list. We consider such a property as a weak postcondition whereas a precise
specification should additionally require that the output is a permutation of the input
list in order to exclude non-intended implementations.

An obvious challenge for future work is to provide proof support for contracts and
specifications. If it can be shown at compile time that a contract is always satisfied by
the corresponding implementation, its run-time checking can be omitted. This improves
the efficiency of reliable software and reduces the need to test the developed software
with large sets of test data [8,13]. Furthermore, a static proof guarantees the correctness
of the implementation for all inputs rather than for particular executions.
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