
J. LOGIC PROGRAMMING 1995:24(3):219{245 1

ANALYSIS OF RESIDUATING LOGIC

PROGRAMS

MICHAEL HANUS

� Residuation is an operational me
hanism for the integration of fun
tions

into logi
 programming languages. The residuation prin
iple delays the

evaluation of fun
tions during the uni�
ation pro
ess until the arguments

are suÆ
iently instantiated. This has the advantage that the deterministi


nature of fun
tions is preserved, but the disadvantage of in
ompleteness:

if the variables in a delayed fun
tion 
all are not instantiated by the logi


program, this fun
tion 
an never be evaluated, and some answers whi
h are

logi
al 
onsequen
es of the program are lost. In order to dete
t su
h situa-

tions at 
ompile time, we present an abstra
t interpretation algorithm for

this kind of programs. The algorithm approximates the possible residua-

tions and instantiation states of variables during program exe
ution. If the

algorithm 
omputes an empty residuation set for a goal, then it is ensured

that the 
on
rete exe
ution of the goal does not end with a nonempty set

of residuations whi
h 
annot be evaluated due to insuÆ
ient instantiation

of argument variables. �

1. INTRODUCTION

Many proposals for the integration of fun
tional and logi
 programming languages

have been made during re
ent years (see [16℄ for a survey). From an operational

point of view, these proposals 
an be partitioned into two 
lasses: approa
hes with

a 
omplete operational semanti
s and a nondeterministi
 sear
h (narrowing) for

solving equations with fun
tional expressions (ALF [12℄, BABEL [23℄, EQLOG
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[11℄, K-LEAF [6℄, SLOG [10℄, among others), and approa
hes whi
h try to avoid

nondeterministi
 
omputations for fun
tional expressions by redu
ing fun
tional

expressions only if the arguments are suÆ
iently instantiated (Funlog [27℄, Le Fun

[3℄, LIFE [2℄, NUE-Prolog [24℄, among others). The former approa
hes are 
om-

plete under some well-de�ned 
onditions (e.g., 
on
uen
e of the axioms), i.e., they


ompute all answers whi
h 
an be logi
ally inferred from the given program. The

pri
e for this 
ompleteness is an in
reased sear
h spa
e sin
e there may be several

in
omparable uni�ers of two terms if these terms 
ontain unevaluated fun
tional

expressions. The latter approa
hes try to avoid this nondeterminism in the uni-

�
ation pro
ess. In these approa
hes, a term is redu
ed to normal form before it

is uni�ed with another term, i.e., fun
tional expressions are evaluated (if possible)

before uni�
ation. If a fun
tion 
annot be evaluated be
ause the arguments are not

suÆ
iently instantiated, the uni�
ation pro
ess 
annot pro
eed. Instead of 
aus-

ing a failure, the evaluation of the fun
tion is delayed until the arguments will be

instantiated. This me
hanism is 
alled residuation in Le Fun [3℄ and extended to


onstraint logi
 programming in [26℄. For instan
e, 
onsider the program (we write

residuating logi
 programs in the usual Prolog syntax [9℄, but it is allowed to use

arbitrary evaluable fun
tions in terms)

q :- p(X,Y,5), pi
k(X,Y).

p(A,B,A+B).

pi
k(2,3).

together with the goal \?- q." After applying the �rst 
lause to the goal, the

literals p(X,Y,5) and p(A,B,A+B) are uni�ed. This binds A to X and B to Y, but

the uni�
ation of X+Y and 5 is not su

essful sin
e the arguments of the fun
tion


all X+Y are not instantiated to numbers. Therefore, this uni�
ation 
auses the

generation of the residuation X+Y=5 whi
h will be proved (or disproved) if X and

Y will be bound to ground terms. We pro
eed by proving the literal pi
k(X,Y)

whi
h binds X and Y to 2 and 3, respe
tively. As a 
onsequen
e, the instantiated

residuation 2+3=5 
an be veri�ed. Hen
e, the entire goal has been proved.

The residuation prin
iple seems to be preferable to the narrowing approa
hes

sin
e it preserves the deterministi
 nature of fun
tions. However, it fails to 
ompute

all answers if fun
tions are used in a logi
 programming manner. For instan
e,


onsider the fun
tion append for 
on
atenating two lists. In a fun
tional language

with pattern-mat
hing, it 
an be de�ned by the following equations (we use the

Prolog notation for lists):

append([℄, L) = L

append([E|R℄,L) = [E|append(R,L)℄

From a logi
 programming point of view, we 
an 
ompute the last element E of

a given list L by solving the equation append(_,[E℄) = L. Sin
e the �rst ar-

gument of the left-hand side of this equation will never be instantiated, resid-

uation fails to 
ompute the last element with this equation, whereas narrowing


omputes the unique value for E [13℄. Similarly, we 
an spe
ify by the equation

append(LE,[_℄) = L a list LE whi
h is the result of deleting the last element in

the list L. Combining the spe
i�
ation of the last element and the rest of a list, we

de�ne the reversing of a list by the following 
lauses:
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Current goal: Current residuation:

rev([a,b,
℄,R) ;

a(LE1,[E1℄)=[a,b,
℄, rev(LE1,LR1) ;

rev(LE1,LR1) a(LE1,[E1℄)=[a,b,
℄

a(LE2,[E2℄)=LE1, rev(LE2,LR2) a(LE1,[E1℄)=[a,b,
℄

rev(LE2,LR2) a(LE1,[E1℄)=[a,b,
℄, a(LE2,[E2℄)=LE1

a(LE3,[E3℄)=LE2, rev(LE3,LR3) a(LE1,[E1℄)=[a,b,
℄, a(LE2,[E2℄)=LE1

� � �

Figure 1.1. In�nite derivation with the residuation prin
iple (a(� � �) denotes

append(� � �)).

rev([℄,[℄).

rev(L, [E|LR℄) :- append(LE,[E℄) = L, rev(LE,LR).

Now, 
onsider the goal \?- rev([a,b,
℄,R)." Sin
e the arguments of the 
alls

to the fun
tion append are never instantiated to ground terms, the residuation

prin
iple 
annot verify the 
orresponding residuation. Hen
e, the answer R=[
,b,a℄

is not 
omputed, and there is an in�nite derivation path using the residuation

prin
iple and applying the se
ond 
lause in�nitely many times (see Figure 1.1).

1

On the other hand, a fun
tional logi
 language based on the narrowing prin
iple


an solve this goal and has a �nite sear
h spa
e [13℄. Therefore, we should use

narrowing instead of residuation in this example.

The last example raises the important question of whether it is possible to dete
t

the 
ases where the (more eÆ
ient) residuation prin
iple is able to 
ompute all

answers. If this would be possible, we 
an avoid the nondeterministi
 and hen
e

expensive narrowing prin
iple in many 
ases, and repla
e it by 
omputations based

on the residuation prin
iple without losing any answers. A simple 
riterion to the


ompleteness of residuation is the groundness of all residuating variables: if at the

end of a 
omputation all variables o

urring in residual fun
tion 
alls are bound to

ground terms, then all residuations 
an be evaluated and the answer substitution

does not depend on an unsolved residuation. Sin
e the satisfa
tion of this 
riterion

depends on the data 
ow during program exe
ution, an exa
t answer is re
ursively

unde
idable. Therefore, we present an approximation to this answer by applying

abstra
t interpretation te
hniques to this kind of programs. Previous approa
hes

for abstra
t interpretation of logi
 programs (see, for instan
e, [1, 8, 25℄) depend on

SLD-resolution as the operational semanti
s. Hen
e, we 
annot dire
tly apply these

frameworks to our 
ase. But we will show that it is possible to develop a similar

te
hnique by 
onsidering unsolved residuations as part of the 
urrent substitution.

This paper is a revised and extended version of [14℄. Here, we use a simpli�ed and

smaller abstra
t domain for the analysis. In the next se
tion, we give a detailed

1

A residual fun
tion 
all is only evaluated if all arguments are ground terms [3℄. If we weaken

this 
ondition to \a residual fun
tion 
all is evaluated if the arguments are suÆ
iently instantiated

so that exa
tly one de�ning rule is appli
able" (if fun
tions are de�ned by equations as in [24℄),

then we 
an also verify residuations like append([℄,[E℄)=[a℄. In this 
ase, the answer to the goal

\?- rev([a,b,
℄,R)" 
an be 
omputed by in
remental veri�
ation of residuations, but there is

also an in�nite derivation path using the se
ond 
lause in�nitely many times.
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des
ription of the operational semanti
s 
onsidered in this paper. The abstra
t

domain and the abstra
t interpretation algorithm for reasoning about residuating

programs are presented in Se
tion 3. Finally, the 
orre
tness of our method is

proved in Se
tion 4.

2. THE RESIDUATION PRINCIPLE

The residuation prin
iple tries to avoid nondeterministi
 
omputations by delay-

ing fun
tion 
alls until the arguments are suÆ
iently instantiated. The di�eren
e

between residuating logi
 programs and ordinary logi
 programs shows up in the

uni�
ation pro
edure: if a 
all to a de�ned fun
tion f(t

1

; : : : ; t

n

) should be uni-

�ed with another term, the fun
tion 
all is evaluated if all arguments t

1

; : : : ; t

n

are

bound to ground terms and the uni�
ation pro
eeds with the evaluated term, other-

wise, the uni�
ation is delayed. If all variables in t

1

; : : : ; t

n

will be bound to ground

terms in the further 
omputation pro
ess, the delayed fun
tion 
all f(t

1

; : : : ; t

n

)

will be immediately evaluated and repla
ed by its result in order to pro
eed with

the uni�
ation pro
ess.

In residuating logi
 programs, terms are built from variables, 
onstru
tors, and

(de�ned) fun
tions. Constru
tors (denoted by a, b, 
, d) are used to 
ompose data

stru
tures, while de�ned fun
tions (denoted by f, g, h) are operations on these data

stru
tures. A fun
tion 
all is a term f(t

1

; : : : ; t

n

) where f is a de�ned fun
tion. A


onstru
tor term is a term whi
h does not 
ontain fun
tion 
alls. A ground term

is a term 
ontaining no variables. With this 
on
ept of terms that may 
ontain

fun
tion 
alls, we adopt all standard notions of logi
 programming [20℄ like 
lause,

logi
 program, et
.

We do not require any formalism for the spe
i�
ation of fun
tions, i.e., they may

be de�ned by equations or in a 
ompletely di�erent language (external or prede�ned

fun
tions). However, the following 
onditions must be satis�ed in order to reason

about residuating logi
 programs:

1. A fun
tion 
all 
an be evaluated if all arguments are ground terms.

2. The result of the evaluation is a ground 
onstru
tor term (
ontaining only


onstru
tors) or an error message (i.e., the 
omputation 
annot pro
eed

be
ause of type errors, division by zero et
.).

In order to provide a simple but pre
ise de�nition of the residuation prin
iple and to

keep the analysis algorithm simple, we assume that all residuating logi
 programs

are transformed into a 
at form: in a 
at residuating logi
 program, all predi
ate


alls and 
lause heads have the form p(X

1

; : : : ; X

n

) where all X

i

are distin
t vari-

ables (similarly to the example in [8℄). All other literals in the 
lause bodies and

goals have the form X =Y , X = 
(Y

1

; : : : ; Y

n

) or X = f(Y

1

; : : : ; Y

n

). It is easy to

see that every residuating logi
 program 
an be transformed into this 
at form by

introdu
ing additional variables and equations. For instan
e, the residuating logi


program

q :- p(X,Y,72), X = V-W, Y = V+W, pi
k(V,W).

p(A,B,A*B).

pi
k(9,3).
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an be transformed into the following equivalent 
at program:

q :- Z = 72, p(X,Y,Z), X = V-W, Y = V+W, pi
k(V,W).

p(A,B,C) :- C = A*B.

pi
k(A,B) :- A = 9, B = 3.

In the following, we assume that all programs are in 
at form.

The 
omputational universe of residuating logi
 programs 
ontains 
onstru
tor

terms as well as unevaluated fun
tion 
alls. Therefore, we distinguish these di�erent

parts in substitutions. In the following, we assume that the 
on
rete domain of


omputation C is not simply the set of all substitutions (as in logi
 programming),

but a set of pairs of substitutions and residuations su
h that h�; �i 2 C if

� = fx

1

7! t

1

; : : : ; x

k

7! t

k

g

� = fy

1

= r

1

; : : : ; y

m

= r

m

g

where t

1

; : : : ; t

k

are 
onstru
tor terms and r

1

; : : : ; r

m

are nonground

2

fun
tion 
alls,

i.e., substitutions 
ontain only 
onstru
tor terms and fun
tion 
alls are 
ontained

in the residuation part. Sin
e substitutions 
an also be represented by equations,

we des
ribe the uni�
ation algorithm for residuating logi
 programs in the style of

Martelli and Montanari [22℄ by a set of transformation rules on pairs of equation

systems E;R where the �rst 
omponent E represents the substitution part and the

se
ond 
omponent R represents the residuation part. These transformation rules

are shown in Figure 2.1. The standard transformation rules for uni�
ation are only

applied to the �rst 
onstru
tor-term 
omponent of the equation system. This em-

phasizes the fa
t that residuated fun
tion 
alls just \wait" for their evaluation. In

order to enable the evaluation of a fun
tion 
all, instantiations of variables are prop-

agated into the fun
tion 
alls (rule Instantiate). On the other hand, if a fun
tion


all 
an be evaluated, its result is moved to the substitution part (rule Evaluate).

Thus, the uni�
ation algorithm is responsible for solving equations between 
on-

stru
tor terms and waking up residuations whi
h are ready for evaluation. The

equations between 
onstru
tor terms and the residuations are generated during the

evaluation of a residuating logi
 program (see below).

This uni�
ation pro
edure is not optimal in the sense that all possible failures

are not dete
ted, e.g., the nonuni�ability of the equation system x = 1; y = 2 ; x =

f(z); y = f(z) is not dete
ted. A more sophisti
ated algorithm 
an be found in

[5℄. However, our algorithm 
an be easily implemented using delay primitives and

is used in pra
ti
al implementations [3℄.

The uni�
ation algorithm is applied by transforming a given equation system

until no more rules 
an be applied. The result of the uni�
ation algorithm is fail

or a system of the form

x

1

= t

1

; : : : ; x

k

= t

k

; y

1

= r

1

; : : : ; y

m

= r

m

where ea
h of the distin
t variables x

i

does not o

ur in t

j

or r

j

, and all r

j

are

unevaluable fun
tion 
alls.

3

Ea
h y

j

= r

j

is 
alled a \residual equation" or simply

2

We will sometimes also allow ground fun
tion 
alls r

i

in intermediate steps. Sin
e su
h 
alls

will be evaluated during uni�
ation, they do not o

ur as a result of a uni�
ation pro
ess.

3

This 
an be shown by a modi�
ation of the proofs presented in [22℄.
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Clash:


(t

1

; : : : ; t

n

) = d(t

0

1

; : : : ; t

0

m

); E ; R

fail

if 
 6= d or m 6= n

De
ompose:


(t

1

; : : : ; t

n

) = 
(t

0

1

; : : : ; t

0

n

); E ; R

t

1

= t

0

1

; : : : ; t

n

= t

0

n

; E ; R

Delete:

x = x;E ; R

E ; R

O

ur 
he
k:

x = t; E ; R

fail

if t 6= x and x o

urs in t

Instantiate:

x = t; E ; y

1

= r

1

; : : : ; y

m

= r

m

x = t; �(E) ; y

1

= �(r

1

); : : : ; y

m

= �(r

m

)

if x o

urs in E or in some r

j

but not in t and � = fx 7! tg

Commute:

t = x;E ; R

x = t; E ; R

if t is not a variable

Evaluate:

E ; y = f(t

1

; : : : ; t

n

); R

E; y = t ; R

if t

1

; : : : ; t

n

are ground and f(t

1

; : : : ; t

n

) is evaluated to t

Figure 2.1. Uni�
ation algorithm for residuating logi
 programs.

\residuation," and we 
an also interpret the substitution/residuation pair h�; �i

with

� = fx

1

7! t

1

; : : : ; x

k

7! t

k

g

� = fy

1

= r

1

; : : : ; y

m

= r

m

g

as the result of the uni�
ation.

The operational semanti
s of residuating logi
 programs 
onsidered in this paper

is similar to Prolog's operational semanti
s (SLD-resolution with leftmost sele
-

tion rule), but with the di�eren
e that the standard uni�
ation is repla
ed by the

uni�
ation des
ribed above. Sin
e we assume that all programs are in 
at form,

all literals in goals have the form X =Y , X = 
(Y

1

; : : : ; Y

n

), X = f(Y

1

; : : : ; Y

n

), or

p(X

1

; : : : ; X

n

). Thus, the proof of a literal is done by simply adding the equations

to the �rst or se
ond 
omponent of the 
urrent equation system from C (literals of

the form X =Y or X = 
(Y

1

; : : : ; Y

n

) are added to the substitution part, and literals

of the form X = f(Y

1

; : : : ; Y

n

) are added to the residuation part) and applying the

uni�
ation algorithm. As an example, 
onsider the following 
at residuating logi


program:

q :- Z=5, p(X,Y,Z), pi
k(X,Y).
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p(A,B,C) :- C=A+B.

pi
k(D,E) :- D=2, E=3.

If the initial goal is q, then the following elements of the 
on
rete domain are


omputed:

Current literal: Current substitution/residuation pair:

q h;; ;i

Z=5 h;; ;i

p(X,Y,Z) hfZ 7! 5g; ;i

C=A+B hfZ 7! 5; A 7! X; B 7! Y; C 7! 5g; ;i

pi
k(X,Y) hfZ 7! 5; A 7! X; B 7! Y; C 7! 5g; fC=X+Ygi

D=2 hfZ 7! 5; A 7! X; B 7! Y; C 7! 5; D 7! X; E 7! Yg; fC=X+Ygi

E=3 hfZ 7! 5; A 7! 2; B 7! Y; C 7! 5; D 7! 2; E 7! Y; X 7! 2g; fC=2+Ygi

; hfZ 7! 5; A 7! 2; B 7! 3; C 7! 5; D 7! 2; E 7! 3; X 7! 2; Y 7! 3g; ;i

At the 
lause end, the residuation set is empty sin
e all fun
tions 
ould be evaluated.

Hen
e, the initial goal is proved to be true.

Logi
 programming with residuations also has some 
onne
tions to the frame-

work of 
onstraint logi
 programming [18℄. From a semanti
al point of view, residu-

ations 
an be 
onsidered as 
onstraints on substitutions. Therefore, the residuation

framework 
ould be viewed as a spe
ial 
ase of the CLP framework where the do-

main is the set of Herbrand terms (with the de�ned fun
tions as evaluable fun
tion

symbols) and the 
onstraints are equations between terms. However, this is not

the 
ase from an operational point of view be
ause the CLP framework requires

a 
onstraint solver whi
h 
he
ks the satis�ability of the a

umulated 
onstraints

in ea
h step. Sin
e fun
tions are user-de�ned, there need not exist a 
onstraint

solver de
iding the satis�ability of the a

umulated residuations, i.e., it may be

the 
ase that the 
urrent set of residuations is unsolvable,

4

e.g., the unsatis�ability

of fappend(L1,L2)=[1℄; append(L2,L1)=[2℄g is not dete
ted by the uni�
ation

algorithms in [3, 5℄. This would require a 
onstraint solver for the de�ned list op-

erations. But residuations 
an be interpreted as passive 
onstraints [4℄ whi
h are

a
tivated if the arguments are suÆ
iently instantiated. In fa
t, it is reasonable to

integrate the residuation prin
iple into the CLP paradigm [26℄, and this is done

in some 
onstraint logi
 languages to deal with hard 
onstraints [19℄ (of 
ourse,


onstraint solvers whi
h delay hard 
onstraints are in
omplete and, therefore, the

same questions as dis
ussed in this paper o

ur [15℄).

Sin
e the operational semanti
s of residuating logi
 programs is identi
al to Pro-

log ex
ept for the di�erent notion of substitution and the di�erent uni�
ation al-

gorithm, we 
an apply abstra
t interpretation frameworks for Prolog to our 
ase.

In this paper, we will use Bruynooghe's framework [8℄. This is possible sin
e his

framework does not depend on the 
on
rete substitution or uni�
ation algorithm,

but only on the left-to-right evaluation of literals, whi
h is also the operational

semanti
s presented in this se
tion.

4

This is the reason for the in�nite derivation in the rev example of Se
tion 1.
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3. ABSTRACT INTERPRETATION OF RESIDUATING LOGIC PRO-

GRAMS

In this se
tion, we present a method to 
he
k whether the residuation part of the

answer to a goal is empty, i.e., whether the residuation prin
iple is 
omplete w.r.t.

a given program and goal. Sin
e this problem is re
ursively unde
idable in general,

we present an approximation to it based on a 
ompile-time analysis of the program.

If this approximation has a parti
ular form, then it is ensured that all residuations


an be solved at run time. In the following, we present the abstra
t domain and

the motivation for it. The relation to the 
on
rete domain and the 
orre
tness of

the abstra
t interpretation algorithm are dis
ussed in Se
tion 4 in more detail. We

assume familiarity with basi
 ideas of abstra
t interpretation te
hniques [1℄.

3.1. Abstra
t Domain

There has been done a lot of work 
on
erning the 
ompile-time derivation of run-

time properties of logi
 programs (see, for instan
e, the 
olle
tion [1℄). Sin
e we

have abstra
ted the di�erent operational behavior of residuating logi
 programs

into an additional 
omponent of the 
on
rete domain, we 
an use the well-known

frameworks (e.g., [8, 25℄) in a similar way. The heart of an abstra
t interpreta-

tion pro
edure is an abstra
t domain whi
h approximates subsets of the 
on
rete

domain. An element of the abstra
t domain des
ribes 
ommon properties of a sub-

set of the 
on
rete domain. The properties must be 
hosen so that they 
ontain

relevant propositions about the interesting run-time properties. So what are the

abstra
t properties in our 
ase?

We are interested in unevaluated residuations at run time (se
ond 
omponent of

the 
on
rete domain). A residuation 
an be veri�ed if the fun
tion 
all in it 
an

be evaluated. Sin
e a fun
tion 
all 
an be evaluated if all arguments are ground,

we need some information about the variables in it and the instantiation state of

these variables in order to de
ide the emptiness of the residuation set. Hen
e, our

abstra
t domain 
ontains information about the following properties:

Potential residuations: In order to de
ide whether a residuation 
an be evalu-

ated at run time, we must know the variables in all potentially residuated

fun
tion 
alls. Therefore, our abstra
t domain 
ontains elements of the form

\f j

fX

1

;:::;X

n

g

" meaning: there may o

ur a residuated 
all to fun
tion f

whi
h 
an be evaluated if all variables X

1

; X

2

; : : : ; X

n

are ground.

5

Dependen
ies between variables: Fun
tion 
alls 
an be evaluated if all vari-

ables in it are bound to ground terms. Hen
e, we must have some information

about the dependen
ies between variables. For instan
e, 
onsider the goal

?- A = B+C, D = A*A, B = 1, C = 2.

During uni�
ation of D and A*A, the �rst term 
annot be evaluated sin
e A

is not ground. However, the groundness of A depends on the groundness of

B and C. Thus, we dedu
e that the fun
tion 
all A*A 
an be evaluated if B

5

The 
on
rete name of the residuated fun
tion 
ould be omitted in the abstra
t domain, but

we have in
luded it for the sake of readability.
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and C are bound to ground terms. Hen
e, our abstra
t domain 
ontains the

element \A if fB,Cg." In general, \X if V " means that variable X is bound

to a ground term if all variables in V are bound to ground terms.

In our abstra
t interpretation algorithm, we analyze ea
h 
lause o

urring in the

program. Therefore, the di�erent abstra
tions 
omputed in this algorithm 
ontain

only information about the variables of the di�erent 
lauses. Hen
e, ea
h abstra
-

tion A has a domain dom(A) whi
h is a set of variables o

urring in some 
lause

(or goal). All variables o

urring in A must belong to dom(A).

Summarizing the previous dis
ussion, our abstra
t domain A 
ontains the ele-

ment ? (representing the empty subset of the 
on
rete domain) and sets 
ontaining

the following elements (su
h sets are 
alled abstra
tions and denoted by A, A

1

et
):

6

Element Meaning

X if V X is ground if all variables in the variable set V are ground

f j

V

there is a 
all to f whi
h 
an be evaluated if all variables

in V are ground

f there may be an unevaluated fun
tion 
all to f depending

on arbitrary variables

The element \f" is the \worst 
ase" in the algorithm. It will be used if the de-

penden
ies between a fun
tion 
all and its variables are too 
omplex for a a �nite

representation.

7

Obviously, A is �nite if the set of variables and fun
tion symbols is �nite. In

our abstra
t domain, we use only program variables and fun
tions o

urring in the

program. Therefore, A is �nite in the 
ase of a �nite program. For 
onvenien
e,

we simply write \X" instead of \X if ;." Hen
e, an element \X" in an abstra
tion

means that variable X is bound to a ground term.

To present a simple des
ription of the abstra
t interpretation algorithm, we will

sometimes generate abstra
tions 
ontaining redundant information. The following

normalization rules eliminate some redundan
ies in abstra
tions:

Normalization Rules for Abstra
tions

A [ fZ; X if V [ fZgg �! A [ fZ; X if V g

A [ fZ; f j

V [fZg

g �! A [ fZ; f j

V

g

A [ ff j

;

g �! A

A [ fX if V

1

; X if V

2

g �! A [ fX if V

1

g if V

1

� V

2

A [ ff j

V

1

; f j

V

2

g �! A [ ff j

V

2

g if V

1

� V

2

A [ ff j

V

; fg �! A [ ffg

We 
all an abstra
tionA normalized if none of these normalization rules is appli
able

to A. Later, we will see that the normalization rules are invariant w.r.t. the 
on
rete

substitutions/residuations 
orresponding to abstra
tions. Therefore, we assume

that we 
ompute only with normalized abstra
tions in the abstra
t interpretation

algorithm.

6

The pre
ise meaning of the abstra
t elements will be formalized in Se
tion 4.

7

Our algorithm analyzes ea
h 
lause separately. If a residuation depends on variables from

di�erent 
lauses, the worst 
ase is introdu
ed in order to ensure the termination of the analysis.
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3.2. The Abstra
t Interpretation Algorithm

The abstra
t interpretation algorithm is based on several operations on the abstra
t

domain. The most important operation is the abstra
t uni�
ation algorithm whi
h

approximates the 
on
rete uni�
ation of equations o

urring in 
lause bodies or

goals. Abstra
t uni�
ation is a fun
tion amgu(�; t

1

; t

2

) whi
h takes an element of

the abstra
t domain � 2 A and two terms t

1

; t

2

as input and produ
es another

abstra
t domain element as the result. Be
ause of our restri
tions on 
at goal

equations, the following de�nition is suÆ
ient:

8

amgu(?; t

1

; t

2

) = ?

amgu(A;X;X) = A

amgu(A;X; Y ) = A [ fX if fY g; Y if fXgg if X 6= Y

amgu(A;X; 
(Y

1

; : : : ; Y

n

)) = A [ fX if fY

1

; : : : ; Y

n

g; Y

1

if fXg; : : : ; Y

n

if fXgg

amgu(A;X; f(Y

1

; : : : ; Y

n

)) = A [ fX if fY

1

; : : : ; Y

n

g; f j

fY

1

;:::;Y

n

g

g

In the third and fourth equations of this de�nition, the dependen
ies between the

variables on the left- and right-hand side are added to the 
urrent abstra
tion. In

the last equation, only the dependen
y from the variables in the fun
tion 
all is

added. The symmetri
 dependen
y would be false in general sin
e the groundness

of X in equation X = f(Y; Z) does not imply the groundness of Y or Z sin
e f may

not be evaluable. In the last 
ase, the potential residuation is also added to the


urrent abstra
tion.

The next operation restri
ts an abstra
tion A to a set of variables W . It will be

used in a predi
ate 
all to omit the information about variables not passed from

the predi
ate 
all to the applied 
lause:


all restri
t(?;W ) = ?


all restri
t(A;W ) = fX if V 2 A j fXg [ V �Wg

Note that only dependen
ies between argument variables are passed. The informa-

tion about residuated fun
tion 
alls is omitted sin
e this information is not relevant

inside the 
lause, but only at the end. Therefore, this information will be re
onsid-

ered at the end of the 
all (see below).

A similar operation is needed at the 
lause end to forget the abstra
t information

about lo
al 
lause variables. Hen
e, we de�ne

exit restri
t(?;W ) = ?

exit restri
t(A;W ) = fX if V 2 A j fXg [ V �Wg

[ ff j

V

2 A j V �Wg

[ ff j f 2 A or f j

V

2 A with V 6�Wg

The restri
tion operation for 
lause exits transforms an abstra
tion element f j

V

into the element f if one of the involved variables is not 
ontained in W , i.e., it is

noted that there may be an unevaluated fun
tion 
all to f whi
h depends on lo
al

variables at the end of the 
lause. This is ne
essary to ensure the termination of the

8

For simpli
ity, we omit the o

ur 
he
k in the abstra
t uni�
ation. This is safe sin
e we


ompute only an approximation of the 
on
rete uni�er. Note that we always 
ompute with

normalized abstra
tions, i.e., the result of amgu will be immediately normalized.
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analysis in 
omplex 
ases. For the same reason, the dependen
y X if V is deleted

if X 62 W or V 6�W .

The least upper bound operation is used to 
ombine the results of di�erent 
lauses

for a predi
ate 
all:

? t A = A

A t ? = A

A

1

t A

2

= fX if V

1

[ V

2

j X if V

1

2 A

1

; X if V

2

2 A

2

g

[ ff j

V

j f j

V

2 A

1

or f j

V

2 A

2

g

[ ff j f 2 A

1

or f 2 A

2

g

Now we 
an present the algorithm for the abstra
t interpretation of a residuating

logi
 program in 
at form. It is spe
i�ed as a fun
tion ai(�;L) whi
h takes an

abstra
t domain element � and a goal literal L and yields a new abstra
t domain

element as result. Clearly, ai(?; L) =? and ai(A; t = t

0

) = amgu(A; t; t

0

). The in-

teresting 
ase is the abstra
t interpretation of a predi
ate 
all ai(A; p(X

1

; : : : ; X

n

))

whi
h is 
omputed by the following steps (var(�) denotes the set of all variables

o

urring in the synta
ti
 
onstru
tion �):

1. Let C = p(Z

1

; : : : ; Z

n

) :- L

1

; : : : ; L

k

be a 
lause for predi
ate p (if ne
essary,

rename the 
lause variables su
h that they are disjoint from X

1

; : : : ; X

n

).

Compute A


all

= 
all restri
t(A; fX

1

; : : : ; X

n

g)

A

0

= hrepla
e all X

i

by Z

i

in A


all

i (i.e., dom(A

0

) = var(C))

A

1

= ai(A

0

; L

1

)

A

2

= ai(A

1

; L

2

)

.

.

.

A

k

= ai(A

k�1

; L

k

)

A

out

= exit restri
t(A

k

; fZ

1

; : : : ; Z

n

g)

A

exit

= hrepla
e all Z

i

by X

i

in A

out

i (i.e., dom(A

exit

) = dom(A))

2. Let A

1

exit

; : : : ; A

m

exit

be the exit substitutions of all 
lauses for p 
omputed in 1.

Then de�ne A

su

ess

= A

1

exit

t : : : t A

m

exit

3. ai(A; p(X

1

; : : : ; X

n

)) = A

su

ess

[ (A�A


all

) if A

su

ess

6=?, else ?

Hen
e, a 
lause is interpreted in the following way. First, the 
all abstra
tion

is 
omputed, i.e., the information 
ontained in the predi
ate 
all abstra
tion is

restri
ted to the argument variables (A


all

). The variables of this 
all abstra
tion

are mapped to the 
orresponding variables of the applied 
lause (A

0

). Then, ea
h

literal o

urring in the 
lause body is interpreted. The resulting abstra
tion (A

k

) is

restri
ted to the variables of the 
lause head, i.e., we forget the information about

the lo
al variables of the 
lause. Potential residuations whi
h are unsolved at the


lause end are passed to the abstra
tion A

out

by the exit restri
t operation. In the

last step, the 
lause variables are renamed into the variables of the predi
ate 
all

(A

exit

). If all 
lauses de�ning the 
alled predi
ate p are interpreted in this way, all

possible interpretations are 
ombined by the least upper bound of all abstra
tions

(A

su

ess

). In step 3, we 
ompute the entire abstra
tion after the predi
ate 
all by


ombining the abstra
tion A

su

ess

with the information whi
h was forgotten by

the restri
tion at the beginning of the predi
ate 
all (whi
h is A�A


all

).

The abstra
t interpretation algorithm des
ribed above is useless in 
ase of re
ur-

sive programs due to the nontermination of the algorithm. This 
lassi
al problem is
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solved in all frameworks for abstra
t interpretation and, therefore, we do not want

to develop a new solution to this problem, but use one of the well-known solutions.

Following Bruynooghe's framework [8℄, we 
onstru
t a rational abstra
t AND-OR-

tree representing the 
omputation of the abstra
t interpretation algorithm (see also

Se
tion 4.3). During the 
onstru
tion of the tree, we 
he
k before the interpretation

of a predi
ate 
all P whether there is an an
estor node P

0

with a 
all to the same

predi
ate and the same 
all abstra
tion (up to renaming of variables). If this is

the 
ase, we take the su

ess abstra
tion of P

0

(or ? if it is not available) as the

su

ess abstra
tion of P instead of interpreting P . If the further abstra
t inter-

pretation 
omputes a su

ess abstra
tion A

0

for P

0

whi
h di�ers from the su

ess

abstra
tion used for P , we start a re
omputation beginning at P with A

0

as a new

su

ess abstra
tion. This iteration terminates be
ause all operations used in the

abstra
t interpretation are monotone (w.r.t. the order on A de�ned in Se
tion 4)

and the abstra
t domain is �nite. A detailed des
ription of this method is given in

Se
tion 4.3.

3.3. An Example

The following example is the 
at form of a Le Fun program presented in [3℄:

q(Z) :- p(X,Y,Z), X = V-W, Y = V+W, pi
k(V,W).

p(A,B,C) :- C = A*B.

pi
k(A,B) :- A = 9, B = 3.

The abstra
t interpretation algorithm 
omputes the following abstra
tions w.r.t. the

initial goal q(T) and the initial abstra
tion ; (spe
ifying the set of all substitutions

without unevaluated fun
tion 
alls):

ai(;; q(T)) :

ai(;; p(X,Y,Z)) :

ai(;; C = A*B) = fC if fA,Bg; *j

fA,Bg

g

ai(;; p(X,Y,Z)) = fZ if fX,Yg; *j

fX,Yg

g = : A

1

ai(A

1

; X = V-W) = fZ if fX,Yg; X if fV,Wg; *j

fX,Yg

; -j

fV,Wg

g = : A

2

ai(A

2

; Y = V+W) = fZ if fX,Yg; X if fV,Wg; Y if fV,Wg;

*j

fX,Yg

; -j

fV,Wg

; +j

fV,Wg

g = : A

3

ai(A

3

; pi
k(V,W)) :

ai(;; A = 9) = fAg

ai(fAg; B = 3) = fA; Bg

ai(A

3

; pi
k(V,W)) = fV; W; Z if fX,Yg; X if fV,Wg; Y if fV,Wg;

*j

fX,Yg

; -j

fV,Wg

; +j

fV,Wg

g

normalize

�! fV; W; Z; X; Yg

ai(;; q(T)) = fTg

Hen
e, the 
omputed su

ess abstra
tion is fTg. This means that after a su

essful


omputation of the goal q(T), the variable T is bound to a ground term and the

residuation set is empty, i.e., the residuation prin
iple allows to 
ompute a fully

evaluated answer. Similarly, the 
ompleteness of the residuation prin
iple 
an be

proved by our algorithm for all other residuating logi
 programs presented in [3℄.
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4. CORRECTNESS OF THE ABSTRACT INTERPRETATION ALGO-

RITHM

In this se
tion, we will prove the 
orre
tness of the presented abstra
t interpretation

algorithm. First, we relate the abstra
t domain to the 
on
rete domain by de�ning a


on
retization fun
tion. Then we will prove that the abstra
t operations de�ned in

the previous se
tion are 
orre
t w.r.t. the 
orresponding operations on the 
on
rete

domain. Finally, we obtain the 
orre
tness of our algorithm by simply applying

Bruynooghe's framework [8℄.

4.1. Relating Abstra
tions to Con
rete Values

To relate the 
omputed abstra
t properties to the 
on
rete run-time behavior, we

have to de�ne a 
on
retization fun
tion 
 : A ! 2

C

whi
h maps an abstra
tion

into a subset of the 
on
rete domain. A diÆ
ult point in the de�nition of 
 is the


orre
t interpretation of an abstra
tion \X if V ." The intuitive meaning is \the

interpretation of X is ground if all interpretations of V are ground." To be more

pre
ise, \X if V " des
ribes a dependen
y between the instantiation of X and the

instantiation of the variables in V , i.e., we 
ould de�ne

(�) If X if V 2 A and h�; �i 2 
(A), then var(�(X)) � var(�(V )).

However, this interpretation is not suitable be
ause it does not 
over the variable

dependen
ies 
aused by residuations. For instan
e, if the terms X and f(Y) should

be uni�ed, the result of the uni�
ation algorithm is h;; fX = f(Y)gi, i.e., the algo-

rithm generates a residuation instead of binding X to f(Y). On the abstra
t level

the abstra
tion fX if Yg is generated. Therefore, 
ondition (�) does not hold in this

example.

In order to provide an appropriate relation between abstra
t and 
on
rete values,

we have to 
onsider also the residuation 
omponent in 
ondition (�). Therefore, we

extend the set var(�(V )) by all variables whi
h be
ome ground if the residuations


ould be evaluated due to the groundness of variables in var(�(V )). Sin
e the

evaluation of a residuation may 
ause the evaluation of another residuation, we


onsider the 
losure of this extension. Thus, we de�ne var

�;�

(V ) as the smallest

set satisfying the following 
onditions:

1. var(�(V )) � var

�;�

(V ).

2. If y = f(t) 2 � and var(t) � var

�;�

(V ), then var(�(y)) � var

�;�

(V ).

In the se
ond 
ondition and in the following se
tions, t denotes an argument se-

quen
e t

1

; : : : ; t

n

. For instan
e, if � = ; and � = fX = f(Y)g as in the previous

example, then var

�;�

(fYg) = fX; Yg.

With this extension, we de�ne the relation between abstra
t and 
on
rete ele-

ments by the following 
on
retization fun
tion 
 : A ! 2

C

:


(?) = ;


(A) = fh�; �i 2 C j 1. X if V 2 A) var(�(X)) � var

�;�

(V )

2. y = f(t) 2 � with y 2 dom(A)

) f 2 A or var(t) � var(�(V )) for some f j

V

2 A g
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In the following, we say a substitution/residuation pair h�; �i satis�es the variable


ondition X if V 2 A if 
ondition 1 holds. Similarly, we say a residuation y = f(t)

in � is 
overed by A if 
ondition 2 holds.

Condition 1 implies, for X if V 2 A, that all variables of the 
urrent instantiation

of X are ground if all variables of the 
urrent instantiation of V are ground terms.

Condition 2 ensures that unevaluated fun
tion 
alls are 
overed by some element

in A. Sin
e an abstra
tion A 
an only 
ontain information about variables in its

domain, it 
annot 
over residuations bound to variables outside dom(A). Sin
e we

are interested in information about the evaluation of all potential residuations, we

will later expli
itly prove (Theorem 4.4) that residuations 
onne
ted to variables

outside dom(A) are also 
overed by the abstra
tion A at the end of the analysis.

Due to this semanti
s of abstra
tions, it 
an be proved that the normalization

rules de�ned on abstra
tions in Se
tion 3.1 are invariant w.r.t. the 
on
rete in-

terpretation. The following lemma justi�es the appli
ation of the normalization

rules.

Lemma 4.1. If A and A

0

are abstra
tions with A! A

0

, then 
(A) = 
(A

0

).

Proof. First, we show 
(A) � 
(A

0

). Let h�; �i 2 
(A). We prove h�; �i 2 
(A

0

)

by a 
ase analysis on the applied normalization rule:

1. Let A = A

0

[ fZ; X if V [ fZgg and A

0

= A

0

[ fZ; X if V g. Sin
e the

only di�eren
e between A and A

0

is the transformation of \X if V [ fZg"

into \X if V ," we have to show var(�(X)) � var

�;�

(V ). Sin
e h�; �i 2 
(A),

var(�(Z)) = ; and var(�(X)) � var

�;�

(V [ fZg). Sin
e �(Z) is a ground

term, var(�(X)) � var

�;�

(V [ fZg) = var

�;�

(V ).

2. Let A = A

0

[ fZ; f j

V [fZg

g and A

0

= A

0

[ fZ; f j

V

g. Sin
e only the

abstra
tion element f j

V [fZg

is a�e
ted by this transformation, we have to

show: if y = f(t) 2 � with y 2 dom(A) = dom(A

0

) and var(t) � var(�(V [

fZg)), then var(t) � var(�(V )). Sin
e h�; �i 2 
(A), var(�(Z)) = ;. Hen
e,

var(t) � var(�(V [ fZg)) = var(�(V )).

3. Let A = A

0

[ ff j

;

g. If the abstra
tion element f j

;

was a relevant 
ondition

for h�; �i 2 
(A), then y = f(t) 2 � with y 2 dom(A) and var(t) � ;. Hen
e

f(t) is a ground fun
tion 
all whi
h 
annot o

ur in �.

4. Let A = A

0

[fX if V

1

; X if V

2

g, A

0

= A

0

[fX if V

1

g, and V

1

� V

2

. Obviously,

h�; �i 2 
(A

0

) sin
e the variable 
ondition X if V

2

is omitted in A

0

.

5. Let A = A

0

[ ff j

V

1

; f j

V

2

g, A

0

= A

0

[ ff j

V

2

g, and V

1

� V

2

. Obviously,

h�; �i 2 
(A

0

) sin
e ea
h residuation in � whi
h is 
overed by the omitted

abstra
tion element f j

V

1

is also 
overed by f j

V

2

.

6. Let A = A

0

[ ff j

V

; fg and A

0

= A

0

[ ffg. Obviously, h�; �i 2 
(A

0

) sin
e

ea
h residuation in � whi
h is 
overed by the omitted abstra
tion element

f j

V

is also 
overed by the abstra
tion element f .

Next, we show 
(A) � 
(A

0

). Let h�; �i 2 
(A

0

). As before, we prove h�; �i 2 
(A)

by a 
ase analysis on the applied normalization rule:
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1. Let A = A

0

[ fZ; X if V [ fZgg and A

0

= A

0

[ fZ; X if V g. Sin
e h�; �i 2


(A

0

), var(�(X)) � var

�;�

(V ) � var

�;�

(V [ fZg). Hen
e, h�; �i 2 
(A)

be
ause \X if V [ fZg" is the only altered abstra
tion element.

2. Let A = A

0

[ fZ; f j

V [fZg

g and A

0

= A

0

[ fZ; f j

V

g. This is similar to the

�rst 
ase.

3. Let A = A

0

[ ff j

;

g. This 
ase is trivial sin
e A 
ontains the additional

abstra
tion element \f j

;

."

4. Let A = A

0

[ fX if V

1

; X if V

2

g, A

0

= A

0

[ fX if V

1

g, and V

1

� V

2

. We have

to show var(�(X)) � var

�;�

(V

2

). But this is trivial be
ause h�; �i 2 
(A

0

)

implies var(�(X)) � var

�;�

(V

1

) � var

�;�

(V

2

).

5. Let A = A

0

[ ff j

V

1

; f j

V

2

g, A

0

= A

0

[ ff j

V

2

g, and V

1

� V

2

. Obviously,

h�; �i 2 
(A) sin
e A 
ontains the additional abstra
tion element f j

V

1

.

6. Let A = A

0

[ ff j

V

; fg and A

0

= A

0

[ ffg. Obviously, h�; �i 2 
(A) sin
e

A 
ontains the additional abstra
tion element f j

V

.

2

Due to this lemma, it makes no di�eren
e to use an abstra
tion A or the nor-

malization of A if we want to prove a proposition like h�; �i 2 
(A). We will take

advantage of this property in the 
orre
tness proofs for the abstra
t operations (
f.

Se
tion 4.2).

For the termination of the abstra
t interpretation algorithm, it is important

that all operations on the abstra
t domain are monotone. Therefore, we de�ne the

following order relation on normalized abstra
tions:

(a) ?v � for all � 2 A

(b) A v A

0

() 1. X if V

0

2 A

0

) 9V � V

0

with X if V 2 A

2. f j

V

2 A ) f 2 A

0

or 9V

0

� V with f j

V

0

2 A

0

3. f 2 A ) f 2 A

0

It is easy to prove that v is a re
exive and transitive relation whi
h is anti-

symmetri
 on normalized abstra
tions. Moreover, the operation t de�ned in Se
-

tion 3.2 
omputes the least upper bound of two abstra
tions, and 
 is a monotone

fun
tion:

Proposition 4.1. A

1

tA

2

is a least upper bound of A

1

; A

2

2 A.

Proposition 4.2. If A v A

0

, then 
(A) � 
(A

0

).

In order to ensure the termination of the analysis, all abstra
t operations used

in the abstra
t interpretation algorithm must be monotone in their abstra
tion

arguments. If this is the 
ase, then re
omputations in the AND-OR-graph (see

Se
tion 4.3) starting with greater elements leads to greater results w.r.t. v. This

property ensures the termination of the �xpoint 
omputation for re
ursive 
alls.

It is not diÆ
ult to show that all abstra
t operations de�ned in Se
tion 3.2 are

monotone. Therefore, we only state the monotoni
ity property of the abstra
t

uni�
ation and the normalization pro
ess:
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Proposition 4.3. The abstra
t operation amgu is monotone in its abstra
tion argu-

ment, i.e., amgu(A; t

1

; t

2

) v amgu(A

0

; t

1

; t

2

) provided that A v A

0

.

Proposition 4.4. The normalization pro
ess is monotone, i.e., if A v A

0

and B;B

0

are the normalized abstra
tions of A;A

0

, then B v B

0

.

4.2. Corre
tness of Abstra
t Operations

Following the framework presented in [8℄, the 
orre
tness of the abstra
t interpreta-

tion algorithm 
an be proved by showing the 
orre
tness of ea
h basi
 operation of

the algorithm (like abstra
t uni�
ation, 
lause entry, and 
lause exit). Corre
tness

means in this 
ontext that all 
on
rete 
omputations, i.e., the results of the 
on-


rete 
lause entry, 
lause exit, and uni�
ation (
f. Se
tion 2), are subsumed by the

abstra
tions 
omputed by the 
orresponding abstra
t operations. In this se
tion,

we will prove the 
orre
tness of ea
h of these operations.

First, we state an important property of our uni�
ation algorithm for residuating

logi
 programs. The transformation rules in Figure 2.1 show that our uni�
ation

algorithm is very similar to the 
lassi
al uni�
ation algorithm for 
onstru
tor terms,

but with the di�eren
e that equations of the form y = t, where t is a ground 
on-

stru
tor term, are added by rule Evaluate. This may 
ause additional instantiations


ompared to 
lassi
al uni�
ation. The next proposition 
ontains a more pre
ise de-

s
ription of this behavior. In this proposition and in subsequent proofs, we apply

a substitution � to a residuation � = fy

1

= t

1

; : : : ; y

m

= t

m

g whi
h is de�ned by

�(�) = fy

1

= �(t

1

); : : : ; y

m

= �(t

m

)g, i.e., the substitution is only applied to the

residuated fun
tion 
alls. This is motivated by the spe
ial instantiation rule in

Figure 2.1.

Proposition 4.5. Let t

1

and t

2

be 
onstru
tor terms and h�; �i 2 C. If the appli
ation

of the transformation rules in Figure 2.1 to the equational representation of h�; �i

and the equation t

1

= t

2

yields the substitution/residuation pair h�

0

; �

0

i (and not

fail), then

1. �

0

= � Æ � with �

0

(t

1

) = �

0

(t

2

) for some substitution �

2. �

0

� �(�) and var(�

0

(y)) = var(t) = ; for all y = f(t) 2 �(�) � �

0

.

Hen
e, the uni�
ation algorithm for residuating logi
 programs 
omputes a uni-

�er (not ne
essarily a most general one) for 
onstru
tor terms and may delete (i.e.,

evaluate) some residuations. This is the basis to prove the 
orre
tness of amgu, but

for the 
omplete proof, we need the following propositions about the set var

�;�

(V ).

Lemma 4.2. Let var(�(X)) � var

�;�

(V ) and � be a substitution. Then

var(�(�(X))) � var

�Æ�;�(�)

(V ).

Proof. Consider the 
omputation of the 
losure var

�;�

(V ). By de�nition of this


losure, there is a sequen
e W

1

;W

2

; : : : ;W

n

of variable sets with

1. W

1

= var(�(V )),

2. W

i+1

= W

i

[ var(�(y

i

)) for some residuation y

i

= t

i

2 � with var(t

i

) �W

i

,
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3. var(�(X)) �W

n

.

We de�ne a se
ond sequen
eW

0

1

;W

0

2

; : : : ;W

0

n

of variable sets byW

0

i

: = var(�(W

i

))

(i = 1; : : : ; n). This sequen
e has the following properties:

1. W

0

1

= var(�(W

1

)) = var(�(�(V )))

2. W

0

i+1

= W

0

i

[ var(�(�(y

i

))) for the residuation y

i

= �(t

i

) 2 �(�) with

var(�(t

i

)) �W

0

i

3. var(�(�(X))) �W

0

n

Hen
e, var(�(�(X))) � var

�Æ�;�(�)

(V ). 2

The next lemma shows that the set var

�;�

(V ) is not in
uen
ed by the evaluation

of ground fun
tion 
alls.

Lemma 4.3. Let �

0

� � and var(�(y)) = var(t) = ; for all y = f(t) 2 �� �

0

. Then

var

�;�

(V ) = var

�;�

0

(V )

Proof. If some residuation element y = f(t) from � � �

0

is used to 
ompute the


losure var

�;�

(V ), it 
annot add any new variable to this set sin
e var(�(y)) = ;.

Therefore, the 
losures var

�;�

(V ) and var

�;�

0

(V ) are identi
al. 2

Now, we 
an prove the 
orre
tness of amgu, i.e., we show that abstra
t uni�
ation


overs all possible results of the 
on
rete uni�
ation algorithm.

Theorem 4.1 (Corre
tness of Abstra
t Uni�
ation). Let X be a variable, t be a term

of the form Y , 
(Y

1

; : : : ; Y

n

) or f(Y

1

; : : : ; Y

n

), and A be an abstra
tion. Then

for all h�; �i 2 
(A) and all uni�ers h�

0

; �

0

i 
omputed by the rules of Figure 2.1

w.r.t. h�; �i and X = t, h�

0

; �

0

i 2 
(amgu(A;X; t)).

Proof. Let A, h�; �i, and h�

0

; �

0

i be given as des
ribed above. We prove the

theorem for ea
h of the three 
ases for t.

Let t = Y (6= X ; otherwise, the theorem is trivially true). Then

A

0

: = amgu(A;X; Y ) = A [ fX if fY g; Y if fXgg

By Proposition 4.5, �

0

= � Æ � with �

0

(X) = �

0

(Y ) and �

0

� �(�). We have to

show: h�

0

; �

0

i 2 
(A

0

).

1. Sin
e �

0

(X) = �

0

(Y ), var(�

0

(X)) = var(�

0

(Y )). Therefore, h�

0

; �

0

i satis�es

the variable 
onditions X if fY g and Y if fXg.

2. Z if V 2 A

0

\ A: Sin
e h�; �i 2 
(A), var(�(Z)) � var

�;�

(V ), whi
h implies

var(�

0

(Z)) � var

�

0

;�

0

(V ) by Proposition 4.5 and Lemmas 4.2 and 4.3.

3. y = f(t) 2 �

0

with y 2 dom(A

0

) = dom(A): Hen
e, there is a residuation

y = f(s) 2 � with �(s) = t. Sin
e h�; �i 2 
(A), f 2 A (whi
h is the trivial


ase) or f j

V

2 A with var(s) � var(�(V )). The latter 
ase implies f j

V

2 A

0

and var(t) = var(�(s)) � var(�(�(V ))) = var(�

0

(V )).
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Next, we 
onsider the 
ase t = 
(Y

1

; : : : ; Y

n

). Then

A

0

: = amgu(A;X; 
(Y

1

; : : : ; Y

n

))

= A [ fX if fY

1

; : : : ; Y

n

g; Y

1

if fXg; : : : ; Y

n

if fXgg

By Proposition 4.5, �

0

(X) = �

0

(
(Y

1

; : : : ; Y

n

)), whi
h implies var(�

0

(X)) =

var(�

0

(
(Y

1

; : : : ; Y

n

))). Therefore, h�

0

; �

0

i satis�es the variable 
onditions added

to A. The remaining 
onditions for h�

0

; �

0

i 2 
(A

0

) 
an be proved similarly to 
ase

t = Y .

Now, we 
onsider the �nal 
ase t = f(Y

1

; : : : ; Y

n

). Then

A

0

: = amgu(A;X; f(Y

1

; : : : ; Y

n

)) = A [ fX if fY

1

; : : : ; Y

n

g; f j

fY

1

;:::;Y

n

g

g

If �(f(Y

1

; : : : ; Y

n

)) is a ground fun
tion 
all, it is evaluated to a ground 
onstru
tor

term t

0

, and the uni�
ation algorithm simply adds the equation X = t

0

to the �rst


omponent of the equation system and the residuation 
omponent is not 
hanged.

Thus, Proposition 4.5 is appli
able and the 
orre
tness of amgu 
an be shown

similarly to 
ase t = Y .

Now, we assume that �(f(Y

1

; : : : ; Y

n

)) is not a ground fun
tion 
all. In this 
ase,

the uni�
ation algorithm simply adds the residuation X = �(f(Y

1

; : : : ; Y

n

)), i.e.,

�

0

= � and �

0

= � [ fX = �(f(Y

1

; : : : ; Y

n

))g. We have to show: h�

0

; �

0

i 2 
(A

0

).

1. X if fY

1

; : : : ; Y

n

g 2 A

0

: Sin
e X = �(f(Y

1

; : : : ; Y

n

)) 2 �

0

, var(�(X)) �

var

�;�

(fY

1

; : : : ; Y

n

g). Hen
e, this variable 
ondition is satis�ed by h�

0

; �

0

i.

2. Z if V 2 A

0

\ A: Sin
e h�; �i 2 
(A), var(�(Z)) � var

�;�

(V ), whi
h implies

var(�

0

(Z)) � var

�

0

;�

(V ) � var

�

0

;�

0

(V ).

3. y = f(t) 2 �

0

with y 2 dom(A

0

) = dom(A): If y = f(t) 2 �, then this

residuation must be 
overed by some element in A � A

0

. Otherwise, this

residuation must be the new element X = �(f(Y

1

; : : : ; Y

n

)) whi
h is 
overed

by the new abstra
tion element f j

fY

1

;:::;Y

n

g

2 A

0

.

2

Next, we prove that the abstra
t operations performed at the entry of a 
lause

are 
orre
t w.r.t. the 
on
rete semanti
s.

Theorem 4.2 (Corre
tness of Clause Entry). Let P = p(X

1

; : : : ; X

n

) be a predi
ate


all with abstra
tion A and h�; �i 2 
(A). Let L :-B be a (renamed) 
lause,

h�

0

; �

0

i be a uni�er 
omputed by the rules of Figure 2.1 w.r.t. h�; �i and the

equation L = P , and A

0

be the abstra
tion 
omputed by algorithm ai. Then

h�

0

; �

0

i 2 
(A

0

).

Proof. Let L = p(Z

1

; : : : ; Z

n

). First of all, note that the uni�er 
omputed for the

equation L = P is a trivial renaming sin
e Z

1

; : : : ; Z

n

are new di�erent variables.

Hen
e, �

0

= � and �

0

= � Æ � with � = fZ

1

7! X

1

; : : : ; Z

n

7! X

n

g (all other uni�ers

are renamings of this).

1. X if V 2 A

0

: By de�nition of 
all restri
t and ai, fXg [ V � fZ

1

; : : : ; Z

n

g

and �(X) if �(V ) 2 A. Sin
e h�; �i 2 
(A), var(�(�(X))) � var

�;�

(�(V )),

whi
h implies var(�

0

(X)) � var

�

0

;�

(V ) = var

�

0

;�

0

(V ) (note that �(�(Z

i

)) =

�

0

(Z

i

) for i = 1; : : : ; n).
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2. y = f(t) 2 �

0

with y 2 dom(A

0

): This 
ase 
annot o

ur sin
e dom(A

0

) =

fZ

1

; : : : ; Z

n

g [ var(B) whi
h is a set of new variables. Hen
e, �

0


annot


ontain a residuation 
onne
ted to one of these variables.

2

Next, we prove the 
orre
tness of the abstra
t 
lause exit operations, i.e., we

show that ea
h substitution/residuation pair whi
h may o

ur at the end of a 
lause

applied to a predi
ate 
all is 
overed by the abstra
t interpretation algorithm.

Theorem 4.3 (Corre
tness of Clause Exit). Let P = p(X

1

; : : : ; X

n

) be a predi
ate


all with abstra
tion A

in

6=? and h�

in

; �

in

i 2 
(A

in

). Let A = ai(A

in

; P ) =

A

su

ess

[ (A

in

� A


all

) be the abstra
tion after the predi
ate 
all 
omputed by

the abstra
t interpretation algorithm ai. Let L :-L

1

; : : : ; L

k

be a (renamed)


lause for P , and A

k

be the abstra
tion 
omputed for the 
lause end in ai.

If h�

k

; �

k

i 2 
(A

k

) is an extension of the initial substitution/residuation pair

h�

in

; �

in

i 
omputed by applying this 
lause, i.e., �

k

= � Æ �

in

with �(L) = �(P )

and �

k

= � [ �(�

in

), then h�

k

; �

k

i 2 
(A).

Proof. Let L = p(Z

1

; : : : ; Z

n

) and � = fX

1

7! Z

1

; : : : ; X

n

7! Z

n

g.

1. X if V 2 A: Hen
e, there are two 
ases:

� X if V 2 (A

in

� A


all

): Sin
e X if V 2 A

in

and h�

in

; �

in

i 2


(A

in

), var(�

in

(X)) � var

�

in

;�

in

(V ), whi
h implies var(�

k

(X)) �

var

�

k

;�(�

in

)

(V ) � var

�

k

;�

k

(V ) (by Lemma 4.2).

� X if V 2 A

su

ess

: Sin
e A

exit

v A

su

ess

, there is a set V

0

�

V with X if V

0

2 A

exit

. By de�nition of A

exit

, �(X) if �(V

0

) 2

A

k

and f�(X)g [ �(V

0

) � fZ

1

; : : : ; Z

n

g. Sin
e h�

k

; �

k

i 2 
(A

k

),

var(�

k

(�(X))) � var

�

k

;�

k

(�(V

0

)). Sin
e �

k

(L) = �

k

(P ), this implies

var(�

k

(X)) � var

�

k

;�

k

(V

0

) � var

�

k

;�

k

(V ).

2. y = f(t) 2 �

k

with y 2 dom(A): Sin
e variables from the 
lause are not


ontained in the domain of A, the residuation y = f(t) 
annot be added

during the pro
essing of the 
lause. Hen
e, y = f(t) 2 �(�

in

). Thus, there

is a residuation y = f(s) 2 �

in

with �(s) = t. Sin
e h�

in

; �

in

i 2 
(A

in

) and

X 2 dom(A) = dom(A

in

), f 2 A

in

(whi
h implies f 2 A) or f j

V

2 A

in

(whi
h implies f j

V

2 A) with var(s) � var(�

in

(V )). In the latter 
ase, we

have var(t) = var(�(s)) � var(�(�

in

(V ))) = var(�

k

(V )).

2

4.3. Corre
tness of the Abstra
t Interpretation Algorithm

In the previous se
tion, we have proved the lo
al 
orre
tness of the basi
 opera-

tions of the abstra
t interpretation algorithm. We 
an 
ombine these results into a


orre
tness proof for the whole algorithm by using Bruynooghe's framework [8℄. In

his framework, the abstra
t interpretation algorithm generates an abstra
t AND-

OR-tree whi
h represents all 
on
rete 
omputations. To avoid in�nite paths, this

tree is a rational AND-OR-tree, i.e., if a predi
ate 
all is identi
al to (a variant

of) a predi
ate 
all in an an
estor node, then this 
all node is identi�ed with the
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Figure 4.1. OR-node for 
lause entry.
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Figure 4.2. AND-node for a 
lause.

an
estor node. The monotoni
ity property of all abstra
t operations together with

the �nite domain avoids an in�nite 
omputation in this graph. Next, we will give

a more detailed des
ription of the abstra
t interpretation algorithm.

The abstra
t interpretation pro
edure generates the abstra
t AND-OR-graph

as follows. In the �rst step, the root is 
reated. It is marked with the initial

goal (w.l.o.g. we assume that the initial goal 
ontains only one literal) and the 
all

abstra
tion for this goal. Then, this initial graph is extended by 
omputing the

su

ess abstra
tion for this goal. The su

ess abstra
tion A

0

of an equation t = t

0

with 
all abstra
tionA is 
omputed by abstra
t uni�
ation, i.e., A

0

= amgu(A; t; t

0

).

To 
ompute the su

ess abstra
tion A

0

of a node with predi
ate 
all P and 
all

abstra
tion A, we distinguish the following 
ases:

1. There is no an
estor node with the same predi
ate 
all and the same 
all

abstra
tion (up to renaming of variables): First of all, we add an OR-node

as shown in Figure 4.1 (H

1

; : : : ; H

m

are the heads of all 
lauses for P ). A

in

i

is the 
all abstra
tion 
omputed by our abstra
t operations for the entry

of 
lause H

i

:- � � � (i.e., A

0

in algorithm ai in Se
tion 3.2). Then, for ea
h

new 
lause head H , an AND-node is added as shown in Figure 4.2 where

H :-L

1

; : : : ; L

k

is the 
orresponding 
lause. After 
opying the 
all abstra
-

tion of the head to the 
all abstra
tion of the �rst body literal (A

0

= A

in

),

the su

ess abstra
tion of ea
h literal in the 
lause body is 
omputed. Then

the su

ess abstra
tion A

out

of the entire 
lause is 
al
ulated by restri
ting

A

k

to the head variables (i.e., A

out

is identi
al to A

out

in algorithm ai in

Se
tion 3.2). When all su

ess abstra
tions of all 
lauses for the predi
ate


all P are 
omputed, they are renamed, 
ombined by the least upper bound

operation, and then 
ombined with the elements of A not 
ontained in the
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Figure 4.3. Re
ursive 
all: P is a renaming of P

0

and A

in

restri
ted to 
all P is a

renaming of A

0

in

restri
ted to 
all P

0

.


all abstra
tion of A (
ompare algorithm ai).

2. There is an an
estor node P

0

with the same predi
ate 
all and the same


all abstra
tion (up to renaming of variables) (Figure 4.3): Then the su

ess

abstra
tion of P

0

(A

0

out

without the elements of A

0

in

not passed to the 
all

P

0

, i.e., A

su

ess

in algorithm ai in Se
tion 3.2) is taken as the su

ess ab-

stra
tion of P (or ? if it is not available). The 
ombination of this su

ess

abstra
tion with the elements of A

in

not 
ontained in the 
all abstra
tion

of P yields A

out

(step 3 of algorithm ai), and we pro
eed with the abstra
t

interpretation pro
edure (i.e., we 
onne
t P to P

0

). If we rea
h the node

P

0

at some point during the further 
omputation and we 
ompute a su

ess

abstra
tion for P

0

whi
h di�ers from the old su

ess abstra
tion taken for P ,

we re
ompute the su

ess abstra
tions beginning at P where we take the new

su

ess abstra
tion of P

0

as new su

ess abstra
tion for P . The monotoni
-

ity property of the abstra
t operations and the �nite domain ensures that

this iteration terminates.

In [8℄, it is shown that this algorithm 
omputes a superset of all 
on
rete proof

trees if the abstra
t operations for built-ins (here: uni�
ation), 
lause entry, and


lause exit satisfy 
ertain 
orre
tness 
onditions. Theorems 4.1, 4.2, and 4.3 imply

exa
tly these 
orre
tness 
onditions. Hen
e, we 
an infer the 
orre
tness of our

abstra
t interpretation algorithm sin
e we 
onsider the same operational semanti
s

(left-to-right evaluation of goals), ex
ept for the di�erent notion of substitution and

uni�
ation (whi
h does not in
uen
e Bruynooghe's general framework).

There is one remaining problem with our abstra
t interpretation algorithm. Ini-

tially, we wanted to 
hara
terize a 
lass of residuating logi
 programs where all

residuations 
an be evaluated at run time. However, if we analyze a program



22

with our algorithm, the absen
e of elements of the form f and f j

V

in the su

ess

abstra
tion of the initial goal does not ne
essarily indi
ate that there are no un-

evaluated residuations at the end of the 
omputation. Due to the de�nition of our


on
retization fun
tion 
, it may be the 
ase that there are residuations 
onne
ted

to variables whi
h are lo
al to some 
lauses. The next theorem shows that this 
ase


annot o

ur sin
e all potential residuations are 
overed by our algorithm.

Theorem 4.4 (Completeness of Residuation Covering). Let L be a 
at literal with

abstra
tion A and A

0

= ai(A;L). Let h�

0

; ;i 2 
(A) and h�; �i 2 
(A

0

) be an

extension of h�; �i, i.e., � 
ontains the new residuations whi
h are added during

the exe
ution of L. If y = f(t) 2 � where t is not ground (i.e., it is a residuation

whi
h 
ould not be evaluated), then A

0


ontains an abstra
tion element of the

form f or f j

V

.

Proof. If y = f(t) 2 �, this residuation must be generated by exe
uting a 
lause


ontaining a residuation y = f(s) in the body. Sin
e all 
on
rete proof trees are

represented by the abstra
t rational AND-OR-tree 
omputed by the abstra
t in-

terpretation algorithm (
f. [8℄), this residuation must also be pro
essed by our

analysis algorithm whi
h inserts the element f j

var(s)

. From the de�nition of amgu,

exit restri
t, t, and ai, it is obvious that this delay element will never be deleted

in the subsequent (su

ess) abstra
tions. The only possibility to delete a delay

element is an appli
ation of a normalization rule, but this 
annot happen if t is

not ground due to the 
orre
tness of the normalization rules (Lemma 4.1). There-

fore, this delay element or a transformed version of it (by operation exit restri
t

or renaming) is 
ontained in A

0

. 2

Due to this theorem, our abstra
t interpretation algorithm 
hara
terizes a 
lass

of residuating logi
 programs (those 
ontaining no new elements of the form f

and f j

V

in the su

ess abstra
tion of the goal) for whi
h all residuations 
an be

evaluated at run time. A 
on
rete example for the 
onstru
tion of an abstra
t

AND-OR-tree will be shown in the next se
tion.

4.4. A Final Example

The following residuating logi
 program is an example for a re
ursive pro
edure

whi
h requires the 
onstru
tion of the abstra
t AND-OR-tree des
ribed in the pre-

vious se
tion. The following 
lauses de�ne a predi
ate sum(L,S) whi
h 
omputes

the sum S of a list of numbers L:

sum([℄,0).

sum([E|R℄,E+RS) :- sum(L,RS).

For instan
e, the exe
ution of the goal sum([1,3,5℄,S) yields the answer S=9. The


on
rete 
omputation is shown in the following table:
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A
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Figure 4.4. AND-OR-tree for the abstra
t interpretation of sum(L0,S0).

Goal Current Residuation Current Substitution

sum([1,3,5℄,S) ; ;

sum([3,5℄,RS1) fS=1+RS1g ;

sum([5℄,RS2) fS=1+RS1, RS1=3+RS2g ;

sum([℄,RS3) fS=1+RS1, RS1=3+RS2, RS2=5+RS3g ;

; ; fRS37!0, RS27!5,

RS17!8, S 7!9g

We want to show that the residuation prin
iple 
omputes a fully evaluated answer

for S for any given list of numbers L. In order to apply our abstra
t interpretation

algorithm, we transform the program into an equivalent 
at program:

sum(L,S) :- L=[℄, S=0.

sum(L,S) :- L=[E|R℄, S=E+RS, sum(L,RS).

The initial goal is sum(L0,S0) with abstra
tion fL0g, i.e., it is a predi
ate 
all

with a ground �rst argument. Our abstra
t interpretation algorithm applied to

this goal and abstra
tion generates the abstra
t AND-OR-tree shown in Figure 4.4.

We will see that the tree is �nite be
ause the literal sum(L,RS) together with the


all abstra
tion part of A

9

is a renaming of the root literal sum(L0,S0) together

with the 
all abstra
tion part of A

0

. In the following, we des
ribe the 
omputation

of the abstra
t interpretation algorithm and the evolving values of the abstra
tions

A

i

.

� A

0

= fL0g: The 
all abstra
tion of the root literal is the initial abstra
tion

of the goal.

� A

1

= fLg and A

6

= fLg: The root is an OR-node with two sons sin
e two


lauses 
an be applied to the literal sum(L0,S0). The entry abstra
tions for

these 
lauses are 
omputed from A

0

by 
all restri
t and renaming.

� A

2

= fLg: The entry abstra
tion of the 
lause is also the abstra
tion for the

�rst predi
ate 
all in the 
lause body.
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� A

3

= fLg: The abstra
tion A

2

is not modi�ed by abstra
t uni�
ation sin
e

L is already ground.

� A

4

= fL; Sg: S is added to the abstra
tion by abstra
t uni�
ation sin
e it

is bound to a ground term after this uni�
ation.

� A

5

= fL; Sg: The exit abstra
tion of this 
lause is the exit abstra
tion of

the last body literal restri
ted to the variables in the 
lause head.

� A

7

= fLg: The entry abstra
tion of the se
ond 
lause is also the abstra
tion

for the �rst predi
ate 
all in the 
lause body.

� A

8

= fL; E; Rg: The variables E and R are ground sin
e L is ground. This is


omputed by the abstra
t uni�
ation algorithm together with the normal-

ization rules.

� A

9

= fL; E; R; S if fRSg; +j

fRSg

g: The fun
tion 
all to + is added to the

abstra
tion. It 
annot be evaluated until the variable RS is ground.

� A

10

=?: The 
all abstra
tion part of A

9

is fLg (
ompare de�nition of


all restri
t). Hen
e, this predi
ate 
all is a renaming of the predi
ate 
all

at the root. Therefore, we take the value ? as the su

ess abstra
tion for this


all sin
e the su

ess abstra
tion of the root 
all is not yet known. However,

if the latter su

ess abstra
tion is available and di�erent from ?, we start a

re
omputation at this point.

� A

11

=?: The exit abstra
tion of the se
ond 
lause is the exit abstra
tion of

the last body literal.

� A

12

= fL0; S0g: The su

ess abstra
tion of the root predi
ate 
all is the

least upper bound of fL0; S0g and ? together with the elements of A

0

not


ontained in the 
all abstra
tion (a
tually, there are no su
h elements). Sin
e

the su

ess abstra
tion of the root 
all is now available and di�erent from

?, we restart the evaluation of the abstra
tion A

10

.

� A

10

= fL; RS; E; R; Sg: The new value of A

10

is 
omputed from the

new renamed su

ess abstra
tion of the root predi
ate 
all (fL; RSg) to-

gether with the elements of A

9

not 
ontained in the 
all abstra
tion giv-

ing fL; RS; E; R; S if fRSg; +j

fRSg

g. This abstra
tion, simpli�ed by the

normalization rules, is the new value of A

10

.

� A

11

= fL; Sg: The exit abstra
tion of the se
ond 
lause is the exit abstra
-

tion of the last body literal restri
ted to the variables in the 
lause head.

� A

12

= fL0; S0g: The su

ess abstra
tion of the root predi
ate 
all is the

least upper bound of the renamed exit abstra
tions A

5

and A

11

(whi
h are

identi
al). Sin
e the su

ess abstra
tion of the root 
all is identi
al to the

previous value, we need not restart the evaluation of the abstra
tion A

10

.

Hen
e, the abstra
t interpretation algorithm is �nished.

Sin
e the abstra
t interpretation algorithm has 
omputed the exit abstra
tion

fL0; S0g for the initial goal, we 
on
lude by the 
orre
tness of the abstra
t inter-

pretation algorithm and Theorem 4.4 that variable S0 is bound to a ground term,

and there are no unevaluable residuations at the end of a su

essful 
omputation.
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5. CONCLUSIONS AND RELATED WORK

In this paper, we have 
onsidered an operational me
hanism for the integration

of fun
tions into logi
 programs. This me
hanism, 
alled residuation, extends the

standard uni�
ation algorithm used in SLD-resolution by delaying uni�
ations be-

tween unevaluable fun
tion 
alls and other terms. If all variables of a delayed

fun
tion 
all are bound to ground terms, then this fun
tion 
all is evaluated in

order to verify the delayed uni�
ation. This residuation prin
iple yields a ni
e op-

erational behavior for many fun
tional logi
 programs, but has two disadvantages.

One problem is that the answer to a query may 
ontain unsolved and 
omplex resid-

uations for whi
h the user 
annot easily de
ide their solvability. A further problem

is that the sear
h spa
e of a residuating logi
 program 
an be in�nite in 
ontrast to

the equivalent logi
 program. This 
ase 
an o

ur if the residuation prin
iple gen-

erates more and more residuations whi
h are simultaneously not solvable. Hen
e,

it is important to 
he
k at 
ompile time whether or not this 
ase 
an o

ur at run

time. Sin
e this is unde
idable in general, we have presented an approximation to

this problem based on the abstra
t interpretation of residuating logi
 programs.

Our algorithm manages information about all possible residuations together with

their argument variables and the dependen
ies between di�erent variables in order

to 
ompute groundness information. Hen
e, the algorithm is able to infer whi
h

residuations 
an be 
ompletely solved at run time.

We 
an also interpret our algorithm as an attempt to 
ompile fun
tional logi


programs from languages with a 
omplete but often 
omplex operational semanti
s

(e.g., ALF [12℄, BABEL [23℄, EQLOG [11℄, or SLOG [10℄) into a more eÆ
ient

exe
ution me
hanism without loosing 
ompleteness. For this purpose, we 
he
k a

given fun
tional logi
 program by our algorithm. If the algorithm 
omputes an

abstra
tion 
ontaining no potential residuations, then we 
an safely exe
ute the

program with the residuation prin
iple, i.e., all valid answers are 
omputed by

the residuation prin
iple (provided that the 
omputation terminates). Otherwise,

we must apply the nondeterministi
 narrowing prin
iple to 
ompute all answers.

This method 
an also be applied to individual parts of the program so that some

parts are exe
uted using the residuation prin
iple and other parts are exe
uted by

narrowing. For instan
e, in order to avoid the termination problem in the \reverse"

example in Se
tion 1, we 
an 
he
k the solvability of the residuated fun
tion 
alls

by narrowing just before the re
ursive 
all to rev. Our algorithm 
an be simply

modi�ed to 
ompute the ne
essary information to de
ide at 
ompile time whether

there may be residuated fun
tions before re
ursive predi
ate 
alls at run time.

The operational semanti
s 
onsidered in this paper originates from Le Fun [3℄.

The uni�
ation pro
edure is very similar to S-uni�
ation [5℄. However, S-uni�
ation

immediately reports an error if some residuations 
annot be evaluated after the

uni�
ation of a literal with a 
lause head, e.g., the example programs in Se
tion 2

and 3.3 
annot be evaluated using S-uni�
ation. Therefore, Boye has extended this

framework to 
omputation with delayed residuations [7℄. He has also 
hara
terized

a 
lass of operationally 
omplete programs based on notions from attribute gram-

mars. Compared to our abstra
t interpretation pro
edure, Boye's 
hara
terization

is mainly based on the synta
ti
 stru
ture of the program, while we have tried to

approximate the operational behavior. Hen
e, we obtain positive results for pro-

grams where Boye's 
he
k fails, e.g., our method yields a positive answer to the


ompleteness question of the program
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p(A,A+A).

p(A+A,A).

w.r.t. the initial goal p(2+2,1+1), while Boye's 
he
k fails (sin
e there are external

fun
tors in input positions).

Marriott et al. [21℄ have also presented an abstra
t interpretation algorithm

for analyzing logi
 programs with delayed evaluation. The purpose of their work

was to 
he
k logi
 programs with negation for 
oundering, i.e., whether a delayed

evaluation of negated subgoals is 
omplete. This problem has similarities to our

residuation problem, but it is also very di�erent due to the following reasons:

1. A delayed evaluation of a negated literal 
annot bind any goal variables

sin
e this literal is evaluated if all arguments are ground. In our 
ontext, it

is important that a delayed evaluation of a residuation 
an bind variables

in order to enable the evaluation of other residuations (see the example

in Se
tion 3.3). Therefore, we have to manage the dependen
ies between

residuations and their variables in order to analyze the data 
ow in this


ase.

2. In our 
ontext, the terms 
ontain 
onstru
tors and fun
tion 
alls. The right

abstra
tion of these terms 
ompli
ates the 
orre
tness proofs of our algo-

rithm.

On the other hand, we 
annot analyze logi
 programs with delayed negation with

our algorithm (for instan
e, by de
laring all negated literals as fun
tions) sin
e we


onsider the evaluation of a ground fun
tion 
all as an atomi
 operation. However,

the evaluation of a negated literal may 
ause the evaluation of other negated literals,

i.e., it is not an atomi
 operation. Nevertheless, it would be interesting to extend our

algorithm to a more detailed analysis of fun
tion 
alls if the fun
tions are spe
i�ed

and evaluated in a parti
ular formalism (for instan
e, by 
onditional equations as

in ALF [12℄).

Sin
e we must restri
t all abstra
t information to a �nite domain, our algorithm


annot manage all dependen
ies between residuations and their variables. If a

residuation depends only on variables of one 
lause and these variables are bound

to ground terms at the end of the 
lause, the algorithm dete
ts the solvability of

the residuation. However, if a residuation depends on lo
al variables from di�erent


lauses, then the algorithm 
annot manage it, and simply infers the unsolvability

of this residuation. It would be interesting to improve the algorithm at this point

by re�ning the abstra
t domain.

Another interesting topi
 for further resear
h is the question of whether it is

possible to adapt our proposed method to the abstra
t interpretation of other logi


languages whi
h are not based on SLD-resolution with the leftmost sele
tion rule.

Su
h a method 
ould be applied to analyze the 
oundering problem of NU-Prolog

or to derive run-time properties of the Andorra 
omputation rule [17℄.
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