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Abstract
Functional logic languages combine lazy (demand-driven) evaluation strategies from functional pro-
gramming with non-deterministic computations from logic programming. The lazy evaluation of non-
deterministic subexpressions results in a demand-driven exploration of the search space: if the value of
some subexpression is not required, the complete search space connected to it is not explored. On the
other hand, this improvement could cause efficiency problems if unevaluated subexpressions are dupli-
cated and later evaluated in different parts of a program. In order to improve the execution behavior in
such situations, we propose a program analysis that guides a program transformation to avoid such ineffi-
ciencies. We demonstrate the positive effects of this program transformation with KiCS2, a recent highly
efficient implementation of the functional logic programming language Curry.
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1 Motivation

Functional logic languages support the most important features of functional and logic programming
in a single language (see [10, 32] for recent surveys). They provide higher-order functions and
demand-driven evaluation from functional programming as well as logic programming features like
non-deterministic search and computing with partial information (logic variables). This combination
led to new design patterns [8, 11], better abstractions for application programming (e.g., programming
with databases [18, 26], GUI programming [29], web programming [30, 31, 35], string parsing [22]),
and new techniques to implement programming tools, like partial evaluators [3] or test case generators
[27, 50].

The implementation of functional logic languages is challenging due to the combination of the
various language features. For instance, one can

design new abstract machines appropriately supporting these operational features and implement-
ing them in some (typically, imperative) language, like C [43] or Java [12, 37],
compile into logic languages like Prolog and reuse the existing backtracking implementation for
non-deterministic search as well as logic variables and unification for computing with partial
information [7, 41], or
compile into non-strict functional languages like Haskell and reuse the implementation of lazy
evaluation and higher-order functions [20, 21].

The latter approach requires the implementation of non-deterministic computations in a deterministic
language but has the advantage that the explicit handling of non-determinism allows for various
search strategies, like depth-first, breadth-first, parallel, or iterative deepening, instead of committing
to a fixed (incomplete) strategy like backtracking [20].

In this paper we consider KiCS2 [19], a new system that compiles functional logic programs of
the source language Curry [38] into purely functional Haskell programs. However, the techniques
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presented in this paper can also be applied to similar implementations, like KiCS [21] or ViaLOIS
[13]. KiCS2 can compete with or outperform other existing implementations of Curry [19]. In
particular, deterministic parts of a program are much faster executed than in Prolog-based Curry
implementations. Non-determinism is implemented in KiCS2 by representing all non-deterministic
results of a computation as a data structure. This structure is traversed by operations implementing the
search for solutions. Thus, different search strategies are supported by KiCS2. This flexibility might
cause efficiency problems in some situations due to the duplication of unevaluated subexpressions
(see below for a more detailed explanation). Therefore, we propose a new technique to improve such
problematic situations based on the following steps:
1. The run-time behavior of the program is analyzed. In particular, information about demanded

arguments and the non-determinism behavior is approximated.
2. The information obtained from this analysis is used to transform the source program. In particular,

the computation of a non-deterministic subexpression is enforced earlier when its value is definitely
demanded.

In this paper, we review Curry and its implementation with KiCS2, discuss the potential problems of
this implementation and present a program transformation based on a demand analysis which avoids
these problems in many practical cases. Due to lack of space, we have to omit some details which can
be found in a corresponding technical report [34].

2 Functional Logic Programming and Curry

The declarative multi-paradigm language Curry [38] combines features from functional programming
(demand-driven evaluation, parametric polymorphism, higher-order functions) and logic programming
(computing with partial information, unification, constraints). The syntax of Curry is close to Haskell1

[47]. In addition, Curry allows free (logic) variables in conditions and right-hand sides of defining
rules. The operational semantics is based on an optimal evaluation strategy [6] which is a conservative
extension of lazy functional programming and logic programming.

A Curry program consists of the definition of data types (introducing constructors for the data
types) and operations on these types. For instance, the data types for Boolean values and polymorphic
lists are as follows:

data Bool = False | True
data List a = [] | a : List a -- [a] denotes "List a"

Note that, in a functional logic language like Curry, not all definable operations are functions in
the classical mathematical sense. There are also operations, sometimes called “non-deterministic
functions” [28], which might yield more than one result on the same input. For instance, Curry
contains a choice operation defined by:

x ? _ = x
_ ? y = y

A value is an expression without defined operations. Thus, the expression “True ? False” has
two values: True and False. If expressions have more than one value, one wants to select intended
values according to some constraints, typically in conditions of program rules. A rule has the form
“f t1 . . . tn | c = e” where the (optional) condition c is a constraint, like the trivial constraint
success or an equational constraint e1 =:= e2 which is satisfied if both sides are reducible to
unifiable values. For instance, the rule

1 Variables and function names usually start with lowercase letters and the names of type and data constructors start
with an uppercase letter. The application of f to e is denoted by juxtaposition (“f e”).
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last xs | (ys++[z]) =:= xs = z where ys,z free

defines an operation to compute the last element z of a list xs based on the (infix) operation “++”
which concatenates two lists (in contrast to Prolog, free variables like ys or z need to be declared
explicitly to make their scopes clear). As mentioned above, operations can be non-deterministic:

aBool = True ? False

Using such non-deterministic operations as arguments might cause a semantical ambiguity which has
to be fixed. Consider the operations

xor True x = not x not True = False
xor False x = x not False = True

xorSelf x = xor x x

and the expression “xorSelf aBool”. If we interpret this program as a term rewriting system, we
could have the derivation

xorSelf aBool → xor aBool aBool → xor True aBool
→ xor True False → not False → True

leading to the unintended result True. Note that this result cannot be obtained if we use a strict
strategy where arguments are evaluated prior to the function calls. In order to avoid dependencies on
the evaluation strategies and exclude such unintended results, González-Moreno et al. [28] proposed
the rewriting logic CRWL as a logical (execution- and strategy-independent) foundation for declarative
programming with non-strict and non-deterministic operations. CRWL specifies the call-time choice
semantics [40], where values of the arguments of an operation are determined before the operation
is evaluated. This can be enforced in a lazy strategy by sharing actual arguments. For instance, the
expression above can be lazily evaluated provided that all occurrences of aBool are shared so that
all of them reduce either to True or to False consistently

In order to provide a precise definition of the semantics of non-deterministic and non-strict
operations, we assume a given program P and extend standard expressions so that they can also
contain the special symbol ⊥ to represent undefined or unevaluated values. A partial value is a
value containing occurrences of ⊥. A partial constructor substitution is a substitution that replaces
variables by partial values. Then we denote by

[P]⊥ = {σ(l)=σ(r) | l = r ∈ P, σ partial constructor substitution}

the set of all partial constructor instances of the program rules. A context C[·] is an expression with
some “hole”. Then the reduction relation used in this paper is defined as follows:2

C[f t1 . . . tn]� C[r] if f t1 . . . tn = r ∈ [P]⊥
C[f e1 . . . en]� C[⊥] if f is a defined operation

The first rule models the call-time choice: if a rule is applied, the actual arguments of the operation
must have been evaluated to partial values. The second rule models non-strictness where unevaluated
operations are replaced by an undefined value (which is intended if the value of this subexpression is
not demanded). A partial value t is called a normal form of e if e

∗
� t. Note that the derivation for

“xorSelf aBool” shown above is not possible w.r.t.�. The equivalence of this rewrite relation
and CRWL is shown in [42, 33].

We do not discuss the implementation of free (logic) variables in the following. This is justified
by the fact that logic variables, denoting arbitrary but unknown values, can be replaced by generators,

2 Conditional rules are not considered in the reduction relation since they can be eliminated [4] by transforming each
conditional rule “l | c = e” into “l = cond c e” where cond is defined by “cond success x = x”.
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i.e., operations that non-deterministically evaluate to all possible ground values of the type of the
free variable. For instance, the operation aBool is a generator for Boolean values so that one
can transform the expression “not x”, where x is a free variable, into “not aBool”. It has
been shown [9, 25] that computing with logic variables by narrowing [48, 51] and computing with
generators by rewriting are equivalent, i.e., compute the same values. Since such generators are
standard non-deterministic operations, they are translated like any other operation.

3 Compiling Non-Deterministic Programs

In this section, we sketch the implementation of non-deterministic programs in a purely functional
language. This translation scheme is used by KiCS2 to compile Curry programs into Haskell programs.
More details can be found in [16, 17, 19].

As mentioned in the introduction, we are interested in an implementation supporting different, in
particular, complete search strategies. Thus, implementations based on a particular search strategy,
like backtracking, which can also be found in approaches to support non-deterministic computations
in functional programs [23, 39], are too limited. To provide various, also user-definable, search
strategies, we explicitly represent all non-deterministic results of a computation in a data structure.
This is achieved by extending each data type of the source program by a constructor to represent
a choice between two values. For instance, the data type for Boolean values as defined above is
translated into the Haskell data type3

data Bool = False | True | Choice ID Bool Bool

In order to implement the call-time choice semantics discussed in Sect. 2, each Choice construc-
tor has an additional argument. For instance, the evaluation of xorSelf aBool duplicates the
argument operation aBool. Thus, we have to ensure that both duplicates, which later evaluate to
a non-deterministic choice between two values, yield either True or False. This is obtained by
assigning a unique identifier (of type ID) to each Choice. In order to get unique identifiers on
demand, we pass a (conceptually infinite) set of identifiers, also called identifier supply, to each
operation.4 Hence, each Choice created during run time can pick its unique identifier from this
set. For this purpose, we assume a type IDSupply, representing an infinite set of identifiers, with
operations

thisID :: IDSupply → ID
leftSupply :: IDSupply → IDSupply
rightSupply :: IDSupply → IDSupply

thisID takes some identifier from this set, and leftSupply and rightSupply split this set into
two disjoint subsets without the identifier obtained by thisID. There are different implementations
available [14] so that KiCS2 is parametric over concrete implementations of IDSupply. A simple
one can be based on unbounded integers, see [19].

Now, the correct handling of the call-time choice semantics can be obtained by adding an
additional argument of type IDSupply to each operation. For instance, the operation aBool
defined above is translated into:

aBool :: IDSupply → Bool
aBool s = Choice (thisID s) True False

3 Actually, our compiler adds also information to handle failures and performs some renamings to avoid conflicts with
predefined Haskell entities by introducing type classes to resolve overloaded symbols like Choice.

4 Note that the target program should be free of side effects in order to enable various search strategies, including
parallel ones.
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Similarly, the operation
main :: Bool
main = xorSelf aBool

is translated into
main :: IDSupply → Bool
main s = xorSelf (aBool (leftSupply s)) (rightSupply s)

so that the set s is split into a set (leftSupply s) containing identifiers for the evaluation of
aBool and a set (rightSupply s) containing identifiers for the evaluation of xorSelf.

Since all data types are extended by additional constructors, we must also extend the definition of
operations performing pattern matching.5 For instance, the operation xor is extended by an identifier
supply and further matching rules:

xor :: Bool → Bool → IDSupply → Bool
xor True x s = not x s
xor False x s = x
xor (Choice i x1 x2) x s = Choice i (xor x1 x s) (xor x2 x s)

The third rule transforms a non-deterministic argument into a non-deterministic result, i.e., a non-
deterministic choice is moved one level up. This is also called a “pull-tab” step [5].

In our concrete example, we assume that choice identifiers are implemented as integers [19].
Thus, if we evaluate the expression (main 1) w.r.t. the transformed rules defining xor, we obtain
the result

Choice 2 (Choice 2 False True) (Choice 2 True False)

Hence, the result is non-deterministic and contains three choices with identical identifiers. To extract
all values from such a Choice structure, we have to traverse it and compute all possible choices but
consider the choice identifiers to make consistent (left/right) decisions. Thus, if we select the left
branch as the value of the outermost Choice, we also have to select the left branch in the selected
argument (Choice 2 False True) so that False is the only value possible for this branch.
Similarly, if we select the right branch as the value of the outermost Choice, we also have to select
the right branch in its selected argument (Choice 2 True False), which again yields False
as the only possible value. In consequence, the unintended value True cannot be extracted.

As one can see, the implementation is modularized in two phases that are interleaved by the lazy
evaluation strategy of the target language: any expression is evaluated to a tree representation of all
its values and the main user interface (responsible for printing all results) extracts the correct values
from this tree structure. As a consequence, one can easily implement various search strategies to
extract these values as different tree traversal strategies. Due to the overall lazy evaluation strategy,
infinite search spaces does not cause a complication. For instance, if one is interested only in a single
solution, one can extract some value even if the computed choice structure is conceptually infinite.

4 Demand Analysis

The translation scheme presented in the previous section leads to an implementation with a good
efficiency (e.g., the benchmarks presented in [19] show that it outperforms all other Curry implemen-
tations for deterministic operations, and, for non-deterministic operations, outperforms Prolog-based
implementations of Curry and can compete with MCC [43], a Curry implementation that compiles

5 To obtain a simple compilation scheme, KiCS2 transforms source programs into uniform programs [19] where
pattern matching is restricted to a single argument. This is always possible by introducing auxiliary operations.
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to C). It is also used in a slightly modified form in another recent compact compiler for functional
logic languages [13]. However, there are situations where this scheme cause efficiency problems. For
instance, consider the evaluation of the expression (main 1) (for simplicity, we do not show the
sharing of subexpressions done by the lazy evaluation strategy):

main 1 →∗ xorSelf (aBool 2) 3
→∗ xor (aBool 2) (aBool 2) 3
→∗ xor (Choice 2 True False) (Choice 2 True False) 3
→∗ Choice 2 (Choice 2 False True) (Choice 2 True False)

As one can see, the (initially) single occurrence of the non-deterministic operation aBool, whose
evaluation introduces a Choice constructor, is duplicated so that it results (in combination with the
pull-tab step) in three Choice constructors. Since the overall strategy to extract values from choice
structures has to traverse this choice structure, this might lead to an explosion of the search space in
some cases (see benchmarks in Section 6).

A careful analysis shows that this problem stems from the lazy evaluation strategy. Hence, an
improvement might be possible by changing the evaluation strategy. The operation xorSelf always
demands the value of its argument in order to apply some reduction rule. Thus, one can also try to
evaluate the argument before an attempt to evaluate xorSelf. Such a kind of call-by-value or strict
evaluation can be achieved by introducing a strict application operation “sApply” implemented in
the target code as follows:

sApply f (Choice i x1 x2) s = Choice i (sApply f x1 s) (sApply f x2 s)
sApply f x s = f x s

Hence, sApply enforces the evaluation of the argument (to an expression without a defined operation
at the top, also called head normal form) before the operation is applied. In particular, if the argument
is a non-deterministic choice, it is moved outside the application. This operation is available as a
predefined infix operation “$!” in Curry. Now consider what happens if we redefine main by

main = xorSelf $! aBool

and evaluate the translated main expression:
main 1 →∗ sApply xorSelf (aBool 2) 3

→∗ sApply xorSelf (Choice 2 True False) 3
→∗ Choice 2 (xorSelf True 3) (xorSelf False 3)
→∗ Choice 2 (xor True True 3) (xor False False 3)
→∗ Choice 2 False False

Hence, the computed choice structure does not contain duplicated Choice constructors, as desired.
However, an unrestricted use of “$!” might destroy the completeness of the evaluation strategy. For
instance, consider the definition

ok x = True
loop = loop

Then “ok loop” has the value True but the evaluation of “ok $! loop” does not terminate.
As a consequence, we need some information about the demand of operations in order to insert

strict applications only for demanded arguments. This seems quite similar to strictness information in
purely functional programming [46]. However, the techniques developed there cannot be applied to
functional logic programs. For instance, consider the operation f defined by

f 0 = 0
f x = 1

As a functional program, f is strict since the first rule demands its argument. As a functional logic
program, f does not strictly demand its argument: due to the non-deterministic semantics, all rules
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can be used to compute a result so that we can apply the second rule to evaluate (f loop) to the
value 1.

These considerations show that we need a notion of demand specific for functional logic programs.
Using the rewrite relation � introduced above, we say that a unary operation6 f demands its
argument if ⊥ is the only normal form of (f ⊥). Thus, if a demanded argument is not reducible to
some expression with a constructor at the root, the application is always undefined. This justifies the
use of the strict application operation “$!” to demanded arguments.

Hence, we are left with the problem of detecting demanded arguments in a program. Since
this property is undecidable in general, we can try to approximate it by some program analysis.
Early work on analyzing the behavior of functional logic programs [36, 45, 53] tried to approximate
narrowing derivations for confluent term rewriting systems so that it is not applicable in our more
general framework of non-deterministic operations. A more appropriate analysis can be based on a
fixpoint characterization of CRWL rewriting [1, 44]. An analysis to approximate call patterns w.r.t.
CRWL rewriting has been presented in [33]. Since the undefined value ⊥ is a specific pattern, we can
use a variant of this analysis to approximate demanded arguments. Thus, we summarize the main
techniques and results of this analysis in the following.

Since we want to approximate the input/output relation of operations, an interpretation I is some
set of equations

I = {f t1 . . . tn) .= t | f n-ary operation, t1, . . . , tn, t are partial values}

The evaluation of an expression e w.r.t. I is a mapping evalI from expressions into sets of partial
values defined by (where C and f denotes a constructor and an operation symbol, respectively):

evalI(x) = {x}
evalI(C e1 . . . en) = {C t1 . . . tn | ti ∈ evalI(ei), i = 1, . . . , n}
evalI(f e1 . . . en) = {⊥} ∪ {t | ti ∈ evalI(ei), i = 1, . . . , n, f t1 . . . tn

.= t ∈ I}

Hence, an operation is approximated as undefined or evaluated with the information provided by the
interpretation.

For the demand analysis, we are interested in the behavior of operations when they are called
with undefined arguments. Thus, it is not necessary to compute the complete semantics of a program
but it is sufficient to compute the behavior w.r.t. a given set of initial callsM containing elements
of the form f t1 . . . tn where f is an operation and t1, . . . , tn are partial values. Then we define the
transformation TM on interpretations I by

TM(I) = {s .= ⊥ | s ∈M} ∪ {s .= r′ | s .= t ∈ I, s= r ∈ [P]⊥, r′ ∈ evalI(r)}
∪ {f t1 . . . tn

.= ⊥ | s .= t ∈ I, s= r ∈ [P]⊥, f e1 . . . en is a subterm of r,
ti ∈ evalI(ei), i = 1, . . . , n}

Intuitively, the transformation TM adds to the set of initial calls in each iteration
1. better approximations of the rules’ right-hand sides (s .= r′) and
2. new function calls occurring in right-hand sides (f t1 . . . tn

.= ⊥).
Here, “better” should be interpreted w.r.t. the usual approximation orderingv where ⊥ is the minimal
element. As usual, we define

TM ↑ 0 = ∅
TM ↑ k = TM(TM ↑ (k − 1)) (for k > 0)

6 The extension to operations with more than one argument is straightforward.
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Since the mapping TM is continuous on the set of all interpretations, the least fixpointCM = TM ↑ ω
exists. The following theorem states the correctness of this fixpoint semantics w.r.t. CRWL rewriting.

I Theorem 1 ([33]). If s .= t ∈ CM, then s
∗
� t. If s ∈ M and t is a partial value with s

∗
� t,

then s .= t ∈ CM.

We call an equation s .= t ∈ I maximal in I if there is no s .= t′ ∈ I with t′ 6= t and t v t′. The set
of all maximal elements of an interpretation I is denoted by max(I). Maximal elements can be used
to characterize a demanded argument, as the following result shows.

I Proposition 2. Let f be a unary operation and f ⊥ ∈ M. If f ⊥ .= ⊥ ∈ max(CM), then f
demands its argument.

The proposition suggests that one should analyze the least fixpoint w.r.t. a set of initial calls having ⊥
at argument positions. In order to obtain a computable approximation of the least fixpoint, we use the
theory of abstract interpretation [24] and define appropriate abstract domains and abstract operations
(like abstract constructor application and abstract matching) to compute an abstract fixpoint.

Interesting finite abstractions of partial values are sets of terms up to a particular depth k, e.g., as
already used in the abstract diagnosis of functional programs [2], abstraction of term rewriting systems
[15], or call pattern analysis of functional logic programs [33]. Due to its quickly growing size, this
domain is mainly useful in practice for depth k = 1. In the domain of depth-bounded terms, subterms
that exceed the given depth k are replaced by the specific constant > that represents any term, i.e., the
abstract domain of depth-k terms consists of partial values up to a depth k extended by the constant
>. For instance, False:> is a depth-2 term. If one defines abstract constructor applications (by
applying the constructor and cutting subterms deeper than k) and an abstract matching of linear
constructor terms against depth-k terms (see [33] for details), one can compute an abstract least
fixpoint which approximates the least fixpoint of concrete computations.

For instance, consider the operations “?”, not, xor, and xorSelf defined above. In order to
approximate their demanded arguments, we define a set of initial calls where one argument is ⊥ and
all other arguments are >:

M = {⊥?>, >?⊥, not ⊥, xor ⊥ >, xor > ⊥, xorSelf ⊥}

Then the abstract least fixpoint w.r.t.M (note that the depth k is not relevant in this example) contains
the following abstract equations:

⊥?> .= >, >?⊥ .= >, not ⊥ .= ⊥, xor ⊥ ⊥ .= ⊥, xor ⊥ > .= ⊥, xor > ⊥ .= ⊥,
xorSelf ⊥ .= ⊥

Since all these elements are also maximal, we can deduce by Proposition 2 that all arguments of not,
xor, and xorSelf are demanded whereas “?” has no demanded argument. Of course, the analysis
becomes more interesting in the case of recursive functions. We omit further examples here but refer
to Section 6 for some benchmarks.

Our demand analysis can be extended in various ways. For instance, higher-order features can be
covered by transforming higher-order applications into calls to an “apply” operation that implements
the application of an arbitrary function occurring in the program to an expression [52]. This technique
is also known as “defunctionalization” [49]. Primitive operations, like arithmetic functions, usually
demand all their arguments. Thus, their behavior can be approximated by returning the result ⊥ if
some argument is ⊥, and otherwise > is returned.

5 Program Transformation

We want to improve the non-determinism behavior of functional logic programs by transforming
them according to the ideas sketched in the previous section. As already discussed, this can be
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done by adding strict applications to demanded arguments that are non-deterministic. A method to
approximate demanded arguments has already been shown. The approximation of non-deterministic
expressions is much simpler. For this purpose, we define an operation as non-deterministic if it
contains a call to “?” or a free variable in some of its defining rules, or if it depends directly or
indirectly on some non-deterministic operation. Thus, this property can be computed using the
defining rules and their program dependency graph.

Based on this information, we can classify expressions: an expression is non-deterministic if it
contains some non-deterministic operation. Now we perform the following transformation of the
source program: if there is some application (f e) in some rule, where e is non-deterministic and
the argument of f is demanded, replace this application by (f $! e). For instance, the program
rule

main = xorSelf aBool

will be transformed into
main = xorSelf $! aBool

since the argument of xorSelf is demanded (as approximated above) and the argument aBool is
non-deterministic. The extension of this transformation to operations with more than one argument is
straightforward.

The effect of this transformation will be shown in the next section by some benchmarks.

6 Benchmarks

We have implemented (in Curry) the program transformation shown above in a first prototype in
order to get some ideas about its effectiveness. The program analyzer uses the depth-k domain to
approximate demanded arguments. In order to provide an efficient analysis, only maximal abstract
elements are stored in the current interpretation and the fixpoint iteration is done by an iteration using
working lists. The non-determinism information is approximated in a separate analysis. The analysis
results are used to guide the program transformation sketched above which produces the optimized
Curry program.

Since our prototype does not support all features of Curry (e.g., no I/O), we have tested it only
on smaller benchmark programs. Since our transformation is intended to improve non-deterministic
programs, we have selected programs where non-deterministic operations occur as arguments.

The benchmarks were executed on a Linux machine running Linux (Ubuntu 11.10) with an Intel
Core i5 (2.53GHz) processor. We omit the analysis times since they are less than 10 milliseconds for
all presented examples. We tested two recent Curry implementations that are based on the idea to
present non-deterministic values in a data structure: KiCS2 [19] with the Glasgow Haskell Compiler
(GHC 7.0.3, option -O2) as its back end, and ViaLOIS [13] with the OCaml native-code compiler
(version 3.12.0) as its back end. Table 1 shows the run times (in seconds) of a compiled executable
for different programs. The programs last2 and last6 compute the last element of a list (of
10,000 elements) and add it two and six times to itself, respectively. addNum2 and addNum5
non-deterministically choose a number (out of 2000) and add it two and five times, respectively.
Similarly, addPair and addTriple non-deterministically create a pair and triple of the same
elements and add the components. half2 and half5 compute the half of a number n (here: 2000)
by solving the equation x+x=:=n and add the result two and five times, respectively. dupList2 and
dupList5 check a list xs (of 2000 elements) whether it is a duplicated list by solving the equation
ys+ys=:=xs and concatenating ys two and five times, respectively. select non-deterministically
selects an element in a list and returns the element and a list computed by deleting the selected element.
queens computes all safe placements of eight queens on a chessboard by enumerating all placements
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Table 1 Benchmarks comparing original and optimized programs

Benchmark ViaLOIS KiCS2 KiCS2
(original) (original) (optimized)

last2 n/a 1.34 0.94
last6 n/a 2.72 0.94
addNum2 1.25 1.54 0.01
addNum5 22.08 8.58 0.01
addPair 1.36 1.54 0.01
addTriple 4.45 3.65 0.01
half2 2.18 3.78 1.44
half5 4.97 6.37 1.44
dupList2 n/a 3.34 0.11
dupList5 n/a 52.49 0.11
select 22.51 6.37 0.01
queens n/a 36.62 1.26
psort 4.08 4.98 4.78

and non-deterministically checking whether two queens can attack each other. In this example, the
duplication of choices stems from lazy pattern matching, as pointed out in [16, Sect. 6.9]. Finally,
psort is the naive permutation sort applied to a list of 14 elements.

Since ViaLOIS is in an experimental state, it does not support all features of Curry (in particular,
free variables of type integer are not supported) so that some benchmarks are not executable with
ViaLOIS (marked by “n/a”). For the same reason, ViaLOIS does not support the primitive operation
“$!” necessary for the optimization presented in this paper. Thus, the optimized programs are only
executed with KiCS2. As one can see, the improvements obtained by our optimization are quite
relevant for the considered class of programs. Only the improvement for psort is small since we
cannot strictly evaluate the complete permutation.

7 Conclusions

We have shown a program transformation to improve the efficiency of non-deterministic computations
in implementations of functional logic languages with a demand-driven strategy. If such implemen-
tations support a variety of search strategies, in particular, complete strategies, they often present
the computation space in some tree structure which is explored by the search strategy [13, 19, 20].
This has the risk that non-deterministic structures are duplicated which increases the complexity of
traversing the resulting structures. In order to overcome this disadvantage, we presented an analysis to
approximate demanded arguments and use this information to evaluate non-deterministic arguments
in a strict manner. We have also shown results from a prototypical implementation of this approach.

Since this work is based on techniques from various domains ranging from implementations of
declarative languages to program analysis frameworks for such languages, there is a lot of related
work. Since we already discussed related approaches throughout this paper, we omit a further
discussion here. For future work, our demand analysis should be extended to enable the analysis
of complete applications. This requires the appropriate approximation of all primitive operations,
including I/O operations, and a modular analysis to be applied to larger programs. Furthermore, the
use of other abstract domains, like rational trees, that can also approximate the demand of arbitrary
large structures (e.g., lists) is another interesting topic fur future work.
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