
High-Level Database Programming in Curry⋆

Bernd Braßel Michael Hanus Marion Müller

Institut für Informatik, CAU Kiel, Germany
{bbr|mh|mam}@informatik.uni-kiel.de

c© Springer-Verlag
In Proc. of the 10th International Symposium on Practical Aspects of

Declarative Languages, PADL 2008.
Springer LNCS 4902, pp. 316-332, 2008

Abstract. This paper presents an environment to support high-level
database programming in the multi-paradigm declarative programming
language Curry. We define an application programming interface (API)
that abstracts from the concrete database access methods. The API sup-
ports transactions and exploits Curry’s type system to ensure a strict
separation between queries and updates. In order to ensure database up-
dates that are safe w.r.t. an intended data model (e.g., containing specific
relations between entities), we assume a description of the data depen-
dencies in the entity-relationship (ER) model from which all access and
update operations related to the database are generated. We propose
a representation of ER diagrams in the declarative language Curry so
that they can be constructed by various tools and then translated into
this representation. Furthermore, we have implemented a compiler from
this representation into a Curry program that provides safe access and
update operations based on the API for database programming.

1 Motivation

Many applications in the real world need databases to store the data they pro-
cess. Thus, programming languages for such applications must also support some
mechanism to organize the access to databases. This can be done in a way that
is largely independent on the underlying programming language, e.g., by pass-
ing SQL statements as strings to some database connection. However, it is well
known that such a loose coupling is a source of security leaks, in particular, in
web applications [15]. Thus, a tight connection or amalgamation of the database
access into the programming language should be preferred.

In principle, logic programming provides a natural framework for connecting
databases (e.g., see [4, 6]) since relations stored in a relational database can be
considered as facts defining a predicate of a logic program. Unfortunately, the
well-developed theory in this area is not accompanied by practical implementa-
tions. For instance, distributions of Prolog implementations rarely come with a
standard interface to relational databases. An exception is Ciao Prolog which has
a persistence module [3] that allows the declaration of predicates where facts are
persistently stored, e.g., in a relational database. This module supports a simple
method to query the relational database, but updates are handled by predicates

⋆ This work was partially supported by the German Research Council (DFG) under
grant Ha 2457/5-2.

with side effects and transactions are not explicitly supported. A similar con-
cept but with a clear separation between queries and updates has been proposed
in [10] for the multi-paradigm declarative language Curry [7, 14]. This will be
the basis for the current framework that provides an environment for high-level
programming with databases. The objectives of this work are:

– The methods to access and update the database should be expressed by
language features rather than passing SQL strings around.

– Queries to the database should be clearly separated from updates that might
change the outcome of queries.

– Safe transactions, i.e., sequence of updates that keep some integrity con-
straints, should be supported.

– The necessary code for these operations should be derived from specifications
whenever possible in order to obtain more reliable applications.

In a first step, described in Section 2, we define an application programming
interface (API) for database programming in Curry that abstracts from the
concrete methods to access a given database by providing abstract operations
for this purpose. This API exploits the type system in order to ensure a strict
separation between queries and updates. To specify the logical structure of the
data to be stored in a database, we use the entity-relationship (ER) model
[2]. In order to be largely independent of concrete specification tools, we define
in Section 3 a representation of ER diagrams in Curry so that concrete ER
specification tools can be connected by defining a translator from the format
used in these tools into this Curry representation. Finally, we develop a compiler
that translates an ER diagram into a Curry module that contains access and
update operations and operations to check integrity constraints according to the
ER diagram. The generated code is based on the database API. The compilation
method is sketched in Section 4. Finally, Section 5 contains our conclusions.

2 Database Programming in Curry

We assume familiarity with functional logic programming (see [12] for a recent
survey) and Curry [7, 14] so that we give in the following only a short sketch of
the basic concepts relevant for this paper.

Functional logic languages integrate the most important features of func-
tional and logic languages to provide a variety of programming concepts to the
programmer. For instance, the concepts of demand-driven evaluation, higher-
order functions, and polymorphic typing from functional programming are com-
bined with logic programming features like computing with partial information
(logic variables), constraint solving, and nondeterministic search. This combina-
tion leads to better abstractions in application programs such as implementing
graphical user interfaces [8], programming dynamic web pages [9, 11], or access
and manipulation of persistent data possibly stored in databases [5, 10].

As a concrete functional logic language, we use Curry in our framework
but it should be possible to apply the same ideas also to other functional logic

2

languages, e.g., TOY [16]. From a syntactic point of view, a Curry program is a
functional program extended by the possible inclusion of free (logic) variables in
conditions and right-hand sides of defining rules. Curry has a Haskell-like syntax
[17], i.e., a Curry program consists of the definition of functions and data types
on which the functions operate. Functions are first-class citizens and evaluated
lazily. To provide the full power of logic programming, functions can be called
with partially instantiated arguments and defined by conditional equations with
constraints in the conditions. Function calls with free variables are evaluated by a
possibly nondeterministic instantiation of demanded arguments (i.e., arguments
whose values are necessary to decide the applicability of a rule) to the required
values in order to apply a rule. Curry also offers other standard features of
functional languages, like higher-order functions, modules, or monadic I/O [18].

The following Curry program defines functions for computing the concate-
nation of lists and the last element of a list:

conc :: [a] -> [a] -> [a]

conc [] ys = ys

conc (x:xs) ys = x : conc xs ys

last :: [a] -> a

last xs | conc ys [x] =:= xs = x where x,ys free

Thus, logic programming is supported by admitting function calls with free vari-
ables (see “conc ys [x]” above) and constraints in the condition of a defining
rule. Conditional rules have the form l | c = r specifying that l is reducible to r

if the condition c is satisfied (see the rule defining last above). A constraint is
any expression of the built-in type Success. For instance, the trivial constraint
success is an expression of type Success that denotes the always satisfiable
constraint. “c1 & c2” denotes the concurrent conjunction of the constraints c1

and c2, i.e., this expression is evaluated by proving both argument constraints
concurrently. An equational constraint e1 =:= e2 is satisfiable if both sides e1

and e2 are reducible to unifiable constructor terms. Specific Curry systems also
support more powerful constraint structures, like arithmetic constraints on real
numbers or finite domain constraints (e.g., PAKCS [13]).

Using functions instead of predicates has the advantage that the information
provided by functional dependencies can be used to reduce the search space and
evaluate goals in an optimal way [1]. However, there are also situations where a
relational style is preferable, e.g., for database applications as considered in this
paper. This style is supported by considering predicates as functions with result
type Success. For instance, a predicate isPrime that is satisfied if the argument
(an integer number) is a prime can be modeled as a function with type

isPrime :: Int -> Success

The following rules define a few facts for this predicate:

isPrime 2 = success

isPrime 3 = success

isPrime 5 = success

isPrime 7 = success

3

Apart from syntactic differences, any pure logic program has a direct corre-
spondence to a Curry program. For instance, a predicate isPrimePair that is
satisfied if the arguments are primes that differ by 2 can be defined as follows:

isPrimePair :: Int -> Int -> Success

isPrimePair x y = isPrime x & isPrime y & x+2 =:= y

In order to deal with information that is persistently stored outside the pro-
gram (e.g., in databases), dynamic predicates are proposed in [10]. A dynamic

predicate is a predicate where the defining facts (see isPrime) are not part of
the program but stored outside. Moreover, the defining facts can be modified
(similarly to dynamic predicates in Prolog). In order to distinguish between def-
initions in a program (that do not change over time) and dynamic entities, there
is a distinguished type Dynamic for the latter.1 For instance, in order to define
a dynamic predicate prime to store prime numbers whenever we compute them,
we provide the following definition in our program:

prime :: Int -> Dynamic

prime dynamic

If the prime numbers should be persistently stored, we replace the second line
by

prime persistent "store"

where store specifies the storage mechanism, e.g., a directory for a lightweight
file-based implementation [10] or a database specification [5].

There are various primitives that deal with dynamic predicates. First, there
are combinators to construct complex queries from basic dynamic predicates.
For instance, the combinator

(<>) :: Dynamic -> Dynamic -> Dynamic

joins two dynamic predicates, and the combinators

(|>) :: Dynamic -> Bool -> Dynamic

(|&>) :: Dynamic -> Success -> Dynamic

restrict a dynamic predicate with a Boolean condition or constraint, respectively.
Since the operator “<>” binds stronger then “|>”, the expression

prime x <> prime y |> x+2 == y

specifies numbers x and y that are prime pairs.2 On the one hand, such ex-
pressions can be translated into corresponding SQL statements [5] so that the
programmer is freed of dealing with details of SQL. On the other hand, one can
use all elements and libraries of a universal programming language for database
programming due to its conceptual embedding in the programming language.

1 In contrast to Prolog, where dynamic declarations are often used for efficiency pur-
poses, this separation is also necessary here due to the lazy evaluation strategy which
makes it difficult to estimate when a particular evaluation is performed. Thus, per-
forming updates by implicit side effects is not a good choice.

2 Since the right argument of “|>” demands a Boolean value rather than a constraint,
we use the Boolean equality operator “==” rather than the equational constraint
“=:=” to compare the primes x and y.

4

Since the contents of dynamic predicates can change over time, one needs a
careful concept of evaluating dynamic predicates in order to keep the declarative
style of programming. For this purpose, we introduce the notion of “queries”
that are evaluated in the I/O monad, i.e., at particular points of time in a
computation.3 Conceptually, a query is a method to compute solutions w.r.t.
dynamic predicates. Depending on the number of requested solutions, there are
different operations to construct queries, e.g.,

queryAll :: (a -> Dynamic) -> Query [a]

queryOne :: (a -> Dynamic) -> Query (Maybe a)

queryAll and queryOne construct queries to compute all and one (if possible)
solution to an abstraction over dynamic predicates, respectively. For instance,

qPrimePairs :: Query [(Int,Int)]

qPrimePairs = queryAll (\(x,y) -> prime x <> prime y |> x+2 == y)

is a query to compute all prime pairs. In order to access the currently stored
data, there is an operation runQ to execute a query as an I/O action:

runQ :: Query a -> IO a

For instance, executing the main expression “runQ qPrimePairs” returns prime
pairs w.r.t. the prime numbers currently stored in the dynamic predicate prime.

In order to change the data stored in dynamic predicates, there are operations
to add and delete knowledge about dynamic predicates:

addDB :: Dynamic -> Transaction ()

deleteDB :: Dynamic -> Transaction ()

Typically, these operations are applied to single ground facts (since facts
with free variables cannot be persistently stored), like “addDB (prime 13)” or
“deleteDB (prime 4)”. In order to embed these update operations into safe
transactions, the result type is “Transaction ()” (in contrast to the proposal
in [10] where these updates are I/O actions). A transaction is basically a se-
quence of updates that is completely executed or ignored (following the ACID
principle in databases). Similarly to the monadic approach to I/O [18], trans-
actions also have a monadic structure so that transactions can be sequentially
composed by a monadic bind operator:

(|>>=) :: Transaction a -> (a -> Transaction b) -> Transaction b

Thus, “t1 |>>= \x -> t2” is a transaction that first executes transaction t1,
which returns some result value that is bound to the parameter x before execut-
ing transaction t2. If the result of the first transaction is not relevant, one can
also use the specialized sequential composition “|>>”:

(|>>) :: Transaction a -> Transaction b -> Transaction b

t1 |>> t2 = t1 |>>= _ -> t2

A value can be mapped into a trivial transaction returning this value by the
usual return operator:

3 Note that we only use the basic concept of dynamic predicates from [10]. The fol-
lowing interface to deal with queries and transactions is new and more abstract than
the concepts described in [10].

5

returnT :: a -> Transaction a

In order to define a transaction that depends on some data stored in a database,
one can also embed a query into a transaction:

getDB :: Query a -> Transaction a

For instance, the following expression exploits the standard higher-order func-
tions map, foldr, and “.” (function composition) to define a transaction that
deletes all known primes that are smaller than 100:

getDB (queryAll (\i -> prime i |> i<100)) |>>=

foldr (|>>) (returnT ()) . map (deleteDB . prime)

Since such a sequential combination of transactions that are the result of map-
ping a list of values into a list of transactions frequently occurs, there is also a
single function for this combination:

mapT_ :: (a -> Transaction _) -> [a] -> Transaction ()

mapT_ f = foldr (|>>) (returnT ()) . map f

To apply a transaction to the current database, there is an operation runT that
executes a given transaction as an I/O action:

runT :: Transaction a -> IO (Either a TError)

runT returns either the value computed by the successful execution of the trans-
action or an error in case of a transaction failure. The type TError of possible
transaction errors contains constructors for various kinds of errors, i.e., it is
currently defined as

data TError = TError TErrorKind String

data TErrorKind = KeyNotExistsError | DuplicateKeyError

| KeyRequiredError | UniqueError | NoRelationshipError

| MinError | MaxError | UserDefinedError

but this type might be extended according to future requirements (the string
argument is intended to provide some details about the reason of the error).
UserDefinedError is a general error that could be raised by the application pro-
gram whereas the other alternatives are typical errors due to unsatisfied integrity
constraints according to ER diagrams. An error is raised inside a transaction by
the operation

errorT :: TError -> Transaction a

where the specialization

failT :: String -> Transaction a

failT s = errorT (TError UserDefinedError s)

is useful to raise user-defined transaction errors. If an error is raised in a trans-
action, the transaction is aborted, i.e., the transaction monad satisfies the laws

errorT e |>>= t = errorT e

t |>>= \x -> errorT e = errorT e

runT (errorT e) = return (Right e)

Thus, the changes to the database performed in a transaction that raises an
error are not visible.

6

There are a few further useful operations on transactions which are omitted
here since they are not relevant for this paper. We summarize the important
features of this abstract programming model for databases:

– Persistent data is represented in the application program as language entities
(i.e., dynamic predicates) so that one can use all features of the underlying
programming language (e.g., recursion, higher-order functions, deduction)
for programming with this data.

– There is a clear separation between the data access (i.e., queries) and updates
that can influence the results of accessing data. Thus, queries are purely
declarative and are applied to the actual state of the database when their
results are required.

– Transactions, i.e., database updates, can be constructed from a few primitive
elements by specific combinators. Transactions are conceptually executed as
an atomic action on the database. Transactions can be sequentially composed
but nested transactions are excluded due to the type system (this feature is
intended since nested transactions are usually not supported in databases).

This API for database programming is defined in a specific Database library4

so that it can be simply used in the application program by importing it. This
will be the basis to generate higher-level code from entity-relationship diagrams
that are described next.

3 Entity-Relationship Diagrams

The entity-relationship model [2] is a framework to specify the structure and
specific constraints of data stored in a database. It uses a graphical notation,
called entity-relationship diagrams (ERDs) to visualize the conceptual model.
In this framework, the part of the world that is interesting for the application is
modeled by entities that have attributes and relationships between the entities.
The relationships have cardinality constraints that must be satisfied in each valid
state of the database, e.g., after each transaction.

There are various tools to support the data modeling process with ERDs. In
our framework we want to use some tool to develop specific ERDs from which the
necessary program code based on the Database library described in the previous
section can be automatically generated. In order to become largely independent
of a concrete tool, we define a representation of ERDs in Curry so that a concrete
ERD tool can be applied in this framework by implementing a translator from
the tool format into our representation. In our concrete implementation, we have
used the free software tool Umbrello UML Modeller5, a UML tool part of KDE
that also supports ERDs. Figure 1 shows an example ERD constructed with
this tool. The developed ERDs are stored in XML files in XMI (XML Metadata
Interchange) format, a format for the exchange of UML models. Thus, it is a

4 http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Database.html
5 http://uml.sourceforge.net

7

Fig. 1. A simple entity-relationship diagram for university lectures

standard XML transformation task to translate the Umbrello format into our
ERD format.

Unfortunately, there is no standard definition of ERDs so that different tools
support ERDs with different features. In the following, we provide a represen-
tation of ERDs that is sufficient for the Umbrello UML Modeller but it should
not be difficult to extend this representation to other kinds of ERDs (e.g., with
attributes for relations). The representation of ERDs as data types in Curry
is straightforward. In our case, a complete ERD consists of a name (that is
later used as the module name for the generated code) and lists of entities and
relationships:

data ERD = ERD String [Entity] [Relationship]

An entity has a name and a list of attributes, where each attribute has a name,
a domain, and specifications about its key and null value property:

data Entity = Entity String [Attribute]

data Attribute = Attribute String Domain Key Null

data Key = NoKey | PKey | Unique

type Null = Bool

data Domain = IntDom (Maybe Int)

| FloatDom (Maybe Float)

| CharDom (Maybe Char)

| StringDom (Maybe String)

| BoolDom (Maybe Bool)

| DateDom (Maybe ClockTime)

| UserDefined String (Maybe String)

| KeyDom String -- later used for foreign keys

Thus, each attribute is part of a primary key (PKey), unique (Unique), or not
a key (NoKey). Furthermore, it is allowed that specific attributes can have null
values, i.e., can be undefined. The domain of each attribute is one of the stan-

8

dard domains or some user-defined type. In the latter case, the first argument
of the constructor UserDefined is the qualified type name used in the Curry
application program (note that the Database library is able to handle complex
types by mapping them into standard SQL types [5]). For each kind of domain,
one can also have a default value (modeled by the Maybe type). The constructor
KeyDom is not necessary to represent ERDs but will be later used to transform
ERDs into relational database schemas.

Finally, each relationship has a name and a list of connections to entities
(REnd), where each connection has the name of the connected entity, the role
name of this connection, and its cardinality as arguments:

data Relationship = Relationship String [REnd]

data REnd = REnd String String Cardinality

data Cardinality = Exactly Int | Range Int (Maybe Int)

The cardinality is either a fixed integer or a range between two integers (where
Nothing as the upper bound represents an arbitrary cardinality). For instance,
the simple-complex (1:n) relationship Teaching in Figure 1 can be represented
by the term

Relationship "Teaching"

[REnd "Lecturer" "taught_by" (Exactly 1),

REnd "Lecture" "teaches" (Range 0 Nothing)]

4 Compiling ER Diagrams into Curry Programs

This section describes the transformation of ERDs into executable Curry code.
The generated code should contain dynamic predicates corresponding to the
entities and relationships of an ERD as well as insertion, update, and delete
operations for entities and relationships. The important issue of this work is the
automatic checking of the integrity constraints of the conceptual data model:
each operation that modifies entities or relationships should only be executable
if the uniqueness and cardinality constraints specified in the corresponding ERD
are satisfied in the modified database. For this purpose, we exploit transactions
and the possibility to abort transactions by raising errors. For instance, if one
tries to delete a student who participates in some lecture, the transaction error
KeyRequiredError is raised, i.e., a student entity can be deleted only if it is not
involved in any Membership or Participation relationship.

The transformation from ERDs into Curry code is done in the following
order:

1. Translate an ERD into an ERD term.
2. Represent the relationships occurring in an ERD term as entities.
3. Map all entities into corresponding Curry code based on the Database li-

brary.

The first step depends on the format used in the ERD tool. As mentioned above,
we have implemented a translator from the XMI format used by the Umbrello

9

UML Modeller into ERD terms. This part is relatively easy thanks to the presence
of XML processing tools.

4.1 Transforming ERDs

The second step is necessary since the relational model supports only relations
(i.e., database tables). Thus, entities as well as relationships must be mapped
into relations. The mapping of entities into relations is straightforward by us-
ing the entity name as the name of the relation and the attribute names as
column names. The mapping of relationships is more subtle. In principle, each
relationship can be mapped into a corresponding relation. However, this simple
approach might cause the creation of many relations or database tables. In order
to reduce them, it is sometimes better to represent specific relations as foreign
keys, i.e., to store the key of entity e1 referred by a relationship between e1 and
e2 in entity e2. Whether or not this is possible depends on the kind of the rela-
tion. The different cases will be discussed next. Note that the representation of
relationships as relations causes also various integrity constraints to be satisfied.
For instance, if an entity has an attribute which contains a foreign key, the value
of this attribute must be either null or an existing key in the corresponding
relation. Furthermore, the various cardinalities of each relationship must be sat-
isfied. Ideally, each transaction should modify the database only if all integrity
constraints hold in the new state of the database.

Now we discuss the representation of the various kinds of relationships in
the ER model. For the sake of simplicity, we assume that each relationship
contains two ends, i.e., two roles with cardinality ranges (min, max) so that we
can characterize each relationship by their related cardinalities (minA, maxA) :
(minB, maxB) between entities A and B (where maxi is either a natural number
greater than mini or ∞, i ∈ {A, B}).

Simple-simple (1:1) relations: This case covers all situations where each car-
dinality is at most one. In the case (0, 1) : (1, 1), the key of entity B is added
as an attribute to entity A containing a foreign key since there must be ex-
actly one B entity for each A entity. Furthermore, this attribute is Unique

to ensure the uniqueness of the inverse relation. The case (0, 1) : (0, 1) can
be similarly treated except that null values are allowed for the foreign key.

Simple-complex (1:n) relations: In the case (0, 1) : (minB, maxB), the key
of entity A is added as a foreign key (possibly null) to each B entity. If
minB > 0 or maxB 6= ∞, the integrity constraints for the right number
of occurrences must be checked by each database update. The case (1, 1) :
(0, maxB) is similarly implemented except that null values for the foreign
key are not allowed.

Complex-complex (n:m) relations: In this case a new relation representing
this relationship is introduced. The new relation is connected to entities A

and B by two new relationships of the previous kinds.

Note that we have not considered relationships where both minimal cardinalities
are greater than zero. This case is excluded by our framework (and rarely occurs

10

in practical data models) since it causes difficulties when creating new entities
of type A or B. Since each entity requires a relation to an existing entity of the
other type and vice versa, it is not possible to create the new entities indepen-
dently. Thus, both entities must be created and connected in one transaction
which requires specific complex transactions. Therefore, we do not support this
in our code generation. If such relations are required in an application (e.g.,
cyclic relationships), then the necessary code must be directly written with the
operations of the Database library.

Based on this case distinction, the second step of our compiler maps an ERD

term into a new ERD term where foreign keys are added to entities and new
entities are introduced to represent complex-complex relations. Furthermore,
each original entity is extended with an internal primary key to simplify the
access to each entity by a unique scheme.

4.2 Code Generation for ERDs

After the mapping of entities and relationships into relations as described above,
we can generate the concrete program code to organize the database access and
update. As already mentioned, we base the generated code on the functionality
provided by the library Database described in Section 2. The schemas for the
generated code are sketched in this section. We use the notation En for the
name of an entity (which starts by convention with an uppercase letter) and
en for the same name where the first letter is lowercase (in order to satisfy the
convention in Curry that data constructors and functions start with uppercase
and lowercase letters, respectively).

The first elements of the generated code are data types to represent relations.
For each entity En with attributes of types at1, . . . , atn, we generate the following
two type definitions:

data En = En Key at1...atn

data EnKey = EnKey Key

Key is the type of all internal keys for entities. Currently, it is identical to Int.
Thus, each entity structure contains an internal key for its unique identifica-
tion. The specific type EnKey is later used to distinguish the keys for different
entities by their types, i.e., to exploit the type system of Curry to avoid confu-
sion between the various keys. For each relation that has been introduced for a
complex-complex relationship (see above), a similar type definition is introduced
except that it does not have an internal key but only the keys of the connected
entities as arguments. Note that only the names of the types are exported but
not their internal structure (i.e., they are abstract data types for the applica-
tion program). This ensures that the application program cannot manipulate
the internal keys. The manipulation of attributes is possible by explicit getter
and setter functions that are described next.

In order to access or modify the attributes of an entity, we generate corre-
sponding functions where we use the attribute names of the ERD for the names
of the functions. If entity En has an attribute Ai of type ati (i = 1, . . . , n), we

11

generate the following getter and setter functions and a function to access the
key of the entity:

enAi :: En -> ati
enAi (En _ ... xi ... _) = xi

setEnAi :: En -> ati -> En

setEnAi (En x1 ... _ ... xn) xi = En x1 ... xi ... xn

enKey :: En -> EnKey

enKey (En k _ ... _) = EnKey k

As described in Section 2, data can be persistently stored by putting them into
a dynamic predicate. Thus, we define for each entity En a dynamic predicate

enEntry :: En -> Dynamic

enEntry persistent "..."

Since the manipulation of all persistent data should be done by safe operations,
this dynamic predicate is not exported. Instead, a dynamic predicate en is ex-
ported that associates a key with the data so that an access is only possible to
data with an existing key:

en :: EnKey -> En -> Dynamic

en key obj | key =:= enKey obj = enEntry obj

Although these operations seem to be standard functions, the use of a functional
logic language is important here. For instance, the access to an entity with a given
key k can be done by solving the goal “en k o” where o is a free variable that
will be bound to the concrete instance of the entity.

For each role with name rn specified in an ERD, we generate a dynamic
predicate of type

rn :: En1Key -> En2Key -> Dynamic

where En1 and En2 are the entities related by this role. The implementation
of these predicates depend on the kind of relationship according to their imple-
mentation as discussed in Section 4.1. Since complex-complex relationships are
implemented as relations, i.e., persistent predicates (that are only internal and
not exported), the corresponding roles can be directly mapped to these. Simple-
simple and simple-complex relationships are implemented by foreign keys in the
corresponding entities. Thus, their roles are implemented by accessing these keys.
We omit the code details that depend on the different cases already discussed in
Section 4.1.

Based on these basic implementations of entities and relationships, we gen-
erate code for transactions to manipulate the data and check the integrity con-
straints specified by the relationships of an ERD. In order to access an entity
with a specific key, there is a generic function that delivers this entity in a
transaction or raises a transaction error if there is no entry with this key:

getEntry :: k -> (k -> en -> Dynamic) -> Transaction en

getEntry key pred =

getDB (queryOne (\info -> pred key info)) |>>=

maybe (errorT (KeyNotExistsError "no entry for...")) returnT

12

This internal function is specialized to an exported function for each entity:

getEn :: EnKey -> Transaction En

getEn key = getEntry key en

In order to insert new entities, there is a “new” transaction for each entity. If
the ERD specifies no relationship for this entity with a minimum greater than
zero, there is no need to provide related entities so that the transaction has the
following structure (if En has attributes of types at1, . . . , atn):

newEn :: at1 -> · · · -> atn -> Transaction En

newEn a1 ... an = check1 |>> ... |>> checkk |>> newEntry ...

Here, checki are the various integrity checks (e.g., uniqueness checks for at-
tributes specified as Unique) and newEntry is a generic operation to insert a
new entity. If attribute Ai has a default value or null values are allowed for it,
the type ati is replaced by Maybe ati in newEn.

For instance, consider the entity Student of Figure 1. It has an integer at-
tribute MatNum which is unique, two string attributes Name and Firstname, and
an attribute Email of the user-defined type Email where null values are allowed.
Thus, the generated transaction to insert a new Student entity is as follows:

newStudent :: Int -> String -> String -> Maybe Email

-> Transaction Student

newStudent matNum name firstname email =

unique studentMatNum studentEntry matNum |>>

newEntry (studentKeyToKey . studentKey)

setStudentKey

studentEntry

(Student 0 matNum name firstname email)

The operation setStudentKey is an internal setter function generated similarly
to the setter functions setEnAi, and the internal function studentKeyToKey (of
type StudentKey -> Key) strips off the StudentKey constructor.

The generic transaction unique implements a uniqueness check for arbitrary
entities and attributes. It raises a UniqueError if an instance with a given at-
tribute value already exists. The parameters are the attribute selector, the dy-
namic predicate representing this entity, and the new value of the attribute:

unique :: (en -> a) -> (en -> Dynamic) -> a -> Transaction ()

unique selector pred attr =

getDB (queryOne (\x -> pred x |> attr == selector x)) |>>=

maybe doneT

(_ -> errorT (TError UniqueError "error message"))

The generic transaction newEntry adds the new entity. Similarly to getEntry,
it must be provided with parameters related to the specific entity, i.e., functions
to access and modify the key of an entity, the dynamic predicate of the entity,
and the initial value of the entity:

newEntry :: (en -> Key) -> (en -> Key -> en) -> (en -> Dynamic)

-> en -> Transaction en

newEntry keyf keyset pred entry =

13

newDBKey keyf pred |>>= \k ->

let entrywithkey = keyset entry k in

addDB (pred entrywithkey) |>> returnT entrywithkey

-- get new key for an entity:

newDBKey :: (en -> Key) -> (en -> Dynamic) -> Transaction Key

newDBKey keyf pred =

getDB (queryAll pred) |>>= \es ->

returnT (if null es then 1 else foldr1 max (map keyf es) + 1)

If there are relationships for an entity with a minimum greater than zero, than
the keys (in general, a list of keys) must be also provided as parameters to the
operation newEn. In this case, the name of the new operation is extended with a
suffix explaining the meaning of the additional argument keys (an alternative to
such long names would be a generated documentation explaining the meaning
of these argument keys). For instance, the new operation for lectures according
to the ERD in Figure 1 has the following type signature (since a Lecture entity
contains a foreign Lecturer key representing the Teaching relationship):

newLectureWithLecturerTeachingKey :: Int -> String -> Maybe Int

-> LecturerKey -> Transaction Lecture

The first three arguments are the values of the Id, Title and Hours attributes
(where the attribute Hours has a default value so that the argument is op-
tional). The last argument is the key of the lecturer required by the relationship
Teaching. In a similar way, we generate “new” operations for each complex-
complex relationship where the arguments are the keys of the associated entities.

Similarly to newEn, we provide also operations to update existing entities.
These operations have the following structure:

updateEn :: En -> Transaction ()

updateEn e = check1 |>> ... |>> checkk |>> updateEntry ...

Again, the various integrity constraints must be checked before an update is fi-
nally performed. In order to get an impression of the kind of integrity constraints,
we discuss a few checks in the following.

We have already seen the integrity constraint unique that checks the unique-
ness property of attributes before inserting a new entity. If an entity contains
a foreign key, each update must check the existence of this foreign key. This
is the purpose of the generic transaction existsDBKey where the arguments
are the getter function (enKey) for the key in the foreign entity, the dynamic
predicate of the foreign entity, and the foreign key. If the key does not exist, a
KeyNotExistsError is raised:

existsDBKey :: (en -> k) -> (en -> Dynamic) -> k -> Transaction ()

existsDBKey keyf pred key =

getDB (queryOne (\x -> pred x |> key == keyf x)) |>>=

maybe (errorT (TError KeyNotExistsError "error message"))

(_ -> doneT)

14

For instance, the operation newLectureWithLecturerTeachingKey to insert a
new lecture as mentioned above is generated with the following code (the Id and
Title attributes are unique and the attribute Hours has 4 as a default value):

newLectureWithLecturerTeachingKey iD title hours ltKey =

unique lectureId lectureEntry iD |>>

unique lectureTitle lectureEntry title |>>

existsDBKey lecturerKey lecturerEntry ltKey |>>

newEntry (lectureKeyToKey . lectureKey)

setLectureKey

lectureEntry

(Lecture 0 iD title (maybe 4 id hours)

(lecturerKeyToKey ltKey))

Furthermore, there are generic transactions to check minimum and maximum
cardinalities for relationships and lists of foreign keys that can raise the trans-
action errors MinError, MaxError, or DuplicateKeyError. For each operation
generated by our compiler, the necessary integrity checks are inserted based on
the specification expressed by the ERD term.

Operations to delete entities or relationships are generated similarly to up-
date operations but with different integrity tests (e.g., a lecturer can be deleted
only if he does not teach any lecture, otherwise a KeyRequiredError is raised).
An interesting topic for future work is the generation of complex delete opera-
tions for an entity that implicitly and recursively updates all other entities where
this entity occurs as a key. However, complex delete operations must be used
with care (e.g., the deletion of a lecturer requires the deletion of all his lectures
and the participations by students). But if the programmer is aware of the con-
sequences, he will appreciate the automatic generation of such operations as the
correct order for deletion is not always obvious.

Even if our generated transactions ensure the integrity of the affected rela-
tions, it is sometimes useful to provide a global consistency check that is regularly
applied to all data. This could be necessary if the database is modified by pro-
grams that do not use the safe interface but directly accesses the data. For this
purpose, we also generate a global consistency test that checks all persistent
data w.r.t. the ER model. If E1, . . . , En are all entities (including the implicit
entities for complex-complex relations) derived from the given ERD, the global
consistency test is defined by

checkAllData :: Transaction ()

checkAllData = checkE1 |>> ... |>> checkEn

The consistency test for each entity En is defined by

checkEn :: Transaction ()

checkEn = getDB (queryAll enEntry) |>>= mapT_ checkEnEntry

checkEnEntry :: En -> Transaction ()

checkEnEntry e = check1 |>> ... |>> checkk

where the tests checki are similar to the ones used in new and update operations
that raise transaction errors in case of unsatisfied integrity constraints.

15

5 Conclusions

We have presented an API as an abstract interface for database program-
ming and a framework to compile conceptual data models specified as entity-
relationship diagrams into executable code for database programming in Curry.
This compilation is done in three phases: translate the specific ERD format into
a tool-independent representation, transform the relationships into relations ac-
cording to their complexity, and generate code for the safe access and update of
the data.

Due to the importance of ERDs to design conceptual data models, there are
also other tools with similar objectives. Most existing tools support only the
generation of SQL code, like the free software tools DB-Main6 or DBDesigner47.
The main motivation for our work was the seamless embedding of database pro-
gramming in a declarative language and the use of existing specification methods
like ERDs as the basis to generate most of the necessary code required by the
application programs. The advantages of our framework are:

– The application programmer must only specify the data model in a high-level
format (ERDs) and all necessary code to deal with this data is generated.

– The interface used by the application programs is type safe, i.e., the types
specified in the ERD are mapped into types of the programming language
so that ill-typed data cannot be constructed.

– Updates to the database are supported as transactions that automatically
checks all integrity constraints specified in the ERD.

– Checks for all integrity constraints are derived from the ERD for individual
tables and the complete database so that they can be periodically applied
to verify the integrity of the current state of the database.

– The generated code is based on a high-level interface for database program-
ming so that it is readable and well structured. Thus, it can be easily modified
and adapted to new requirements. For instance, integrity constraints not ex-
pressible in ERDs can be easily added to individual update operations, or
complex delete operations can be inserted in the generated module.

The database API and the ERD compiler described in this paper are freely avail-
able with the latest distribution of PAKCS [13]. For future work we intend to
increase the functionality of our framework, e.g., to extend ERDs by allowing
the specification of more complex integrity constraints or attributes for rela-
tions, which is supported by some ER tools, or to provide also complex delete
operations for particular entities. Finally, it could be also interesting to gener-
ate access and update operations for existing databases by analyzing their data
model. Although this is an issue different from our framework, one can reuse the
API described in Section 2 and some other techniques of this paper for such a
purpose.

6 http://www.db-main.be
7 http://www.fabforce.net/dbdesigner4

16

References

1. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

2. P. P.-S. Chen. The Entity-Relationship Model—Toward a Unified View of Data.
ACM Transactions on Database Systems, Vol. 1, No. 1, pp. 9–36, 1976.

3. J. Correas, J.M. Gómez, M. Carro, D. Cabeza, and M. Hermenegildo. A Generic
Persistence Model for (C)LP Systems (and Two Useful Implementations). In Proc.
of the Sixth International Symposium on Practical Aspects of Declarative Languages
(PADL’04), pp. 104–119. Springer LNCS 3057, 2004.

4. S.K. Das. Deductive Databases and Logic Programming. Addison-Wesley, 1992.
5. S. Fischer. A Functional Logic Database Library. In Proc. of the ACM SIGPLAN

2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp.
54–59. ACM Press, 2005.

6. H. Gallaire and J. Minker, editors. Logic and Databases, New York, 1978. Plenum
Press.

7. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93, 1997.

8. M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In International Workshop on Practical Aspects of Declarative Languages
(PADL’00), pp. 47–62. Springer LNCS 1753, 2000.

9. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pp. 76–92. Springer LNCS 1990, 2001.

10. M. Hanus. Dynamic Predicates in Functional Logic Programs. Journal of Func-
tional and Logic Programming, Vol. 2004, No. 5, 2004.

11. M. Hanus. Type-Oriented Construction of Web User Interfaces. In Proceedings of
the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’06), pp. 27–38. ACM Press, 2006.

12. M. Hanus. Multi-paradigm Declarative Languages. In Proceedings of the Interna-
tional Conference on Logic Programming (ICLP 2007), pp. 45–75. Springer LNCS
4670, 2007.

13. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/~pakcs/, 2007.

14. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8.2).
Available at http://www.informatik.uni-kiel.de/~curry, 2006.

15. S.H. Huseby. Innocent Code: A Security Wake-Up Call for Web Programmers.
Wiley, 2003.

16. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

17. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

18. P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29,
No. 3, pp. 240–263, 1997.

17

