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Abstract. We present CurryCheck, a tool to automate the testing of programs
written in the functional logic programming language Curry. CurryCheck exe-
cutes unit tests as well as property tests which are parameterized over one or
more arguments. CurryCheck tests properties by systematically enumerating test
cases so that, for smaller finite domains, CurryCheck can actually prove proper-
ties. Unit tests and properties can be defined in a Curry module without being
exported. Thus, they are also useful to document the intended semantics of the
source code. Furthermore, CurryCheck also supports the automated checking of
specifications and contracts occurring in source programs. Hence, CurryCheck
is a useful tool that contributes to the property- and specification-based develop-
ment of reliable and well tested declarative programs.

1 Motivation
Testing is an important step to get confidence in the functionality of a program. The
advantage of testing compared to program verification is its potential for automation. If
test cases are encoded as input to test frameworks, one can automatically run and repeat
them when the software is further developed, which is also known as regression testing.

A difficulty in testing is to find appropriate inputs for the individual tests. For this
purpose, property-based testing has been proposed, well known in the functional lan-
guage Haskell with the QuickCheck tool [15]. Properties are predicates parameterized
over one or more arguments. QuickCheck automates the test execution by applying
properties to randomly generated test inputs. Since this idea is particularly reasonable
for declarative languages, it is been adapted in different forms to functional and logic
programming languages. For instance, SmallCheck [32] and GAST [26] focus on a sys-
tematic enumeration of test inputs for functional programs, PropEr [30] adapts ideas of
QuickCheck to the concurrent functional language Erlang, PrologCheck [1] transfers
and extends ideas of QuickCheck to Prolog, and EasyCheck [14] exploits functional
logic programming features to property-based testing of Curry programs.

CurryCheck follows the same ideas. Actually, it is based on EasyCheck to define
properties. However, CurryCheck is intended as a comprehensive tool to simplify the
automation of test execution. To use CurryCheck, properties are interspersed into the
program as top-level definitions. Thus, properties are used to document the intended
semantics of the source code, which also supports test-driven program development
known as “extreme programming.” When CurryCheck is applied to a (set of) Curry
modules, it extracts all properties, generates a program to test these properties, exe-
cutes this generated program, and reports any errors. Furthermore, CurryCheck also
analyzes possible contracts [7] provided in source programs and generates properties



to test these contracts. Thanks to this automation, CurryCheck is a useful tool for con-
tinuous integration and deployment processes. It is used for this purpose in the Curry
implementations PAKCS [22] and KiCS2 [13].

In this paper we present the ideas and usage of CurryCheck. After a review of the
main features of Curry in the next section, we introduce properties in Sect. 3 and ex-
plain how they are tested in Sect. 4. The support of CurryCheck to define test inputs is
presented in Sect. 5. CurryCheck’s support for contract checking is described in Sect. 6.
Some initial features of CurryCheck to combine testing and verification are sketched in
Sect. 7. We report about our practical experience with CurryCheck in Sect. 8 before we
compare CurryCheck to some related tools and conclude.

2 Functional Logic Programming and Curry
Functional logic languages [6,21] integrate the most important features of functional
and logic languages in order to provide a variety of programming concepts. They sup-
port functional concepts like higher-order functions and lazy evaluation as well as logic
programming concepts like non-deterministic search and computing with partial infor-
mation. The declarative multi-paradigm language Curry [19] is a modern functional
logic language with advanced programming concepts. In the following, we briefly re-
view some features of Curry relevant for this paper. More details can be found in recent
surveys on functional logic programming [6,21] and in the language report [23].

Curry has a Haskell-like syntax but also allows free (logic) variables in rules and
initial expressions. Function calls with free variables are evaluated by a possibly non-
deterministic instantiation of demanded arguments.

Example 1. The following simple program shows the functional and logic features of
Curry. It defines the well-known list concatenation and an operation that returns some
element of a list having at least two occurrences:
(++) :: [a] → [a] → [a] someDup :: [a] → a
[] ++ ys = ys someDup xs | xs == _++[x]++_++[x]++_
(x:xs) ++ ys = x : (xs ++ ys) = x where x free

Since “++” can be called with free variables in arguments, the condition in the rule of
someDup is solved by instantiating x and the anonymous free variables “_” to appro-
priate values before reducing the function calls. This corresponds to narrowing [31],
but Curry narrows with possibly non-most-general unifiers to ensure the optimality of
computations [2].

Note that someDup is a non-deterministic operation since it might deliver more than
one result for a given argument, e.g., the evaluation of someDup[1,2,2,1] yields
the values 1 and 2. Non-deterministic operations, which can formally be interpreted as
mappings from values into sets of values [18], are an important feature of contemporary
functional logic languages. Hence, Curry has also a predefined choice operation:
x ? _ = x
_ ? y = y

Thus, the expression “0 ? 1” evaluates to 0 and 1 with the value non-deterministically
chosen.

Functional patterns [3] are useful to define some operations more easily. A func-
tional pattern is a pattern occurring in an argument of the left-hand side of a rule con-



taining defined operations (and not only data constructors and variables). Such a pattern
abbreviates the set of all standard patterns to which the functional pattern can be evalu-
ated (by narrowing). For instance, we can rewrite the definition of someDup as
someDup (_++[x]++_++[x]++_) = x

Functional patterns are a powerful feature to express arbitrary selections in tree struc-
tures, e.g., in XML documents [20]. Details about their semantics and a constructive
implementation of functional patterns by a demand-driven unification procedure can be
found in [3].

Curry has also features which are useful for application programming, like set func-
tions [5] to encapsulate non-deterministic computations, default rules [8] to deal with
partially specified operations and negation, and standard features from functional pro-
gramming, like modules or monadic I/O [35]. Other features are explained when they
are used in the following.

3 Properties
In this section we briefly discuss which kind of program properties to be tested are
supported by CurryCheck. Since CurryCheck extends the functionality of EasyCheck
[14], it supports all kinds of EasyCheck’s properties which we review first.

Properties are defined top-level entities with a distinct type (see below). Thus, their
syntax and type-correctness can be checked by the standard front end of any Curry sys-
tem. Properties do not require a specific naming convention but CurryCheck recognizes
them by their type. Moreover, the name and position of the property in the source file
are used by CurryCheck to identify properties when errors are reported.

For instance, consider the list concatenation operation “++” defined in Example 1.
Before discussing general properties, we define some unit tests for fixed arguments, like
concNull12 = [] ++ [1,2] -=- [1,2]
concCurry = "Cu" ++ "rry" -=- "Curry"

The infix operator “-=-” specifies a test which is successful if both sides have single
values which are identical (we will later see tests for non-deterministic operations).
Since the expressions can be of any type (of course, the two arguments must be of the
same type), the operator is polymorphic and has the type
(-=-) :: a → a → Prop

Hence, all entities defined above have type Prop.
The power of CurryCheck and similar property-based test frameworks comes from

the fact that one can also test properties which are parameterized over some input data.
For instance, we can check whether the concatenation operation is associative by:
concIsAssoc xs ys zs = (xs++ys)++zs -=- xs++(ys++zs)

This property is parameterized over three input values xs, ys, and zs. To test this
property, CurryCheck guesses values for these parameters (see below for more details)
and tests the property for these values:
concIsAssoc_ON_BASETYPE (module ConcDup, line 18):
OK, passed 100 tests.

Indicated by the suffix _ON_BASETYPE, we see another feature of CurryCheck. If prop-
erties are polymorphic (the above property has type [a]→ [a]→ [a]→ Prop), Cur-
ryCheck specializes the type to some base type, since there is no concrete value of



a polymorphic type (and EasyCheck would fail on such properties). As a default, Cur-
ryCheck uses the predefined type Ordering having the three values LT, EQ, GT (another
more involved method to instantiate polymorphic types in purely functional programs
can be found in [11]). This default type can be changed to other base types, like Bool,
Int, or Char, with a command-line option. One could also provide an explicit type
declaration for the property. For instance, we can test the commutativity of the list con-
catenation on lists of integers by the property
concIsCommutative :: [Int] → [Int] → Prop
concIsCommutative xs ys = (xs ++ ys) -=- (ys ++ xs)

Of course, this property does not hold so that CurryCheck reports an error together with
a counter-example:
. . .
concIsCommutative (module ConcDup, line 20) failed
Falsified by 8th test.
Arguments: [-1] [-3]
Results: ([-1,-3],[-3,-1])

Note that the arguments of a test are ordinary expressions so that one can use any
defined operation in the tests. For instance, we can (sucessfully) check whether the list
concatenation is the addition on their lengths:
concAddLengths xs ys = length xs + length ys -=- length (xs++ys)

Since Curry covers also logic programming features, CurryCheck supports the testing
of non-deterministic properties. For instance, one can check whether an expression re-
duces to some given value with the operator is “~>”:
someDup1 = someDup [1,2,1,2] ~> 1

Another important operator is “<~>” which denotes the property that both arguments
have the same set of values. We can write unit tests by enumerating all expected values
with the choice operator “?”:
someDup12 = someDup [1,2,1,2,1] <~> (1?2)

It should be noted that the operator “<~>” really compares sets and not multi-sets: Al-
though the evaluation of someDup [1,2,1,2,1] returns the value 1 three times in
a typical Curry system, the property someDup12 holds. This is intended since Cur-
ryCheck tests declarative properties which are independent of specific compiler opti-
mizations (this is in contrast to PrologCheck which tests operational properties like
multiplicity of answers and modes [1]).

As another example, consider the following definition of a permutation of a list by
exploiting a functional pattern to select some element in the argument list:
perm (xs++[x]++ys) = x : perm (xs++ys)
perm [] = []

An important property of a permutation is that the length of the list is not changed.
Hence, we check it by the property
permLength xs = length (perm xs) <~> length xs

Since the left argumentof “<~>” evaluates to many (identical) values, it is important to
use “<~>” instead of “-=-” in this property.

We might also want to check whether our definition of perm computes the correct
number of solutions. Since we know that a list of length n has n! permutations, we write



the following property, where fac is the factorial function and the property x # n is
satisfied if x has n different values:
permCount :: [Int] → Prop
permCount xs = perm xs # fac (length xs)

However, this test will be falsified with the test input [1,1], since [1,1] has only one
permuted value (actually, both computed values are identical). We can obtain a correct
property if we add the condition that all elements in the input list xs are pairwise differ-
ent. For this purpose, we use a conditional property: the property b ==> p is satisfied if
p is satisfied for all values where b evaluates to True. If the predicate allDifferent
is satisfied iff its argument list does not contain duplicated elements, then we can refor-
mulate our property as follows:
permCount xs = allDifferent xs ==> perm xs # fac (length xs)

Furthermore, we want to check the existence of distinguished permutations. For this
purpose, consider a predicate to check whether a list is sorted:
sorted :: [Int] → Bool
sorted [] = True
sorted [_] = True
sorted (x:y:zs) = x<=y && sorted (y:zs)

Then we can check whether there are sorted permutations (“eventually x” is satisfied
if some value of x is True):
permIsEventuallySorted :: [Int] → Prop
permIsEventuallySorted xs = eventually (sorted (perm xs))

Property-based testing is appropriate for declarative languages since the absence of side
effects allows the execution of tests on any number of test data without influencing the
individual tests. Nevertheless, real programming languages have to deal with the real
world so that they support also I/O operations. Clearly, such operations should also be
tested. Although there are methods to test monadic code [16], the generation of test data
for I/O monadic operations (e.g., file names, socket connections) seems not reasonable.
Therefore, CurryCheck supports only non-parameterized unit tests for I/O operations.
For instance, the test (a ‘returns‘ x) is satisfied if the I/O action a returns the
value x. For instance, we can test whether writing a file and reading it yields the same
contents:
writeReadFile = (writeFile "TEST" "Hello" >> readFile "TEST")

‘returns‘ "Hello"

Since CurryCheck executes the tests written in a source program in their textual or-
der, one can write also several I/O tests whose side effects depend on each other. For
instance, we can split the previous I/O test into two consecutive tests:
writeTestFile = (writeFile "TEST" "Hello") ‘returns‘ ()
readTestFile = (readFile "TEST") ‘returns‘ "Hello"

4 Testing Properties
After having seen several methods to define properties, we sketch in this section how
they are actually tested. Our motivation for the development of CurryCheck is manifold:

1. Properties are an executable documentation for the intended semantics of opera-
tions.



2. Properties increase the confidence in the quality of the developed software.
3. Properties can be used for software verification by proving their validity for all

possible input data.

The first point is supported by interspersing properties into the source code of the pro-
gram instead of putting them into separate files. Thus, properties play the same role
as comments or type annotations: they document the intended semantics. Hence, they
can be extracted and put into the program documentation by automatic documentation
tools [24]. In order to avoid that properties influence the interface of a module, they do
not need to be exported. As an example, consider the following simple module defin-
ing the classical list reverse operation (the imported module Test.Prop contains the
definitions of the property combinators introduced in Sect. 3):
module Rev(rev) where

import Test.Prop

rev :: [a] → [a]
rev [] = []
rev (x:xs) = rev xs ++ [x]

revLength xs = length (rev xs) -=- length xs
revRevIsId xs = rev (rev xs) -=- xs

We can run all tests of this module by invoking CurryCheck with the module name:1

> curry check Rev
Analyzing module ’Rev’ . . .
. . .
Executing all tests . . .
revLength_ON_BASETYPE (module Rev, line 9):
OK, passed 100 tests.
revRevIsId_ON_BASETYPE (module Rev, line 10):
OK, passed 100 tests.

Although module Rev only exports the operation rev, all properties defined in the
top-level of Rev are passed to the underlying EasyCheck library for testing. For this
purpose, CurryCheck creates a copy of this module where all entities are exported (note
that the original module cannot be modified since it might be imported to other modules
to be tested). For each property a corresponding call to an operation of EasyCheck is
generated which actually performs the generation of test data, runs the test, and collects
all results which are passed back to CurryCheck. Furthermore, polymorphic properties
are not checked but a corresponding new property on the default base type is generated
which calls the polymorphic property. For instance, if the default base type is Int,
CurryCheck generates the new property
revRevIsId_ON_BASETYPE :: [Int] → Prop
revRevIsId_ON_BASETYPE = revRevIsId

which is actually checked instead of revRevIsId. Note that it might lead to a fail-
ure if the type of revRevIsId is directly specialized, since the polymorphic property

1 One can also provide several module names so that they are tested at once. Furthermore, Cur-
ryCheck has various options to influence the number of test cases, default types for polymor-
phic properties, etc.



revRevIsId might be used in other property definitions with a different specialized
type.

After these preparations, EasyCheck tests the properties by generating test data as
described in [14]. EasyCheck does not use random generators like QuickCheck or Pro-
logCheck, but it exploits functional logic programming features to enumerate possible
input values. Since logic variables are equivalent to non-deterministic generators [4],
one can evaluate a logic variable of a particular type in order to get all values of this
type in a non-deterministic manner. For instance, if we evaluate the Boolean variable
b::Bool, we obtain the values False and True as results. Similarly, for bs::[Bool]
we obtain values like [], [False], [True], [False,False], etc. In order to select
a finite amount of these infinite values, one can use Curry’s feature for encapsulated
search to collect all non-deterministic results in a tree structure, traverse the tree with
some strategy and return the result of the traversal into a list. If one selects only a finite
amount of this list, the lazy evaluation strategy of Curry ensures a finite computation
even if the tree is infinite. Based on these features, the EasyCheck library contains an
operation
valuesOf :: a → [a]

which computes the list of all values of the given argument according to a fixed strategy
(in the current implementation by randomized level diagonalization [14]). Hence, we
can get 20 values for a list of integers by
. . .> take 20 (valuesOf (_::[Int]))
[[],[-1],[-3],[0],[1],[-1,0],[-2],[0,0],[3],[-1,1],[-3,0],[0,1],
[2],[-1,-1],[-5],[0,-1],[5],[-1,2],[-9],[0,2]]

It should be noted that valuesOf enumerates all values of the given type completely
and without duplicates.2 Hence, if the set of possible input values is finite, it is ensured
that all of them are tested if sufficiently many tests are performed. In this case, the prop-
erty is also verified (where QuickCheck or PrologCheck does not give such guarantees).
For instance, consider the De Morgan law from Boolean algebra:
negOr b1 b2 = not (b1 || b2) -=- not b1 && not b2

This property is proved by CurryCheck after four tests with all possible input values,
and the output of CurryCheck indicates that the testing was exhaustive:
negOr (module BoolTest, line 4):
Passed all available tests: 4 tests.

5 User-Defined Test Data
Due to the use of functional logic features to generate test data, one can write properties
not only on predefined data types but also on user-defined data types. For instance,
consider the following definition of general polymorphic trees:
data Tree a = Leaf a | Node [Tree a]

We define operations to compute the leaves of a tree and mirroring a tree:
leaves (Leaf x) = [x]
leaves (Node ts) = concatMap leaves ts

mirror (Leaf x) = Leaf x

2 In order to get an idea of the distribution of the generated test data, CurryCheck also provides
property combinators collect and classify known from QuickCheck.



mirror (Node ts) = Node (reverse (map mirror ts))

The following properties should increase our confidence in the correctness of the im-
plementation:
doubleMirrorIsId t = mirror (mirror t) -=- t

leavesOfMirrorAreReversed t = leaves t -=- reverse(leaves(mirror t))

CurryCheck successfully tests these properties without providing any further informa-
tion about how to generate test data. However, in some cases it might be desirable to
define our own test data since the generated structures are not appropriate for testing.
For instance, if we test algorithms working on balanced search trees, we need correctly
balanced search trees as test data. As a naive approach, we can limit the tests to correct
test inputs by using conditional properties. As a simple example, consider the following
operation that adds all numbers from 1 to a given limit:
sumUp n = if n==1 then 1 else n + sumUp (n-1)

Since there is also a simple formula to compute this sum, we can check it:
sumUpIsCorrect n = n>0 ==> sumUp n -=- n * (n+1) ‘div‘ 2

Note that the condition is important since sumUp diverges on non-positive numbers. As
a result, CurryCheck tests this property by enumerating integers and dropping tests with
non-positive numbers. While this works well, since CurryCheck performs a fairly good
distribution between positive and negative numbers, this approach might have a serious
drawback if the proportion of correct test data is small. In the case of balanced search
trees, there are many more unbalanced trees than balanced search trees. This has the
effect that CurryCheck generates many test data and drops it so that it does not make
much progress. CurryCheck has an upper limit for dropping test data in the conditional
operator in order to avoid spending too much work on generating unusable test data.
For instance, if we want to test the above property revRevIsId on long input lists, we
could define it as follows:
revRevIsIdLong :: [Int] → Prop
revRevIsIdLong xs = length xs > 100 ==> rev (rev xs) -=- xs

Since there are a huge number of integer lists with a length smaller than 100, Cur-
ryCheck does not find any test case (with a default limit of dropping at most 10,000
incorrect test data values):
revRevIsIdLong (module Rev, line 13):
Arguments exhausted after 0 test.

This shows that the fully automatic generation of test data is not always appropriate.
Therefore, CurryCheck provides some combinators to explicitly define test data (more
advanced enumeration combinators in the context of Scala are discussed in [27]).

To show the method for test data generation in more detail, we have to review
Curry’s methods to encapsulate non-deterministic computations. For this purpose, Curry
defines the following structure to represent the results of a non-deterministic computa-
tion [12]:
data SearchTree a = Value a | Fail | Or (SearchTree a) (SearchTree a)

(Value v) and Fail represent a single value or a failure (i.e., no value), respectively,
and (Or t1 t2) represents a non-deterministic choice between two search trees t1
and t2. Furthermore, there is a primitive search operator
someSearchTree :: a → SearchTree a



which yields a search tree for an expression. For instance, someSearchTree (0?1)

evaluates to the search tree
Or (Value 0) (Value 1)

The expression
someSearchTree (id $## (_::[Bool]))

(where “$##” is an infix application operator which evaluates the right argument to
ground normal form before applying the left argument to it) yields an (infinite) search
tree of all Boolean lists:
(Or (Value []) (Or (Or (Or (Value [False]) . . . ) (Or . . . )) . . . ))

EasyCheck defines various strategies to traverse such search trees (see [14] for details)
in order to enumerate test data. Hence, if we want to define our own test data, we have
to define an operation that generates a search tree containing the test data in Value

leaves. Although this is not difficult for simple data types, it could be demanding for
polymorphic types where generators for the polymorphic arguments must be weaved
with the generators for the main data structure. To simplify this task, CurryCheck offers
a family of combinators genConsn where each combinator takes an n-ary constructor
function and n generators as arguments and produces a search tree for this constructor
and all combinations of generated arguments. Hence, these combinators have the type
genConsn :: (a1 → · · · → an → a) → SearchTree a1 → · · ·

→ SearchTree an → SearchTree a

Furthermore, there is an infix combinator “|||” to combine two search trees. For in-
stance, consider the straightforward definition of Peano numbers:
data Nat = Z | S Nat

Then we can define a search tree generator for this type as follows:
genNat :: SearchTree Nat
genNat = genCons0 Z ||| genCons1 S genNat

Similarly, we can define a search tree generator for polymorphic trees which takes a
search tree for the argument type as a parameter (where genList denotes the corre-
sponding generator for list values):
genTree :: SearchTree a → SearchTree (Tree a)
genTree ta = genCons1 Leaf ta ||| genCons1 Node (genList(genTree ta))

The explicit definition of value generators is reasonable when only a subset of all val-
ues should be used for testing. For instance, sumUpIsCorrect should be testest with
positive numbers only. Hence, we define a generator for positive numbers:
genPos = genCons0 1 ||| genCons1 (+1) genPos

Since these numbers are slowly increasing, i.e., the search tree is actually degenerated
to a list, we can also use the following definition to obtain a more balanced search tree:
genPos = genCons0 1 ||| genCons1 (\n → 2*(n+1)) genPos

||| genCons1 (\n → 2*n+1) genPos

To test properties with user-defined data, CurryCheck provides the property combinator
forAll :: [a] → (a → Prop) → Prop

which is satisfied if the parameterized property given as the second argument is satisfied
for all values of the first argument list. Since there is also a library operation
valuesOfSearchTree :: SearchTree a → [a]



(actually, the operation valuesOf introduced in Sect. 4 is defined via this operation) to
enumerate all values of a search tree, we can redefine the property sumUpIsCorrect

as follows:
sumUpIsCorrect = forAll (valuesOfSearchTree genPos)

(\n → sumUp n -=- n*(n+1) ‘div‘ 2)

Using this technique, we could also define finite tests for potentially infinite structures,
e.g., one can easily define tree generators that generate all trees up to a particular depth.

6 Contract and Specification Testing
As discussed in detail in [7], the distinctive features of Curry (e.g., non-deterministic
operations, demand-driven evaluation, functional patterns, set functions) support writ-
ing high-level specifications as well as efficient implementations for a given problem
in the same programming language. When applying this idea, Curry can be used as a
wide-spectrum language for software development. If a specification or contract is pro-
vided for some function, one can exploit this information to support run-time assertion
checking with these specifications and contracts. As an additional use of this informa-
tion, CurryCheck automatically generates properties to test the given specifications and
contracts, which is described in the following.

According to the notation proposed in [7], a specification for an operation f is an
operation f’spec of the same type as f . A contract consists of a pre- and a postcon-
dition, where the precondition could be omitted. When provided, a precondition for an
operation f of type τ → τ ′ is an operation
f’pre :: τ → Bool

restricting allowed argument values, whereas a postcondition for f is an operation
f’post :: τ → τ ′ → Bool

which relates input and output values (the generalization to operations with more than
one argument is straightforward). A specification should precisely describe the meaning
of an operation, i.e., the declarative meaning of the specification and the implementation
of an operation should be equivalent. In contrast, a contract is a partial specification,
e.g., all results computed by the implementation should satisfy the postcondition.

As a concrete example, consider the problem of sorting a list. The specification
defines a sorted version of a given list as a permutation of the input which is sorted.
Exploiting the operations introduced in Sect. 3, we define the following specification
for the operation sort:
sort’spec :: [Int] → [Int]
sort’spec xs | ys == perm xs && sorted ys = ys where ys free

A postcondition, which is easier to check, states that the input and output lists should
have the same length:
sort’post :: [Int] → [Int] → Bool
sort’post xs ys = length xs == length ys

To provide a concrete implementation, we implement the quicksort algorithm as fol-
lows:
sort :: [Int] → [Int]
sort [] = []
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>x) xs)



Note that specifications and contracts are optional. However, if they are included in a
module processed with CurryCheck, CurryCheck automatically generates and checks
properties that relate the specification and contract to the implementation. For instance,
an implementation satisfies a specification if both yield the same values, and a post-
condition is satisfied if each value computed for some input satisfies the postcondition
relation between input and output. For our example, CurryCheck generates the follow-
ing properties (if there are also preconditions for some operation, these preconditions
are used to restrict the test cases via the condition operator “==>”):3

sortSatisfiesSpecification :: [Int] → Prop
sortSatisfiesSpecification x = sort x <~> sort’spec x

sortSatisfiesPostCondition :: [Int] → Prop
sortSatisfiesPostCondition x = always (sort’post x (sort x))

With CurryCheck, the framework of [7] becomes more useful since contracts are not
only used as run-time assertions in concrete computations, but many possible compu-
tations are checked with various test data. For instance, CurryCheck reports that the
above implementation of sort is incorrect for the example input [1,1] (as the careful
reader might have already noticed). When reporting the error, the module and source
code line number of the erroneous operation is shown so that the programmer can easily
spot the problem.

Another kind of contracts taken into account by CurryCheck are determinism an-
notations [9]. An operation that yields always identical results (maybe multiple times)
on identical argument values can be annotated as “deterministic” by adding DET to the
result type of its type signature. For instance, the following operation tests whether a
list represents a set, i.e., has no duplicate elements (the definition exploits functional
patterns [3] as well as default rules [8]):
isSet :: [a] →DET Bool
isSet (_++[x]++_++[x]++_) = False
isSet’default _ = True

The determinism annotation “→DET” has the effect that at most one result is computed
for a given input, e.g., a single value False is returned for isSet [1,3,1,3,1], al-
though the first rule can be applied multiple times to this call. Thus, after computing a
first value, all attempts to compute further values are ignored. In order to ensure that
this does not destroy completeness, i.e., it behaves like a “green cut” in Prolog, such
operations must be deterministic from a semantical point of view. CurryCheck tests this
property by generating a property for each DET-annotated operation that expresses that
there is at most one value for each input. For instance, for isSet, the DET annotation is
removed and the property
isSetIsDeterministic x1 = isSet x1 #< 2

is added by CurryCheck, where “e #< n” is satisfied if the set of all values of e contains
less than n elements.

7 Combining Testing and Verification
The objective of CurryCheck is to increase the confidence in the reliability of Curry
programs. Testing with a lot of input data is one important step but, in case of input

3 The property “always x” is satisfied if all values of x are True.



data types with infinite values, it can only show possible errors but not the absence of
them. In order to support the latter, CurryCheck has also some (preliminary) support to
include the verification of program properties. For this purpose, a programmer might
prove properties stated in a source program. Since there are many different possibili-
ties to prove such properties, ranging from manual proofs to interactive proof assistants
and fully automatic provers, CurryCheck does not enforce a particular proof technique.
Instead, CurryCheck trusts the programmer and uses a naming convention for files con-
taining proofs: if there is a file with name proof-t.*, CurryCheck assumes that this
file contains a valid proof for property t. For instance, the following property states that
sorting a list does not change its length:
sortlength xs = length (sort xs) <~> length xs

If there is a file proof-sortlength.txt containing a proof for this property, Cur-
ryCheck considers this property as valid and does not check it. Moreover, it uses this
information to simplify other properties to be tested. For instance, consider the prop-
erty sortSatisfiesPostCondition of the previous section. This can be simplified
to always True so that it does not need to be tested. Similarly, a determinism annota-
tion for operation f is not tested if there is a proof file fIsDeterministic.*.

Since program verification is a notoriously difficult task, a mixture of different tech-
niques is required. Some purely functional properties can be proved in a fully automatic
way. For instance, the properties
concLength xs = length (xs ++ ys) -=- length xs + length ys
revLength xs = length (rev xs) -=- length xs

can be proved by the SMT solver Alt-Ergo. [25] discusses techniques to use the Is-
abelle/HOL proof assistant to verify functional properties inspired by QuickCheck. [10]
describes a method to prove non-deterministic computations by translating Curry pro-
grams into the dependently typed language Agda [28]. Since these proofs can be verified
by the Agda compiler, CurryCheck can test the validity of a given proof file by simply
invoking the Agda compiler. For instance, assume that the file ListProps.curry con-
tains the property concIsAssoc shown in Sect. 3. Then one can translate this property
and all operations used by this property into Agda by the command
> curry verify --target=Agda ListProps

This generates the Agda program TO-PROVE-concIsAssoc.agda containing the def-
initions
++ : {a : Set} → L a → L a → L a
++ [] x = x
++ (y :: z) u = y :: (++ z u)

concIsAssoc : {a : Set} → (x : L a) → (y : L a) → (z : L a)
→ (++ (++ x y) z) ≡ (++ x (++ y z))

concIsAssoc x y z = ?

Since the actual proof is an easy induction on the first argument x, we use standard
proof techniques of Agda [34] to complete the proof obligation in the last line to
concIsAssoc [] y z = refl
concIsAssoc (x :: xs) y z rewrite concIsAssoc xs y z = refl

Finally, we rename the complete proof file to proof-concIsAssoc.agda. Then fur-
ther tests of this property are omitted by CurryCheck.



8 Practical Experience
The implementation of CurryCheck is available with the (Prolog-based) Curry im-
plementation PAKCS [22] (since version 1.14.0) and the (Haskell-based) Curry im-
plementation KiCS2 [13] (since version 0.5.0). The implementation exploits meta-
programming features available in these systems to parse programs and transform them
into new programs as described in the previous sections.

Although we could show in this paper only simple examples, we would like to
remark that CurryCheck is successfully applied in a larger context. CurryCheck is reg-
ularly used for automatic regression testing during continuous integration and nightly
builds of PAKCS and KiCS2. Currently, approximately 600 properties (the number is
continuously growing) are regularly used to test the libraries and tools of these sys-
tems. Our practical experience is quite promising. After the development and use of
CurryCheck, we found a bug in the implementation of the prelude operations quot and
rem w.r.t. negative numbers and free variables which was undetected for a couple of
years. Although the bug was easy to fix, the definition of a general property relating
both operations and testing it with all smaller values was essential for its detection.

The run time of CurryCheck mainly depends on the specific properties to be tested.
The initial translation phase, which extracts properties, contracts, and specifications
from a given module and transforms them into executable tests, is a straightforward
compilation process. The run time of the subsequent test execution phase depends on
the number of test cases and the time needed to evaluate each property. The functional
logic programming technique to generate test data described in Sect. 4 (i.e,. collecting
all non-deterministic results of evaluating a logic variable) is reasonable in practice.
For instance, KiCS2 needs 0.6 seconds to test a trivial property on a list of integers with
10,000 test cases computed by the randomized level diagonalization strategy described
in [14] (on a Linux machine with Intel Core i7-4790/3.60Ghz and 8GiB of memory).

CurryCheck has also been applied to implement semantic versioning in a pack-
age manager [29]. Semantic versioning aims to express semantic properties of different
releases of software packages with a hierachy of version numbers, e.g., 1.5.3, con-
sisting of a major, minor, and patch version number. Whereas different major version
numbers provide no guarantees about the compatibility of APIs, minor version num-
bers are incremented if new functionality is introduced, and patch version numbers are
incremented if APIs are unchanged (e.g., bug fixes, code refactoring, efficiency im-
provements). Hence, the correct usage of this semantic versioning scheme can be tested
by comparing the functionality of different versions of a software package. This is done
in the Curry package manager [29] by exploiting CurryCheck. For two versions of a
software package with identical major release numbers, the package manager generates
a set of CurryCheck properties which test, for each operation occurring in the API of
both versions, whether they compute the same sets of results. Using CurryCheck for se-
mantic versioning increases the confidence in the correct releases of software packages.

9 Related Work
Since testing is an important part of the software development process, there is a vast lit-
erature on this topic. In the following, we compare our approach to testing, in particular,
property-based testing, in declarative languages. We already mentioned QuickCheck



[15] which was influential in this area and followed by other property-testing systems
for functional languages, like GAST [26] or SmallCheck [32]. The same idea has also
been transferred to other languages like PropEr [30] for Erlang and PrologCheck [1]
for Prolog. In contrast to CurryCheck, most of these systems (except for SmallCheck)
are based on randomly generating test data so that they do not provide guarantees for a
complete enumeration if the sets of input values are finite, i.e., they cannot verify prop-
erties. PropEr also supports contract checking but these function contracts are limited
to type specifications. PrologCheck could also check operational aspects likes modes or
multiplicity of answers, whereas our properties are oriented towards declarative aspects,
i.e., the input/output relation of values.

Closely related to CurryCheck is EasyCheck [14] since it can be seen as our back
end. EasyCheck is the only property-based test tool covering functional and logic as-
pects but it is more limited than CurryCheck. EasyCheck does not support polymorphic
properties, I/O properties, or combinators for user-defined generation of test data. This
has been added in CurryCheck together with a full automation of the test process in
order to obtain an easily usable tool. Moreover, CurryCheck expands the use of auto-
matic testing by using it for contract and specification checking, where functional logic
programming has been shown to be an appropriate framework [7], and combines it with
static verification techniques.

10 Conclusion
We have presented CurryCheck, the first fully automatic tool to test functional as well
as non-deterministic properties of Curry programs. CurryCheck supports unit tests and
tests of I/O operations with fixed inputs as well as property tests which are parameter-
ized over some arguments. In the latter case, they are executed with test inputs which
are systematically generated for the given argument types. CurryCheck also supports
specification and contract testing if such information is present in the source program.

To simplify and, thus, enhance the use property testing, properties can be inter-
spersed in the source program and are automatically extracted by CurryCheck. Hence,
CurryCheck supports test-driven program development methods like extreme program-
ming. Properties are not only useful to obtain more reliable programs, but they can also
be used by automated documentation tools to describe the intended meaning of oper-
ations, a feature which has been recently added to the CurryDoc documentation tool.4

Moreover, properties can be interpreted as theorems about programs. If these theorems
are statically proved, CurryCheck considers them to simplify the test tasks.

For future work we plan to extend the functionality of CurryCheck (e.g., generating
functional values). Furthermore, we intend to integrate into CurryCheck more features
that can help to improve the reliability of the source code, like abstract interpretation to
approximate specific run-time properties [17,33], or program covering to show whether
the test data was sufficient to reach all parts of a source program.

Acknowledgements. The author is grateful to Jan-Patrick Baye for implementing an
initial version of CurryCheck and to the anonymous reviewers for their suggestions to
improve this paper.

4 See www.informatik.uni-kiel.de/~pakcs/lib/Combinatorial.html for
an example.
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