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Abstract

Functional logic languages with a sound and complete operational semantics are mainly
based on an inference rule called narrowing. Narrowing extends functional evaluation by
goal solving capabilities as in logic programming. Due to the huge search space of simple
narrowing, steadily improved narrowing strategies have been developed in the past. Needed
narrowing is currently the best narrowing strategy for first-order functional logic programs
due to its optimality properties w.r.t. the length of derivations and the number of computed
solutions. In this paper, we extend the needed narrowing strategy to higher-order functions
and λ-terms as data structures. By the use of definitional trees, our strategy computes
only independent solutions. Thus, it is the first calculus for higher-order functional logic
programming which provides for such an optimality result. Since we allow higher-order
logical variables denoting λ-terms, applications go beyond current functional and logic
programming languages. We show soundness and completeness of our strategy with respect
to LNT reductions, a particular form of higher-order reductions defined via definitional
trees. A general completeness result is only provided for terminating rewrite systems due
to the lack of an overall theory of higher-order reduction which is outside the scope of this
paper.

1 Introduction

Functional logic languages (Hanus, 1994) with a sound and complete operational

semantics are mainly based on narrowing. Narrowing, originally introduced in auto-

mated theorem proving (Slagle, 1974), is used to solve goals by finding appropriate

values for variables occurring in arguments of functions. A narrowing step instanti-

ates variables in a goal and applies a reduction step to a redex of the instantiated

goal. The instantiation of goal variables is usually computed by unifying a subterm

of the goal with the left-hand side of some rule.

1 A preliminary short version of this paper appeared in the Proceedings of the Seventh
International Conference on Rewriting Techniques and Applications (RTA’96), Springer
LNCS 1103, pp. 138–152, 1996. This work has been partially supported by the German
Research Council (DFG) under grant Ha 2457/1-1.

2 This work was mainly done during the author’s stay at the Technical University of
Munich.
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Example 1.1

Consider the following rules defining the less-or-equal predicate on natural numbers

which are represented by terms built from 0 and s:

0 ≤ X → true

s(X) ≤ 0 → false

s(X) ≤ s(Y ) → X ≤ Y

To solve the goal s(X) ≤ Y , we perform a first narrowing step by instantiating Y

to s(Y1) and applying the third rule, and a second narrowing step by instantiating

X to 0 and applying the first rule:

s(X) ≤ Y ;{Y 7→s(Y1)} X ≤ Y1 ;{X 7→0} true

Since the goal is reduced to true, the computed solution is {X 7→ 0, Y 7→ s(Y1)}.

Due to the huge search space of simple narrowing, steadily improved narrowing

strategies have been developed in the past. Needed narrowing (Antoy et al., 1994) is

based on the idea to evaluate only subterms which are needed in order to compute

some result. For instance, in a goal t1 ≤ t2, it is always necessary to evaluate t1 (to

some head normal form) since all three rules in Example 1.1 have a non-variable first

argument. On the other hand, the evaluation of t2 is only needed if t1 is of the form

s(· · ·). Thus, if t1 is a free variable, needed narrowing instantiates it to a constructor,

here 0 or s. Depending on this instantiation, either the first rule is applied or the

second argument t2 is evaluated. Needed narrowing is the currently best narrowing

strategy for first-order functional logic programs due to its optimality properties

w.r.t. the length of derivations and the number of computed solutions (Antoy et al.,

1994). Since needed narrowing is defined for inductively sequential rewrite systems

(Antoy, 1992) (these are constructor-based rewrite systems with discriminating left-

hand sides, i.e., typical functional programs), it can be efficiently implemented by

pattern-matching and unification due to its local computation of a narrowing step

(see, e.g., (Antoy, 1996; Hanus, 1995; Loogen et al., 1993)).

On ground terms, needed narrowing falls back to the classical notion of “needed

reduction” in the sense of Huet and Lévy (1991). Evaluation by needed narrowing

has also some similarities to pattern matching and lazy evaluation in functional

languages like Haskell (Hudak et al., 1992) or Miranda (Peyton Jones, 1987). Note,

however, that needed narrowing or needed reduction is a more powerful evaluation

strategy than the simpler left-to-right pattern matching in current functional lan-

guages. For instance, consider the rules

f(0, 0) → 0

f(X, s(N)) → 0

and a non-terminating function ⊥. Since only the evaluation of the second argument

of f is needed in order to apply a reduction rule, needed narrowing does not evaluate

the first argument of the function call f(⊥, s(0)). Thus, needed narrowing reduces

this expression to 0, in contrast to Miranda or Haskell which do not terminate

on this function call. In general, needed narrowing/rewriting always computes a

normal form if it exists (Antoy, 1992).
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In this paper, we extend the needed narrowing strategy to higher-order func-

tions and λ-terms as data structures (the idea to use λ-terms as data structures

stems from λProlog (Nadathur & Miller, 1988)). In contrast to current functional

languages, we permit free (existentially quantified) variables and λ-abstractions

in expressions, and the latter also in left-hand sides of rewrite rules. This allows

one to manipulate objects, such as formulas and programs, whose representation

requires structures containing abstractions or bound variables. For instance, this

has interesting applications in the verification and synthesis of software and hard-

ware (Prehofer, 1995b; Prehofer, 1996; Prehofer, 1997). Furthermore, universally

quantified goals are possible, as a goal ∀x.s = ∀x.t is equivalent to λx.s = λx.t.

As a simple example of such higher-order functional logic programs, we define

the differential of a function at some point.

Example 1.2

Consider the following rules defining a higher-order function diff, where diff(F, X)

computes the differential of F at X (we abbreviate s(0) by 1):

diff(λy.y, X) → 1

diff(λy.sin(F (y)), X) → cos(F (X)) ∗ diff(λy.F (y), X)

diff(λy.ln(F (y)), X) → diff(λy.F (y), X)/F (X)

With these rules, we can compute the differential of the double application of the

function sin:

λx.diff(λy.sin(sin(y)), x) → λx.cos(sin(x)) ∗ diff(λy.sin(y), x)

→ λx.cos(sin(x)) ∗ cos(x) ∗ diff(λy.y, x)

→ λx.cos(sin(x)) ∗ cos(x) ∗ 1

Since we also allow free variables in expressions which are solved by narrowing, our

calculus is able to synthesize new functions satisfying some goal. For instance, the

equation

λx.diff(λy.sin(F (x, y)), x) = λx.cos(x)

is solved by instantiating the higher-order variable F by the projection function

λx, y.y.

The interesting point in this example is the structure of the left-hand side of the

rules. In order to apply a rule for diff, the first argument must always be evaluated

to the form λy.v(· · ·) with v ∈ {y, sin, ln}, whereas the second argument can be

arbitrary. In this sense, the first argument of diff is needed in contrast to the second.

This property provides an efficient evaluation strategy similar to the first-order case.

To summarize, the main contributions of this paper are as follows.

• We introduce a class of higher-order inductively sequential rewrite rules which

can be defined via definitional trees. Although this class is a restriction of gen-

eral higher-order rewrite systems, it covers higher-order functional languages.

• As higher-order rewrite steps can be expensive in general, we show that finding

a redex with inductively sequential rules can be performed as in the first-order

case. Furthermore, so-called flex-flex pairs do not have to be considered in this

case, in contrast to general higher-order unification.
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• Since our narrowing calculus LNT is oriented towards previous work on

higher-order narrowing (Prehofer, 1997), we show that LNT coincides with

needed narrowing in the first-order case. Note that steps of classic narrowing

strategies (e.g., (Hullot, 1980; Slagle, 1974)) are defined as a variable instan-

tiation followed by the reduction of some subterm, whereas more recent lazy

narrowing strategies (Hölldobler, 1989; Ida & Nakahara, 1997; Martelli et al.,

1989; Middeldorp et al., 1996; Nakahara et al., 1995) manipulate equation sys-

tems in the style of Martelli and Montanari’s unification algorithm (Martelli

& Montanari, 1982) and always reduce outermost function symbols instead

of subterms. Thus, we present, for the first time, a needed narrowing calculus

in the Martelli/Montanari style and show its equivalence with the original

formulation. This leads to a better understanding and a formal comparison

of the different calculi. In contrast to (Ida & Nakahara, 1997; Middeldorp

et al., 1996), we integrate the pattern matching into the narrowing steps via

definitional trees. As a consequence, our calculus is completely deterministic

on ground terms, whereas (Ida & Nakahara, 1997; Middeldorp et al., 1996)

implement pattern matching by non-deterministic search.

• For the higher-order case, we show soundness and completeness with respect

to LNT reductions, a particular form of higher-order reductions which we

define via definitional trees. A general completeness result w.r.t. arbitrary

reduction would be interesting but is outside the scope of this paper, since

an overall theory of higher-order needed reduction has not been developed up

to now. Nevertheless, we strongly conjecture that LNT reductions are in fact

normalizing which is witnessed by the following facts:

— LNT reductions are needed for reduction to a constructor normal form.

— LNT reductions fall back to (first-order) needed reductions, which are

known to be normalizing (Huet & Lévy, 1991), if the higher-order features

are not used.

For terminating higher-order inductively sequential rewrite systems, we show

that LNT reductions compute a ground constructor normal form, if one exists.

This implies a general completeness result for our strategy w.r.t. arbitrary re-

duction. Note that termination is also required for other higher-order narrow-

ing calculi (Prehofer, 1997). In the context of functional logic languages, the

definition of infinite data structures does not need non-terminating rules be-

cause infinite data structures can also be defined by terminating rules and the

use of existential variables (see (Prehofer, 1997), Section 8.1.5). Nevertheless,

a demand-driven evaluation strategy like ours is also useful for terminating

rewrite systems since it evaluates subterms only when needed.

• We show that the calculus is optimal w.r.t. the solutions computed, i.e., no

solution is produced twice. Since optimality of higher-order needed reduc-

tions is subject of current research, we show that LNT reductions are in fact

needed for reduction to a constructor normal form. Thus, this strategy is the

first calculus for higher-order functional logic programming which provides

for optimality results. Moreover, it falls back to the optimal needed narrow-
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ing strategy if the higher-order features are not used, i.e., our calculus is a

conservative extension of an optimal first-order narrowing calculus.

• Since we allow higher-order logical variables denoting λ-terms (similar to

λProlog (Nadathur & Miller, 1988) or Escher (Lloyd, 1994)), applications

go beyond current functional and logic programming languages. In general,

our calculus can compute solutions for variables of functional type. Although

this is very powerful, we show that the incurring higher-order unification can

sometimes be avoided by techniques similar to (Avenhaus & Loŕıa-Sáenz,

1994).

After recalling basic notions from the λ-calculus and term rewriting, we relate in

Section 3 the original first-order needed narrowing calculus with the lazy narrowing

calculus LNT in the style of Martelli and Montanari and show the equivalence of

both calculi. Section 4 introduces higher-order inductively sequential rewrite sys-

tems and the extension of our calculus LNT to such programs is shown in Section 5.

We proof soundness and completeness results in Section 6 and an optimality result

in Section 7. Finally, Section 8 discusses criteria to avoid the sometimes operation-

ally complex higher-order unification features of LNT.

2 Preliminaries

We briefly introduce the simply typed λ-calculus (see e.g. (Hindley & Seldin, 1986)).

The set of types T for the simply typed λ-terms is generated by a set T0 of base

types (e.g., int, bool) and the function type constructor →. Note that → is right-

associative, i.e., α → β → γ = α → (β → γ). We assume for all types τ ∈ T a set of

variables Vτ and a set of (function) constants Cτ , where Vτ ∩ Vτ ′ = Cτ ∩ Cτ ′ = {}
for τ 6= τ ′. If f ∈ Cτ1→···→τn→τ0 where τ0 ∈ T0, then we call n the arity of f . We

assume the following variable conventions:

• F, G, H, P, X, Y denote free variables,

• a, b, c, f, g (function) constants, and

• x, y, z bound variables.

Further, we often use s and t for terms and u, v, w for constants or bound variables.

The syntax for λ-terms is given by

t = F | x | c | λx.t | (t1 t2)

Type judgments are written as t : τ . The following inference rules inductively define

the set of simply typed λ-terms.

x ∈ Vτ
x : τ

c ∈ Cτ
c : τ

s : τ → τ ′ t : τ
(s t) : τ ′

x : τ s : τ ′

(λx.s) : τ → τ ′

In the following, we only consider simply typed λ-terms (substitutions, equations

etc). We write λx1, x2, . . . , xn.t for λx1.(λx2. . . . (λxn.t) . . .). A list of syntactic
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objects s1, . . . , sn where n ≥ 0 is abbreviated by sn. For instance, n-fold ab-

straction and application are written as λxn.s = λx1, . . . , xn.s and a(sn) =

((· · · (a s1) · · ·) sn), respectively. Substitutions are finite mappings from vari-

ables to terms, denoted by {Xn 7→ tn}, and extend homomorphically from vari-

ables to terms. The composition ϕσ of two substitutions ϕ and σ is defined as

(ϕσ)(t) = ϕ(σ(t)). Free and bound variables of a term t will be denoted as FV(t)

and BV(t), respectively. A term t is ground if FV(t) = {}. The conversions in

λ-calculus are defined as (where {x 7→ y}t denotes the result of replacing every

free occurrence of x in t by y):

• α-conversion: λx.t =α λy.({x 7→ y}t) if y 6∈ FV(t),

• β-conversion: (λx.s)t =β {x 7→ t}s, and

• η-conversion: λx.(tx) =η t if x /∈ FV(t).

The long βη-normal form (Nipkow, 1991) of a term t, denoted by tlη
β , is the η-

expanded form of the β-normal form of t. It is well known (Hindley & Seldin, 1986)

that s =αβη t iff slη
β =α tlη

β . As long βη-normal forms exist for typed λ-terms, we

will in general assume that terms are in long βη-normal form. For brevity, we may

write variables in η-normal form, e.g., X instead of λxn.X(xn). We assume that

the transformation into long βη-normal form is an implicit operation, e.g., when

applying a substitution to a term.

A substitution θ is in long βη-normal form if all terms in the image of θ are in

long βη-normal form. The convention that α-equivalent terms are identified and

that free and bound variables are kept disjoint (see also (Barendregt, 1984)) is

used in the following. Furthermore, we assume that bound variables with different

binders have different names.

Define Dom(θ) = {X | θX 6= X} and Rng(θ) =
⋃

X∈Dom(θ) FV(θX). Two

substitutions are equal on a set of variables W , written as θ =W θ′, if

θX = θ′X for all X ∈ W . The restriction of a substitution to a set of variables W

is defined as θ|W X = θX if X ∈ W and θ|W X = X otherwise. A substitution θ

is idempotent iff θ = θθ. A substitution θ′ is more general than θ over a set of

variables W , written as θ′ ≤W θ, if θ =W σθ′ for some substitution σ. Two terms s

and t are unifiable if there exists a substitution σ, also called a unifier for s and

t, with σs = σt. A unifier σ for s and t is called most general if for each other

unifier σ′ for s and t there exists a substitution ϕ with σ′ = ϕσ.

We describe positions in λ-terms by sequences over natural numbers. The sub-

term of s at position p, written as s|p, is defined as

• s|ǫ = s

• v(tm)|i.p = ti|p if 1 ≤ i ≤ m

• λxm.t|1.p = (λx2, . . . , xm.t)|p
• undefined otherwise

A term t with the subterm at position p replaced by s is written as t[s]p.

A term t in β-normal form is called a higher-order pattern if every free occur-

rence of a variable F is in a subterm F (un) of t such that the un are η-equivalent

to a list of distinct bound variables. Unification of patterns is decidable and a most
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general unifier exists if they are unifiable (Miller, 1991). Examples of higher-order

patterns are λx, y.F (x, y) and λx.f(G(λz.x(z))), where the latter is at least third-

order. Non-patterns are for instance λx, y.F (a, y) and λx.G(H(x)).

A rewrite rule (Nipkow, 1991) is a pair l → r such that l is a higher-order

pattern but not a free variable, l and r are long βη-normal forms of the same base

type, and FV(l) ⊇ FV(r). Assuming a rule l → r and a position p in a term s in

long βη-normal form, a rewrite step from s to t is defined as

s −→l→r
p,θ t ⇔ s|p = θl ∧ t = s[θr]p .

For a rewrite step we often omit some of the parameters l → r, p and θ. It is a

standard assumption in functional logic programming that constant symbols are

divided into free constructor symbols and defined symbols. A symbol f is called

a defined symbol or operation, if a rule f(· · ·) → t exists. A constructor term

is a term without defined symbols. Constructor symbols and constructor terms

are denoted by c and d. A term f(tn) is called operation-rooted (respectively

constructor-rooted) if f is a defined symbol (respectively constructor). A higher-

order rewrite system (HRS) R is a set of rewrite rules. A term is in R-normal

form if no rule from R applies and a substitution θ is R-normalized if all terms

in the image of θ are in R-normal form.

By applying rewrite steps, we can compute the value of a functional expression.

Similarly to current functional languages, we consider only (first-order) constructor

terms (and not arbitrary normal forms) as values which can be observed by the

user. To simplify our calculi, we consider only the evaluation of expressions to 0-

ary constructor constants, i.e., an evaluation of a term t has the form t → · · · → c

where c is a 0-ary constructor. In the presence of free variables, it might be necessary

to compute values for these free variables such that the instantiated expression is

reducible. This can be done by narrowing which will be precisely defined in the

following sections.

This notion of evaluation to 0-ary constructors is general enough to cover a variety

of different evaluation tasks occurring in functional logic languages. For instance,

if we are interested in the reduction of an expression to a constructor term c, we

add the rule f(c) → ok, where f and ok are new symbols. Then, t is reducible to

c iff f(t) is reducible to the constructor ok. For instance, the equation shown in

Example 1.2 above can be solved by adding the rule

f(λx.cos(x)) → ok

and evaluating the term f(λx.diff(λy.sin(F (x, y)), x)). If this term is evaluated (by

narrowing) to ok, then the computed binding for the free variable F is a solution

of the equation.

When we are interested to evaluate expressions to (first-order) ground constructor

terms, we could add new symbols true, ∧, and ground (more precisely, one ground

symbol for each base type), together with the following rules, where ∧ is assumed

to be a right-associative infix symbol, and c is a constructor of arity 0 in the first

rule and arity n > 0 in the second rule. Then, t is reducible to a first-order ground
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constructor term s if ground(t) is reducible to true.

ground(c) → true

ground(c(X1, . . . , Xn)) → ground(X1) ∧ · · · ∧ ground(Xn)

true ∧ X → X

Finally, we can use a similar technique to cover the equation solving capabilities

of current functional logic languages with a lazy operational semantics, like BA-

BEL (Moreno-Navarro & Rodŕıguez-Artalejo, 1992) or K-LEAF (Giovannetti et al.,

1991), since the strict equality “≈” (t1 ≈ t2 holds if t1 and t2 are reducible to a

same ground constructor term) can be defined as a binary operation by a set of

orthogonal rewrite rules. For this purpose, consider a family of (infix) symbols ≈
(one operation for each base type) defined by the following rules (as above, c is a

constructor of arity 0 in the first rule and arity n > 0 in the second rule):

c ≈ c → true

c(X1, . . . , Xn) ≈ c(X1, . . . , Xn) → (X1 ≈ Y1) ∧ · · · ∧ (Xn ≈ Yn)

true ∧ X → X

A strict equation is valid if it can be rewritten to true with these rules (see (Antoy

et al., 1994; Giovannetti et al., 1991; Moreno-Navarro & Rodŕıguez-Artalejo, 1992)

for more details about strict equality, where in (Moreno-Navarro & Rodŕıguez-

Artalejo, 1992) additional rules for disequalities are added to derive the result false

for an equation). Note that normal forms may not exist in general due to non-

terminating rewrite rules. As a particular case, a first-order ground constructor

normal form of an expression t can be computed by solving the equation t ≈ X

where X is a free variable, since t ≈ s is reducible to true iff t and s are reducible

to a same ground constructor term (see (Antoy et al., 1994), Proposition 1).

This interpretation of equality in goals is also taken in functional logic languages

with higher-order features (e.g., (González-Moreno et al., 1992) proposes a slightly

extended definition without explicit rewrite rules). Although this explicit definition

of strict equality only supports equalities between first-order terms, higher-order

terms (i.e., functions) can occur in data structures as long as these data structures

are not checked for equality. For instance, it is possible in our framework to com-

pute the length of a list of functions since the functional elements do not occur

in the result of this computation. Furthermore, higher-order terms may occur as

arguments in the left-hand sides of rewrite rules so that new functions may be

synthesized by our higher-order narrowing strategy (in contrast to current purely

functional languages), as shown in Example 1.2.

We often consider a goal as an expression of Boolean type that should be re-

duced to the constant true. A substitution σ is a solution of a goal G iff σ(G)

can be rewritten to true. Note, however, that we will present our soundness and

completeness results for more general terms rather than goals.

Notice that a subterm s|p may contain free variables which used to be bound in

s. For rewriting it is possible to ignore this, as only matching of a left-hand side of

a rewrite rule is needed. For narrowing, we need unification and hence we use the

following construction to lift a rule into a binding context. An xk-lifter of a term
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t away from W is a substitution σ = {F 7→ (ρF )(xk) | F ∈ FV(t)} where ρ is a

renaming such that Dom(ρ) = FV(t), Rng(ρ)∩W = {} and ρF : τ1 → · · · → τk →
τ if x1 : τ1, . . . , xk : τk and F : τ . A term t (rewrite rule l → r) is xk-lifted if an

xk-lifter has been applied to t (l and r). For example, {G 7→ G′(x)} is an x-lifter

of g(G) away from any W not containing G′.

3 First-Order Definitional Trees

Definitional trees are introduced in (Antoy, 1992) to define efficient normalization

strategies for (first-order) term rewriting. The idea is to represent all rules for a

defined symbol in a tree and to control the selection of the next redex by this

tree. This technique is extended to narrowing in (Antoy et al., 1994) where it is

shown that a narrowing strategy based on definitional trees is optimal in the length

of narrowing derivations and the number of computed solutions. We will extend

definitional trees to the higher-order case in order to obtain a similar strategy for

higher-order narrowing. To state a clear relationship between the first-order and

the higher-order case, we review the first-order case in this section and present the

needed narrowing calculus in a new form, which is more appropriate with regard to

the extension to the higher-order case. Thus, we assume in this section that all terms

are first-order, i.e., λ-abstractions, functional variables and partial applications

(i.e., applications to less arguments than the arity of a symbol, which correspond

to λ-abstractions after η-expansion) do not occur.

A traditional narrowing step (Hanus, 1994) is defined by computing a most gen-

eral unifier of a subterm of the current term and the left-hand side of a rewrite

rule, applying this unifier to the current term and replacing the subterm by the

instantiated right-hand side of the rule. More precisely, a term t is narrowed into

a term t′ if there exist a non-variable position p in t (i.e., t|p is not a free variable),

a variant l → r of a rewrite rule with FV(t) ∩ FV(l → r) = {} and a most general

unifier σ of t|p and l such that t′ = σ(t[r]p). In this case we write t ;σ|FV(t)
t′

(since we are interested only in the instantiation of the goal variables, we omit the

bindings of the other local variables in the narrowing steps). We write t0 ;
∗
σ tn if

there is a narrowing derivation t0 ;σ1 t1 ;σ2 · · · ;σn
tn with σ = σn · · ·σ2σ1.

In order to compute all solutions by narrowing, we have to apply all rules at all

non-variable subterms in parallel. Since this simple method leads to a huge and

often infinite search space, many improvements have been proposed in the past

(see (Hanus, 1994) for a survey). A narrowing strategy determines the position

where the next narrowing step should be applied. As shown in (Antoy et al., 1994),

an optimal narrowing strategy can be obtained by dropping the requirement for

computing a most general unifier in each narrowing step and controlling the in-

stantiation of variables and selection of narrowing positions by a data structure,

called definitional tree. For instance, consider the rules of Example 1.1 together

with the rule

f(0) → 0

and the goal X ≤ f(Y ). The second argument f(Y ) needs only to be evaluated if
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X is bound to a term of the form s(· · ·). Therefore, needed narrowing instantiates

X either to 0 (and reduces the goal to true without evaluating f(Y )) or to s(Z). In

the latter case, f(Y ) must be evaluated. However, the resulting needed narrowing

step

X ≤ f(Y ) ;{X 7→s(Z),Y 7→0} s(Z) ≤ 0

is not a traditional narrowing step with a most general unifier. On the other hand,

traditional lazy narrowing (Moreno-Navarro & Rodŕıguez-Artalejo, 1992) narrows

the second argument f(Y ) since it is a demanded argument and binds in the sub-

sequent narrowing step X , i.e., the derivation

X ≤ f(Y ) ;{Y 7→0} X ≤ 0 ;{X 7→0} true

is a lazy narrowing derivation in the sense of (Moreno-Navarro & Rodŕıguez-

Artalejo, 1992) which unnecessarily evaluates the subterm f(Y ). Thus, this de-

rivation is not optimal.

To provide a precise definition of this needed narrowing strategy, we first recall

the notion of a definitional tree (the following definition slightly differs from Antoy’s

(1992) original definition since we ignore exempt nodes). T is a definitional tree

with pattern π (where π has the form f(tn) with f defined symbol and tn con-

structor terms and each variable in π occurs only once) iff its depth is finite and

one of the following cases holds:

T = rule(l → r), where l → r is a variant of a rule in R such that l = π.

T = branch(π, o, Tk), where o is an occurrence of a variable in π, ck are pairwise

different constructors of the type of π|o (k > 0), and, for i = 1, . . . , k, Ti is a

definitional tree with pattern π[ci(Xni
)]o, where ni is the arity of ci and Xni

are

new distinct variables.

We denote by pat(T ) the pattern of the definitional tree T . A definitional tree

of an n-ary function f is a definitional tree T with pattern f(Xn), where Xn are

distinct variables, such that, for each rule l → r ∈ R with l = f(tn), there is a

node rule(l′ → r′) in T with l → r variant of l′ → r′. For instance, the rules in

Example 1.1 can be represented by the following definitional tree:

branch(X ≤ Y, 1, rule(0 ≤ Y → true),

branch(s(X ′) ≤ Y, 2, rule(s(X ′) ≤ 0 → false),

rule(s(X ′) ≤ s(Y ′) → X ′ ≤ Y ′)))

This tree can be illustrated by the following picture:
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0 ≤ Y → true s(X ′) ≤ Y

s(X ′) ≤ 0 → false s(X ′) ≤ s(Y ′) → X ′ ≤ Y ′

X ≤ Y
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A definitional tree starts always with the most general pattern f(Xn) for a defined

symbol f and branches on the instantiation of a variable to constructor-headed

terms, here 0 and s(X ′). It is essential that each rewrite rule occurs only once as a

leaf of the tree. Thus, when evaluating the arguments of a term f(tn) to constructor

terms, the tree can be incrementally traversed to find the matching rule.

A function f is called inductively sequential if there exists a definitional tree

of f . The term rewriting system R is called inductively sequential if each function

defined by R is inductively sequential. Thus, inductively sequential rewrite rules are

a subclass of constructor-based orthogonal rewrite systems which are appropriate

to reflect current (first-order) functional languages.

3.1 Narrowing with Definitional Trees

A definitional tree defines a strategy to evaluate functions by applying narrowing

steps. Since there may exist more than one definitional tree for a given function,

we assume in the following that a definitional tree is fixed for each function, i.e.,

we talk about the definitional tree of a function. Note that the soundness and

completeness results are independent of the chosen definitional trees. Different trees

may only influence the failure behavior of needed narrowing. An algorithm for the

construction of definitional trees can be found in (Hanus, 1997).

To narrow a term t, we consider the definitional tree T of the outermost function

symbol of t (note that, since we consider only evaluations to 0-ary constructors, the

outermost symbol of a term to be evaluated is always a defined function).

T = rule(l → r): Apply rule l → r to t (note that t is always an instance of l).

T = branch(π, o, Tk): Consider the subterm t|o.

1. If t|o has a function symbol at the top, we narrow this subterm (to a term

without a defined symbol at the top) by recursively applying our strategy to

t|o.
2. If t|o has a constructor symbol at the top, we narrow t with Tj , where the

pattern of Tj matches t, otherwise (if no pattern matches) we fail.

3. If t|o is a variable, we non-deterministically select a subtree Tj , unify t with
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the pattern of Tj (i.e., t|o is instantiated to the constructor of the pattern of

Tj at position o), and narrow this instance of t with Tj .

For instance, consider the rules of Example 1.1 and the goal 0 ≤ f(Z). Since

the definitional tree of ≤ is a branch on the first argument and the actual first

argument is the constructor 0, we proceed the evaluation of 0 ≤ f(Z) with the

subtree rule(0 ≤ Y → true), which is the only subtree whose pattern matches the

goal. Since this subtree is a rule, we apply the rule (without evaluating f(Z)) and

obtain the result true.

This strategy, called needed narrowing (Antoy et al., 1994), is the currently

best narrowing strategy due to its optimality w.r.t. the length of derivations (if

terms are shared) and the number of computed solutions.

A formal description of this strategy in terms of an inference system is shown in

Figure 1. If we want to narrow the operation-rooted term t to some constructor, we

apply inference steps to the term t until we obtain the constructor or we fail.3 An

Eval-goal is any sequence obtained from such an initial goal by applying inference

steps of this calculus. The inference rule Initial decorates the initial term with the

appropriate definitional tree. If this tree is a rule, then the inference rule Apply

applies an instance of this rule to the current term. Select selects the appropri-

ate subtree of the current definitional tree, and Instantiate non-deterministically

selects a subtree of the current definitional tree and instantiates the variable at

the current position to the appropriate pattern. The rule Eval Subterm initiates

the evaluation of the subterm at the current position by creating a new Eval-goal

for this subterm. As in proof procedures for logic programming, we assume that

we take a definitional tree with fresh variables in each such evaluation step. This

implies that all computed substitutions are idempotent (we will implicitly assume

this property in the following). If a rewrite rule has been applied to this subterm

(by inference rule Apply), the rewritten subterm is inserted at the current position

by the inference rule Replace Subterm.

Example 3.1

Consider the rules of Example 1.1 and the initial goal s(X) ≤ Y . The following

derivation shows the computation of the answer {X 7→ 0, Y 7→ s(Y2)} in the needed

narrowing calculus. In contrast to traditional narrowing steps, where a subterm is

directly unified with the left-hand side of some rewrite rule, the derivation steps in

the needed narrowing calculus explicitly show the selection of the subterm and the

instantiation of the goal variables.

s(X) ≤ Y

⇒Initial

Eval(s(X) ≤ Y, branch(X1 ≤ Y1, 1, rule(· · ·), branch(s(X2) ≤ Y1, . . .)))

3 This description of needed narrowing is slightly different than in (Antoy et al., 1994)
but more appropriate for the subsequent proofs. In (Antoy et al., 1994), the term to be
narrowed is always traversed from the root to the narrowing position in each narrowing
step, whereas the traversal is represented here by a sequence of Eval-goals.
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Initial

t ⇒{} Eval(t,T )

if t = f(tn) and T is the definitional tree of f

Apply

Eval(t, rule(l → r)), G ⇒{} σ(r),G

if σ(l) = t

Select

Eval(t, branch(π, o, Tk)), G ⇒{} Eval(t,Ti), G

if t|o = c(tn) and pat(Ti)|o = c(Xn)

Instantiate

Eval(t, branch(π, o, Tk)), G ⇒σ σ(Eval(t,Ti), G)

if t|o = X (variable) and σ = {X 7→ pat(Ti)|o}

Eval Subterm

Eval(t, branch(π, o, Tk)), G ⇒{} Eval(t|o, T ), Eval(t, branch(π, o, Tk)),G

if t|o = f(tn) and T is the definitional tree of f

Replace Subterm

t′, Eval(t, branch(π, o, Tk)), G ⇒{} Eval(t[t′]o, branch(π, o, Tk)), G

if t′ 6= Eval(. . . , . . .)

Fig. 1. Calculus for needed narrowing

⇒Select

Eval(s(X) ≤ Y, branch(s(X2) ≤ Y1, 2, rule(s(X2) ≤ 0 → false),

rule(s(X2) ≤ s(Y2) → X2 ≤ Y2)))

⇒{Y 7→s(Y2)}
Instantiate

Eval(s(X) ≤ s(Y2), rule(s(X2) ≤ s(Y2) → X2 ≤ Y2))

⇒Apply

X ≤ Y2

⇒Initial

Eval(X ≤ Y2, branch(X3 ≤ Y3, 1, rule(0 ≤ Y3 → true), branch(s(X4) ≤ Y3, . . .)))

⇒{X 7→0}
Instantiate

Eval(0 ≤ Y2, rule(0 ≤ Y3 → true)) ⇒Apply true

3.2 Narrowing with Case Expressions

In order to extend this strategy to higher-order functions, another representation

is useful since an explicit representation of the structure of definitional trees in the

rewrite rules provides more explicit control which leads to a simpler calculus. Also,

it is shown in (Prehofer, 1994) that the direct application of narrowing steps to

inner subterms should be avoided in the presence of λ-bound variables. This new

representation will lead to an interesting comparison of needed rewrite sequences

and leftmost outermost rewriting with case expressions.
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For this purpose we transform the needed narrowing calculus into a lazy narrow-

ing calculus in the spirit of Martelli/Montanari’s inference rules. In a first step, we

integrate the definitional trees into the rewrite rules by extending the language of

terms and by providing case constructs to express the concrete narrowing strategy.

A case expression has the form

case X of c1(Xn1) : X1, . . . , ck(Xnk
) : Xk

where X is a variable, c1, . . . , ck are different constructors of the type of X , and

X1, . . . ,Xk are terms possibly containing case expressions. The variables Xni
are

called pattern variables and are local variables which occur only in the corres-

ponding subexpression Xi.

Using case expressions, each inductively sequential function symbol can be

defined by exactly one rewrite rule, where the left-hand side consists always of

the function symbol applied to different variables and the right-hand side is a rep-

resentation of the corresponding definitional tree by case expressions. For instance,

the rules for the function ≤ defined in Example 1.1 are represented by the following

rewrite rule:

X ≤ Y → case X of 0 : true,

s(X1) : case Y of 0 : false,

s(Y1) : X1 ≤ Y1

Although this is not a rewrite rule in the traditional sense (due to the fresh pattern

variables), we will provide a unique operational reading by specifying a particular se-

mantics to case expressions. A case expression can be considered as a function sym-

bol whose semantics is defined by a set of rewrite rules. For instance, the last case ex-

pression is considered as a function of arity 5 (“case(X, 0, true, s(X1), case(Y, . . .))”,

but we still use the mixfix notation in this paper) together with the following rewrite

rules (where “ ” denotes an arbitrary anonymous variable):

case 0 of 0 :T , : → T

case s(X) of : , s(X) :T → T

Although the left-hand side of the last rule is not linear, the multiple occurrence

of the variable X will be only used to pass subterms from one place to another

and not for comparing terms. This will become clear from the special use of case

expressions (see below).

We formalize the mapping of a definitional tree T into a term with case expres-

sions by the use of the translation function Case(T ):

Case(rule(l → r)) = r

Case(branch(π, o, Tk)) = case π|o of pat(T1)|o : Case(T1),
...

pat(Tk)|o : Case(Tk)

If T is the definitional tree with pattern f(Xn) of the n-ary function f , then

f(Xn) → Case(T )
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is the new rewrite rule for f . A case expression case X of pn : Xn can be considered

as a function with arity 2n + 1 with the following n rewrite rules:4

case p1 of p1 : X, . . . , : → X
...

case pn of : , . . . , pn : X → X

If we apply a narrowing step to an expression of the form case t of p1 : t1, . . . , pn :

tn, there are two principal possibilities:

1. If t is a variable, we can apply any of the n defining rules for case, i.e., there

are n possible narrowing steps

case t of p1 : t1, . . . , pn : tn ;σ σ(ti)

with σ = {t 7→ pi} (i ∈ {1, . . . , n}). This corresponds to an instantiation step

in the needed narrowing calculus.

2. If t is a constructor-rooted term c(sk) and pi = c(Xk) for some i ∈ {1, . . . , n},
then

case t of p1 : t1, . . . , pn : tn ;{} σ(ti)

for σ = {Xk 7→ sk}. We write ;{} instead of ;σ since we are interested only

in the instantiation of goal variables and the pattern variables occur only

locally in the expression ti. This step corresponds to a selection step in the

needed narrowing calculus.

In the following, we denote by R an inductively sequential rewrite system, by R′ its

translated version containing exactly one rewrite rule for each function defined by

R, and by Rcase the additional case rewrite rules. We will show a strong correspond-

ence between derivations in the needed narrowing calculus and leftmost-outermost

narrowing derivations. Leftmost-outermost narrowing means that the selec-

ted subterm is the leftmost-outermost one among all possible narrowing positions,

where we call a position p leftmost-outermost in a set P of positions if there is

no p′ ∈ P with p′ prefix of p, or p′ = q · i · q′ and p = q · j · q′′ and i < j.

Example 3.2

Consider again the rules of Example 1.1 and the initial goal s(X) ≤ Y . The fol-

lowing derivation is a sequence of leftmost-outermost narrowing steps to compute

the answer {X 7→ 0, Y 7→ s(Y1)}. The applied rewrite rules are the single rule for

4 To be more precise, different case functions are needed for case expressions with different
patterns, i.e., the case functions should be indexed by the case patterns. However, for
the sake of readability, we do not write these indices and allow the overloading of the
case function symbols.
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≤ together with the rewrite rules for case expressions as shown above.

s(X) ≤ Y

;{} case s(X) of 0 : true, s(X1) : (case Y of 0 : false, s(Y1) : X1 ≤ Y1)

;{} case Y of 0 : false, s(Y1) : X ≤ Y1

;{Y 7→s(Y1)} X ≤ Y1

;{} case X of 0 : true, s(X2) : (case Y1 of 0 : false, s(Y2) : X2 ≤ Y2)

;{X 7→0} true

The equivalence of needed narrowing w.r.t. R and leftmost-outermost narrowing

w.r.t. R′ ∪Rcase is stated in the following theorem. The proof can be found in the

appendix.

Theorem 3.3

Let t be a term and c be a 0-ary constructor. For each needed narrowing derivation

t ;
∗
σ c w.r.t. R there exists a leftmost-outermost narrowing derivation t ;

∗
σ c w.r.t.

R′ ∪Rcase, and vice versa.

As mentioned above, in the higher-order case we need a narrowing calculus which

always applies narrowing steps to the outermost function symbol. This is often

different from the leftmost-outermost narrowing position. For instance, the term

s(X) ≤ X + X has the outermost function symbol ≤ which is different from the

symbol + at the leftmost-outermost narrowing position. In order to obtain a calcu-

lus which always applies steps at the “top level”, we transform a leftmost-outermost

narrowing derivation w.r.t. R′ ∪ Rcase into a derivation on a goal system G (a

sequence of goals of the form t →? X) where narrowing rules are only applied to the

outermost function symbol of the leftmost goal. This is the purpose of the inference

system LNT shown in Figure 2. The Bind rule propagates a term to the subsequent

case expression. The Case rules correspond to the case distinction in the definition

of needed narrowing, where the narrowing of a function is integrated in the Case

Eval rule. Note that the only possible non-determinism during computation with

these inference rules is in the Case Guess rule. Since we are interested in evalu-

ating expressions to a 0-ary constructor c, we assume that the initial goal Ic(t)

for a term t has always the form case t of c : c →? T where T is a variable not

occurring in t. We use this representation in order to provide a calculus with fewer

inference rules. Note that T will be bound to c if such a goal can be reduced to the

empty goal system.

Example 3.4

The following LNT-derivation corresponds to the leftmost-outermost narrowing de-
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Bind

e →? Z, G ⇒{} σ(G)

where σ = {Z 7→ e} and e is not a case term

Case Select

case c(tn) of pk : Xk →? Z, G ⇒{} σ(Xi) →
? Z, G

if pi = c(Xn) and σ = {Xn 7→ tn}

Case Guess

case X of pk : Xk →? Z, G ⇒σ σ(Xi) →
? Z, σ(G)

where σ = {X 7→ pi}

Case Eval

case f(tn) of pk : Xk →? Z, G ⇒{} σ(X ) →? X, case X of pk : Xk →? Z, G

if f(Xn) → X ∈ R′ is a rule with fresh variables,

σ = {Xn 7→ tn}, and X is a fresh variable

Fig. 2. Calculus LNT for lazy narrowing with definitional trees in the first-order case

rivation shown in Example 3.2.

case s(X) ≤ Y of true : true →? T (= Itrue(s(X) ≤ Y ))

⇒Case Eval

case s(X) of 0 : true, s(X1) : (case Y of 0 : false, s(Y1) : X1 ≤ Y1) →? Z,

case Z of true : true →? T

⇒Case Select

case Y of 0 : false, s(Y1) : X ≤ Y1 →? Z, case Z of true : true →? T

⇒{Y 7→s(Y1)}
Case Guess

X ≤ Y1 →? Z, case Z of true : true →? T

⇒Bind

case X ≤ Y1 of true : true →? T

⇒Case Eval

case X of 0 : true, s(X2) : (case Y1 of 0 : false, s(Y2) : X2 ≤ Y2) →? Z ′,

case Z ′ of true : true →? T

⇒{X 7→0}
Case Guess

true →? Z ′, case Z ′ of true : true →? T

⇒Bind

case true of true : true →? T

⇒Case Select true →? T ⇒Bind {}

The equivalence of leftmost-outermost narrowing and the lazy narrowing calculus

LNT is stated in the following theorem. The proof can be found in the appendix.
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Theorem 3.5

Let t be a term, c a 0-ary constructor, and X a fresh variable. For each leftmost-

outermost narrowing derivation t ;
∗
σ c w.r.t. R′ ∪ Rcase there exists a LNT-

derivation case t of c : c →? X
∗
⇒ σ c →? X w.r.t. R′, and vice versa.

Theorems 3.3 and 3.5 imply the equivalence of needed narrowing and the calculus

LNT. Since we will extend LNT to higher-order functions in the next section, the

results in this section show that our higher-order calculus is a conservative extension

of an optimal first-order narrowing strategy.

4 Higher-Order Definitional Trees

In the following we extend first-order definitional trees to the higher-order case.

To generalize from the first-order case, it is useful to recall the main ideas: When

evaluating the arguments of a term f(tn) to constructor terms, the definitional tree

can be incrementally traversed to find the (single) matching rule. It is essential

for the application of definitional trees that each branching depends on only one

subterm (or argument to the function) and that for each rigid term (non-variable

headed), a single branch can be chosen. For this purpose, we need further restric-

tions in the higher-order case, where we employ λ-terms as data structures, e.g.,

higher-order terms with bound variables in the left-hand sides. For instance, we

permit higher-order rules like in Example 1.2. In contrast to the original definition

of needed narrowing in the first-order case, we provide a definition of higher-order

definitional trees in terms of case expressions. The relationship of the original defin-

itional trees and case expressions was extensively discussed in the previous section.

A shallow pattern is a linear term of the form λxn.v(Hm(xn)) where v is a

constant or some bound variable xi. We will use shallow patterns for branching in

trees. In contrast to the first-order case, we have here the additional choice that v

can also be a bound variable.

Definition 4.1

T is a higher-order definitional tree (hdt) iff its depth is finite and one of the

following cases holds:

• T = p : case X of Tn

• T = p : rhs,

where p are shallow patterns with fresh variables, X is a free variable and Tn are

hdts in the first case, and rhs is a term (representing the right-hand side of a rule).

Moreover, all shallow patterns of the hdts Tn must be pairwise non-unifiable.

When hdts are used to represent the rules of a function, further restrictions on the

occurrences of free variables will be made (see below). We write hdts as p : X ,

where X stands for a case expression or a term. To simplify technicalities, rewrite

rules f(Xn) → X are identified with the hdt f(Xn) : X . With this latter form of

a rule, we can relate rules to the usual notation as follows. The selector of a tree

T of the form T = p : X is defined as sel(T ) = p. For a subtree T ′ in a tree T ,
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the constraints in the case expressions on the path to it determine a term, which is

recursively defined by the pattern function patT (T ′):

patT (T ′) =

{

sel(T ′) if T = T ′ (i.e., T ′ is the root)

{X 7→ sel(T ′)}patT (T ′′) if T ′ has parent T ′′ = p : case X of Tn

Each branch variable must belong to the pattern of this subtree, i.e., for each subtree

T ′ = p : case X of Tn in a tree T , X is a free variable of patT (T ′). Furthermore,

each leaf T ′ = p : rhs of a hdt T is required to correspond to a rewrite rule l → r,

i.e., patT (T ′) → rhs is a variant of l → r. T is called hdt of a function f if for

all rewrite rules of f there is exactly one corresponding leaf in T .

As in the first-order case, rewrite rules must be constructor based. This means

that in a hdt only the outermost pattern has a defined symbol. An HRS where each

defined symbol has a hdt is called inductively sequential.

For instance, the rules for diff in Example 1.2 have the hdt

diff(F, X) → case F of λy.y : 1,

λy.sin(F ′(y)) : cos(F ′(X)) ∗ diff(λy.F ′(y), X),

λy.ln(F ′(y)) : diff(λy.F ′(y), X)/F ′(X)

For presenting definitional trees graphically, it is convenient to write patT (T ′) for

each subtree T ′. Thus we draw the tree for diff as:

diff(λy.y, X) → 1 diff(λy.sin(F ′(y)), X) → . . . diff(λy.ln(F ′(y)), X) → . . .

diff(F, X)
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A hdt can also have a more complicated branching structure, as shown by the

definitional tree for Example 1.1 in Section 3 which is a special case of a hdt.

Note that free variables in left-hand sides must have all bound variables of the

current scope as arguments. Such terms are called fully extended. This important

restriction, which is also applied to study optimal reductions in (Oostrom, 1996),

allows to find redices as in the first-order case, and furthermore simplifies narrowing.

For instance, flex-flex pairs (equations between non-rigid terms) do not arise here,

in contrast to the full higher-order case (Prehofer, 1995a; Prehofer, 1997). Consider

an example for some non-overlapping rewrite rules which do not have a hdt:

f(λx.c(x)) → a

f(λx.H) → b

The problem is that for rewriting a term with these rules the full term must be

scanned. For example, if the argument to f is the rigid term λx.c(G(t)), it is not

possible to commit to one of the rules (or branches of a tree) before checking if

the bound variable x occurs inside t. In general, this may lead to an unexpected

complexity w.r.t. the term size for evaluation via rewriting.
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Bind

e →? Z, G ⇒{} σ(G)
where σ = {Z 7→ e} and e is not a case term

Case Select

λxk.case λyl.v(tm) of ⇒{} λxk.σ(Xi) →
? Z, G

pn : Xn →? Z, G if pi = λyl.v(Xm(xk, yl)) and σ = {Xm 7→ λxk, yl.tm}

Imitation

λxk.case λyl.X(tm) of ⇒σ σ(λxk.case λyl.X(tm) of pn : Xn →? Z, G)

pn : Xn →? Z, G if pi = λyl.c(Xr(xk, yl)) and σ = {X 7→ λxm.c(Hr(xm))}

Function Guess

λxk.case λyl.X(tm) of ⇒σ σ(λxk.case λyl.X(tm) of pn : Xn →? Z, G)

pn : Xn →? Z, G if λxk, yl.X(tm) is not a higher-order pattern,

σ = {X 7→ λxm.f(Hr(xm))}, and f is a defined function

Projection

λxk.case λyl.X(tm) of ⇒σ σ(λxk.case λyl.X(tm) of pn : Xn →? Z, G)

pn : Xn →? Z, G where σ = {X 7→ λxm.xi(Hr(xm))}

Case Eval

λxk.case λyl.f(tm) of ⇒{} λxk, yl.σ(X ) →? X,

pn : Xn →? Z, G λxk.case λyl.X(xk, yl) of pn : Xn →? Z, G

where σ = {Xm 7→ λxk, yl.tm}, and

f(Xm(xk, yl)) → X is a xk, yl-lifted rule

Fig. 3. System LNT for needed narrowing in the higher-order case

We define the xk-lifting of hdts by schematically applying the xk-lifter to all

terms in the tree, i.e., to all patterns, right-hand sides, and free variables in cases.

5 Narrowing with Higher-Order Definitional Trees

In the higher-order case, the rules of LNT of Section 3 must be extended to account

for several new cases. Compared to the first-order case, we need to maintain binding

environments and higher-order free variables, possibly with arguments, which are

handled by higher-order unification. For this purpose, the Imitation, Function Guess

and Projection rules have been added in Figure 3. These three new rules, to which

we refer as the Guess Rules, are the only ones to compute substitutions for the

variables in the case constructs. The Case Guess rule of the first-order case can

be retained by applying Imitation plus Case Select. For all rules, we assume that

newly introduced variables are fresh, as in the first-order case.

The Imitation and Projection rules are taken from higher-order unification

and compute a partial binding for some variable. For instance, if the goal has the
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form

case λx.F (x) of λy.sin(F ′(y)) : · · · ,

then the Imitation rule substitutes the higher-order variable F by the function

λx.sin(H(x)), which “imitates” the top function sin in the pattern of the case

expression. Thus, the Imitation rule derives the (β-reduced) new goal

case λx.sin(H(x)) of λy.sin(F ′(y)) : · · ·

to which only Case Select is applicable in the following step. If we consider the goal

case λx.F (x) of λy.y : 1 →? Z ,

then we can apply the Projection rule to substitute the higher-order variable F

by the projection function λx.x (this is the only possible projection function in

this case since the function λx.F (x) has only one argument) and we obtain the

(β-reduced) new goal case λx.x of λy.y : 1 →? Z which can be further evaluated

by Case Select.

The Function Guess rule covers the case of non-constructor solutions, which

may occur for higher-order variables. It thus enables the synthesis of functions from

existing ones. Note that the selection of a binding in this rule is only restricted by

the types occurring. For instance, the goal

case F (0) of true : · · ·

can be derived with the Function Guess rule by replacing the higher-order variable

F with a function that takes a number and produces a Boolean value as the result.

Hence, if ≤ is the function defined in Example 1.1, an application of Function Guess

can replace F with λx.H1(x) ≤ H2(x) and derives the new goal

case H1(0) ≤ H2(0) of true : · · ·

which can be further evaluated by applying the Case Eval rule.

Notice that for goals where only higher-order patterns occur, there is no choice

between Projection and Imitation for matching with a single case branch. (For dif-

ferent branches, clearly Projection or Imitation can be used.) Furthermore, Function

Guess does not apply. This special case is refined later in Section 8.

In contrast to the first-order case, locally bound variables may occur and must be

correctly handled during unification. Therefore, all rewrite rules applied by Case

Eval must be lifted into its correct binding context which is necessary to compute

solutions for function variables with locally bound variables (see also (Prehofer,

1994)). Since free variables cannot be instantiated to bound variables, it is necessary

to add the variables bound in the current context to all free variables of a rewrite

rule so that they can be later instantiated by projection functions to identify them

with the appropriate bound variables. A more technical example showing the need

for lifting is provided in Example 5.2.

For a sequence ⇒θ1 · · · ⇒θn of LNT steps, we write
∗
⇒ θ, where θ = θn · · · θ1. As

in Section 3 not all substitutions are recorded for
∗
⇒; only the ones produced by

guessing are needed for the technical treatment. Informally, all other substitutions

only concern intermediate (or auxiliary) variables similar to (Prehofer, 1995a).
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As in the first-order case, we consider only reductions to a dedicated 0-ary con-

structor c. Hence we assume that solving a goal t →? c is initiated with the initial

goal Ic(t) = case t of c : c →? X .

Example 5.1

As an example for the computation in our calculus LNT, consider the goal

λx.diff(λy.sin(F (x, y)), x) →? λx.cos(x)

w.r.t. the rules for diff (see Example 1.2) and the hdt for the function ∗:

X ∗ Y → case Y of 1 : X, s(Y ′) : X + X ∗ Y ′

As discussed in Section 2, we add the rule f(λx.cos(x)) → ok (for which a hdt exists)

and solve the goal Iok(f(λx.diff(λy.sin(F (x, y)), x))). Since each computation step

only affects the two leftmost goals, we often omit the others. Furthermore, we

sometimes write expressions in η-normal form, e.g., cos instead of λx.cos(x).

case f(λx.diff(λy.sin(F (x, y)), x)) of ok : ok →? X1

⇒Case Eval (Apply the rule for f)

case λx.diff(λy.sin(F (x, y)), x) of cos : ok →? X2, case X2 of ok : ok →? X1

⇒Case Eval (Apply the rule for diff after lifting it with x)

λx.case λy.sin(F (x, y)) of . . . ,

λy.sin(G(x, y)) : cos(G(x, x)) ∗ diff(λy.G(x, y), x),

. . . →? X3,

case X3 of cos : ok →? X2, case X2 of ok : ok →? X1

⇒Case Select (Only case selection is possible)

λx.cos(F (x, x)) ∗ diff(λy.F (x, y), x) →? X3, case X3 of cos : ok →? X2, . . .

⇒Bind (First case expression is evaluated, bind result to X3)

case λx.cos(F (x, x)) ∗ diff(λy.F (x, y), x) of cos : ok →? X2,

case X2 of ok : ok →? X1

⇒Case Eval (Apply the rule for ∗ after lifting it with x)

λx.case diff(λy.F (x, y), x) of 1 : cos(F (x, x)), . . . →? X3,

case X3 of cos : ok →? X2, . . .

⇒Case Eval (Apply the rule for diff after lifting it with x)

λx.case λy.F (x, y) of λy.y : 1, . . . →? X4,

λx.case X4(x) of 1 : cos(F (x, x)), . . . →? X3, . . .

⇒{F 7→λx,y.y}
Projection (Instantiate F by the projection to the second argument)

λx.case λy.y of λy.y : 1, . . . →? X4, λx.case X4(x) of 1 : cos(x), . . . →? X3, . . .

⇒Case Select (Only case selection is possible)

λx.1 →? X4, λx.case X4(x) of 1 : cos(x), . . . →? X3, . . .

⇒Bind (Case expression is evaluated, bind result to X4)
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λx.case 1 of 1 : cos(x), . . . →? X3, case X3 of cos : ok →? X2, . . .

⇒Case Select (Only case selection is possible)

λx.cos(x) →? X3, case X3 of cos : ok →? X2, case X2 of ok : ok →? X1

⇒Bind (Case expression is evaluated, bind result to X3)

case cos of cos : ok →? X2, case X2 of ok : ok →? X1

⇒Case Select (Only case selection is possible)

ok →? X2, case X2 of ok : ok →? X1

⇒Bind (Case expression is evaluated, bind result to X2)

case ok of ok : ok →? X1 ⇒Case Select ok →? X1 ⇒Bind {}

Thus, the computed solution is {F 7→ λx, y.y}.

As we mentioned above, the lifting in the Case Eval inference rule is necessary to

handle the application of rewrite rules and free variables in a context with bound

variables correctly. For instance, consider the rewrite step

λx.f(x) −→f(Y )→g(Y )
{Y 7→x} λx.g(x) .

In this rewrite step, we bind the variable Y to a bound variable, which can be

treated as a constant here. This is possible since only matching is performed and

all free variables in the rewrite rule disappear after the rewrite step.

Our calculus applies rewrite steps by the Case Eval rule. For this example, we

first apply a lifter σ = {Y 7→ Y ′(x)} to the above rule. Then the substitution

Y ′ 7→ λx.x is used for modeling the above rewrite step in our narrowing calculus.

Note that free variables which appear directly below the outermost function symbol

in rewrite rules immediately disappear when the Case Eval rule is applied. In order

to show the need for lifting, we need a somewhat more involved example.

Example 5.2

Consider the function f defined by the rewrite rule

f(λy.c(G(y))) → G

The corresponding hdt is

f(X) → case X of λy.c(G(y))) : G

Clearly, the goal λx.f(F )) →? λx, y.y has the solution {F 7→ λy.c(y)} since

λx.f(λy.c(y)) reduces in one step to λx.(λy.y).

To solve this goal in our calculus LNT, we add the rule g(λx, y.y) → ok which

has the hdt

g(Y ) → case Y of λx, y.y : ok

and solve the initial goal case g(λx.f(F )) of ok : ok →? Z1:

case g(λx.f(F )) of ok : ok →? Z1

⇒Case Eval case λx.f(F ) of λx, y.y : ok →? Z2, case Z2 of ok : ok →? Z1
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⇒Case Eval λx.case F of λy.c(G′(x, y)) : G′(x) →? Z3,

case Z3 of λx, y.y : ok →? Z2, case Z2 of ok : ok →? Z1

⇒{F 7→λy.c(H(y))}
Imitation λx.case λy.c(H(y)) of λy.c(G′(x, y)) : G′(x) →? Z3, . . .

⇒Case Select λx, y.H(y) →? Z3, case Z3 of λx, y.y : ok →? Z2, . . .

⇒Bind case λx, y.H(y) of λx, y.y : ok →? Z2, case Z2 of ok : ok →? Z1

⇒{H 7→λx.x}
Projection case λx, y.y of λx, y.y : ok →? Z2, case Z2 of ok : ok →? Z1

⇒Case Select ok →? Z2, case Z2 of ok : ok →? Z1

⇒Bind ⇒Case Select ⇒Bind {}

Thus, this derivation computes the solution {F 7→ λy.c(y)} for the free variable F .

Note that in the second step the hdt for f is applied after lifting it with x. This lifting

replaces the free variable G by G′(x) which is necessary to ensure the shallowness

of the case pattern and the correct application of Case Select in subsequent steps.

Moreover, an expression like G′(x, y) can be refined to one of the bound variables

x or y by instantiating G′ to the appropriate projection function (actually, G′ is

subsequently instantiated to project to its second argument).

The next proposition states that our higher-order lazy narrowing calculus LNT is

indeed a conservative extension of (first-order) needed narrowing.

Proposition 5.3

If all functions and goals occurring in a derivation are first-order, LNT computations

correspond to needed narrowing derivations and vice versa.

Proof

If all functions and goals are first-order, λ-abstractions and functional variables do

not occur. Thus, the Function Guess rule is not applicable and the λ-binders in all

rules of the calculus LNT in Figure 3 can be omitted (which makes the application

of the Projection rule impossible). Thus, the rules Bind, Case Select and Case Eval

become identical to the corresponding first-order rules in Figure 2. Moreover, after

an application of the rule Imitation, only Case Select is applicable. Thus, Imitation

plus Case Select is equivalent to Case Guess in the first-order case. Therefore, first-

order derivations with the rules in Figure 3 are equivalent to derivations with the

rules in Figure 2. This implies the proposition by Theorems 3.3 and 3.5.

6 Correctness and Completeness

In this section we show soundness and completeness of our higher-order narrowing

calculus LNT. Similarly to the completeness proof of first-order needed narrow-

ing (Antoy et al., 1994), we show completeness w.r.t. reductions where redexes are

computed via definitional trees (called “LNT reductions”). As in the first-order

case, we show that LNT reduction steps are needed for reduction to a constructor

normal form. In the first-order case, it is known that iterated reduction of needed

redexes computes the normal form, if it exists (Huet & Lévy, 1991). A similar res-

ult is strongly conjectured but not yet known for the higher-order case. Since LNT
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reductions compute ground constructor terms for terminating inductively sequen-

tial HRS, the completeness result w.r.t. LNT reductions is sufficient for practical

programs (note that the definition of infinite data structures does not require non-

terminating rules in functional logic languages, because infinite data structures can

also be defined by terminating rules and the use of existential variables, see (Pre-

hofer, 1997), Section 8.1.5).

We first define LNT reductions and then lift LNT reductions to narrowing. In

the following, we assume an inductively sequential HRS R and a dedicated 0-ary

constructor c.

6.1 LNT Reductions

We define LNT reductions as a restriction of our higher-order lazy narrowing cal-

culus LNT. Then we show that they are in fact needed. For modeling rewriting, the

Guess rules (i.e., Imitation, Function Guess, Projection) are not needed since each

of these rules computes a non-identity substitution: S
∗
⇒ {}

LNT S′ if and only if no

Guess rules are used in the reduction. Hence no narrowing is performed. This can

also be seen as an implementation of a particular rewriting strategy.

In order to relate a system of LNT goals to a term, we associate a position p with

each case construct and a substitution θ for all newly introduced variables on the

right. For each case expression T = case X of . . . in a rule T ′ = f(Xn) → X , we

attach the position p of X in the left-hand side of the corresponding rewrite rule.

Formally, we define a function lT such that lT (f(Xn) : X ) yields the labelled tree

for a rule T = f(Xn) → X :

• lT (pf : case X of Tn) = pf : casep X of lT (Tn)

where p is the position of X in patT (pf : case X of Tn)

• lT (pf : r) = pf : r

We assume in the sequel that definitional trees for some inductively sequential HRS

R are labelled. For instance, a labelled tree for the function ≤ of Example 1.1 is

X ≤ Y → case1 X of 0 : true,

s(X1) : case2 Y of 0 : false,

s(Y1) : X1 ≤ Y1

The following invariant will allow us to relate a goal system with a term:

Theorem 6.1

For an initial goal with caseǫ t of c : c →? X1
∗
⇒ {}

LNT S, S is of one of the following

two forms:

1. λx.casepn
s of . . . →? Xn, λx.casepn−1 λy.Xn(x, y) of . . . →? Xn−1, . . . ,

λx.casep2 λy.X3(x, y) of . . . →? X2, casep1 X2 of c : c →? X1

2. r →? Xn+1, λx.casepn
λy.Xn+1(x, y) of . . . →? Xn,

λx.casepn−1 λy.Xn(x, y) of . . . →? Xn−1, . . . ,

λx.casep2 λy.X3(x, y) of . . . →? X2, casep1 X2 of c : c →? X1
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Furthermore, all Xn+1 are distinct and each variable Xi occurs only as shown above,

i.e. at most twice in . . . , e →? Xi, case Xi of . . ..

Proof

Simple by induction on the LNT reduction.

Notice that the second form in the above theorem is created by a Case Select rule

application, which may reduce a case term to a non-case term, or by Case Eval

with a rule f(Xn) → r. As only the Bind rule applies on such systems, they are

immediately reduced to the first form. As we will see, the Bind rule corresponds

to the replacement which is part of a rewrite step. Since we now know the precise

form of goal systems which may occur, bound variables as arguments and binders

are sometimes omitted in goal systems if no ambiguities may arise.

Assumption. We assume in the following that all goal systems are generated by

LNT from some initial goal and are hence of one of the two forms of Theorem 6.1.

The next goal is to relate LNT derivations and rewriting.

Definition 6.2

We define an associated substitution for each goal system inductively on
∗
⇒LNT :

• For an initial goal system of the form S = caseǫ t of c : c →? X , we define

the associated substitution θS = {X 7→ t}.

• For the Case Eval rule on S = λx.casep λy.f(t) of . . . →? X, G with

S ⇒ λx, y.σ(X ) →? X ′, λx.casep λy.X ′(x, y) of . . . →? X, G =: S′

we define θS′ = θS ∪ {X ′ 7→ λx.(θSX)|p}.

For all other rules, the associated substitution is unchanged.

For a goal system S, we write the associated substitution as θS . Notice that the

associated substitution is not a “solution” as used in the completeness result and

only serves to reconstruct the original term.

To see the need for this, consider for instance the rewrite system g → a. For

solving the goal c(c(g)) →? c(c(a)), we first have to add the rule f(c(c(a))) → ok.

In order to find the first needed position in the initial goal, we have the following

computation:

caseǫ f(c(c(g))) of ok : ok →? X1

⇒Case Eval

case1 c(c(g)) of c(X3) : case1.1 X3 of c(X4) : case1.1.1 X4 of a : ok →? X2,

caseǫ X2 of ok : ok →? X1

⇒Case Select

case1.1 c(g) of c(X4) : case1.1.1 X4 of a : ok →? X2,

caseǫ X2 of ok : ok →? X1

⇒Case Select

case1.1.1 g of a : ok →? X2, caseǫ X2 of ok : ok →? X1
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⇒Case Eval

a →? X5, case1.1.1 X5 of a : ok →? X2, caseǫ X2 of ok : ok →? X1

The associated substitution is {X1 7→ f(c(c(g))), X2 7→ f(c(c(g))), X5 7→ g}. This

can now be used to reconstruct the position of the redex g in the original term.

Furthermore, we can translate the above goal system produced by LNT into one

term. The idea is that casep t of . . . →? X should be interpreted as the replacement

of the case argument term t at position p in θSX , i.e., (θSX)[t]p. Thus we can

reconstruct the initial term f(c(c(g))) by the position label and the associated

substitution for X5, X2 and X1. We cannot simply use the solution for X1, since

this reconstruction has to follow the rewrite steps. For instance, in the next step

the Bind rule is applied to the last goal above. This corresponds to the execution of

the rewrite step f(c(c(g))) −→ f(c(c(a))). Hence we need to reconstruct the term

f(c(c(a))) from the resulting goal system which is of the following form:

case1.1.1 a of a : ok →? X2, caseǫ X2 of ok : ok →? X1 (1)

Now we can apply the same reconstruction and obtain f(c(c(a))). In this way,

we can reconstruct a rewrite step by a sequence of LNT steps. Formalizing this

reconstruction for goal systems is the goal of the following technical treatment. We

first define the translation of goal systems into terms.

Definition 6.3

For a goal system S of the form

[r →? X, ] λx.casepn
s of . . . →? Xn, . . . , casep1 X2 of c : c →? X1

(where [r →? X, ] is optional) with associated substitution θ, we define the associ-

ated term A(S) as (θX1)[(θX2)[. . . (θXn(x))[θs]pn
. . .]p2 ]p1 .

For instance, if we start with a goal system S1 = caseǫ t of c : c →? X , then

A(S1) = t. The term associated to the goal (1) above is

f(c(c(g)))[ f(c(c(g)))[a]1.1.1 ]ǫ = f(c(c(a))) .

For a goal system S, we write S↓ for the normal form obtained by applying Case

Eval and Case Select. Observe via the last example that the steps in S↓ correspond

to finding the first, needed redex. We define an associated substitution for the

intermediate variables Xn of a system of goals produced by LNT.

Lemma 6.4

S↓ is well defined, i.e., computing S↓ terminates and yields a unique goal system.

Proof

Termination follows easily since the size of the term used for rule selection in the

leftmost case construct decreases. Note that the substitutions used for Case Select

only bind variables to subterms of the leftmost term in the leftmost case construct.

As Case Select and Case Eval do not apply simultaneously, uniqueness follows.

Lemma 6.5
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For a goal system S, the rules Case Eval and Case Select do not change the asso-

ciated term.

Proof

We first establish the following invariant: If

Ic(t)
∗
⇒ θ

LNT casepn
s of . . . →? Xn, G =: S,

then θθSXn|pn
= s holds. This invariant is shown by induction on

∗
⇒LNT . It is

trivial for the Guess rules and follows from the definition of θS for Case Eval and

Bind. Only the Case Select rule is more involved. Case Select reduces the term in

the leftmost case construct:

S = casep v(tn) of . . . →? X, . . . ⇒ casep·p′ ti of . . . →? X, . . . =: S′

Since θSX |p = v(tn) and v(tn)|p′ = ti, θS′X |p·p′ = ti holds.

With the above invariant the theorem follows from the definition of A(S), since

only the leftmost case construct is changed by each rule.

From this result, we can infer A(S) = A(S↓) and A(Ic(t)) = A(Ic(t)↓).

Corollary 6.6

For a term t, we have t = A(Ic(t)↓).

Stability of reduction under substitution can be shown since LNT computations

are outermost.

Lemma 6.7

For a term t, if Ic(t)
∗
⇒ {}

LNT {}, then Ic(θt)
∗
⇒ {}

LNT {}.

Proof

In Ic(t)
∗
⇒ {}

LNT {}, no variable in Dom(θ) can affect the LNT computation (e.g.,

reduction cannot take place below a free variable). Hence Ic(θt)
∗
⇒ {}

LNT {} follows

easily by induction on the length of the reduction.

The next goal is to relate a rewrite step with LNT computations. In this vein,

we show that for a given (part of a) rewrite rule, LNT finds the right branch in

the corresponding definitional tree. For this we first give an auxiliary lemma which

establishes this result for any term which corresponds to a path in a definitional

tree, as defined via the function patT .

Lemma 6.8

Assume patT (pi : Xi) = l for a definitional tree T . There exists a reduction

λx.case λy.l of Tm →? X, G

⇒Case Eval
∗
⇒Case Select λx.case λy.pi of pn : Xn →? X ′,

λx.case λy.X ′(x, y) of Tm →? X, G

⇒Case Select λx.σ(Xi) →? X ′, λx.case λy.X ′(x, y) of Tm →? X, G

for some substitution σ.

Proof
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First note that Case Eval applies if l = f(t) for some defined symbol f with defini-

tional tree T . The claim follows easily by induction on the Case Select applications,

by composing the substitutions computed for the variables in the selectors of T .

Now we can show easily that LNT detects a rewrite step when invoked with an

instance of a left-hand side. Recall that the Bind rule applies to the resulting goal

system of the LNT-computation in the next result. As shown in the above examples,

the Bind rule, roughly speaking, executes the replacement step of a rewrite rules.

Corollary 6.9

There exists a rule f(t) → r with l = σf(t) for some non-case term r iff

λx.case λy.l of Tn →? X, G

⇒Case Eval
∗
⇒Case Select λx, y.σr →? X ′, λx.case λy.X ′(x, y) of Tn →? X, G

Proof

The proof follows easily from Lemma 6.7 and Lemma 6.8. (Recall that the rules do

not overlap and hence for a position in a term, only one rule applies.)

For a goal system S, we write Bind(S) to denote the result of applying the Bind

rule. Notice that the substitution of the Bind rule only affects the two leftmost

goals.

Lemma 6.10

Let S = Ic(t). If S↓ is of the form of Invariant 2 of Theorem 6.1, then t = A(S↓)
is reducible at position p = p1 · · · pn, where pi are determined by the invariant of

Theorem 6.1. Furthermore, if t −→p t′, then Ic(t
′)↓ = Bind(S↓)↓.

Proof

The only way S is transformed into S↓ of the form of Invariant 2 is when a leftmost

case construct, created by Case Eval (or the initial construct), is fully reduced to a

term by Case Select without any intervening Case Eval applications. Say S is first

transformed into

casepn
s of . . . →? Xn, . . . , casep1 X2 of c : c →? X1 =: S′

with p = p1 · · · pn and t|p = s such that

S′ ⇒Case Eval
∗
⇒Case Select r →? Xn+1, casepn

Xn+1 of . . . →? Xn, . . . =: S′′

Since each path of a definitional tree corresponds to a left-hand side, t|p is redu-

cible by Corollary 6.9. To show Ic(t
′)↓ = Bind(S↓)↓, consider the computation for

Ic(t
′)↓. Since t and t′ differ only at position p, i.e., t′ = t[σr′]p for some rule l′ → r′,

Ic(t
′) is transformed by LNT to

casepn
σr′ of . . . →? Xn, . . . , casep1 X2 of c : c →? X1 =: S1.

Since A(S′′) = t, A(Bind(S′′)) = t′ follows from Lemma 6.5 and from the definition

of the Bind rule. Hence r = σr′ and S′′ ⇒Bind S1 follow. By uniqueness of normal

forms, Bind(S↓)↓ = Bind(S′′)↓ = S1↓ = Ic(t
′)↓ follows.
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Now, we can define LNT reductions:

Definition 6.11

A term t has a LNT redex at position p if Ic(t)↓ is of Invariant 2 of Theorem 6.1

with p = p1 · · · pn as in Theorem 6.1. We denote by t −→LNT t′ a LNT reduction

step, i.e., a rewrite step t −→p t′ where p is the position of a LNT redex.

Thus, a LNT reduction step is a rewrite step at a position determined by the

definitional trees (which are computed via our calculus LNT). For instance, consider

Example 1.1 together with the rule f(0) → 0 and the term t = f(0) ≤ f(0). Then

t −→1 0 ≤ f(0) is a LNT reduction step in contrast to t −→2 f(0) ≤ 0.

Theorem 6.12

For a term t, Ic(t)
∗
⇒ {}

LNT {} iff t
∗

−→LNT c.

Proof

If t
∗

−→LNT c, we can show Ic(t)
∗
⇒ {}

LNT {} easily by induction on the length of

t
∗

−→LNT c via Lemma 6.10.

Assuming Ic(t)
∗
⇒ {}

LNT {}, we can show as in Lemma 6.10 that the reduc-

tion starts with computing Ic(t)↓ and then the Bind rule must apply. Similar

to Lemma 6.10, we can show t −→LNT t′. By induction this yields a reduction

t
∗

−→LNT c, since Ic(t)
∗
⇒LNT case c of c : c →? X is the only way to transform

Ic(t) to {}.

It remains to show that LNT reductions are needed to compute a constructor-

headed term. For a normalization result for the first-order case, we refer to (Mid-

deldorp, 1997).

Theorem 6.13

If t reduces to c, then t has a LNT redex at a position p and t must be reduced at

p eventually. Otherwise, t is not reducible to c.

Proof

In the computation of Ic(t)↓, we have goal systems of the form

casepn
s of . . . →? Xn, . . . , casep1 X2 of c : c →? X1

where the term in the leftmost case construct, here s, is a subterm of t. We show

that in this traversal of t, all subterms in the leftmost goals must be reduced at root

position for t to reduce to c, or are constructor/bound variable headed subterms of

such a redex. We state the proof in terms of this traversal of subterms of t; then

we argue that Ic(t)↓ is of Invariant 2 of Theorem 6.1 and hence t has a redex by

Lemma 6.10.

Starting at the root of t, t = c or its root is a defined symbol. Otherwise, it

is obviously not reducible to c. Since R is inductively sequential, there is a single

rewrite rule l → r such that t
∗

−→ 6=ǫ t′ −→l→r
ǫ t′′. The traversal of t either ends in

Invariant 2 of Theorem 6.1, if there is a redex at the root, or reaches another defined

symbol where Case Eval applies. In the latter case, we apply the same argument as

above for the root, only generalized to a position p where no rewrite rule applies
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on a position on the path to p. Similarly, we show that there is a single applicable

rule or t is not reducible to c.

By induction we either terminate with a redex which must be reduced for t to

reduce to c, or we have a path which cannot be contracted and hence t is not

reducible to c.

The next desirable result is to show that LNT reductions are normalizing. This is

suggested from related works (Oostrom, 1994; Klop, 1980), but is beyond the scope

of this paper. However, the previous theorem implies that LNT reductions always

compute the value in case of terminating rewrite systems.

Corollary 6.14

If R is terminating and t reduces to c, then t
∗

−→LNT c.

6.2 Lifting Rewriting to Narrowing

We first take a closer look at the variables involved for a LNT computation.

Lemma 6.15

If Ic(t)
∗
⇒ θ

LNT S ⇒θ′

LNT S′, then Dom(θ′) ⊆ FV(θt).

Proof

The substitution θ is composed of (partial) substitutions σ computed via one of the

Guess rules. Since each such σ maps a variable occurring in the associated term

A(S′), the claim follows easily by induction on
∗
⇒ θ

LNT .

For a goal system S, we call the variables that do not occur in A(S) dummies.

In particular, all variables on the right and all variables in selectors in patterns of

some tree in S are dummies.

Lemma 6.16

If S
∗
⇒ θ

LNT {}, then θS
∗
⇒ {}

LNT {}.

Proof

by induction on the length of
∗
⇒LNT . Assume S ⇒θ′

S′ ∗
⇒ θ′′

{}. By induction hy-

pothesis θ′′S′ ∗
⇒ {}

LNT {}. First, we show θ′S
∗
⇒ S′ by the following case distinction:

If one of the Guess rules was used in S ⇒θ′

S′, then θ′S = S′. Otherwise, θ′ = {}.
Hence we have θ′S

∗
⇒ {} S′, θ′′S′ ∗

⇒ {} {}, and infer θ′′θ′S
∗
⇒ {} θ′′S′ ∗

⇒ {} {} from

Lemma 6.7.

Theorem 6.17 (Correctness of LNT narrowing)

If Ic(t)
∗
⇒ θ

LNT {} for a term t, then θt
∗

−→ c.

Proof

First, Ic(θt)
∗
⇒LNT {} follows from Lemma 6.16 and θt

∗
−→LNT c from The-

orem 6.12. Since LNT reduction steps are particular rewrite steps, we conclude

θt
∗

−→ c.

We first state completeness w.r.t. LNT computations.

Lemma 6.18
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If θS
∗
⇒ {}

LNT {} where θ is in R-normal form and contains no dummies of S, i.e.,

FV(θ) ∩ FV(S) = FV(A(S)), then S
∗
⇒ θ′

LNT {} with θ′ ≤FV(A(S)) θ.

Proof

From the given derivation we construct a reduction S
∗
⇒ θ′

LNT {}, which is possibly

longer, since Guess rules are interspersed. For this process to terminate, we need

the following termination ordering. The ordering consists of the lexicographic com-

bination of (A) the length of the LNT reduction θS
∗
⇒

{}
LNT {} and (B) the sizes

of the multiset of terms in the solutions for the variables in Dom(θ). (See (Baader

& Nipkow, 1998; Dershowitz & Jouannaud, 1990) for a definition of lexicographic

orderings.) We have the following cases depending on the form of S:

• If S = e →? X, G and on θS the Bind rule applies, then Bind applies to

S as well since X 6∈ Dom(θ). Since θBind(S) = Bind(θS), the induction

hypothesis applies with a shorter reduction, decreasing A.

• If S = case λx.v(t) of . . . , G, then either Case Select or Case Eval must apply

on θS and hence on S as well. The induction hypothesis applies as in the last

case.

• If S = λx.case λy.X(t) of . . . , G, then θX(t) must be of one of the following

forms:

— λx.c(t′) such that Case Select applies on θS. In this case, Imitation is

applicable with a binding σ such that ∃θ′.θ = θ′σ as in proof of higher-

order unification (see (Snyder & Gallier, 1989; Prehofer, 1997)). Since θ′

is R-normalized and dummy free, the induction hypothesis applies with a

smaller solution, decreasing B.

— λx.x(t′) such that Case Select applies on θS. This case proceeds as the

above with Projection instead of Imitation.

— λx.f(t′) such that Case Eval applies on θS. Here, Function Guess applies.

The case concludes as the two above. For the precondition of the rule we

observe that if λx, y.X(t) is a higher-order pattern, then θλx, y.X(t) is

not R-reducible (as shown in (Prehofer, 1997)) and hence θS
∗
⇒ {}

LNT {}
is impossible.

Theorem 6.19 (Relative completeness of LNT narrowing)

If θt
∗

−→LNT c and θ is in R-normal form, then Ic(t)
∗
⇒ θ′

LNT {} with θ′ ≤FV(t) θ.

Proof

Completeness follows from Theorem 6.12 and the previous lemma.

Although the normalization property of LNT reductions is only known for the first-

order case (by Proposition 5.3 and the results in (Antoy, 1992; Antoy et al., 1994)),

we can state a completeness result of LNT narrowing in the higher-order case for

terminating rewrite systems.

Theorem 6.20 (Completeness of LNT narrowing)

If R is terminating, θt
∗

−→ c, and θ is in R-normal form, then Ic(t)
∗
⇒ θ′

LNT {} with

θ′ ≤FV(t) θ.
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Proof

Follows from the previous theorem and Corollary 6.14.

7 Optimality regarding Solutions

We show here another important aspect, namely uniqueness of the computed solu-

tions. Compared to the more general case in (Prehofer, 1997), optimality of solutions

is possible here, since we only evaluate to constructor-headed terms. For this to hold

for all subgoals in a narrowing process, our requirement of constructor-based rules

is also essential. For these reasons, we never have to chose between Case Select and

Case Eval in our setting and optimality follows easily from the corresponding result

of higher-order unification.

We call two substitutions σ and σ′ independent on a set of variables V if there

exists a variable x ∈ V such that σx and σ′x are not unifiable. Now we can show

that different derivations of our calculus always compute independent solutions.

Theorem 7.1 (Optimality)

If Ic(t)
∗
⇒ θ

LNT {} and Ic(t)
∗
⇒ θ′

LNT {} are two different derivations, then θ and θ′

are independent on FV(t).

Proof

The claim follows from examining the substitutions computed. First, it is to observe

that, except for the Guess rules, no rule overlap, i.e., apply simultaneously to a

particular goal system. Thus, the two derivations have the form

Ic(t)
∗
⇒ θ0

LNT S
∗
⇒ θ1

LNT S1
∗
⇒

θ′
1

LNT {}

and

Ic(t)
∗
⇒ θ0

LNT S
∗
⇒ θ2

LNT S2
∗
⇒

θ′
2

LNT {}

where the steps S
∗
⇒ θ1

LNT S1 and S
∗
⇒ θ2

LNT S2 are different applications of a Guess

rule (otherwise, the derivations cannot be different). These different applications of

a Guess rule compute independent bindings for a variable X , where the following

bindings are possible:

{X 7→ λxn.c(Hm(xn))} (Imitation)

{X 7→ λxn.f(Hm(xn))} (Function Guess)

{X 7→ λxn.xi(Hm(xn))} (Projection)

By Lemma 6.15, these independent bindings are bindings for a variable X ∈
FV(θ0t). Thus, there is a variable Y ∈ FV(t) such that {Y 7→ θ1(θ0(Y )} and

{Y 7→ θ2(θ0(Y )} are independent on FV(t). As a consequence, θ = θ′1θ1θ0 and

θ = θ′2θ2θ0 are independent on FV(t).

It is also conjectured that our notion of needed reductions is optimal (this is subject

to current research (Asperti & Laneve, 1994; Oostrom, 1994; Oostrom, 1996)). Note,

however, that sharing is needed for optimality, as shown for the first-order case in

(Antoy et al., 1994).
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8 Avoiding Function Synthesis

Although the synthesis of functional objects by full higher-order unification in LNT

is very powerful, it can also be expensive and operationally complex. There is an

interesting restriction on rewrite rules which entails that full higher-order unification

is not needed in LNT for (quasi) first-order goals.

We show that the corresponding result in (Avenhaus & Loŕıa-Sáenz, 1994) is easy

to see in our context, although lifting over binders obscures the results somewhat

unnecessarily.5 Lifting may instantiate a first-order variable by a higher-order one,

but this is only needed to handle the context correctly.

A term t is quasi first-order if t is a higher-order pattern without free higher-

order variables. A rule f(Xn) → X is called weakly higher-order, if every higher-

order free variable which occurs in X is in {Xn}. In other words, higher-order vari-

ables may only occur directly below the root and these are immediately eliminated

when hdts are introduced in the Case Eval rule. For instance, the rule

map(F, [X |R]) → [F (X)|map(F, R)]

is weakly higher-order, if X and R are first-order.

Theorem 8.1

If Ic(t)
∗
⇒LNT S where t is quasi first-order w.r.t. weakly higher-order rules, then

A(S) is quasi first-order.

Proof

We establish the claim by induction on
∗
⇒. Assume S ⇒ S′. First, we show that only

higher-order patterns occur in S′. The only rule where non-patterns are involved is

the Case Eval rule. In this rule, all Xn of a weakly higher-order rule f(Xn) → X
are bound to quasi first-order terms by σ, hence all terms in σX are higher-order

patterns.

Furthermore, it is to show that A(S′) is quasi first-order. Since the Guess rules

are first-order in this case, only the Bind rule must be considered: As all variables

in the right-hand side in the leaf must occur in the selectors on the path to the

leaf, all its variables must have been bound before Bind applies. Since the variables

in selectors are only bound to (sub-)terms of A(S′) (in the Case Select rule), the

right-hand side is instantiated to a quasi first-order term.

As a consequence of the last result, Function Guess and Projection do not apply and

Imitation is only used as in the first-order case. For instance, a term like map(f, l)

can be solved without higher-order unification (i.e., as in Section 3) provided that

f is a defined function symbol and l is a list of first-order objects.

9 Conclusions

We have presented an effective model for the integration of higher-order functional

and logic programming with completeness and optimality results. The complete-

ness results are stated w.r.t. LNT reductions which we have defined via definitional

5 Considering liftings is missing in (Loŕıa-Sáenz, 1993)
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trees. In the first-order case, LNT reductions are identical to needed reductions.

In the higher-order case, our computation model is complete for terminating re-

write systems, complete w.r.t. LNT reductions in the presence of non-terminating

functions, and optimal w.r.t. the number of computed solutions. Since we permit

higher-order logical variables and λ-abstractions, our strategy is a suitable basis for

truly higher-order functional logic languages, i.e., declarative languages that provide

the synthesis of values for first-order as well as higher-order variables. Moreover,

our strategy reduces to an optimal first-order strategy if the higher-order features

are not used. Further work will focus on adapting the explicit model for sharing

using goal systems from (Prehofer, 1997) to this refined context.
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Avenhaus, J., & Loŕıa-Sáenz, C. A. (1994). Higher-order conditional rewriting and nar-
rowing. Jouannaud, Jean-Pierre (ed), 1st International Conference on Constraints in
Computational Logics. München, Germany: Springer LNCS 845.

Baader, F., & Nipkow, T. (1998). Term rewriting and all that. Cambridge University
Press.

Barendregt, H.P. (1984). The lambda calculus, its syntax and semantics. 2nd edn. North
Holland.

Dershowitz, N., & Jouannaud, J.-P. (1990). Rewrite systems. Pages 243–320 of: Leeuwen,
Jan Van (ed), Handbook of Theoretical Computer Science, Volume B: Formal Models
and Semantics. Elsevier.

Giovannetti, E., Levi, G., Moiso, C., & Palamidessi, C. (1991). Kernel LEAF: A logic plus
functional language. Journal of Computer and System Sciences, 42(2), 139–185.
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A Appendix

This appendix contains the proofs omitted in Section 3.

A.1 Proof of Theorem 3.3

In order to prove the equivalence of needed narrowing and leftmost-outermost nar-

rowing with case expressions, we have to relate both kinds of derivations. For this

purpose, we define the following translation EC from Eval-goals into terms with

case expressions.

EC(t) = t

EC(Eval(t, T )) = σ(Case(T )) where σ(pat(T )) = t

EC(G, Eval(t, branch(π, o, Tk))) = case EC(G) of pk : Xk

where EC(Eval(t, branch(π, o, Tk))) = case . . . of pk : Xk

Hence, a single Eval-goal is translated into the definitional tree represented by case

expressions and instantiated with the arguments of the goal. A sequence of Eval-

goals, which may occur due to nested function evaluations, is folded into a single

case expression by inserting the first goals into the first argument of the final case

expression. For instance, the Eval-goal

0, Eval(0 + 0 ≤ Y, branch(X1 ≤ Y1, 1,rule(0 ≤ Y1 → true),

branch(s(X2) ≤ Y1, . . .)))

is translated by EC into the term

case 0 of 0 : true, s(X1) : (case Y of 0 : false, s(Y1) : X1 ≤ Y1)
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The following lemma shows that each inference step in the needed narrowing cal-

culus w.r.t. R corresponds to zero or one leftmost-outermost narrowing steps w.r.t.

R′ ∪Rcase.

Lemma A.1

Let G be an Eval-goal, t = EC(G), and G ⇒σ G′ be an inference step in the needed

narrowing calculus. Then, either EC(G′) = t and σ = {}, or there exists a unique

leftmost-outermost narrowing step t ;σ t′ w.r.t. R′ ∪Rcase with EC(G′) = t′.

Proof

We distinguish the different cases for the applied inference rule of the needed nar-

rowing calculus. Note that G has the form Eval(s, T ), G0 except for the inference

rules Initial and Replace Subterm.

1. The inference rule Initial is applied: Then G = t = f(tn) for some function f .

Let T be the definitional tree for f with pattern f(Xn) and ϕ = {Xn 7→ tn}.
Then t ;{} ϕ(Case(T )) is a unique leftmost-outermost narrowing step w.r.t.

R′ ∪Rcase. Moreover, EC(G′) = EC(Eval(t, T )) = ϕ(Case(T )).

2. The inference rule Apply is used: Then σ = {}, T = rule(l → r), ϕ(l) = s

for some substitution ϕ, and G′ = ϕ(r), G0. If G0 = {}, then t = EC(G) =

ϕ(r) = EC(G′) by definition of EC. If G0 6= {}, then, by definition of EC, t and

EC(G′) may only differ in the case argument of some case expression, where

t contains the subterm EC(Eval(s, T )) and EC(G′) contains the subterm ϕ(r)

at this case argument. However, EC(Eval(s, T )) = ϕ(r) by definition of EC.

3. The inference rule Select is applied: Then T = branch(π, o, Tk), s|o = c(tn),

σ = {}, and G′ = Eval(s, Ti), G0 where pat(Ti) = c(Xn). First, consider the

case G0 = {}. Then

t = ϕ(case π|o of pat(Tk)|o : Case(Tk))

with ϕ(π) = s. Since s|o = c(tn), ϕ(π)|o = c(Xn). Due to the form of

the case rules, exactly one case rule (the i-th rule) can be applied to t,

i.e., t ;{} ϕ′(ϕ(Case(Ti))) with ϕ′ = {Xn 7→ tn} and pat(Ti) = π[c(Xn)]o.

Since ϕ(π) = s and s|o = c(tn), ϕ′(ϕ(pat(Ti))) = s. Thus, EC(Eval(s, Ti)) =

ϕ′(ϕ(Case(Ti))).

If G0 6= {}, t is a term consisting of nested case expressions and

EC(Eval(s, branch(π, o, Tk))) is the leftmost-outermost position in t where

a narrowing step can be applied (by definition of EC). Hence we apply a

leftmost-outermost narrowing step to this subterm of t analogously to the

case G0 = {}.

4. The inference rule Instantiate is applied: Then T = branch(π, o, Tk), s|o = X ,

σ = {X 7→ pat(Ti)}, and G′ = σ(Eval(s, Ti), G0). Consider the case G0 = {}
(the case G0 6= {} can be treated analogously as in the previous case). Then

t = ϕ(case π|o of pat(Tk)|o : Case(Tk))

with ϕ(π) = s. Since s|o = X and due to the form of the case rules, exactly

one case rule (the i-th rule) can be applied to t in order to instantiate X to the
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same pattern, i.e., t ;σ σ(ϕ(Case(Ti))). Since ϕ(π) = s and σ(s|o) = σ(X) =

pat(Ti)|o, σ(ϕ(pat(Ti))) = s. Thus, EC(Eval(s, Ti)) = σ(ϕ(Case(Ti))).

5. The inference rule Eval Subterm is applied: Then T = branch(π, o, Tk),

s|o = f(tn), σ = {}, and G′ = Eval(s|o, T ′), Eval(s, T ), G0 where T ′ is the

definitional tree of f . Consider the case G0 = {} (the case G0 6= {} can be

treated analogously). Then

t = ϕ(case π|o of pat(Tk)|o : Case(Tk))

with ϕ(π) = s. Since s|o = f(tn) = ϕ(π)|o, no case rule is applicable to the

root of t. Thus, ϕ(π|o) is the subterm at the leftmost-outermost narrowing

position, and the only applicable rule is f(Xn) → Case(T ′) (if f(Xn) is the

pattern of T ′). Thus,

t ;{} case τ(Case(T ′)) of pat(Tk)|o : ϕ(Case(Tk))

with τ = {Xn 7→ tn} is the only possible leftmost-outermost narrowing step.

Moreover,

EC(Eval(s|o, T ′), Eval(s, T ))

= case EC(Eval(s|o, T ′)) of pat(Tk)|o : ϕ(Case(Tk))

= case τ(Case(T ′)) of pat(Tk)|o : ϕ(Case(Tk)) .

The last equality holds by definition of EC since τ(pat(T ′)) = τ(f(Xn)) =

f(tn) = s|o.
6. The inference rule Replace Subterm is applied: Then G = r, Eval(s, T ), G0,

T = branch(π, o, Tk), σ = {}, and G′ = Eval(s[r]o, T ), G0. Consider the case

G0 = {} (the case G0 6= {} can be treated analogously). Then

t = EC(r, Eval(s, T ))

= case EC(r) of pat(Tk)|o : ϕ(Case(Tk))

= case r of pat(Tk)|o : ϕ(Case(Tk))

with ϕ(π) = s. On the other hand,

EC(Eval(s[r]o, branch(π, o, Tk)))

= case ϕ′(π|o) of pat(Tk)|o : ϕ′(Case(Tk))

with ϕ′(π) = s[r]o. Hence the only difference between ϕ and ϕ′ is the in-

stantiation of the variable π|o: ϕ′(π|o) = r and ϕ(π|o) = s|o. W.l.o.g. we

can assume that the case variable π|o does not occur in any subtree Tk (we

can always construct the definitional tree in such a way). Thus, both terms t

and EC(Eval(s[r]o, branch(π, o, Tk))) are identical (i.e., it is not necessary to

perform a leftmost-outermost narrowing step).

The equivalence of needed narrowing w.r.t. R and leftmost-outermost narrowing

w.r.t. R′ ∪Rcase is based on the previous lemma:

Theorem 3.3

Let t be a term and c be a 0-ary constructor. For each needed narrowing derivation
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t ;
∗
σ c w.r.t. R there exists a leftmost-outermost narrowing derivation t ;

∗
σ c w.r.t.

R′ ∪Rcase, and vice versa.

Proof

By induction on the derivation steps and applying Lemma A.1, we can construct

for each needed narrowing derivation starting from t a unique leftmost-outermost

narrowing derivation starting from EC(t) = t which computes the same solution for

the variables in t. On the other hand, it is straightforward to show (by a case dis-

tinction similar to the proof of Lemma A.1) that each leftmost-outermost narrowing

derivation t ;
∗
σ c w.r.t. R′ ∪ Rcase corresponds to a needed narrowing derivation

t ;
∗
σ c w.r.t. R.

A.2 Proof of Theorem 3.5

To prove the equivalence of leftmost-outermost narrowing and the lazy narrowing

calculus LNT, we need a few notions and technical lemmas to establish the precise

equivalence between leftmost-outermost narrowing derivations and derivation in the

lazy narrowing calculus LNT. First, note that the inference rules of the calculus

LNT keep the following important invariant on goal systems:

(∗) If G1, l →? r, G2 is a goal system, then r is a variable not occurring in G1 and

l.

There is a strong correspondence between terms with case expressions and goal

systems, since each single equation t →? X can be “flattened” into a goal system

by the following function F lat:6

F lat(f(tn) →? X) = f(tn) →? X

F lat(case t of pn : Xn →? X)

=

{

F lat(t →? Y ), case Y of pn : Xn →? X if t = case . . . and Y fresh variable

case t of pn : Xn →? X otherwise

For instance, if we apply the function F lat to the goal

case (case X ≤ Y of true : true) of true : true →? T ,

we obtain the “flattened” goal system

case X ≤ Y of true : true →? Z, case Z of true : true →? T .

On the other hand, goal systems satisfying invariant (∗) can be “folded” by the

following function Fold into a single equation representing a term with nested case

expressions:

Fold(t →? X) = t →? X

Fold(t →? X, G) = Fold(σ(G)) with σ = {X 7→ t}

6 Formally, F lat is not a function due to the arbitrarily chosen fresh variables. However,
by fixing the set of fresh variables and introducing an order on it, F lat can be interpreted
as a function.
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The following lemma shows that, for each leftmost-outermost narrowing step in a

derivation w.r.t. R′ ∪Rcase, there is a corresponding LNT-derivation w.r.t. R′.

Lemma A.2

Let t ;σ t′ be a leftmost-outermost narrowing step in a derivation of the initial

term case t0 of c : c w.r.t. R′ ∪Rcase and X a fresh variable. Then there exists a

LNT-step F lat(t →? X) ⇒σ G w.r.t. R′ such that Fold(G) = t′ →? X .

Proof

Since t ;σ t′ is a leftmost-outermost narrowing step in a derivation of the initial

term case t0 of c : c, t has a case symbol at the top. Moreover, since it was derived

by leftmost-outermost narrowing steps w.r.t. R′ ∪Rcase, t has the structure

t = case1 (. . . (casen−1 (casen s of pk : Xk) of . . .) . . .) of . . .

where s has not a case symbol at the top (here we use indices to distinguish the

different case symbols). By definition of F lat,

F lat(t →? X) = casen s of pk : Xk →? Yn−1, . . . , case1 Y1 of . . . →? X .

There are the following possibilities for s:

1. s is operation-rooted, i.e., s = f(tn). Then s is the subterm reduced by the

leftmost-outermost narrowing step, σ = {}, and

t′ = case1 (. . . (casen−1 (casen ϕ(X ) of pk : Xk) of . . .) . . .) of . . .

if f(Xn) → X is a rewrite rule and ϕ = {Xn 7→ tn}. Since s is operation-

rooted, we can only apply the Case Eval rule to the goal system F lat(t →? X):

F lat(t →? X) ⇒{}

ϕ(X ) →? Yn, casen Yn of pk : Xk →? Yn−1, . . . , case1 Y1 of . . . →? X =: G

By definition of Fold, Fold(G) = t′ →? X .

2. s is a variable: Then casen s of pk : Xk is the subterm reduced by applying

a case-rule in the leftmost-outermost narrowing step, and

t′ = σ(case1 (. . . (casen−1 Xi of . . .) . . .) of . . .)

with σ = {s 7→ pi} for some i ∈ {1, . . . , k}. To compute the same result by a

LNT-step, we apply the Case Guess rule to this goal system:

F lat(t →? X) ⇒σ σ(Xi →
? Yn−1, . . . , case1 Y1 of . . . →? X) =: G

By definition of Fold, Fold(G) = t′ →? X .

3. s has a constructor at the top: Then casen s of pk : Xk is the subterm reduced

by applying a case-rule in the leftmost-outermost narrowing step, σ = {}
(since only pattern variables are instantiated), and

t′ = case1 (. . . (casen−1 ϕ(Xi) of . . .) . . .) of . . .

where pi = c(Xn) for some i ∈ {1, . . . , k} and ϕ = {Xn 7→ tn}. Since s is
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constructor-rooted, we can only apply the Case Select rule to the goal system

F lat(t →? X):

F lat(t →? X) ⇒{} ϕ(Xi) →
? Yn−1, . . . , case1 Y1 of . . . →? X =: G

By definition of Fold, Fold(G) = t′ →? X .

We can extend this lemma to entire leftmost-outermost narrowing derivations.

Lemma A.3

Let t ;
∗
σ c be a leftmost-outermost narrowing derivation w.r.t. R′ ∪ Rcase for the

term t = case t0 of c : c and X a fresh variable. Then there exists a LNT-derivation

F lat(t →? X)
∗
⇒ σ c →? X w.r.t. R′.

Proof

The proof is done by induction on the length n of the leftmost-outermost derivation

t ;
∗
σ c.

n = 1: Then t ;σ c. By Lemma A.2, there exists a LNT-step F lat(t →? X) ⇒σ G

w.r.t. R′ such that Fold(G) = c →? X . By definition of Fold, G = c →? X .

n > 1: Then t ;
∗
σ c has the form t ;ϕ t′ ;

n−1
τ c with σ = τϕ. By Lemma A.2,

there exists a LNT-step F lat(t →? X) ⇒ϕ G w.r.t. R′ such that Fold(G) =

t′ →? X . By induction hypothesis, there exists a LNT-derivation F lat(t′ →?

X)
∗
⇒ τ c →? X . If G = F lat(t′ →? X), we can join the first LNT-step with

this LNT-derivation to the requested LNT-derivation. Hence, consider the case

G 6= F lat(t′ →? X). Since Fold(G) = t′ →? X , G can be transformed into

F lat(t′ →? X) by applying Bind rules.

The following lemma shows that each inference step in the calculus LNT w.r.t. R′

corresponds to zero or one leftmost-outermost narrowing steps w.r.t. R′ ∪Rcase.

Lemma A.4

Let t be a term, X a variable which does not occur in t, and F lat(t →? X) ⇒σ G a

LNT-step with G 6= {}. Then, either Fold(G) = t →? X or there exists a leftmost-

outermost narrowing step t ;σ t′ w.r.t. R′ ∪Rcase such that Fold(G) = t′ →? X .

Proof

Let F lat(t →? X) = s →? Y, F . We distinguish the different cases for the applied

inference rule of the calculus LNT:

1. The Bind rule is applied: Then σ = {} and G = ϕ(F ) with ϕ = {Y 7→ s}. By

definition of Fold, Fold(G) = t →? X .

2. The Case Select rule is applied: Then σ = {}, s = case c(tn) of pk : Xk,

pi = c(Xn) for some i ∈ {1, . . . , k}, ϕ = {Xn 7→ tn}, and G = ϕ(Xi) →? Y, F .

By definition of Fold, we can apply a leftmost-outermost narrowing step at

the position of the subterm s of t with an appropriate case-rule, i.e., t ;{} t′

is a leftmost-outermost narrowing step with Fold(G) = t′ →? X .
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3. The Case Guess rule is applied: Analogously to the previous case.

4. The Case Eval rule is applied: Then σ = {}, s = case f(tn) of pk : Xk,

f(Xn) → X is a rewrite rule, ϕ = {Xn 7→ tn}, and G = ϕ(X ) →?

Z, case Z of pk : Xk for some fresh variable Z. By definition of Fold, we

can apply a leftmost-outermost narrowing step at the position of the subterm

f(tn) of t with the same rewrite rule, i.e., t ;{} t′ is a leftmost-outermost

narrowing step with Fold(G) = t′ →? X (by definition of Fold).

Now we can prove the equivalence of leftmost-outermost narrowing and the lazy

narrowing calculus LNT.

Theorem 3.5

Let t be a term, c a 0-ary constructor, and X a fresh variable. For each leftmost-

outermost narrowing derivation t ;
∗
σ c w.r.t. R′ ∪ Rcase there exists a LNT-

derivation case t of c : c →? X
∗
⇒ σ c →? X w.r.t. R′, and vice versa.

Proof

First, note that a leftmost-outermost narrowing derivation t ;
∗
σ c has a unique

correspondence to a leftmost-outermost narrowing derivation

case t of c : c ;
∗
σ case c of c : c ;{} c .

The existence of the corresponding LNT-derivation is a direct consequence of

Lemma A.3, considering the fact that F lat(case t of c : c →? X) = case t of c :

c →? X by definition of F lat. The reverse direction follows from Lemma A.4 with

a simple induction on the length of the derivations.


