(© Springer-Verlag
In Proc. of the 12th International Symposium on
Practical Aspects of Declarative Languages, PADL 2010
Springer LNCS 5937, pp. 201-216, 2010
The original publication is available at www.springerliodm

An ER-based Framework for
Declarative Web Programming*

Michael Hanus Sven Koschnicke

Institut fur Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de sven@koschnicke.de

Abstract. We describe a framework to support the implementation of-based
systems to manipulate data stored in relational datab&sese the conceptual
model of a relational database is often specified as an eelégyionship (ER)
model, we propose to use the ER model to generate a complelenrantation in
the declarative programming language Curry. This impleat@n contains op-
erations to create and manipulate entities, supports @mtith&on, authorization,
session handling, and the composition of individual openatto user processes.
Furthermore and most important, the implementation essiine consistency of
the database w.r.t. the data dependencies specified in tined8B), i.e., updates
initiated by the user cannot lead to an inconsistent statbeofiatabase. In or-
der to generate a high-level declarative implementatiahdan be easily adapted
to individual customer requirements, the framework explprevious works on
declarative database programming and web user interfaxstraction in Curry.

1 Motivation

Many web applications are in essence interfaces on topdatd web browsers to ma-
nipulate data stored in databases. The use of web browsmendis for access control,
e.g., users must be authenticated, the authenticationthrustored in a session across
various web pages, the access to various parts of the datdomasthorized, etc. These
requirements makes the implementation of such applicationon-trivial and often
error-prone task [8]. In order to support the programmeh@ndesign and implemen-
tation of such web-based applications, variaeb frameworksad been developed for
different implementation languages. For instance, theufaspRuby on Rails frame-
work?! supports the implementation of web applications in the aibjeiented language
Ruby. An interesting idea of this framework to enable theckgionstruction of an ini-
tial system, which can be stepwise modified or extendesi;agfolding i.e., the code
of an initial implementation is generated from the data nhofleis initial code gives
the programmer a good idea how to structure and organizetheaf the system under
development.

Our work presented in this paper is based on a similar ideaxplbits declarative
programming to obtain a compact implementation and pravigéability in various

* This work was partially supported by the German Researcm@b(DFG) under grant Ha
2457/5-2.
Y http://www.rubyonrails.org/

aspects (type safety, database consistency, etc). Fautpsse, we use the declarative
multi-paradigm language Curry [3, 7] as an implementatimglage and exploit previ-
ous works on declarative database programming [1] and ihdigla construction of web
user interfaces [5]. Our framework, called “Spicey”, suggpthe following features:

ER-based: The framework is based on a specification of the data modei astity-
relationship (ER) model. Thus, the complete source codendhigial system is
generated from an ER model.

Web-based: The generated system is web-based, i.e., all data can beutated (i.e.,
created, shown, modified, deleted) via standard web brew3ée initial system
provides operations to insert new entities, show entitiesdify or delete existing
entities as specified in the ER model. Relations betweetientre manipulated
together with the corresponding entities. For instancéhéfe is a one-to-many
relation betweery andE’, an instance of)’ can be created only if a corresponding
instance ofF is selected.

Typed: The source code is statically typed so that many programenirays are de-
tected at compile time (in contrast to applications implated in Perl, PHP, Ruby,
etc). Moreover, the data types specified in the ER model arerakpected, i.e., it
is not possible to submit web forms containing ill-typedadat

Sessions. Since HTTP is a stateless protocol, our framework providessaion con-
cept so that any kind of data (e.g., the contents of a virthapping basket) can
be stored in a user session. Sessions are also used to gjorénf@rmation or
navigate the user through a sequence of interactions.

Authentication: The generated application contains an initial structurafthentica-
tion, i.e., login/logout operations. Since the concrethentication methods usu-
ally depend on the application (e.g., kind of login namessperds), this initial
structure must be extended by the programmer.

Authorization: The generated application has methods for authorizatien, éach
controller that is responsible for showing or modifyingaé& authorized before
execution. A central authorization module is generatedrevttee programmer can
easily specify authorization rules based on login or sinmiiiformation.

User processes. Individual operations provided by the framework can be coseul
to user processes that can be selected to initiate longgattion sequences. For
instance, if it is necessary to create various entities imtatthse, the individual
“create” operations can be connected to a complex user ggo&eich processes
are specified as graphs using functional logic programngolgrtiques.

Routing: The routes (i.e., URLs to call some functionality of the eys} are decou-
pled from the physical structure of the source code. Thiskssasimple URLs and
bookmarking of URLSs that persist restructurings of the iempéntation. Therefore,
our framework generates applications that contain a spatidn of a mapping
from URLSs into controllers of the application.

In the remainder of the paper, we present the ideas of our eframrk and
show how declarative programming is useful to get a compact maintain-
able implementation of web-based applications. Due to latkspace, we omit
many details that are described in the full version of thipgraavailable at
http://www.informatik.uni-kiel.de/ pakcs/spicey/.

2 Web Programming with Curry

We briefly survey the basic concepts of Curry and their ushifgr-level web program-
ming as required to understand the main part of this papereMetails of Curry can
be found in a recent survey [6] and in the definition of Curry [7

The design of the declarative multi-paradigm language\Cigran attempt to inte-
grate the most important features of functional and logigleaages in a seamless way
in order to provide a variety of programming concepts to ttegpammer. From a con-
ceptual point of view, Curry combines demand-driven evébmaparametric polymor-
phism, and higher-order functions from functional prognaimg with logic program-
ming features like computing with partial information (lograriables), unification,
and non-deterministic search for solutions. As shown irvipres works on database
programming [1] or web programming [4, 5], this combinatamables better abstrac-
tions in application programs. Curry has a Haskell-liketayh[11] and concepts (e.g.,
“I0 «" denotes the type of an I/O action that returns values of typleut additionally
supports “don’t-know” non-determinism and the inclusidrfree (logic) variables in
conditions and right-hand sides of defining rules.

To support basic web programming in Curry, [4] proposes aMHTibrary that
defines a typ#tmlExp to represent HTML structures:

data HtmlExp = HtmlText String
| HtmlStruct String [(String,String)] [HtmlExp]
Thus, an HTML expression is either a plain string or a stmecttonsisting of a tag, a
list of attributes (name/value pairs), and a list of HTML esgsions contained in this
structure. Adynamic web pagis an HTML document that is computed by a program
at the time when the page is requested by a client (e.g., a vesisbr). Dynamic web
pages usually process user inputs, placed in various imgmuieats (e.g., text fields, text
areas, check boxes) of an HTML form, in order to generate asygecific result. For
this purpose, the HTML library of Curry [4] provides an alastrprogramming model
that can be characterized pmgramming with call-back function& web page with
user input and submit buttons is modeled by attachingwamt handleto each submit
button that is responsible for computing the answer docurfen instance, the HTML
library defines an operation to represent submit buttons iH BML page:
button :: String -> HtmlHandler -> HtmlExp

In order to access the user input, the event handler (ofiypeHandler) has an envi-
ronment containing the actual user input as a parameter@ngutes a new web page.
We omit further details here since our framework is mainlgdzhon a more abstract
layer to construciveb user interface@VUIs) [5]. Such WUIs are constructed in a type-
oriented manner, i.e., for each type in the application @ogone can construct a WUI
that is an implementation of a web-based interface to méetipwalues of this type.
Thus, the (tedious) code for checking the validity of valirethe input fields and pro-
viding appropriate error messages is automatically defir@m the WUI specification.
The corresponding WUI library [5] contains predefined Wlisntanipulate strings

2 Variables and function names usually start with lowercasiers and the names of type and
data constructors start with an uppercase letter. Theagtigh of f to e is denoted by juxta-
position (“f e”).

(wString) or to select a valuewSelect) from a given list of values (where the first
argument shows a value as a string):

wString :: WuiSpec String

wSelect :: (a -> String) -> [a]l -> WuiSpec a
Here, ‘WuiSpec a” denotes the type of a WUI to modify values of typeTo construct
WUIs for complex data types, there &MUl combinatorghat are mappings from sim-
pler WUIs to WUIs for structured types. For instance, thera family of WUI combi-
nators for tuple types:

wPair :: WuiSpec a -> WuiSpec b -> WuiSpec (a,b)

wTriple :: WuiSpec a -> WuiSpec b -> WuiSpec ¢ -> WuiSpec (a,b,c)

w4Tuple ...
Hence, WPair wString (wSelect show [1..100])” defines a WUI to manipu-
late a pair of a string and a number between 1 and 100. An irapbig¢ature of WUIs
is their easy adaptation to specific requirements. For mestathere is an operator
withCondition that combines a WUI and a predicate on values so that thetiresul
WUI accepts only values satisfying the predicate. Thus,

wRequiredString = wString ‘withCondition‘ (not . null)
defines a WUI that accepts only non-empty strings. Similainigre are combinators to
change the default rendering of WUlsithRendering) or to change the default error
messages. This allows a compact and declarative descrgftcmmplex user interfaces.

Note that the functional as well as logic features of Cureyetploited to implement

this high-level abstraction: event handlers and enviramtmare functions attached to
data structures (HTML documents), input elements in a derrave logic variables
as references [4], and static type checking is used to ehgueesafe web forms [5].

3 Entity-Relationship M odels and Database Programming

The entity-relationship model [2] is an established framewto specify the structure
and specific constraints of data stored in a database. Ités ofsed with a graphical
notation, called entity-relationship diagrams (ERDs)jitualize the conceptual model.
The ER framework proposes to model the part of the world thatteresting for the
application by entities that have attributes and relatigmsbetween the entities. The
relationships have cardinality constraints that must kisfged in each valid state of the
database, e.g., after each transaction.

BraRRel et al. [1] developed a technique to generate highl-bawd safe database op-
erations (i.e., the cardinality constraints of the ER mdu#tl after database updates)
from a given ERD. In order to be largely independent of a dfgeER modeling tool,
[1] defines a representation of ERDs in Curry so that graphicaleling tools can be
connected by implementing a translator from the tool formett the Curry represen-
tation. Since this representation is also the startingtpfiour framework, we briefly
describe it in the following.

The representation of ERDs as data types in Curry is stifaigtdrd. An ERD
consists of a name and lists of entities and relationships:

data ERD = ERD String [Entity] [Relationship]

Entry) Comment
Title 7j59qtngSOn +5Convnaﬁed§¥/ Text
Text (1,1) Commenting © n;)l Author
Author —__ 4tags Date
Date | (O,n) ——
Tagging '~——___7itagged
o~ Tag
(O’n)\ Name

Fig. 1. An ER diagram of a web log

Instead of showing the detailed definition of all ER data s/pghich can be found in
[1]), we show the ER specification of an example which we usesuighout this paper: a
web log. The structure of our “blog” is visualized as an ERIFig. 1. A blog consists
of Entry articles having title, text, author, and date as attribuaadComments to each
entry. Furthermore, there are a numberTags to classifyEntry articles. One can
generate from the ERD a data term specifying the detailseoblhg structure:
ERD "Blog"
[Entity "Entry"
[Attribute "Title" (StringDom Nothing) Unique False,
Attribute "Text" (StringDom Nothing) NoKey False,
Attribute "Author" (StringDom Nothing) NoKey False,
Attribute "Date" (DateDom Nothing) NoKey False],
Entity "Comment" ..., Entity "Tag" ...]
[Relationship "Commenting"
[REnd "Entry" "commentsOn" (Exactly 1),
REnd "Comment" "isCommentedBy" (Range O Nothing)],
Relationship "Tagging"
[REnd "Entry" "tags" (Range O Nothing),
REnd "Tag" "tagged" (Range O Nothing)]]
Each attribute specification consists of the attribute nahee domain type of the at-
tribute values together with a possible default value, gretiications of the key and
null value property. For instance, tliet1e attribute of the entitfntry is a string that
is unique in each valid state of the database. Furthernfereenting is a one-to-
many relationship betwedntry andComment entities, i.e., eacBntry article has an
arbitrary number of comments and ea®mment belongs to exactly onEntry, and
Tagging is a many-to-many relationship betwertry andTag entities.

As mentioned above, [1] proposed a method to generate dataparations from an
ERD specification that ensures the integrity of the datapase. the constraints present
in the ERD) after performing update operations. For ingatitere is an operation

newEntry :: String -> String -> String -> Date -> Transaction Entry
that takes values of thentry attributes and inserts a neBntry entity into the
database. The return type is a transaction (see [1]) hiinsertion might fail (without
changing the database state but returning some informeatiee message) if the value
of the title attribute is not unique. Similarly, there is angeated operation of type

@ - - ({\:‘;I E | & hitpsffwww-ps informatik.uni-kiel def~ mhyblog/spicey.cgi?login B ‘7[; G- 7 e | ;
Spicey Application
Logged in-as; mh
Processes new Entry listEntry new Comment list Comment new Tag list Tag logout. st 3
Entry list
ATitle AText Aauthor “Date
DP Lecture Declarative programming taught. mh April 16, 2003 show edit | delete
Spicey authentication Login buttons are added. Comments? mh Iarch 31, 2009 show edit | delete
Spicey installed The first version of spicey is running. ~ sven harch 21, 2009 show edit | delete
powered by, N Framewertk =
L&,
Done

Fig. 2. The web interface of an application generated by Spicey

newCommentWithEntryCommentingKey
: String -> String -> Date -> EntryKey -> Transaction Comment
that takes values of the attributes of a newiment entryanda key of an existingntry
entity since each comment is related to a unifery entity. In the following sections,
we describe the generation of a web application that imptesn@ user-friendly inter-
face to these database operations.

4 Scaffolding

In this section, we present the basic scaffolding of Spicey,the generation of an ini-
tial executable system that provides access to the datdandad web browsers. As
an example, consider the ER description of the blog predentthe previous section.
From this description, Spicey automatically generate<hery source code of an ap-
plication that implements the interface shown in Fig. 2. Ag @an see, the interface
has buttons to create new entities and list existing oneseliss buttons to show, edit,
or delete any existing entity.

However, generating a standard interface is not sufficamefal applications since
there are many requirements that are not present in the ERiglesn. For instance,
one might want to choose a different table layout or show éimdyfirst 30 characters
of theText attribute in the list of entries. One could extend the ER dpsons to add
specifications of these requirements, but there are so nfahgse requirements in real
applications so that this leads to a complex specificatiaucttre that is difficult to
manage. As an alternative, we propose to use the high atistréevel of declarative
programming for this purpose. Instead of putting any pdesibstomer requirementin
the specification language of the data model, we generakeléig! declarative code
from the ER descriptions. Thanks to the works on high-lea&hldase programming and
web user interface construction sketched above, the geesaurce code is compact

and comprehensible so that it can be easily adapted to ¢thaiVicustomer require-
ments, as demonstrated below.

An important issue in the design and development of a comgyestem is the
distribution of the functionality in an appropriate modgkeucture. The model-view-
controller (MVC) paradigm [9] provides a well-establiststdicture for interactive sys-
tems. Therefore, Spicey’s scaffolding uses the same aneifdr the generated source
code, i.e., if we execute Spicey to generate a web applitdta@m an ER descrip-
tion, the generated code is distributed in directoriestikéels (containing the Curry
module implementing the access to the databasejtrollers, views, etc. In the
following, we sketch some parts of the generated code.

In order to obtain a compact and maintainable codeyib@sto create or update
entities exploit WUIs (see Section 2) to implement typeesaeb forms in a high-
level declarative manner. Thus, Spicey generates for eatity @ WUI specification
of a web form to manipulate the attributes of this entity (esge Fig. 3). However,
the internal primary database keys of an entity should nathaaged and, thus, they
are not part of the WUI specification. Moreover, if an ent#yrélated to other enti-
ties, this relation should be modifiable in the web form. Fatance, each comment
in our blog example is related to a unigietry entity. Hence, a singlEntry entity
must be selected in the form to insert or change a commentiiselewer selection
box in Fig. 3). As a consequence, we have to pass relatedesntit the web form
in order to enable their selection. In the generated codedavaot pass all associ-
ated entities (e.g., it is not reasonable to select the @sdccomments when editing
anEntry entity) but only the uniquely related entities from onenrt@ny relationships
and “one side” of many-to-many relationships. More prdygjsé E is an entity with
attributesAy, ..., A,, (Er, E),...,(Ey, E) are all one-to-many relationships (i)
and(E, EY), ..., (E, E)) are all many-to-many relationships (withas the first com-
ponent), then the form generated to edit/rentity contains input fields for editing
Ay, ..., A, and selection fields foE, ..., Ex, Ef, ..., E] (where the lattef fields
are multiple selection fields). Thus, one could select inlidog example afintry en-
tity in a form to edit aComment (due to the one-to-many relationstiipmmenting) and
a set ofTag entities in a form to edit aBntry (due to the many-to-many relationship
Tagging).

Hence, Spicey generates from tbirog ERD the following WUI specification for
Comment entities:

wComment :: [Entry] -> WuiSpec (String,String,Date,Entry)

wComment entries =

(w4Tuple wRequiredString wRequiredString wDateType
(wSelect entryToShortView entries))
‘withRendering‘ (renderLabels commentLabelList)

Thus,wComment takes a list of available entries and returns a web form toipudaie
the three attributes of @omment entity together with the uniquely associatestry
entity. The available entries are shown in a selection k8xIect) where each entry
is shown as a short string by the transformation functiapryToShortView. As a
default, the first unique attribute is used for this purpdfprésent), i.e., in case of an
Entry entity, the title of the corresponding entry is shown.

'z form - Iceweasel

File Edit View History Bookmarks Tools Help

@ - - \ié:-l E ::\ 7ht§p:[f\mmrpsL\nfnrnj?t\kr.runtk!e\fire/—umh]?\rorgrfrsplgey.grgl?hrst(:ﬂmrme [+ T& G Gooc

Spicey Application

Processes new Entry listEntry new Comment list Comment new Tag list Tag logout

edit Comment
AText Spicey is a great system
AAuthor mh
Date 22 7| | [z00s =] |

& Entry Spicey installed =l

change cancel

Done

Fig. 3. An edit form for blog comments generated by Spicey

We want to remark that this and other defaults used in thelatarweb form created
by this WUI specification (see Fig. 3) can be easily adaptedianging this declara-
tion. For instance, one can use another interface for méatipg dates by replacing
wDateType by another WUI for dates, or if the name of the author is nounegl
(i.e., if comments are accepted with an empihor string), one can replace the sec-
ondwRequiredString by wString. Moreover, the complete default rendering can be
changed by using another rendering function thamderLabels (see also [5]).

The WUI operationiComment is used to implement the views to insert or update a

Comment entity. For instance, for editing comments, Spicey gersrah operation
editCommentView :: Comment -> Entry -> [Entry]
-> (Comment -> I0 [HtmlExp]) -> [HtmlExp]

that takes the current comment, tAetry entity related to this comment, a list of
availableEntry entities, and an I/O operation (a controller) to update tloglifired
comment in the database (note that dvament data type contains the foreign key
of the associatedntry entity so that it need not be explicitly passed to the update
operation, see also [1]).

The main view to browse and manipulate entities is the listnés shown in Fig 2.
Since the list view contains buttons (show/edit/deletepamted to individual entities,
the controllers implementing the functionality of thesé¢tbns are passed as arguments
to the view. For instance, the operation implementing tsteview forComment entities
has the type

listCommentView :: [Comment]
-> (Comment -> I0 [HtmlExp])
-> (Comment -> I0 [HtmlExp])
-> (Comment -> I0 [HtmlExp]) -> [HtmlExp]
where the arguments are the list of comments and the carsdth show, edit, and
delete a comment entity.

Following the MVC paradigmcontrollersare responsible to react on user requests
and call the corresponding views supplied with data coetiin the model. For in-
stance, the list controller for comments retrieves all canta from the model (i.e.,
the database) and calls the operatiastCommentView with these comments and the
controllers to process individual comments:

listCommentController :: [String] -> IO [HtmlExp]
listCommentController args = do
comments <- runQ (queryAll (\c->1let key free in comment key c))
return (listCommentView comments showCommentController
editCommentController deleteCommentController)
The argumendrgs contains the possible parameters passed with the URL. fialdes
the implementation of listing a restricted set of commentoading to the parameters.

The other controllers are similarly defined. Note that coligrs to create or modify
entities require a second controller, passed to the viegy,(8eeeditCommentView
above), that is responsible to perform the actual modiboatif the model. All con-
trollers for an entity generated by Spicey are put into a nmde.g., the module
CommentController contains the various controllers associateddament entities.

As shown in Fig. 2, some controllers (likesw or 1ist) can be directly called
by specific URLs in the application. In order to decouple ttnecture of URLs from
the structure of the implementation, Spicey generatesitng module containing the
names of the available controllers and their URLs. Altogetla Spicey application
performs a request for a web page as follows. First, the patiponent of the URL is
extracted. Then, a dispatcher matches this path againBsthod controllers specified
in the routing module. Finally, the code of this controlieexecuted and the computed
HTML contents is decorated with the standard layout of thgiegtion.

5 Sessions, Authentication, Authorization, Processes

In a web-based application, one needs a concepse$sionn order to pass information
between different web pages. For instance, the login namaeusgr or the contents of
a virtual shopping basket should be stored across sevebgbages. Therefore, Spicey
supports a general concept to store arbitrary informatianuser session.

Typically, sessions are implemented in web-based syst@awekies stored in the
client’s browser. For security and performance reasorsetltookies should not con-
tain the information stored in the session but only a unicssien identifier that is
passed to the web server in any interaction. Therefore,@$ppplication implements
sessions by managingsassion identifiein each web page. If a session identifier does
not exist (i.e., the browser did not send a correspondingiedca fresh session identi-
fier is created and stored in a cookie sent with any subseaqueimpage. However, the
application programmer has not to deal with session idergiince Spicey provides
the following operations to manipulate session informaighere the type variable."
denotes the type of the session information):

getSessionData :: Global (SessionStore a) -> I0 (Maybe a)
putSessionData :: a -> Global (SessionStore a) -> I0 (O
removeSessionData :: Global (SessionStore a) -> I0 ()

getSessionData retrieves information of the current session (and retéienhing if
there is no information storedjutSessionData Stores information in the current ses-
sion, andremoveSessionData removes such informationSéssionStore a” is an
abstract type to represent session information contaitétg of typea. This interface
is based on the concept of “globals” (available through thenlibrary G1oba1l®) that
implements objects having a globally declared name in sowgute of the program.
The values associated to the name can be modified by 10 actions
For instance, consider the implementation of “page messdlyat are shown in the
next page (e.g., error messages, status informationtfi&k&.ogged in as” message
shown in Fig. 2. In order to enable the setting of such messiaggny part of a Spicey
application, we define the page message as session datafolldiiéng definition of a
global entity:
pageMessage :: Global (SessionStore String)
pageMessage = global emptySessionStore Temporary
“global v Temporary” denotes a global entity with initial valuethat is not persis-
tently stored, an@mptySessionStore denotes a session store that does not contain
any information. Using the session operations above, welefine an operation to set
the page message in any part of a Spicey application:
setPageMessage :: String -> I0 ()
setPageMessage msg = putSessionData msg pageMessage
The current page message is retrieved and then removed bllthveing operation:
getPageMessage :: I0 String
getPageMessage = do msg <- getSessionData pageMessage
removeSessionData pageMessage
return (maybe "" id msg)
This operation can be used by the main operation that wrapevaautput with the
standard layout containing the page message, global menu et
Due to this general session concept, one can easily attgéhfarmation entities to
a session. For instance, one can store the login name intordepport authentication:
sessionlogin :: Global (SessionStore String)
sessionLogin = global emptySessionStore Temporary
and use the session data operations to set, retrieve, de @diegin name. These oper-
ations can be used in specific login/logout web pages. Sintteatication is required
in almost any web-based system keeping some data, Spiceyglesaan initial imple-
mentation (see Fig. 2) that is intended for extension dutiegadaption of the system.
An equally important aspect of web-based systenasithorizationi.e., the check-
ing whether a user is allowed to call a distinct functiornyalike showing or updating
particular entities. In our framework, this check can bdqrened before starting a con-
troller. In order to avoid the distribution of these checkesiathe entire implementation
and to keep the authorization rules at a centralized plguiee$ decorates the code of
each controller with a call to some authorization code. ke purpose, there is a data
type

data AccessResult = AccessGranted | AccessDenied String

®http://www.informatik.uni-kiel.de/ pakcs/1ib/CDOC/Global.html

10

and an operation

checkAuthorization :: I0AccessResult->I0 [HtmlExp] ->I0 [HtmlExp]
which takes an IO operation for authorization checkingufireing anAccessResult)
and a controller as arguments. If the authorization retleressGranted, the con-
troller is executed, otherwise an error message is disgldgeorder to define concrete
authorization rules for the various controllers, Spicepeyates a data type to classify
the controllers:

data AccessType a = NewEntity | ListEntities | ShowEntity a

| UpdateEntity a | DeleteEntity a

Now, the execution of each controller is protected by addingauthorization check
to the controller's code. For instance, the generated cdédkeocontroller to list all
Comment entities (see Section 4) is extended as follows:

listCommentController args =

checkAuthorization (commentOperationAllowed ListEntities) $ do
comments <- runQ ...

Thus, the actual authorization rules are collected in alsingpdule containing the
definition of all operations used in the calls ¢aeckAuthorization. For instance,
the default definition otommentOperationAllowed iS

commentOperationAllowed :: AccessType Comment -> IO AccessResult

commentOperationAllowed _ = return AccessGranted
authorizing allComment operations. By refining this definition, one can specifyniest
tions on the controllers depending on the various operstigpecific entities, or login
information of the user. Note that the logic programminddieas of Curry can be quite
useful here to specify authorization policies in a ruleented manner.

A web-based application generated by Spicey supportsithgiV interactions to
insert, show, and change any entity. If the data model is éexand consists of many
entity types, it might be necessary to combine single ictéyas to longer interaction
sequences. For instance, if one wants to insert new dataevdifferent entities are
involved, it is reasonable to define an interaction sequevttere the controllers to
insert the various new entities are sequentially activaféds, one wants to offarser
processegwhich can be also considered as parts of complex businesggses) that
are structured compositions of elementary interactioos.tfis purpose, a generated
Spicey application has an infrastructure to define and dgeswch processes. Since
a process can be considered as a sequence of calls to censtr@picey allows the
weaving of processes into the default structure of corrsliFor this purpose, each
controller which terminates an individual interaction Fe&continuation” controller
that is called in the next step. For instance, a controllgpeasible for creating a new
entity calls the list controller of the same entity type, mshe controller which adds a
newTag entity:

createTagController name = runT (newTag name) >>=
either (_ -> nextInProcessOr listTagController Nothing)
(\error -> displayError ...)
Thus, the executionr@nT) of the transactionnewTag name), that should insert a
newTag name into the database, calls, if successfullthetTagController, or dis-

11

plays an error message if the transaction fails (e.g., shcaew name already exists).
However, the next controller is not directly called but irgditly through the operation
nextInProcessOr. This operation checks whether the system executes a gtdtes
process is active, the given controller is called, otheswl® controller specified in the
next process state is executed. In order to make the selauftithe next process state
dependent on some information provided by the previousrobtat (this is useful to
implement loops or branches in processes), the second erg@inextInProcess0Or
might contain such information. Thus, the application pamgmer can replace the de-
fault valueNothing by some information available in the previous controller.

The concrete structure of processes is defined in a disshgdi module
UserProcesses as data of the following type:

data Processes st = ProcSpec [(String,st)]

(st -> ControllerFunctionReference)

(st -> Maybe ControllerResult -> st)
The type parametett is the type of the states of a process, which could be a number
or some more informative enumeration type. Hence, a prapssfication consists of
a list of start states together with a textual descriptibege start states can be selected
in the process menu), a mapping of each state into a corrdsmpoontroller to be
executed in this state, and a state transition functionrttegds a state into a new state
depending on some optional result provided by the previoograller (the type of these
results iControllerResult, which is identical t&String in the default case).

We can use all features available in Curry to define procegsgsinstance, one
can compute the next state in a process based on solvinga@otstv.r.t. the data in
the model. In general, the state transition function isighkite., if a process state has
no successor, the process will be terminated. If a state bas than one successor, the
first one is selected (multiple successor states can ocsituations like the insertion of
several entities in an arbitrary order). As a concrete exangpnsider a simple process
to insert a new tag followed by the creation of a newtry entity and terminated with
showing the list of all tags. If we use numbers as state iflergj we can specify this
process as follows:

let controller0f 0 = NewTagController

controller0f 1 = NewEntryController
controller0f 2 = ListTagController
next 0 _ =1
next 1 _ =2

in ProcSpec [("Insert new tag and entry",0)] controllerOf next
If this specification is contained in the moduleerProcesses, the process can be
selected and stepwise executed in the web application.

6 Redated Work

Although Spicey is the first web programming framework foregldrative language
based on ER models and with support for typical requiremientise area (e.g., safe
transactions, sessions, authentication, authorizgtimtesses), there are many related
approaches. The relation of Spicey to some of them are disdus the following.

12

In contrast to other systems implemented in scripting laggs like Perl, PHP, or
Ruby, our implementation is statically typed so that marogpamming errors that eas-
ily occur in such complex systems are detected at compile.tbompared to Ruby on
Rails, a framework with similar objectives, Spicey can besidered as an approach to
show that declarative programming allows the compact coatsbn of web-based sys-
tems with static type checking (thus, supporting prograngnsafety) without the need
for (unreliable) dynamic meta-programming techniqueoriter to obtain this result,
some design difficulties had to be solved, like avoiding rmltaodule dependencies
by passing continuation controllers to views, routing, etc

The Web Application Makér(WAM) is a framework with similar goals as Spicey.
The WAM generates a web interface from the meta-data of iorkd database and has
opportunities to adapt the interface to specific user requénts. In contrast to WAM,
Spicey uses ER models, which usually contain more strudnfaamation, to generate
the database scheraadthe corresponding web interface.

The iData toolkit [12] is a framework, implemented with ggo@rogramming tech-
niques in the functional language Clean, to construct gafe-web interfaces to data
that can be persistently stored. In contrast to our framkytbe construction of an ap-
plication is done by the programmer who defines the varioasd@lements, where we
generate the necessary code from an ER description. Hattegrity constraints ex-
pressed in the ER description are automatically checkedritrast to the iData toolkit.

Turbinadd is a web framework for Haskell. It is based on similar idea&aby
on Rails but exploits static type checking for more religimegramming, similarly to
Spicey. In contrast to our framework, Turbinado supporffetding only to implement
an object-relational mapping of the models, and it is noebdam an ER specification
to ensure integrity constraints in the application.

Seam [13] is a complex framework for developing enterprigalieations in Java.
It integrates many other projects to support a wide rangeatfriologies. The database
abstraction is provided by an Enterprise Java Beans 3.Gmmgahtation, Hibernate by
default, which enables the programmer to generate the asgadthema directly from
the model classes. In contrast to the ERD library used byeSpibere is no graphical
way to create the models of the application. Another disathge of Seam is the ab-
sence of a single place to define consistency rules for dataelare three places where
consistency and validation rules may be defined. The firsetmedhe code of the mod-
els and the generated database schema. Some, but noteaiwvhith are defined in the
models through annotations are put into the database schetaften the programmer
has to assure database consistency by himself. Seam suppodefinition of standard
relationship types but provides no good way to enforce rairigethe multiplicity of
those relationships as Spicey does. For example, a onadoetationship does not en-
sure that there is always an entity on the other side of tlaioal but that there may be
an entity or null. As a consequence, a programmer in Seanolthetk for the presence
of an entity by himself. Hibernate provides an annotatiorifiat, but it is not fully inte-
grated into Seam yet. The third place to define validatioesare the views, for which
Seam uses Java Server Faces. Rules defined in the model atgorottically reflected

4http://www.declarativa.com/wam/
Shttp://www.turbinado.org/

13

in the views, simple validation rules like required fields&#o be defined again in the
view, which leads to inconsistency if those rules for a madeldefined differently in
different views. Seam integrates the jBPIroject for modeling business processes.
jBPM defines the process in XML format where a graphical editasts. Similarly to
Spicey, the coupling of the process with the code is achiéyetbnnecting controller
methods with the process. For authorization another toglimaused in Seam, namely
JBoss Rules which provides a logical language for defining authorizatiules. This
aspect is directly integrated into Spicey by the logic pamgming features of Curry.

The web framework Seasitiés based on the object-oriented language Smalltalk.
Seaside is one of the few frameworks that useTitansform-Viewpattern for views.
This enables the compiler to check the integrity of the vibesause they are defined as
program code instead of HTML templates. Spicey uses the spg®ach but provides
for stronger code checks due to the static type system of/Cheraside supports process
modeling by providing a stateful environment over multipdgjuests and enable the
programmer to span a controller method over more than one fragontrast to Spicey,
processes are not decoupled from the controller logic dathagh abstraction level of
processes as in Spicey is not obtained.

Djang@ is a popular web framework for the language Python which kasufes
very similar to Ruby on Rails. The implementation of routes $picey was inspired
by the way Django handles routes. While Django offers ongyutar expressions for
matching URLs, Spicey generalizes this concept and suppohitrary computable
functions for determining the controllers associated td IR

7 Conclusions

We have presented the tool Spicey to generate web apphedtio data models that are
specified as entity-relationship models. Spicey enablegémneration of a fully func-
tional system from an ER description in a few seconds. Thimlrsystem is not only
good for the evaluation of the feasibility of the data modrie to the use of a declar-
ative target language, the generated code is compact angrebansible so that it can
be easily extended and adapted to specific customer reqeritenThis has been also
achieved by the use of previous works on declarative datadiad web programming
that supports a compact executable description of welfautes. Furthermore, the gen-
erated system has an infrastructure for many aspectsadtatecb-based systems, like
transactions that are safe w.r.t. the ER constraints,@essauthentication, authoriza-
tion, user-oriented processes, or routing.

To get an idea of the size of the generated source code that regnspected by
the application programmer to adapt the initial system, atented the lines of code of
the application generated for tB2og data model shown in Section 3. The generated
views contain 280 lines of code, the generated controllersain 180 lines of code,
and the configuration files (e.g., routing, default authadron) contain 55 lines of code.

S http://www. jboss.com/products/jbpm/
"http://www. jboss.com/products/rules/
8 http://www.seaside.st/
9nhttp://www.djangoproject.com/

14

Of course, the complete executable has much more codeybkens libraries, specific
Spicey libraries, generated database code etc. Howeigrdbe is usually irrelevant
when adapting the system to specific layout requirementausisl in current web-
based systems, many layout details are specified in a glofialsheet file so that the
views generate only the basic structure of each web page.

Spicey is completely implemented in Curry. The implemedatats freely avail-
ablel® Apart from some example applications, it has also been us@davide web-
based interfaces to existing databases by the definitiopropriate ER descriptions.
For future work, it would be interesting to develop a condepmigration, i.e., to sup-
port changes in the ER model that might entail changes in ¢hemted and possibly
adapted application code. Furthermore, it would be usefihplement a tool that al-
lows to mix Curry code with HTML code fragments (e.g., as shawith the Haskell
Server Pages [10]) in order to allow an easier integratidayafuts developed by HTML
designers into the application programs.

References

1. B. BrafRel, M. Hanus, and M. Miuller. High-Level DatabagsedgPamming in Curry. In
Proc. of the Tenth International Symposium on Practicale&sp of Declarative Languages
(PADL'08), pp. 316—-332. Springer LNCS 4902, 2008.

2. P.P.-S. Chen. The Entity-Relationship Model—Toward #ielh View of Data.ACM Trans-
actions on Database Systensl. 1, No. 1, pp. 9-36, 1976.

3. M. Hanus. A Unified Computation Model for Functional andjimProgramming. IfProc.
of the 24th ACM Symposium on Principles of Programming Laggs (Paris) pp. 80-93,
1997.

4. M. Hanus. High-Level Server Side Web Scripting in Curryi Proc. of the Third Inter-
national Symposium on Practical Aspects of DeclarativedLeyes (PADL'01)pp. 76-92.
Springer LNCS 1990, 2001.

5. M. Hanus. Type-Oriented Construction of Web User Int&éa InProceedings of the 8th
ACM SIGPLAN International Conference on Principles and d®ie of Declarative Pro-
gramming (PPDP’06)pp. 27-38. ACM Press, 2006.

6. M. Hanus. Multi-paradigm Declarative Languages. Pimceedings of the International
Conference on Logic Programming (ICLP 200fjp. 45-75. Springer LNCS 4670, 2007.

7. M. Hanus (ed.). Curry: An Integrated Functional Logic gaage (Vers. 0.8.2). Available at
http://ww. curry-| anguage. or g, 2006.

8. S.H. Husebylnnocent Code: A Security Wake-Up Call for Web Programm€fisey, 2003.

9. G. Krasner and S. Pope. A Cookbook for using the Model-Mzamtroller User Interface
in Smalltalk-80.Journal of Object-Oriented Programmingol. 1, No. 3, pp. 26—49, 1988.

10. E. Meijer and D. van Velzen. Haskell Server Pages: FonatiProgramming and the Battle
for the Middle Tier. InProc. ACM SIGPLAN Haskell Workshddontreal, 2000.

11. S. Peyton Jones, editoHaskell 98 Language and Libraries—The Revised RepGdam-
bridge University Press, 2003.

12. R. Plasmeijer and P. Achten. iData for the World Wide WBbogramming Interconnected
Web Forms. IrProc. of the 8th International Symposium on Functional andit Program-
ming (FLOPS 2006)pp. 242—258. Springer LNCS 3945, 2006.

13. M.J. Yuan, J. Orshalick, and T. Heuteeam Framework: Experience the Evolution of Java
EE. Prentice Hall, 2nd edition, 2009.

P http://www.informatik.uni-kiel.de/ pakcs/spicey/

15

