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Abstra
tWe introdu
e a semanti
 
hara
terization of narrowing, the 
ompu-tational engine of many fun
tional logi
 languages. We use a fun
tionaldomain for giving a denotation to the narrowing spa
e asso
iated to agiven initial expression under an arbitrary narrowing strategy. Su
h asemanti
 des
ription highlights (and favours) the operational notion ofevaluation instead of the more usual model-theoreti
 notion of interpre-tation as the basis for the semanti
 des
ription. The motivation is toobtain an abstra
t semanti
s whi
h en
odes information about the realoperational framework used by a given (narrowing-based) fun
tional logi
language. Our aim is to provide a semanti
 foundation for the develop-ment of a general, suitable, and a

urate framework for the analysis offun
tional logi
 programs.Keywords: domain theory, fun
tional logi
 languages, narrowing, pro-gram analysis, semanti
s.1 Introdu
tionThe ability of reasoning about program properties is essential in software design,implementations, and program manipulation. Program analysis is the task ofprodu
ing (usually approximated) information about a program. The analysis offun
tional logi
 programs is one of the most 
hallenging problems in de
larativeprogramming. Many works have already addressed the analysis of 
ertain run-time properties of programs, e.g., mode inferen
ing [DW89, Han94b, HZ94,Lin88℄, demandedness patterns [MKMWH93, Zar97℄, equational unsatis�ability[AFM95, AFRV93, AFV96, BE�93℄, dete
tion of parallelism [HKL92, SR92℄and a number of other properties whi
h are also relevant for parallel exe
ution�Institut f�ur Informatik, Christian-Albre
hts-Universit�at Kiel, Olshausenstr. 40, D-24098Kiel, Germany, mh�informatik.uni-kiel.de. Partially supported by the German Resear
hCoun
il (DFG) under grant Ha 2457/1-1.yDSIC, UPV, Camino de Vera s/n, E-46071 Valen
ia, Spain, slu
as�dsi
.upv.es. Par-tially supported by EEC-HCM grant ERBCHRXCT940624, Spanish CICYT grant TIC 98-0445-C03-01, and A

i�on Integrada hispano{alemana HA1997-0073.1



[KMH92℄. Nevertheless, most of these approa
hes have been done in a rather adho
 setting, gearing the analysis towards the appli
ation on hand. Up to now,there is no general approa
h for formulating and analyzing arbitrary propertiesof fun
tional logi
 programs with respe
t to an arbitrary operational framework.Moreover, no attempt to formally 
onne
t (or use) properties from the pure logi
or fun
tional world in an integrated, fun
tional logi
 setting has been made. Inthis paper we address these problems.The key of our approa
h is domain theory [S
o82, S
o81, S
o70℄ sin
e it pro-vides a jun
tion between semanti
s (spa
es of points = denotations of 
omputa-tional pro
esses) and logi
s (latti
es of properties of pro
esses) [Abr91, Rey75,S
o81, Vi
89℄. The 
omputational pro
ess we are interested in is evaluation.In a programming language, the notion of evaluation emphasizes the idea thatthere exists a distinguished set of synta
ti
 elements (the values) whi
h havea prede�ned mathemati
al interpretation [Gun92, Pit97℄. The other synta
ti
elements take meaning from the program de�nitions and the operational frame-work for the program's exe
ution. In this way, the evaluation pro
ess (undera given operational framework), maps general input expressions (having an apriori unknown meaning) to values. This point of view favours the operationalnotion of evaluation instead of the more usual model-theoreti
 notion of inter-pretation as the basis for the semanti
 des
ription.Sin
e fun
tional logi
 languages with a 
omplete operational semanti
s arebased on narrowing, we 
enter our attention on it. The idea of using narrow-ing as an evaluation me
hanism for integrated languages 
omes from Reddy[Red85℄: narrowing is the operational prin
iple whi
h 
omputes the non-groundvalue (ngv) of an input expression. Given a domain D, a ngv is a mapping fromvaluations (on D) to values (in D). In moving valuations from being parame-ters of semanti
 fun
tions (as usual in many approa
hes, e.g., [GHLR99, MR92℄)to be 
omponents of a semanti
 domain, we understand narrowing as an eval-uation me
hanism whi
h in
orporates the instantiation of variables as a partof su
h evaluation me
hanism. Sin
e ngv's are fun
tional values, we use thedomain-theoreti
 notion of approximable mapping [S
o82, S
o81℄ to give them a
omputable representation. We argue that this is a good starting point for ex-pressing and managing observable properties of fun
tional logi
 programs (alongthe lines of [Abr91, Smy83, Vi
89℄). Moreover, it reveals that, within an inte-grated framework, there exist semanti
 
onne
tions between purely fun
tionaland logi
 properties of programs. Termination and groundness are examplesof su
h related properties. On the other hand, thanks to in
luding operationalinformation into the semanti
 des
ription, we are able to derive interesting op-timizations for program exe
ution.Se
tion 2 gives some preliminary de�nitions. Se
tion 3 introdu
es the mainguidelines of our semanti
 approa
h with a simple appli
ation to the semanti
des
ription of rewriting 
omputations and rewriting strategies. Se
tion 4 dis-
usses the des
ription of narrowing as an evaluation me
hanism and introdu
esapproximable mappings. Se
tion 5 formalizes the des
ription of narrowing 
om-putations and narrowing strategies by using approximable mappings. Se
tion 62



dis
usses how mu
h operational information 
an be obtained ba
k from our se-manti
 des
riptions of narrowing and rewriting. Se
tion 7 dis
usses a semanti
-based analysis framework for fun
tional logi
 languages. Se
tion 8 
ontains our
on
lusions.2 PreliminariesIn this se
tion, we give some preliminary de�nitions. For further details, werefer the reader to [DP90, GTWW77, Klo92, SLG94℄. Given sets A;B, BA (orA ! B) is the set of mappings from A to B and P(A) denotes the set of allsubsets of A. A preorder on a set A is a re
exive and transitive relation on A.An order v on a set A is an anti-symmetri
 preorder on A. Given an orderedset (A;v), a 
hain is a (possibly in�nite) sequen
e a1; : : : ; an; : : : of elementsai 2 A, i � 1 su
h that, for all i � 1, ai v ai+1. An element ? of an ordered set(A;v) is 
alled a least element (or a minimum) if ? v a for all a 2 A. If su
han element exists, then (A;v;?) is 
alled a pointed ordered set. Given S � A,an element a 2 A is an upper bound of S if x v a for all x 2 S. In this 
ase wealso say that S is a 
onsistent set. An upper bound of S is a least upper bound(or lub, written FS) if, for all upper bounds b of S, we have FS v b. A setS � A is downward (upward) 
losed if whenever a 2 S and b v a (a v b), wehave that b 2 S. If S = fx; yg, we write x t y instead of FS. A non-empty setS � A is dire
ted if, for all a; b 2 S, there is an upper bound 
 2 S of fa; bg.An ideal is a downward 
losed, dire
ted set and Id(A) is the set of ideals of anordered set A. For ea
h a 2 A, the set a# = fb 2 A j b v ag is an ideal: theprin
ipal ideal generated by a. A pointed ordered set (A;v;?) is a 
ompletepartial order (
po) if every dire
ted set S � A has a lub FS 2 A. An elementa 2 A of a 
po is 
alled 
ompa
t (or �nite) if, whenever S � A is a dire
ted setand a v FS, then there is x 2 S su
h that a v x. The set of 
ompa
t elementsof a 
po A is denoted as K(A). A 
po A is algebrai
 if for ea
h a 2 A, the setapprox(a) = fx 2 K(A) j x v ag is dire
ted and a = F approx(a). An algebrai

po D is a domain if, whenever the set fx; yg � K(D) is 
onsistent, then x t yexists in D.Given sets A;B;C;D su
h that B � C, mappings f : A ! B and g :C ! D are 
omposed as usual to yield a mapping g Æ f : A ! D. Givenordered sets (A;vA), (B;vB), a mapping f : A! B is monotone if 8a; b 2 A,a vA b ) f(a) vB f(b); f : A ! A is idempotent if 8a 2 A; f(f(a)) = f(a);it is de
reasing if 8a 2 A; f(a) vA a. If (A;vA), (B;vB) are 
po's, we saythat f : A ! B is 
ontinuous if, for all dire
ted set S, f(FS) = F f(S); theset of 
ontinuous (stri
t) mappings from A to B is denoted by [A ! B℄ (resp.[A!? B℄).By V we denote a 
ountable set of variables; � denotes a signature, i.e., aset of fun
tion symbols ff; g; : : :g, ea
h with a �xed arity given by a fun
tionar : � ! IN. We assume � \ V = ?. We denote by T (�; V ) the set of (�nite)terms built from symbols in the signature � and variables in V . A k-tuplet1; : : : ; tk of terms is denoted as t, where k will be 
lari�ed from the 
ontext.3



Given a term t, Var(t) is the set of variable symbols in t. Sometimes, we 
onsidera fresh 
onstant ? and �? = � [ f?g. Terms from T (�?; V ) are ordered bythe usual approximation ordering whi
h is the least ordering v satisfying ? v tfor all t and f(t) v f(s) if t v s, i.e., ti v si for all 1 � i � ar(f).Terms are viewed as labeled trees in the usual way. Positions p; q; : : : arerepresented by 
hains of positive natural numbers used to address subterms oft. By �, we denote the empty 
hain. The set of positions of a term t is denotedby Pos(t). A linear term is a term having no multiple o

urren
es of the samevariable. The subterm of t at position p is denoted by tjp. The set of positions ofnon-variable symbols in t is Pos�(t), and PosV (t) is the set of variable positions.We denote by t[s℄p the term t with the subterm at the position p repla
ed by s.A substitution is a mapping � : V ! T (�; V ) whi
h homomorphi
ally ex-tends to a mapping � : T (�; V ) ! T (�; V ). We denote by " the \identity"substitution: "(x) = x for all x 2 V . The set Dom(�) = fx 2 V j �(x) 6= xgis 
alled the domain of � and Rng(�) = [x2Dom(�)Var(�(x)) its range. �jUdenotes the restri
tion of a substitution � to a subset of variables U � V . Asubstitution � is idempotent if (and only if) Dom(�) \ Rng(�) = ?. We write� � �0 if there is � su
h that �0 = � Æ �. A uni�er of two terms t1; t2 is asubstitution � with �(t1) = �(t2). A most general uni�er (mgu) of t1; t2 is auni�er � with � � �0 for all other uni�ers �0 of t1; t2.A rewrite rule (labeled �) is an ordered pair (l; r), written � : l ! r (orjust l ! r), with l; r 2 T (�; V ), l 62 V and Var(r) � Var(l). l and r are
alled left-hand side (lhs) and right-hand side (rhs) of the rule, respe
tively. Aterm rewriting system (TRS) is a pair R = (�; R) where R is a set of rewriterules. A TRS (�; R) is left-linear, if for all l ! r 2 R, l is a linear term.Given R = (�; R), we 
onsider � as the disjoint union � = C ℄ F of symbols
 2 C, 
alled 
onstru
tors and symbols f 2 F , 
alled de�ned fun
tions, whereF = ff j f(l) ! r 2 Rg and C = �� F . A 
onstru
tor-based TRS (CB-TRS)is a TRS with l1; : : : ; ln 2 T (C; V ) for all rules f(l1; : : : ; ln)! r.For a given TRS R = (�; R), a term t rewrites to a term s (at positionp), written t [p;�℄! R s (or just t p!R s, t !R s, or t ! s) if tjp = �(l) ands = t[�(r)℄p , for some rule � : l ! r 2 R, position p 2 Pos(t) and substitution�. A term t is in normal form if there is no term s with t!R s. A TRS R (orthe rewrite relation!R) is 
alled 
on
uent if for all terms t; t1; t2 with t!�R t1and t !�R t2, there exists a term t3 with t1 !�R t3 and t2 !�R t3. A term tnarrows to a term s, written t ;[p;�;�℄ s (or just t ;� s), if p 2 Pos�(t) andthere is a substitution1 � : Var(t) ! T (�; V � Var(t)) su
h that �(t) [p;�℄! R s.A narrowing derivation t ;�� s is su
h that either t = s and � = "jVar(t) ort ;�0 t1 ;�1 � � � tn�1 ;�n�1 s and � = (�n�1 Æ � � � Æ �1 Æ �0)jVar(t) (i.e.,we 
onsider only the substitution of goal variables). As usual, we 
onsiderdi�erent new variables in ea
h elementary narrowing step (i.e., the rules arealways `renamed appart').1This substitution is usually a uni�er for tjp and the left-hand side of the applied rulerestri
ted to the variables in t. Note that we do not impose the use of most general uni�ersfor de�ning the narrowing steps. 4



3 The semanti
 approa
hFollowing [Red85℄, a fun
tional logi
 program is fun
tional in syntax and logi
in semanti
s. A (�rst-order) program P = (R; t) 
onsists of a TRS R (whi
hestablishes the distin
tion between 
onstru
tor and de�ned symbols of the pro-gram), and an initial expression t to be fully evaluated. We make t expli
itsin
e the di�eren
es between the purely fun
tional and fun
tional logi
 stylesarise in the di�erent status of the variables o

urring in the initial expression:in fun
tional programming, those variables are not allowed (or they are 
onsid-ered as 
onstants and 
annot be instantiated). Fun
tional logi
 languages dealwith expressions having logi
 variables and narrowing provides for the ne
essaryinstantiations.We take the following perspe
tive: from the programmer's point of view, theobserved semanti
s of the program a
tually depends on the 
urrent operationalframework. In this setting, the notion of evaluation, rather than that of inter-pretation, be
omes prin
ipal. Sin
e only 
onstru
tors are 
ompletely free fromeither rewriting or narrowing 
omputations, we assume that only 
onstru
torsymbols express 
ompletely de�ned information. Alternatively, one 
ould saythat only 
onstru
tor symbols are de�nitively observable during a 
omputation.We 
hara
terize the information whi
h is 
urrently 
ou
hed by a term s(whi
h is supposed to be in an intermediate stage towards the full evaluationof the initial expression t) by means of a monotone, idempotent and de
reasingmapping (j j) from synta
ti
 obje
ts to values (remind that values are expe
tedto be espe
ial synta
ti
 obje
ts). We 
all (j j) an observation mapping. Mono-toni
ity of (j j) ensures that re�nements (w.r.t. v) of the synta
ti
 information
orrespond to re�nements of the observed semanti
 information. Idempoten
yensures that ea
h observation is de�nitive. De
reasingness ensures that thesemanti
 information is part of the synta
ti
 information2. The adequa
y of agiven mapping (j j) for observing 
omputations performed by a given operationalme
hanism should be ensured by showing that (j j) is a homomorphism betweenthe relation among synta
ti
 obje
ts indu
ed by the operational me
hanismand the approximation ordering on values. This means that the operationalme
hanism re�nes the meaning of an expression as the 
omputation 
ontinues.3.1 Rewriting as an evaluation me
hanismThe synta
ti
 obje
ts are terms t 2 T (�?; V ) and the values are taken from(T 1(C?);v;?), the domain of in�nite, ground 
onstru
tor (partial) terms. For-mally, (T 1(C?);v;?) is obtained from T (C?), whi
h is not even a 
po, as (iso-morphi
 to) its ideal 
ompletion (Id (T (C?));�; f?g) (see [DP90, SLG94℄). Ingeneral, given a poset P , the mapping [ � ℄ : P ! Id(P ) that asso
iates the prin-
ipal ideal p# to ea
h p 2 P is an embedding of P into the 
po Id(P ), i.e., for allp; q 2 P , p v q if and only if [p℄ � [q℄. Sin
e [ � ℄ is inje
tive, we 
an understandId(P ) as a 
ompletion of P whi
h a
tually `in
ludes' P . (T 1(C?; V );v;?) is2Stri
tness of (j j) is a 
onsequen
e of de
reasingness.5



the domain (T 1(C? [ V );v;?), where ar(x) = 0 for all x 2 V .For fun
tional 
omputations, we use (j j)F : T (�?; V )! T (C?; V ) given by(jxj)F = x (j?j)F = ?(j
(t)j)F = 
((jtj)F ) if 
 2 C (jf(t)j)F = ? if f 2 FClearly, (j j)F is an observation mapping. The adequa
y of this mapping forobserving rewriting 
omputations is stated in the following proposition whi
hestablishes that rewriting in
reases the 
urrent information of terms as given by(j j)F .Proposition 3.1 (Redu
tion in
reases information) Let R be a TRS andt; s 2 T (�?; V ). If t!� s, then (jtj)F v (jsj)F .Proof. By indu
tion on the length n of the derivation t !� s. The 
asen = 0 is immediate. Otherwise, let t ! t0 !� s. To prove that t ! t0 implies(jtj)F v (jt0j)F , we pro
eed by indu
tion on the length of the redex positionp 2 Pos(t) of the �rst rewrite step. If p = �, then t = �(l) = f(t) for some rulel ! r and de�ned symbol f 2 F (be
ause l = f(l)). Hen
e, (jtj)F = ? v (jt0j)F .If p 6= �, we have p = i � p0. Then, t = f(t), ti ! t0i, and tj = t0j for all1 � j � ar(f), i 6= j. If f 2 F , then (jtj)F = ? v (jt0j)F . If f 2 C, then(jtj)F = 
((jtj)F ) and, sin
e t v t0, t0 = 
(t0). Therefore, by I.H., (jtij)F v (jt0ij)Fand (jtj j)F = (jt0j j)F for all 1 � j � ar(f), i 6= j. Hen
e, by de�nition of v,(jtj)F v (jt0j)F . By (the �rst) I.H., (jt0j)F v (jsj)F . Thus, the 
on
lusion follows.2The fun
tion Rew : T (�?; V )! P(T (C?; V )) provides a representationRew(t) =f(jsj)F j t!� sg of the rewriting spa
e of a given term t.Proposition 3.2 Let R be a 
on
uent TRS. For all t 2 T (�?; V ), (Rew(t);v)is a dire
ted set.Proof. Note that Rew(t) 6= ? be
ause (jtj)F 2 Rew(t). If (jt0j)F ; (jt00j)F 2Rew(t), then t !� t0 and t !� t00. By 
on
uen
e, there exists a term s su
hthat t0 !� s and t00 !� s. Hen
e, t !� s, and (jsj)F 2 Rew(t). By Proposition3.1, (jt0j)F v (jsj)F and (jt00j)F v (jsj)F , i.e., Rew(t) is dire
ted. 2The semanti
 fun
tionCRew1 : T (�?; V )! T 1(C?; V )gives the meaning of a term under evaluation by rewriting (for 
on
uent TRSs):CRew1(t) =GRew(t)or even CRew1(t) = Rew(t)#6



in an equivalent expression whi
h takes advantage of the 
orresponden
e be-tween `in�nite terms' and ideals of �nite terms (note that Rew(t)# is an ideal).Thus, CRew1(t) is the most de�ned (possibly in�nite) value whi
h 
an be ob-tained (or approximated) by issuing rewritings from t. Note that we follow the
onvention of pursuing the total evaluation (in�nite normalization) of the termand that CRew1 is well de�ned for 
on
uent TRS's; otherwise, we 
annot en-sure that Rew(t) is a dire
ted set and the lub may not exist. We also note thatthe use of in�nite terms in the 
odomain of CRew1 is ne
essary for dealingwith non-terminating programs.3.2 Rewriting strategiesFor a rewriting strategy F (i.e., a mapping from terms to terms satisfying F(t) =t whenever t is a normal form and t ! F(t) otherwise [Klo92℄), we de�neRewF(t) = f(jFn (t)j)F j n � 0g.Proposition 3.3 Let R be a TRS and F be a rewriting strategy for R. For allt 2 T (�?; V ), RewF(t) is a 
hain.3Proof. Immediate by Proposition 3.1. 2Thus, we de�ne CRew1F : T (�?; V )! T 1(C?; V )by CRew1F (t) =GRewF(t)Clearly, for all strategies F, CRew1F v CRew1 (i.e., CRew1F (t) v CRew1(t)8t). Thus, CRew1 provides a semanti
 referen
e for rewriting strategies. Strate-gies that satisfy CRew1F = CRew1 
an be thought of as 
orre
t strategies.They 
orrespond to in�nitary normalizing strategies|if we restri
t our atten-tion to 
omputing (in�nite) values rather than arbitrary (in�nite) normal forms.It is possible to provide an e�e
tive notion of in�nitary normalizing strategy byusing Middeldorp's theory of root-needed 
omputations [Mid97℄ and their de-
idable approximations [Lu
98℄.Remark 3.4 We obtain a ground semanti
s for the de�ned symbols f 2 F asfollows: f(Æ) = CRew1(f(Æ)) for all Æ 2 T (C?)ar(f). Similarly, it is possibleto des
ribe a ground semanti
s under a given strategy F by using CRew1F .4 Narrowing as an evaluation me
hanismThrough its 
omputed value CRew1(t), a ground term t denotes a value [[t℄℄Din some domain D by just giving an interpretation for ea
h 
onstru
tor symbol
 as a 
ontinuous fun
tion 
D 2 [Dar(
) ! D℄: [[t℄℄D = [[CRew1(t)℄℄D. However,3Formally, RewF(t) is de�ned as a set but for the purpose of this proposition we identifyit with a sequen
e. 7



our main interest are terms with variables. In this 
ase, the most reasonable
hoi
e is to interpret a term as denoting a fun
tion. This de�nition is the naturalone: a term with variables t denotes a 
ontinuous fun
tion tD 2 [DVar(t) ! D℄whi
h yields the value of t under ea
h possible valuation � 2 DVar(t) of itsvariables on a domain D. This is 
alled a non-ground value (ngv) in [Red85℄and a derived operator in [GTW78, GTWW77℄. It is also essentially the sameas in other algebrai
 approa
hes to semanti
s of TRS's and re
ursive programs
hemes su
h as [Bou85, Cou90, Gue81, Niv75℄.Given domains D and E, the set [D ! E℄ ([D !? E℄) of (stri
t) 
ontinuousfun
tions from D to E (pointwise) ordered by f v g i� 8x 2 D; f(x) v g(x),is a domain [Gun92, SLG94℄. Given a set W � V of variables, for proving that[DW ! D℄ is a domain whenever D is, we note thatW? =W ℄f?g supplied bythe least ordering v su
h that ? v x and x v x for all x 2 W is a domain (the
at domain of asso
iated to the set W ). The set DW of arbitrary valuationsfrom W to D is isomorphi
 to the domain [W? !? D℄ of 
ontinuous, stri
tmappings fromW? to D. Thus, we 
an view DW as this domain. In parti
ular,if we take T 1(C?) as the domain D of values, then T 1(C?)W is a domainwhose least element is the mapping �x 2W:? (denoted ?WValuat ). By abuse, wesay that the domain of a valuation � 2 DW isDom(�) = fx 2 W j �(x) 6= ?g :Therefore, if D is a domain, [DV ! D℄ also is and, in parti
ular, [T 1(C?)V !T 1(C?)℄ is a domain. We write ?Valuat instead of ?VValuat . Given a term t,[T 1(C?)Var(t) ! T 1(C?)℄ is also a domain whose least element is denoted?Var(t)Valuat .4.1 Observation of narrowing 
omputationsOur synta
ti
 obje
ts, now, are substitution/term pairs h�; ti: Given a termt 2 T (�?; V ) a narrowing derivationt = t0 ;�0 t1 ;�1 � � � ;�n�2 tn�1 ;�n�1 tn = sis represented ash�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniwhere �0 = "jVar(t) and �i+1 = (�i Æ �i)jVar(t) for 0 � i < n. We also eventuallywrite h"jVar(t); ti;� h�; si instead, where � = �n.Note that, sin
e we restri
t our attention to instantiations of variables inVar(t), we have that �i : Var(t) ! T (�; V ) and Dom(�i) � Var(t) for i � 0.Moreover, Dom(�i) � Dom(�j ) and �i � �j whenever i � j.Remark 4.1 Sin
e we use idempotent substitutions for performing the elemen-tary narrowing steps, we have that Dom(�i) \ Rng(�i) = ? for i � 0.8



In order to observe the narrowing 
omputations, we 
ould na��vely extend (j j)Fto deal with substitution/term pairs: (jh�; sij)F = h(j�j)F ; (jsj)F i where (j�j)Fis a substitution given by (j�j)F (x) = (j�(x)j)F for all x 2 V . Unfortunately,the semanti
 progress of a narrowing evaluation might not be 
aptured by the
omputational ordering v (extended to pairs by (&; Æ) v (& 0; Æ0) i� 8x 2 V:&(x) v& 0(x) and Æ v Æ0) and su
h an extension of (j j)F .Example 4.2 Consider the TRS:0+x ! x 0 � x ! trues(x)+y ! s(x+y) s(x) � s(y) ! x � yand the narrowing step h"; [x,x+y℄i; hfx 7!0g; [0,y℄i(where [�,�℄ denotes a 2-element list). We have(jh"; [x,x+y℄ij)F = h"; [x,?℄iand (jhfx 7!0g; [0,y℄ij)F = hfx 7!0g; [0,y℄i:Therefore, we do not get the desired in
reasing 
omputation, be
ause " 6v fx 7!0gand [x,?℄ 6v [0,y℄.The problem is that narrowing introdu
es a new 
omputational me
hanism forin
reasing the information asso
iated to a given term, i.e., instantiation of logi
variables. Thus, we introdu
e the observation mapping (j j)FL : T (�?; V ) !T (C?) whi
h interprets uninstantiated variables as least de�ned elements:(jxj)FL = ? (j?j)FL = ?(j
(t)j)FL = 
((jtj)FL) if 
 2 C (jf(t)j)FL = ? if f 2 FNote that (jtj)FL = ?Valuat((jtj)F ) and (j�j)FL = ?Valuat Æ (j�j)F .Example 4.3 (Continuing Example 4.2) Now,(jh"; [x,x+y℄ij)FL = h?Valuat ; [?,?℄iv hfx 7!0g; [0,?℄i= (jhfx 7!0g; [0,y℄ij)FLi.e., in this 
ase, (j j)FL satis�es the desired property.After introdu
ing some results, we prove that narrowing 
omputations are 
om-patible with the new observation mapping.Lemma 4.4 Let t; s 2 T (�?; V ). If (jtj)F v (jsj)F , then (jtj)FL v (jsj)FL.Proof. Sin
e (jtj)FL = ?Valuat((jtj)F ) and (jsj)FL = ?Valuat((jsj)F ), the 
on-
lusion follows by monotoni
ity of ?Valuat . 29



Lemma 4.5 Let t be a �nite term and � be a substitution. Then (jtj)FL v(j�(t)j)FL.Proof. By stru
tural indu
tion. If t is a variable, then (jtj)FL = ? v (j�(t)j)FL.If t is a 
onstant, t = �(t) and the 
on
lusion follows. Let t = f(t). If f 2 F ,then (jtj)FL = ? and the 
on
lusion follows. If f = 
 2 C, then �(
(t)) = 
(�(t)).By I.H., (jtij)FL v (j�(ti)j)FL for all i, 1 � i � ar(
). Therefore, by de�nition ofv, (j
(t)j)FL = 
((jtj)FL) v 
((j�(t)j)FL) = (j
(�(t))j)FL = (j�(
(t))j)FL. 2Lemma 4.6 Let �; �0 be substitutions. If � � �0, then (j�j)FL v (j�0j)FL.Proof. If � � �0, there is � su
h that �0 = � Æ�. Thus, for all x 2 V , �0(x) =�(�(x)). By Lemma 4.5, for all terms t, (j�(t)j)FL v (j�(�(t))j)FL = (j�0(t)j)FL,i.e., (j�j)FL v (j�0j)FL. 2The following proposition establishes that narrowing in
reases the 
urrent in-formation of substitution/term pairs as given by (j j)FL.Proposition 4.7 Let R be a TRS. If h�; ti ;� h�0; t0i, then (jh�; tij)FL v(jh�0; t0ij)FL.Proof. We pro
eed by indu
tion on the length n of the narrowing derivation.If n = 0, it is immediate. If n > 0, let h�; ti ; h� Æ �; si ;� h�0; t0i where� is the substitution used for issuing the narrowing step. By the indu
tionhypothesis, (jh� Æ �; sij)FL v (jh�0; t0ij)FL, i.e., (j� Æ �j)FL v (j�0j)FL and (jsj)FL v(jt0j)FL. Sin
e � � � Æ�, by Lemma 4.6, we have that (j�j)FL v (j� Æ �j)FL; hen
e(j�j)FL v (j�0j)FL. To prove that (jtj)FL v (jsj)FL, we note that, by Lemma 4.5,(jtj)FL v (j�(t)j)FL. Now, sin
e �(t) ! s, by Proposition 3.1 and Lemma 4.4,(j�(t)j)FL v (jsj)FL. 24.2 Approximable mappingsIn the following, we are 
on
erned with the representation of fun
tional val-ues. In this setting, we use the 
orresponding standard S
ott's 
onstru
tion ofapproximable mappings [S
o81, SLG94℄.A pre
usl is a stru
ture P = (P;v;t;?) where v is a preorder, ? is adistinguished minimal element, and t is a partial binary operation on P su
hthat, for all p; q 2 P , p t q is de�ned if and only if fp; qg is 
onsistent in P andthen p t q is a (distinguished) lub of p and q [SLG94℄. Approximable mappingsallow us to represent arbitrary 
ontinuous mappings between domains on therepresentations of those domains (their 
ompa
t elements) as relations betweenapproximations of a given argument and approximations of its value at thatargument [SLG94℄.De�nition 4.8 [SLG94℄ Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be pre
usl's.A relation f � P � P 0 is an approximable mapping from P to P 0 if1. ? f ?0. 10



2. p f p0 and p f q0 imply p f (p0 t q0).3. p f p0, p v q, and q0 v0 p0 imply q f q0.The ideal 
ompletion (Id(P );�; f?g) of a pre
usl P is a domain (see [SLG94℄).If P = (P;v;t;?) is a 
usl4 (i.e., v is a
tually an ordering), then the mapping[ � ℄ : P ! Id(P ) that asso
iates the prin
ipal ideal fpg# to ea
h p 2 P isinje
tive.An approximable mapping f de�nes a 
ontinuous fun
tion f : Id(P ) !Id(P 0) given by [SLG94℄f(I) = fp0 2 P 0 j 9p 2 I:p f p0g= Sp2Ifp0 2 P 0 j p f p0gNote that, for all p 2 I , fp0 2 P 0 j p f p0g is an ideal (it is not empty be
ausewe always have ? f ?0, and thus p f ?0 by following the third 
ondition ofDe�nition 4.8; it is dire
ted due to the se
ond 
ondition of De�nition 4.8; �nally,it is downward 
losed be
ause of, whenever we have p f p0 and q0 v0 p0, we alsohave p f q0, third 
ondition again).Proposition 4.9 Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be pre
usl's, andf; f 0 � P �P 0 be approximable mappings from P to P 0. If f � f 0, then f v f 0.Proof. Immediate. 2In the following, we are mainly involved with elements of Id(P ) whi
h 
orre-spond to elements p 2 P via [ � ℄: in our 
ontext, P is either T (C?) or T (C?)Vand elements in P 
orrespond to �nite obje
ts (�nite values, or valuations map-ping variables to �nite values, respe
tively) of Id(P ). Thus, we 
an roughly
onsider elements of P as the �nite or 
ompa
t elements of Id(P ) (via [ � ℄).Proposition 4.10 Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be pre
usl's, andf � P � P 0 be an approximable mapping from P to P 0. If p 2 P , then f([p℄) =fp0 2 P 0 j p f p0g.Proof. We note that Sq2[p℄fp0 2 P 0 j q f p0g � fp0 2 P 0 j p f p0g: indeed,sin
e for all q 2 [p℄, we have that q v p, and by using De�nition 4.8 (thirdpoint), whenever q f p0, we also have p f p0. Thus, sin
e it is obvious thatfp0 2 P 0 j p f p0g � Sq2[p℄fp0 2 P 0 j q f p0g, we writef([p℄) = Sq2[p℄fp0 2 P 0 j q f p0g= fp0 2 P 0 j p f p0g 24
onditional upper semilatti
e with least element, abbreviated 
usl [SLG94℄.11



Proposition 4.11 Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be pre
usl's, p 2P and f � P � P 0 be an approximable mapping from P to P 0. If [p0℄ = f([p℄)for some p0 2 P 0, then for all q 2 [p℄, whenever q f q0 for some q0 2 P 0, we havethat q0 v0 p0.Proof. Immediate. 2The following proposition establishes that, if f sets a 
onne
tion between �niteelements of domains Id(P ) and Id(P 0), then f itself already 
onne
ts thoseelements.Proposition 4.12 Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be pre
usl's, p 2P and f � P � P 0 be an approximable mapping from P to P 0. If [p0℄ = f([p℄)for some p0 2 P 0, then p f p0.Proof. By de�nition of f , [p0℄ = fq0 2 P 0 j 9q 2 [p℄:q f q0g. In parti
ular,sin
e p0 2 [p0℄, there must be q 2 [p℄ su
h that q f p0. Sin
e q v p, by De�nition4.8 (third 
ondition), the 
on
lusion follows. 2Proposition 4.13 Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be pre
usl's andI be a set of indi
es. Let f� � P � P 0 be approximable mappings for all � 2 I.If f = [�2If� is an approximable mapping, then f = F�2I f�.Proof. For all I 2 Id(P ), we have:(F�2I f�)(I) = S�2I f�(I)= S�2Ifp0 2 P 0 j 9p 2 I: p f� p0g= fp0 2 P 0 j 9p 2 P: p f p0g= f(I) 2Proposition 4.14 Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be pre
usl's andI be a set of indi
es. Let f� � P � P 0 be approximable mappings for all � 2 Isu
h that ff� j � 2 Ig is bounded. Let f = F�2I f� and p 2 P . If [p0℄ = f([p℄)for some p0 2 P 0, then there exists � 2 I su
h that [p0℄ = f�([p℄).Proof. Note that f([p℄) = (F�2I f�)([p℄) = S�2I f�([p℄). Sin
e [p0℄ =S�2I f�([p℄), it follows that p0 2 S�2Ifq0 2 P 0 j 9q 2 [p℄:q f� q0g, i.e., thereexists � 2 I su
h that p0 2 fq0 2 P 0 j 9q 2 [p℄:q f� q0g = f�([p℄). If q0 v p0,then, by De�nition 4.8, we have that, being q 2 [p℄ su
h that q f� p0, we alsohave q f� q0. Thus, q0 2 f�([p℄), i.e., [p0℄ � f�([p℄). On the other hand, if[p0℄ 6� f�([p℄), it is not possible that [p0℄ = f([p℄). Hen
e, the 
on
lusion follows.2
12



5 The narrowing spa
e as an approximable map-pingAnalogously to the 
onstru
tion Rew(t), we 
an build a semanti
 des
riptionNarr(t) of the narrowing evaluation of t. Nevertheless, sin
eNarr(t) is intendedto be a representation of a ngv, i.e., a fun
tional value, we are going to use theapproximable mappings introdu
ed in the previous se
tion.It is easy to see that (T (C?);v;t;?), where v is the usual approximationordering, is a pre
usl (in fa
t a 
usl). Similarly, given a set W � V of variables,(T (C?)W ;v;t;?WValuat), wherev is the pointwise extension of the orderingv onT (C?) to valuations � 2 T (C?)W , is also a 
usl. Given a term t, NDeriv(t) is theset of narrowing derivations issued from t. We asso
iate a relation NarrA(t) �T (C?)Var(t) � T (C?) to a given narrowing derivation A 2 NDeriv(t).De�nition 5.1 Given a term t 2 T (�?; V ) and a narrowing derivationA : h"jVar(t); ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniwe de�ne NarrA(t) = [0�i�nNarrAi (t) where:NarrAi (t) = fh&; Æi 2 T (C?)Var(t) � T (C?) j9� 2 T (C?)V :(j� Æ �ij)FL v & ^ Æ v (j�(ti)j)FLgwhere we assume that Dom(�) \ Dom(�i) = ? for 0 � i � n.Noti
e that symbol v in De�nition 5.1 is overloaded sin
e it is used to 
ompare(partial) values in T (C?) and valuations (in T (C?)Var(t)) of variables in Var(t).Remark 5.2 Note that, under our assumptions for the narrowing of terms (seeRemark 4.1) 
ondition Dom(�)\Dom(�i) = ? of De�nition 5.1 is a natural oneand does not a
tually restri
t anything: sin
e �i is idempotent and �i(ti) = ti,variables in Dom(�i) are not useful for either instantiating ti or variables inRng(�i).Example 5.3 Consider the TRS R in Example 4.2 and term t = x+y. For thenarrowing derivations:A1 : hfx 7! x; y 7! yg; x+yi ; hfx 7! 0; y 7! y'g; y'iand A2 : hfx 7! x; y 7! yg; x+yi ; hfx 7! s(x'); y 7! y'g; s(x'+y')i; hfx 7! s(0); y 7! y''g; s(y'')iwe show (part of) their semanti
 des
riptions NarrA1 and NarrA2:NarrA10 (t) = fh&;?i j & 2 T 1(C?)fx;yggNarrA11 (t) = fhfx 7! 0; y 7! ?g;?i;hfx 7! 0; y 7! 0g;?i; hfx 7! 0; y 7! 0g; 0i;hfx 7! 0; y 7! s(?)g;?i; hfx 7! 0; y 7! s(?)g; s(?)i;: : :g 13



NarrA20 (t) = fh&;?i j & 2 T 1(C?)fx;yggNarrA21 (t) = fhfx 7! s(?); y 7! ?g;?i; hfx 7! s(?); y 7! ?g; s(?)i;hfx 7! s(0); y 7! ?g;?i; hfx 7! s(0); y 7! ?g; s(?)i;hfx 7! s(?); y 7! 0g;?i; hfx 7! s(?); y 7! 0g; s(?)i;hfx 7! s(0); y 7! 0g;?i; hfx 7! s(0); y 7! 0g; s(?)i;: : :gNarrA22 (t) = fhfx 7! s(0); y 7! ?g;?i; hfx 7! s(0); y 7! ?g; s(?)i;hfx 7! s(0); y 7! 0g;?i; hfx 7! s(0); y 7! 0g; s(?)i;hfx 7! s(0); y 7! 0g; s(0)i;hfx 7! s(0); y 7! s(?)g;?i; hfx 7! s(0); y 7! s(?)g; s(?)i;hfx 7! s(0); y 7! s(?)g; s(s(?))i;hfx 7! s(0); y 7! s(0)g;?i; hfx 7! s(0); y 7! s(0)g; s(?)i;hfx 7! s(0); y 7! s(0)g; s(s(?))i;hfx 7! s(0); y 7! s(0)g; s(s(0))i; : : :gWe 
an prove that NarrA(t) is an approximable mapping for every narrowingderivation A 2 NDeriv (t). In order to a
hieve this, we need some lemmata.Lemma 5.4 Let � 2 T (C?)V and � be a substitution. Then, (j� Æ �j)FL =� Æ (j�j)F .Proof. (j� Æ �j)FL = ?Valuat Æ (j� Æ �j)F = ?Valuat Æ (j�j)F Æ (j�j)F = ?Valuat Æ� Æ (j�j)F = � Æ (j�j)F . 2Lemma 5.5 Let t 2 T (�?; V ). If � 2 T (C?)V , then (j�(t)j)FL = �((jtj)F ).Proof. By using Lemma 5.4, we have (j�(t)j)FL = (j�j)FL(t) = (j� Æ "j)FL(t) =� Æ (j"j)F (t) = �((jtj)F ). 2Proposition 5.6 Let �; �0; & 2 T (C?)V and � be a substitution su
h that Dom(�)\Dom(�) = ?. If f� Æ �; �0 Æ �g is bounded by &, then f�; �0g is bounded and(� t �0) Æ � v &.Proof. First we prove that f�; �0g is bounded, i.e., that for all x 2 V ,f�(x); �0(x)g is bounded. For ea
h x 2 V , we 
onsider two 
ases:1. x 62 Dom(�), i.e., �(x) = x: By hypothesis, we have �(�(x)) = �(x) v&(x) and �0(�(x)) = �0(x) v &(x).2. x 2 Dom(�): Then, by hypothesis, x 62 Dom(�), i.e., �(x) = ?. Thus,�(x) v �0(x).Thus, sin
e T (C?)V is a 
usl, � t �0 does exist. Now we have (� t �0) Æ � =(� Æ �) t (�0 Æ �) v & . 2Example 5.7 Without imposing that Dom(�) \ Dom(�) = ?, Proposition 5.6
ould be false. For instan
e, let �(x) = a, &(x) = a, �(x) = a, and �0(x) = b fora given variable x and arbitrary 
onstants a and b. Then, �(�(x)) = �0(�(x)) =&(x) = a, i.e., f� Æ �; �0 Æ �g is bounded by &, but f�(x); �0(x)g = fa; bg is notbounded. 14



Lemma 5.8 Let t be a �nite term and �; �0 be substitutions su
h that � v �0.Then, (j�(t)j)FL v (j�0(t)j)FL.Proof. Sin
e � v �0, �(t) v �0(t) for all terms t. The 
on
lusion follows bymonotoni
ity of (j j)FL. 2Proposition 5.9 Let R be a TRS, t be a term, and A be a narrowing derivationstarting from t. Then, NarrA(t) is an approximable mapping.Proof. LetA : h"jVar(t); ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniWe abbreviate NarrA(t) by m. Then, we 
he
k the 
onditions of De�nition 4.8.We silently use Lemma 5.4 to simplify the expressions.1. Note that, for all derivations A starting from t,NarrA0 (t) = fh&; Æi j 9� 2 T (C?)V :(j� Æ "jVar(t)j)FL v &^Æ v (j�(t)j)FLg � m:We have that (j� Æ "jVar(t)j)FL = �Æ(j"jVar(t)j)F = �Æ"jVar(t) = �jVar(t). Inparti
ular, by 
hoosing � = ?Valuat , & = ?Var(t)Valuat (note thatDom(?Valuat ) =?), and Æ = ?, we obtain �jVar(t) = (?Valuat)jVar(t) v ?Var(t)Valuat , andÆ = ? v (j?Valuat (t)j)FL, i.e., ?Var(t)Valuat m ?.2. Let & m Æ and & m Æ0. By de�nition of m, there are �i; �j 2 T (C?)V su
hthat �i Æ (j�ij)F v & and �j Æ (j�j j)F v & for some 0 � i < j � n. Sin
ei < j, there exists an idempotent substitution � : Var(ti)! T (�; V ) su
hthat �j = �Æ�i (here the assumption about the usual variable renaming ofrules of the TRS when applying narrowing steps is important, see [Pal90℄).Therefore, we have that �i Æ(j�ij)F v & and �j Æ(j�j j)F = �j Æ(j� Æ �ij)F v & .Let us show that �i Æ (j�j j)F v & . Let x 2 Var(t) be su
h that x 62Dom((j�j j)F ). Sin
e Dom((j�i j)F ) � Dom((j�j j)F ), it follows that x 62Dom((j�i j)F ); thus, �i((j�j(x)j)F ) = �i(x) = �i((j�i(x)j)F ) v &(x). Ifx 2 Dom((j�j j)F ), then, by using the fa
t that �j = � Æ �i, we distinguishtwo 
ases:(a) If Var((j�i(x)j)F ) \ Dom(�) = ?, then (j�i(x)j)F = (j�j(x)j)F ; hen
e,�i((j�j(x)j)F ) v &(x).(b) If Var((j�i(x)j)F ) \ Dom(�) 6= ?, then (j�j(x)j)F = �((j�i(x)j)F ) 
an
ontain variables whi
h are already present in (j�i(x)j)F (i.e., variablesy with y 62 Dom(�)) for whi
h 
ondition �i Æ (j�ij)F v & ensures thedesired result. For the other variables, we 
an assume, w.l.o.g., that�i does not essentially modify anything (i.e., we 
an assume thatRng(�) \ Dom(�i) = ?). Hen
e, the 
ondition ?Valuat Æ (j�j j)F v &(an easy 
onsequen
e of �j Æ (j�j j)F v &) ensures the desired result.15



Thus, sin
e �i Æ (j�j j)F v & and �j Æ (j�j j)F v & , by Proposition 5.6 (notethat Dom((j�j j)F ) \ Dom(�j) = ?), f�i; �jg is bounded by � = �i t �jand � Æ (j�j j)F v & . By de�nition of m, we also have Æ v (j�i(ti)j)FL andÆ0 v (j�j(tj)j)FL. By Proposition 4.7, (jtij)FL v (jtj j)FL. By using the fa
tthat both �i Æ (j�ij)F and �i Æ (j�j j)F are bounded by & , we 
on
lude that(j�i(ti)j)FL v (j�i(tj)j)FL. By Lemma 5.8, we obtainÆ v (j�i(ti)j)FL v (j�i(tj)j)FL v (j�(tj)j)FLBy Lemma 5.8 again, Æ0 v (j�j(tj)j)FL v (j�(tj )j)FLThus, fÆ; Æ0g is bounded, and Æ t Æ0 v (j�(tj )j)FL. Sin
e � Æ (j�j j)F v & , byde�nition of m, we have & m (Æ t Æ0).3. Let & m Æ, & v & 0, and Æ0 v Æ. Thus, there is � 2 T (C?)V and �i, 0 � i � nsu
h that � Æ (j�ij)F v & and Æ v (j�(ti)j)FL. Sin
e � Æ (j�ij)F v & v & 0 andÆ0 v Æ v (j�(ti)j)FL, & 0 m Æ0 holds by de�nition of m. 2De�nition 5.10 Given a term t 2 T (�?; V ), we de�ne the relation Narr(t) �T (C?)Var(t) � T (C?) to be Narr(t) = SA2NDeriv(t)NarrA(t).Unfortunately, these semanti
 de�nitions are not 
onsistent w.r.t. rewriting.Example 5.11 Consider the TRS:f(f(x)) ! a
 ! band A : h"jfxg; ti = hfx 7! xg; f(x)i ; hfx 7! f(x')g; ai. If m = NarrA(t),then fx 7! ag m a (we take � = ?Valuat , � = fx 7! f(x')g in De�nition 5.1;hen
e, (j� Æ �j)FL = ?Var(t)Valuat v fx 7! ag = &). Thus, NarrA(t)(fx 7! ag) = a.However, fx 7! ag(t) = f(a) 6!� a.The problem here is that (j j)FL identi�es (as ?) parts of the bindings �(x)of a 
omputed substitution � whi
h 
an be semanti
ally re�ned by instanti-ation (of the variables in �(x)) and other whi
h 
annot be further re�ned byinstantiation (the operation-rooted subterms in �(x)). If we deal with left-linearCB-TRS's and 
hoose (idempotent) mgu's as uni�ers for the narrowing pro
ess,the substitutions whi
h we deal with are linear 
onstru
tor substitutions, i.e.,for all narrowing derivations h"jVar(t); ti;� h�; si and all x 2 Var(t), �(x) is a
onstru
tor term and ff�(x) j x 2 Dom(�)gg is a linear multiset of terms (i.e.,no variable appears twi
e within them). Hen
e, the substitutions 
omputed bynarrowing have no partial information apart from the variable o

urren
es. Inthis 
ase, (j�j)F = �, (j�j)FL = ?Valuat Æ (j�j)F = ?Valuat Æ �, and we have thefollowing result. 16



Proposition 5.12 Let � be a linear 
onstru
tor substitution and �; & 2 T (C?)Vbe su
h that Dom(&)\Rng(�) = ?. If � Æ� v &, then there exists �0 2 T (C?)Vsu
h that � v �0 and �0 Æ � = &.Proof. Let x 2 V . Sin
e �Æ� v & , we have that �(�(x)) v &(x). We 
onsidertwo 
ases:1. If �(x) 6= x (i.e., x 2 Dom(�)), then we distinguish, again, two 
ases:(a) If Var(�(x)) = ?, then, sin
e � is a 
onstru
tor substitution, wehave that �(x) 2 T (C). Hen
e, �(�(x)) = �(x) v &(x) whi
h, infa
t, means that �(x) = &(x). Thus, for all �0 2 T (C?)V , �0(�(x)) =�(x) = &(x).(b) If Var(�(x)) 6= ?, then there exists a 
ontext C[ ℄ su
h that �(�(x)) =C[�(y1); : : : ; �(yn)℄ v C[Æ1; : : : ; Æn℄ = &(x) where C[ ℄ is just �(x)where variable o

urren
es have been repla
ed by 2; this is 
orre
tbe
ause � is a 
onstru
tor substitution (and hen
e �(x) is a 
on-stru
tor term without ?'s) and � is linear (thus there are n di�erentvariables y1; : : : ; yn in Var(�(x)) whose bindings �(y1); : : : ; �(yn) 
anbe independently established). Thus, we let �0(yi) = Æi for 1 � i � n;we 
an safely do this be
ause of 
ondition Dom(&)\Rng(�) = ? en-sures that no further 
ollisions would arise between these assignmentsfor �0 and those given in 
ase 2 below.2. If �(x) = x (i.e., x 62 Dom(�)), then we 
an just let �0(x) = &(x). 2Note that linearity of � is ne
essary for ensuring this result.Example 5.13 Let � = fu 7! f(x,y); v 7! f(x,z)g, � = ?Valuat , and & =fu 7! f(?,?); v 7! f(
,?)g. Clearly, � Æ � = fu 7! f(?,?); v 7! f(?,?)g v&. However, there is no �0 su
h that �0 Æ � = & be
ause it would be ne
essarythat, simultaneously, �0(x) = ? and �0(x) = 
.Moreover, the 
ondition Dom(&) \ Rng(�) = ? is also ne
essary for ensuringthe result5.Example 5.14 Let � = fx 7! s(y); y 7! y; z 7! zg, � = ?Valuat , and & =fx 7! s(a); y 7! b; z 7! bg. Note that Dom(&) \ Rng(�) = fyg. Clearly,� Æ � = fx 7! s(?); y 7! ?; z 7! ?g v &. However, there is no �0 su
h that�0 Æ � = & be
ause it would be ne
essary that, simultaneously, �0(y) = a and�0(y) = b.Thus, we obtain a simpler, more readable expression for the approximable map-ping whi
h is asso
iated to a given left-linear, CB-TRS by noting thatNarrAi (t) = fh&; Æi j 9� 2 T (C?)V :(j� Æ �ij)FL v & ^ Æ v (j�(ti)j)FLg= fh&; Æi j 9� 2 T (C?)V :� Æ �i = & ^ Æ v (j�(ti)j)FLg5Example 5.14 was suggested by a referee.17



This is easily proved 
orre
t when 
onsidering the spe
ial properties of (partial)
omputed substitutions �i within a narrowing derivation, spe
ially the fa
t thatthe hypotheses for applying Proposition 5.12 are easily ful�lled.The union of approximable mappings (
onsidered as binary relations) neednot to be an approximable mapping. Nevertheless, we have the following result.Proposition 5.15 Let R be a left-linear, 
on
uent CB-TRS and t be a term.Then, Narr(t) is an approximable mapping.Proof. We abbreviate Narr(t) by m. Then, we 
he
k the 
onditions ofDe�nition 4.8. Again, we use Lemma 5.4 to simplify the expressions.1. Sin
e h"jVar(t); ti;� h"jVar(t); ti, we have that?Valuat Æ "jVar(t) = ?Var(t)Valuat v?Var(t)Valuat , and ? v (j?Var(t)Valuat (t)j)FL, i.e., ?Var(t)Valuat m ?.2. Let & m Æ and & m Æ0. By de�nition of m, there are narrowing derivationsh"jVar(t); ti;� h�1; s1i, h"jVar(t); ti;� h�2; s2i and �1; �2 2 T (C?)V su
hthat �1 Æ (j�1j)F v & and �2 Æ (j�2j)F v & . By Proposition 5.12, thereexist �1; �2 2 T (C?)V su
h that �1 v �1, �2 v �2, and & = �1 Æ (j�1j)F ,& = �2 Æ (j�2j)F . We also have Æ v (j�1(s1)j)FL and Æ0 v (j�2(s2)j)FL.By Hullot's Theorem6 [Hul80℄, �1(t)!� s1 and �2(t)!� s2. By stability,we have that �1(�1(t)) !� �1(s1) and �2(�2(t)) !� �2(s2). Sin
e R isleft-linear and 
onstru
tor-based, �1 and �2 are 
onstru
tor substitutions.Therefore, (j�1j)F = �1, and (j�2j)F = �2, and hen
e & = �1 Æ �1 and & =�2 Æ�2. Thus, &(t)!� �1(s1) and &(t)!� �2(s2). By 
on
uen
e, there is aterm s su
h that �1(s1)!� s and �2(s2)!� s, hen
e &(t)!� s. By Propo-sition 3.1 and Lemma 4.4, (j�1(s1)j)FL; (j�2(s2)j)FL v (jsj)FL. By Hullot'sTheorem7 [Hul80℄, there is � � & su
h that h"jVar(t); ti ;� h�; s0i ands0 � s, i.e., there exists a substitution � su
h that & = �Æ� and s = �(s0).By hypothesis and by Lemma 5.8, Æ v (j�1(s1)j)FL v (j�1(s1)j)FL andÆ0 v (j�2(s2)j)FL v (j�2(s2)j)FL. Sin
e (j�1(s1)j)FL; (j�2(s2)j)FL v (jsj)FL, itfollows that fÆ; Æ0g is bounded by (jsj)FL, i.e., fÆ; Æ0g is 
onsistent. Sin
eT (C?) is a 
usl, Æ t Æ0 is the lub of Æ and Æ0. Hen
e, sin
e (j� Æ �j)FL =(j& j)FL = & v & , and Æ t Æ0 v (jsj)FL = (j�(s0)j)FL, by De�nition 5.10,& m (Æ t Æ0).3. We need to prove that, if & m Æ, & v & 0, and Æ0 v Æ, then then & 0 m Æ0.Sin
e & m Æ, there is a narrowing derivation h"jVar(t); ti ;� h�; si and asubstitution � 2 T (C?)V su
h that � Æ (j�j)F v & and Æ v (j�(s)j)FL. If& v & 0, then � Æ (j�j)F v & 0. On the other hand, Æ0 v Æ v (j�(s)j)FL. Hen
e,by de�nition of m, & 0 m Æ0.6In prin
iple, Hullot's Theorem is valid for narrowing with mgu's. However, Padawitz hasshown [Pad88, Prop. 8.2.2℄ that this theorem also holds for narrowing with arbitrary uni�ers.7This appli
ation of Hullot's Theorem generally yields a narrowing derivation where onlymgu's are used; however, our result is valid for those spe
ializations of narrowing that ad-mit a similar 
ompleteness result (e.g., narrowing with arbitrary uni�ers [Pad88℄ or needednarrowing [AEH00℄). 18



2We have the following 
ompositionality result: the semanti
s of the whole nar-rowing pro
ess 
an be thought of as the lub of the semanti
s of ea
h narrowingderivation.Proposition 5.16 Let R be a left-linear, 
on
uent CB-TRS and t be a term.Then Narr(t) = FA2NDeriv(t)NarrA(t).Proof. Proposition 5.15, Proposition 5.9, and Proposition 4.13. 2Thus, we de�ne the semanti
 fun
tionCNarr1 : T (�?; V )! [T 1(C?)V ! T 1(C?)℄as follows: CNarr1(t) = Narr(t)i.e., CNarr1(t) is the 
ontinuous mapping asso
iated to the approximable map-ping Narr(t) whi
h represents the narrowing derivations starting from t. Thissemanti
s is 
onsistent w.r.t. rewriting.Theorem 5.17 LetR be a left-linear, 
on
uent CB-TRS. For all t 2 T (�?; V ),& 2 T (C?)V , CNarr1(t) & = CRew1(&(t)).Proof. By using Proposition 4.10 (and a

ording to Proposition 5.15), we
an write: CNarr1(t) [& ℄ = fÆ j & Narr(t) Æg= SA2NDeriv(t)fÆ j & NarrA(t) ÆgFor ea
h narrowing derivationA : h"jVar(t); ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tnisu
h that & = �Æ�i for some 1 � i � n and Æ v (j�(ti)j)FL, by Hullot's Theorem,we have �i(t) !� ti. By stability &(t) !� �(ti). Thus, sin
e � 2 T (C?)V , wehave that (j�(ti)j)FL = (j�(ti)j)F 2 Rew(&(t)) and, in fa
t, CNarr1(t) [& ℄ �Rew(&(t))#. In order to prove that Rew(&(t))# � CNarr1(t) [& ℄, let us 
onsiderÆ 2 Rew(&(t))#. Then there exists (jsj)F 2 Rew(&(t)) su
h that Æ v (jsj)F .Hen
e, &(t)!� s and there is a narrowing derivation h"jVar(t); ti;� h�; s0i with& = � Æ� for some � 2 T (C?)V and s = �(s0). Therefore, sin
e &(t); s 2 T (�?),we have that (jsj)F = (jsj)FL = (j�(s0)j)FL = �(s0). Thus, & Narr(t) �(s0) and,sin
e Narr(t) is an approximable mapping and Æ v (jsj)FL = �(s0), we have& Narr(t) Æ, i.e., Rew(&(t))# � CNarr1(t) [& ℄. 2
19



5.1 Narrowing strategiesA narrowing strategy N is a restri
tion on the set of possible narrowing steps.Given a narrowing strategyN and a term t, we 
an 
onsider the setNDerivN (t) �NDeriv(t) of derivations whi
h start from t and 
onform to N . By Propo-sition 5.9, ea
h A 2 NDerivN (t) de�nes an approximable mapping NarrA(t)whi
h is obviously 
ontained in Narr(t). By Proposition 4.9 (when we 
on-sider left-linear, 
on
uent CB-TRSs), NarrA(t) v Narr(t) = CNarr1(t).Therefore, fNarrA(t) j A 2 NDerivN (t)g is bounded by CNarr1(t). Sin
e[T 1(C?)V ! T 1(C?)℄ is a domain, it is 
onsistently 
omplete, i.e., the lub ofevery bounded subset a
tually exists (Theorem 3.1.10 in [SLG94℄). Thus, forleft-linear, 
on
uent CB-TRSs, we �xCNarr1N (t) =GfNarrA(t) j A 2 NDerivN (t)gto be the meaning of t when it is evaluated under the narrowing strategy N .Clearly, for all narrowing strategies N , CNarr1N v CNarr1. Thus, CNarr1provides a semanti
 referen
e for narrowing strategies. Strategies that satisfyCNarr1N = CNarr1 
an be thought of as 
orre
t strategies. Note that, being a
ontinuous mapping, CNarr1N (t) also has an asso
iated approximable mapping(see [SLG94℄).Remark 5.18 Narrowing is able to yield the graph of a fun
tion f by 
omput-ing CNarr1(f(x)), where x1; : : : ; xar(f) are di�erent variables. This gives aninteresting perspe
tive of narrowing as an operational me
hanism whi
h 
om-putes denotations of fun
tions as a whole, rather than only values of parti
ularfun
tion 
alls. A similar observation 
an be made for narrowing strategies.In order to highlight similarities in the semanti
 des
ription of narrowing andrewriting, let us 
ompare the mathemati
al treatment of Rew(t) and Narr(t):Rewriting Narrowing� Rew(t) is a set of partial 
onstru
-tor terms Æ 2 T (C?; V ). � Narr(t) is a set of pairs h&; Æi,where & is a valuation on T (C?) andÆ 2 T (C?).� Rew(t) is a dire
ted set. � Narr(t) is an approximable map-ping.� The limit CRew1(t) of Rew(t)within the domain T 1(C?; V ) is a(possibly in�nite) value. � The `limit' of Narr(t) is a 
on-tinuous mapping CNarr1(t) fromvaluations to (in�nite) 
onstru
torterms, i.e, a non-ground value.
20



6 Computational interpretation of the semanti
des
riptionsThe aim of our semanti
 des
riptions is to provide a 
lear 
omputational inter-pretation of the semanti
 information. After the abstra
tion pro
ess that everysemanti
 des
ription involves (in our 
ase, by using observation mappings), weask ourselves: what kind of operational information 
an be obtained from thesemanti
 des
ription? This is essential for de�ning a

urate analyses by usingthe semanti
 des
ription. In this se
tion we spe
ially investigate the 
orre-sponden
e between the semanti
 des
ription of the 
omputational pro
esses ofrewriting and narrowing when they su

eed in founding values.Proposition 6.1 Let R be a 
on
uent TRS, t 2 T (�?; V ), and Æ 2 T (C; V ).Then, Æ = CRew1(t) if and only if t!� Æ.Proof. If t !� Æ, then (jÆj)F = Æ 2 Rew(t). Sin
e Æ is maximal and,by Proposition 3.2, Rew(t) is dire
ted, it follows that Æ = CRew1(t). Theopposite statement follows a similar reasoning. 2Proposition 6.2 Let R be a TRS, t 2 T (�?; V ), F be a rewriting strategy,and Æ 2 T (C; V ). Then, Æ = CRew1F (t) if and only if t!�F Æ.Proof. Similar to Proposition 6.1. 2Con
erning narrowing 
omputations, we have the following result.Proposition 6.3 Let R be a left-linear, 
on
uent CB-TRS. Let t be a term,& 2 T (C?)Var(t), m = CNarr1(t), and Æ = m(&).1. For every narrowing derivation h"jVar(t); ti ;� h�; si su
h that � Æ � = &for some � 2 T (C?)V , we have (j�(s)j)FL v Æ.2. If Æ 2 T (C?), there exists a narrowing derivation h"jVar(t); ti ;� h�; siand � 2 T (C?)V su
h that � Æ � = & and Æ = (j�(s)j)FL.3. If Æ 2 T (C), then there exists a narrowing derivation h"jVar(t); ti;� h�; siand � 2 T (C?)V su
h that s 2 T (C; V ), � Æ � = &, and Æ = �(s).Proof.1. If A : h"jVar(t); ti;� h�; si is su
h that �Æ� = & , by de�nition of NarrA(t)we have & NarrA(t) (j�(s)j)FL, i.e., & Narr(t) (j�(s)j)FL. By Proposition4.11, the 
on
lusion follows.2. By Proposition 4.12, we have that & Narr(t) Æ. Thus, by de�nition ofNarr(t), there is a narrowing derivation A : h"jVar(t); ti ;� h�; si su
hthat & NarrA(t) Æ. Hen
e, there exists � 2 T (C?)V su
h that � Æ � = &and Æ v (j�(s)j)FL. Using (1), we 
on
lude Æ = (j�(s)j)FL.21



3. By using (2), we 
on
lude that there exists a narrowing derivation h"jVar(t); ti;�h�; si and � 2 T (C?)V su
h that � Æ � = & and Æ = (j�(s)j)FL. Assumethat s 62 T (C; V ). Then, there exists a de�ned symbol f 2 F in s. Then,? o

urs in Æ = (j�(s)j)FL thus 
ontradi
ting the fa
t that Æ 2 T (C). 2Proposition 6.3(1) expresses that, given a (�nite) valuation & , we 
an use anynarrowing derivation starting from a term t that 
omputes a substitution moregeneral than & to approximate the value Æ that, a

ording to the semanti
 inter-pretation of t as a non-ground value, 
orresponds to & . Proposition 6.3(2) and(3) say that every �nite (partial) value whi
h 
orresponds to a �nite valuation
an be exa
tly re
overed by (observing) a narrowing derivation.We are able to re�ne the 
omputational information 
ou
hed by the narrow-ing semanti
s by introdu
ing a small modi�
ation on it.De�nition 6.4 Given a term t 2 T (�?; V ), and a narrowing derivationA : h"jVar(t); ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniwe let BNarrA(t) = [0�i�nBNarrAi (t) where:BNarrAi (t) = fh&; Æi 2 T (C?)V � T (C?) j (j�ij)FL v & ^ Æ v (jtij)FLgProposition 6.5 Let R be a TRS, t be a term and A be a narrowing derivationstarting from t. Then BNarrA(t) is an approximable mapping.Proof. LetA : h"jVar(t); ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniWe abbreviate BNarrA(t) by m. Then, we 
he
k the 
onditions of De�nition4.8.1. Note that, for all derivations A starting from t,BNarrA0 = fh&; Æi j (j"jVar(t)j)FL v & ^ Æ v (jtj)FLg � m:We have that (j"jVar(t)j)FL = ?Var(t)Valuat and we obtain?Var(t)Valuat v ?Var(t)Valuat = & ,and Æ = ? v (jtj)FL, i.e., ?Var(t)Valuat m ?.2. Let & m Æ and & m Æ0. By de�nition of m, there are �i; �j , su
h that(j�ij)FL v & , Æ v (jtij)FL, (j�j j)FL v & , and Æ0 v (jtj j)FL for some 0 � i �j � n. By Proposition 4.7 (jtij)FL v (jtj j)FL, i.e., fÆ; Æ0g is bounded by(jtj j)FL. Thus, Æ t Æ0 v (jtj j)FL and, by de�nition of m, & m (Æ t Æ0).3. Let & m Æ, & v & 0, and Æ0 v Æ. Thus, there is �i, 0 � i � n su
h that(j�ij)FL v & and Æ v (jtij)FL. Sin
e (j�ij)FL v & v & 0 and Æ0 v Æ v (jtij)FL,by de�nition of m, we also have that & 0 m Æ0.22



2Sin
e ea
h BNarrAi (t) is a spe
ial 
ase ofNarrAi (t), in whi
h only � = ?Valuat isallowed, we have that BNarrA(t) � NarrA(t). Therefore, by Propositions 5.9and 6.5, and using Proposition 4.9, we have that, for all terms t, BNarrA(t) vNarrA(t). Whenever we 
onsider left-linear, 
on
uent CB-TRSs, Proposition5.15 and Proposition 4.9 ensure that fBNarrA(t) j A 2 NDeriv(t)g is boundedby CNarr1(t). Thus, for left-linear, 
on
uent CB-TRSs, we �xBNarr1(t) =GfBNarrA(t) j A 2 NDeriv(t)gas the basi
 des
ription of narrowing 
omputations. Clearly, BNarr1(t) vCNarr1(t).Example 6.6 Consider the TRS R in Example 4.2 and term t = x+y. For thenarrowing derivations:A1 : hfx 7! x; y 7! yg; x+yi ; hfx 7! 0; y 7! y'g; y'iand A2 : hfx 7! x; y 7! yg; x+yi ; hfx 7! s(x'); y 7! y'g; s(x'+y')i; hfx 7! s(0); y 7! y''g; s(y'')iwe show (part of) their semanti
 des
riptions BNarrA1 and BNarrA2 (thereader 
an 
ompare su
h semanti
 des
riptions and those given by NarrA1 andNarrA2 in Example 5.3):BNarrA10 (t) = fh&;?i j & 2 T 1(C?)fx;yggBNarrA11 (t) = fhfx 7! 0; y 7! ?g;?i;hfx 7! 0; y 7! 0g;?i;hfx 7! 0; y 7! s(?)g;?i;: : :gBNarrA20 (t) = fh&;?i j & 2 T 1(C?)fx;yggBNarrA21 (t) = fhfx 7! s(?); y 7! ?g;?i; hfx 7! s(?); y 7! ?g; s(?)i;hfx 7! s(0); y 7! ?g;?i; hfx 7! s(0); y 7! ?g; s(?)i;hfx 7! s(?); y 7! 0g;?i; hfx 7! s(?); y 7! 0g; s(?)i;hfx 7! s(0); y 7! 0g;?i; hfx 7! s(0); y 7! 0g; s(?)i;: : :gBNarrA22 (t) = fhfx 7! s(0); y 7! ?g;?i; hfx 7! s(0); y 7! ?g; s(?)i;hfx 7! s(0); y 7! 0g;?i; hfx 7! s(0); y 7! 0g; s(?)i;hfx 7! s(0); y 7! s(?)g;?i; hfx 7! s(0); y 7! s(?)g; s(?)i;hfx 7! s(0); y 7! s(0)g;?i; hfx 7! s(0); y 7! s(0)g; s(?)i;: : :gThe basi
 des
ription BNarr1(t) is 
loser to the 
omputational me
hanism ofnarrowing. The following propositions formalize this 
laim.23



Proposition 6.7 Let R be a left-linear, 
on
uent CB-TRS, t be a term, & 2T (C?)V , m = BNarr1(t), and Æ = m(&).1. For every narrowing derivation h"jVar(t); ti;� h�; si su
h that (j�j)FL v &,it is (jsj)FL v Æ.2. If Æ 2 T (C?), there exists a narrowing derivation h"jVar(t); ti ;� h�; sisu
h that � Æ � = & and Æ = (jsj)FL for some � 2 T (C?)V .Proof.1. If A : h"jVar(t); ti ;� h�; si is su
h that (j�j)FL v & , then, by de�nitionof BNarrA(t), we have that & BNarrA(t) (jsj)FL. Therefore, (jsj)FL vBNarrA(t) & v m(&) = Æ.2. By Proposition 4.14, there is a narrowing derivation A : h"jVar(t); ti ;�h�; si su
h that Æ = BNarrA(t) & . By Proposition 4.12, & BNarrA(t) Æ.Sin
e (j�j)FL v & , by using (1), we 
on
lude (jsj)FL v Æ. By de�nition ofBNarrA(t), Æ v (jsj)FL and the 
on
lusion follows. 2Proposition 6.8 Let R be a left-linear, 
on
uent CB-TRS, t be a term, andm = BNarr1(t). If h"; ti;� h�; Æi and Æ 2 T (C), then m((j�j)FL) = Æ.Proof. Let Æ0 = m((j�j)FL). By Proposition 6.7(1), (jÆj)FL v Æ0. Sin
eÆ 2 T (C), (jÆj)FL = Æ; moreover, sin
e Æ is maximal, Æ 6< Æ0. Hen
e, Æ = Æ0 =m((j�j)FL). 2The basi
 des
ription BNarr1(t) is 
loser to narrowing as an operational me
h-anism. However, CNarr1(t) a
tually provides a more 
omplete semanti
 de-s
ription as stressed by the following example.Example 6.9 Consider the TRS R in Example 4.2 and term t = x+y. A

ord-ing to Example 6.6, we have thatBNarr1(x+y) fx 7! 0; y 7! 0g = ?However, a

ording to Example 5.3, we have thatCNarr1(x+y) fx 7! 0; y 7! 0g = 0Moreover, Example 6.9 shows that, di�erent to CNarr1 (see Theorem 5.17),BNarr1 is not 
omplete w.r.t. the rewriting semanti
s.
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7 Towards a semanti
s-based analysis frameworkIn the previous se
tions we have developed a semanti
 
hara
terization of theevaluation of expressions under narrowing or arbitrary narrowing strategies asthe 
omputation of fun
tional values. To demonstrate the usefulness of thissemanti
s for the analysis of fun
tional logi
 programs, we provide in this se
tionan algebrai
 perspe
tive of the analysis of fun
tional logi
 programs where thefun
tional 
onstru
tion is also essential. We also sket
h a possible appli
ation:the 
ombined analysis of termination and groundness properties of fun
tionallogi
 programs.Domain theory provides a framework for formulating properties of programsand dis
ussing about them [Abr91, S
o81℄: A property � of a program P whosedenotation [[P ℄℄ is taken from a domain D (i.e., [[P ℄℄ 2 D) 
an be identi�ed witha predi
ate � : D ! 2, where 2 is the two point domain 2 = f?;>g orderedby ? v > (where ? 
an be thought of as false and > as true). A program Psatis�es � if �([[P ℄℄) = > (alternatively, if [[P ℄℄ 2 ��1(>)). As usual in domaintheory, we require 
ontinuity of � for a
hieving 
omputability (or observability,see [Smy83, Vi
89℄). The set [D ! 2℄ of observable properties is (isomorphi
to) the family of open sets of the S
ott's topology asso
iated to D [Abr91℄. Atopology is a pair (X; �) where X is a set and � � P(X) is a family of subsetsof X (
alled the open sets) su
h that [SLG94℄: X;? 2 � ; if U; V 2 � , thenU \ V 2 � ; and if Ui 2 � for i 2 I , then Si2I Ui 2 � . The S
ott's topologyasso
iated to a domain D is given by the set of upward 
losed subsets U � Dsu
h that, whenever A � D is dire
ted and FA 2 U , then 9x 2 A:x 2 U[SLG94℄.Note that, when 
onsidering the S
ott's topology (D; �D) of a domain D,the open set D denotes a trivial property whi
h every program satis�es; ?, theleast element of latti
e �D , denotes the `impossible' property, whi
h no programsatis�es.7.1 Analysis of fun
tional logi
 programsA program analysis 
onsists in the de�nition of a 
ontinuous fun
tion � : D !A between topologi
 spa
es (D; �D) and (A; �A) whi
h expresses 
on
rete andabstra
t properties, respe
tively. By the topologi
al de�nition of 
ontinuity,ea
h open set V 2 �A maps to an open set U 2 �D via ��1, i.e., ��1 : �A ! �Dis a mapping from abstra
t properties (open sets of �A) to 
on
rete properties(open sets of �D). It is easy to see that (D; f��1(V ) j V 2 �Ag) is a subtopologyof D (i.e., f��1(V ) j V 2 �Ag � �D). Therefore, ea
h analysis distinguishes asubset of properties of D whi
h is itself a topology. Note that �A plays therole of an abstra
t domain in the usual, latti
e-based, abstra
t interpretationapproa
hes. For instan
e, the S
ott's topology of 2 is given by �2 = f?; f>g;2g.Su
h a topology permits to express only one non-trivial property, namely, theone whi
h 
orresponds to the open set f>g.In fun
tional logi
 languages, the semanti
 domain under observation is[DV ! D℄ where D = T 1(C?). Observable properties of fun
tional logi
 pro-25



grams are open sets of its S
ott's topology. Approximations to su
h properties
an be obtained by abstra
ting [DV ! D℄ into a suitable abstra
t domain (seebelow).Every 
ontinuous fun
tion f : D ! E maps observable properties of the
odomain E into observable properties of D (by f�1 : �E ! �D). In parti
ular,elements of [DV ! D℄, i.e., denotations of fun
tional logi
 programs, map prop-erties of D (we 
all them `fun
tional' properties) into properties of DV (`logi
'properties). This provides an additional, interesting analyti
 perspe
tive: Byrephrasing Dybjer [Dyb91℄, we 
an 
omputationally interpret this 
orrespon-den
e as establishing the extent that a `logi
 property' (
on
erning valuations)needs to be ensured to guarantee a property of its fun
tional part (
omputedvalue). There is a simple way to obtain an abstra
tion of the logi
 part DV of[DV ! D℄ from an abstra
tion of its fun
tional part D.De�nition 7.1 Let D;V;A be sets. Let �F : D ! A be a mapping. Then,�L : DV ! AV given by �L(�) = �F Æ �, for all � 2 DV , is 
alled the logi
abstra
tion indu
ed by �F .If �F : D ! A is stri
t (surje
tive, 
ontinuous), then �L is stri
t (surje
tive,
ontinuous). Whenever �F is a 
ontinuous mapping from a domain D to 2, �Fexpresses, in fa
t, a single observable property ��1(f>g) of D. We 
an thoughtof �F as a fun
tional property. Thus, De�nition 7.1 asso
iates an abstra
tion�L of DV to a given property identi�ed by �F . Thus, ea
h fun
tional propertyindu
es a related set of logi
 properties whi
h is a subtopology of �DV . In Se
tion7.3 we show that groundness (a logi
 property), is indu
ed by the fun
tionalproperty of termination.7.2 Approximation of fun
tionsAbstra
tions �D : D ! A and �E : E ! B (A and B being algebrai
 latti
es),indu
e safety and liveness abstra
tions �SD!E ; �LD!E : (D ! E) ! (A ! B),of 
ontinuous mappings by [Abr90℄�SD!E(f)(d) = tf(�E Æ f)(d0) j �D(d0) v dg; and�LD!E(f)(d) = uf(�E Æ f)(d0) j �D(d0) w dgwhere the following 
orre
tness result holds:Theorem 7.2 (The semi-homomorphism property [Abr90℄) Let f : D !E, fS = �SD!E(f), and fL = �LD!E(f). Then, fL Æ �D v �E Æ f v fS Æ �D.Consider an abstra
tion �E : E ! 2 whi
h 
an be thought of as a propertyof elements of the 
odomain E of f : D ! E. For analyti
 purposes, the
orre
tness 
ondition fS Æ �D w �E Æ f ensures that, for all x 2 D, wheneverthe abstra
t 
omputation fS(�D(x)) yields ?, the 
on
rete 
omputation f(x)does not satisfy the property �E , i.e., �E(f(x)) = ?. On the other hand, the
orre
tness 
ondition fLÆ�D v �E Æf ensures that, whenever fL(�D(x)) yields>, the 
on
rete 
omputation f(x) a
tually satis�es �E , i.e., �E(f(x)) = >. Weuse this 
omputational interpretation later.26



7.3 Termination analysis and groundness analysisThe fun
tional stru
ture of the semanti
 domain of ngv's reveals 
onne
tionsbetween apparently dis
onne
ted analyses. Consider ht : T 1(C?) ! 2 de�nedby ht(Æ) = � > if Æ 2 T (C)? otherwiseand let hg : T 1(C?)V ! 2V be the logi
 abstra
tion indu
ed by ht. Note thatboth ht and hg are stri
t and 
ontinuous. Abstra
tions ht and hg express theobservable properties of (su

essful) termination and groundness, respe
tively:Re
all that the only nontrivial open set of the the S
ott's topology of 2 is f>g.By 
ontinuity of ht, h�1t (f>g) is the (open) set of �nite, totally de�ned valueswhi
h a
tually 
orresponds to terminating su

essful evaluations.Remark 7.3 ht and My
roft's abstra
tion:halt(d) = � > if d 6= ?? if d = ?for termination analysis [My
80℄ are similar. However, halt expresses termina-tion only if C 
ontains only 
onstant symbols. It is easy to see that, in this 
ase,ht = halt.On the other hand, ea
h open set of 2V is (isomorphi
 to) an upward 
losed
olle
tion of sets of variables ordered by in
lusion. In this 
ase, h�1g (U) for agiven open set U is a set of substitutions whose bindings for variables belong-ing to X 2 U are ground. This formally relates groundness and termination:groundness is the `logi
' property whi
h 
orresponds to the `fun
tional' prop-erty of termination. In fa
t, 2V is a well-known abstra
t domain for groundnessanalysis in logi
 programming [JS87℄.If C has 
onstru
tors with positive arity, then h�1t (f>g) is the set of 
onstru
tor-rooted values (they 
orrespond to terms having a 
onstru
tor-rooted head-normal form). In this 
ase, h�1g (U) for a given open set U is a set of substi-tutions whose bindings for variables belonging to X 2 U has been instantiatedwith some 
onstru
tor-rooted term.7.4 Using semanti
 information for improving the evalu-ationGroundness information 
an be used to improve the narrowing evaluation of aterm t = C[t1; : : : ; tn℄: if we know that every su

essful evaluation of ti groundsthe variables of tj , for some 1 � i; j � n, i 6= j, then it is sensible to evaluatet by �rst narrowing ti (up to a value) and next evaluating t0j (i.e., tj afterinstantiating its variables using the bindings 
reated by the evaluation of ti) byrewriting be
ause, after evaluating ti, we know that t0j is ground and we do notneed to provide 
ode for uni�
ation, instantiation of other variables, et
.27



Example 7.4 Consider the following TRS:0+x ! x if(true ,x,y) ! xs(x)+y ! s(x+y) if(false,x,y) ! yeven(0) ! true even(s(s(x))) ! even(x)even(s(0)) ! falseFor an initial (
onditional) expression \if even(x) then x+x else s(x+x)"(we use the more familiar notation if then else for if expressions), it is 
learthat x be
omes ground after every su

essful narrowing evaluation of the 
ondi-tion even(x). Thus, we 
an evaluate x+x by rewriting instead of narrowing.Additionally, we need to ensure that the evaluation of ti is safe under the 
ontextC (i.e., that failing evaluations of ti do not prevent the evaluation of t). Eventu-ally, we should also ensure that the 
omplete evaluation of t0j is safe. Stri
tnessinformation 
an be helpful here: if the (normalizing) narrowing strategy is notable to obtain any value, this means that the whole expression does not havea value. However, we should only use non-
ontextual stri
tness analyses (likeMy
roft's [My
80℄ is). In this way, we ensure that the stri
t 
hara
ter of anargument is not altered after a possible instantiation of its surrounding 
ontext.In order to ensure that every su

essful narrowing derivation grounds a givenvariable x 2 Var(t), we use the safety abstra
tion mS 2 2V ! 2 of m =BNarr1(t) (based on ht and hg).Example 7.5 (Continuing Example 7.4) For t = even(x), we have:BNarr1(t) = f fx 7! ?g 7! ?; fx 7! 0g 7! true;fx 7! s(?)g 7! ?; fx 7! s(0)g 7! false;fx 7! s(s(?))g 7! ?; fx 7! s(s(0))g 7! true;: : :gIn general, if we 
an prove that, for all abstra
t substitutions �# 2 2V with�#(x) = ?, it is mS(�#) = ?, then we 
an ensure that x is grounded in everysu

essful derivation from t. To see this point, 
onsider a su

essful derivationh"; ti ;� h�; Æi su
h that Æ 2 T (C) and �(x) 62 T (C), i.e., x is not grounded.By Proposition 6.8, m((j�j)FL) = Æ. By de�nition of mS , mS(hg((j�j)FL)) = >.Sin
e (j�(x)j)FL 62 T (C), we have hg((j�j)FL)(x) = ht((j�(x)j)FL) = ?, thus
ontradi
ting (a parti
ularization of) our initial assumption, mS(hg((j�j)FL)) =?.Example 7.6 (Continuing Example 7.5) For t = even(x), we have mS =ffx 7! ?g 7! ?; fx 7! >g 7! >g. Thus, x is grounded in every su

essfulderivation of even(x).The previous 
onsiderations show that the semanti
 dependen
y expressed bythe ngv's has the 
orresponding translation for the analysis questions. However,the detailed development of su
h a program analysis framework is outside thes
ope of this paper and a topi
 for future work.28



8 Related work and 
on
luding remarksThe idea of giving denotational des
riptions of di�erent operational frameworksis not new. For instan
e, [Bak76℄ assigns di�erent �xpoint semanti
s for a pro-gram under either 
all-by-name or 
all-by-value strategies. This shows that, insome sense, the semanti
 des
riptions also (silently) assume some underlyingoperational approa
h (usually, 
all-by-name like).In [Red85℄, the notion of ngv as the semanti
 obje
t that a narrowing 
ompu-tation should 
ompute was already introdu
ed. It was also noted that narrowingonly 
omputes a representation of the obje
t, not the obje
t itself. However, itwas not 
learly explained how this 
onne
tion 
an be done.In [MR92℄, domains are used to give semanti
s to the fun
tional logi
 lan-guage BABEL. However, the style of the presentation is model theoreti
: allsymbols take meaning from a given interpretation and the 
onne
tion betweenthe de
larative and operational semanti
s (lazy narrowing) are given by meansof the usual 
ompleteness/
orre
tness results. The semanti
 domain is di�erentfrom ours be
ause of valuations are just a parameter of the semanti
 fun
tionsrather than as a 
omponent of the domain. Thus, the Herbrand domain T 1(C?)is the semanti
 domain in [MR92℄. A similar remark 
an be made for [JPP91℄.The semanti
 approa
h in [GHLR99℄ is mu
h more general than [MR92℄(
overing non-deterministi
 
omputations), but the style of the presentation ismodel theoreti
, too. The basi
 semanti
 domain is also di�erent from ours: nofun
tional domain for denotations is used and, in fa
t, bounded 
ompleteness,whi
h is essential in our setting to deal with the fun
tional 
onstru
tion andwith narrowing strategies, is not required in [GHLR99℄.In [Zar97℄, a denotational des
ription of a parti
ular narrowing strategy (theneeded narrowing strategy [AEH00℄) is given. The semanti
s is ni
ely appliedto demandedness analysis but nothing has been said about how to use su
h asemanti
 des
ription for more general analysis problems. This question is im-portant sin
e the notion of demandedness pattern is essential for the de�nitionof the semanti
s itself.We have presented a domain-theoreti
 approa
h for des
ribing the semanti
sof integrated fun
tional logi
 languages based on narrowing. Our semanti
s isparameterized by the narrowing strategy whi
h is used by the language. Thesemanti
s is not `model-theoreti
' in the sense that we let within the opera-tional me
hanism (the narrowing strategy) to establish the `real' meaning ofthe fun
tions de�ned by the program rules. In this way, we are able to in
ludemore operational information into the semanti
 des
ription. As far as we know,previous works have not expli
itly 
onsidered arbitrary strategies for parame-terizing the semanti
s of either fun
tional or fun
tional logi
 languages, thatis, the operational-oriented denotational des
ription formalized in this work isnovel in the literature of the area.Another interesting point of our work is its appli
ability to the analysis offun
tional logi
 programs. Sin
e we use a fun
tional domain (the domain of non-ground-values), we are able to asso
iate a denotation to a term with variables.29



Thus, narrowing is reformulated as an evaluation me
hanism whi
h 
omputesthe denotation of the input expression. This was already suggested by Reddy[Red85℄ but it is only formally established in this paper by using approximablemappings. Thanks to this perspe
tive, we 
an use the standard frameworksfor program analysis based on the denotational des
ription of programs. Inother words, the approximation of the domain of non-ground values provides thebasis for the analysis of fun
tional logi
 programs. Our des
ription also revealsunexplored 
onne
tions between purely fun
tional and logi
 properties. These
onne
tions suggest that, within the fun
tional logi
 setting, we have as
ertaineda kind of `duality' between purely fun
tional and purely logi
 properties. As faras we know, this had not been established before.Future work in
ludes a more detailed study about how to use this semanti
sto develop pra
ti
al methods for the analysis of fun
tional logi
 programs. Forinstan
e, we 
an use an abstra
t narrowing 
al
ulus (see, for example, [AFRV93,AFM95, Vid96℄) to dire
tly build (
orre
t) abstra
t versions of the semanti
fun
tions via abstra
t approximable mappings. We 
an also adapt the Dybjer's
al
ulus of inverse images [Dyb91℄ for relating fun
tional and logi
 properties.Another interesting task is to extend this semanti
s to more general 
lasses ofprograms and 
omputation models for de
larative languages [Han97℄.We have presented an algebrai
 framework to express analysis of fun
tionallogi
 programs. Our intention is to use the existing (abstra
t interpretationbased) analyses for pure fun
tional and logi
 programming in our integratedframework. The expli
it semanti
 
onne
tions between the basi
 paradigmsallow us to 
ombine those analyses by using the existing tools to 
ombine ab-stra
t domains [GR95℄. Parti
ularly interesting, as a subje
t of future work,is the possibility of giving a logi
 interpretation to these domain 
ombinations[GS97, GS98℄.Referen
es[Abr90℄ S. Abramsky. Abstra
t Interpretation, Logi
al Relations, and Kan Ex-tensions. Journal of Logi
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