
Functional Logic Programming:
From Theory to Curry?

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Abstract. Functional logic programming languages combine the most
important declarative programming paradigms, and attempts to com-
bine these paradigms have a long history. The declarative multi-paradigm
language Curry is influenced by recent advances in the foundations and
implementation of functional logic languages. The development of Curry
is an international initiative intended to provide a common platform
for the research, teaching, and application of integrated functional logic
languages. This paper surveys the foundations of functional logic pro-
gramming that are relevant for Curry, the main features of Curry, and
extensions and applications of Curry and functional logic programming.

1 Introduction

Compared to traditional imperative languages, functional as well as logic lan-
guages provide a higher and more abstract level of programming that leads to
reliable and maintainable programs. Although the motivations are similar in
both paradigms, the concrete languages differ due to their different foundations,
namely the lambda calculus and first-order predicate logic. Thus, it is a natu-
ral idea to combine these worlds of programming into a single paradigm, and
attempts for doing so have a long history. However, the interactions between
functional and logic programming features are complex in detail so that the
concrete design of an integrated functional logic language is a non-trivial task.
This is demonstrated by a lot of research work on the semantics, operational
principles, and implementation of functional logic languages since more than
two decades. Fortunately, recent advances in the foundation and implementation
of functional logic languages have shown reasonable principles that lead to the
design of practically applicable programming languages. The declarative multi-
paradigm language Curry1 [69,92] is based on these principles. It is developed by
an international initiative of researchers in this area and intended to provide a
common platform for the research, teaching, and application of integrated func-
tional logic languages. This paper surveys the foundations of functional logic
programming that are relevant for Curry, design decisions and main features of

? This work was partially supported by the German Research Council (DFG) under
grants Ha 2457/5-1 and Ha 2457/5-2 and the NSF under grant CCR-0218224.

1 http://www.curry-language.org

http://www.curry-language.org

Curry, implementation techniques, and extensions and applications of functional
logic programming.

Since this paper is intended to be a compact survey, not all of the numerous
papers in this area can be mentioned and the relevant topics are only sketched.
Interested readers might look into the cited references for more details. In par-
ticular, there exist other surveys on particular topics related to this paper. [66]
is a survey on the development and the implementation of various evaluation
strategies for functional logic languages that have been explored until more than
a decade ago. [15] contains a good survey on more recent evaluation strategies
and classes of functional logic programs. The survey [119] is more specialized
but reviews the efforts to integrate constraints into functional logic languages.

The rest of this paper is structured as follows. The next main section in-
troduces and reviews the foundations of functional logic programming that are
used in current functional logic languages. Section 3 discusses important aspects
of the language Curry. Section 4 surveys the efforts to implement Curry and
related functional logic languages. Sections 5 and 6 contain references to fur-
ther extensions and applications of functional logic programming, respectively.
Finally, Section 7 contains our conclusions with notes about related languages.

2 Foundations of Functional Logic Programming

2.1 Basic Concepts

Functional logic languages are intended to combine the most important fea-
tures of functional languages (algebraic data types, polymorphic typing, demand-
driven evaluation, higher-order functions) and logic languages (computing with
partial information, constraint solving, nondeterministic search for solutions). A
functional program is a set of functions or operations defined by equations or
rules. A functional computation consists of replacing subexpressions by equal
(w.r.t. the defining equations) subexpressions until no more replacements (or
reductions) are possible and a value or normal form is obtained. For instance,
consider the operation double defined by2

double x = x + x

The expression “double 1” is replaced by 1+1. The latter can be replaced by
2 if we interpret the operator “+” to be defined by an infinite set of equations,
e.g., 1+1 = 2, 1+2 = 3, etc (we will discuss the handling of such operations later).
In a similar way, one can evaluate nested expressions (where the replaced subex-
pression is underlined):

double (1+2) → (1+2)+(1+2) → 3+(1+2) → 3+3 → 6

2 For concrete examples in this paper, we use the Curry syntax which is very similar
to the syntax of Haskell [117], i.e., (type) variables and function names usually start
with lowercase letters and the names of type and data constructors start with an
uppercase letter. The application of an operation f to an expression e is denoted by
juxtaposition (“f e”). Moreover, binary operators like “+” are written infix.

2

There is also another order of evaluation if we replace the arguments of operators
from right-to-left:

double (1+2) → (1+2)+(1+2) → (1+2)+3 → 3+3 → 6

In this case, both derivations lead to the same result. This indicates a funda-
mental property of declarative languages: the value of a computed result does
not depend on the order or time of evaluation due to the absence of side effects.
This simplifies the reasoning about and maintenance of declarative programs.

Obviously, these are not all possible evaluation orders. Another one is ob-
tained by evaluating the argument of double before applying its defining equa-
tion:

double (1+2) → double 3 → 3+3 → 6

In this case, we obtain the same result with less evaluation steps. This leads to
questions about appropriate evaluation strategies, where a strategy can be con-
sidered as a function that determines for an expression the next subexpression
to be replaced: Which strategies are able to compute values for which classes
of programs? As we will see, there are important differences in case of recur-
sive programs. If there are several strategies, which strategies are better w.r.t.
the number of evaluation steps, implementation effort, etc? Many works in the
area of functional logic programming have been devoted to finding appropriate
evaluation strategies. A detailed account of the development of such strategies
can be found in [66]. In the following, we will only survey the strategies that are
relevant for current functional logic languages.

Although functional languages are based on the lambda calculus that is
purely based on function definitions and applications, modern functional lan-
guages offer more features for convenient programming. In particular, they sup-
port the definition of algebraic data types by enumerating their constructors.
For instance, the type of Boolean values consists of the constructors True and
False that are declared as follows:

data Bool = True | False

Operations on Booleans can be defined by pattern matching, i.e., by providing
several equations for different argument values:

not True = False

not False = True

The principle of replacing equals by equals is still valid provided that the actual
arguments have the required form, e.g.:

not (not False) → not True → False

More complex data structures can be obtained by recursive data types. For
instance, a list of elements, where the type of elements is arbitrary (denoted by
the type variable a), is either the empty list “[]” or the non-empty list “x:xs”
consisting of a first element x and a list xs. Hence, lists can be defined by

data List a = [] | a : List a

3

For conformity with Haskell, the type “List a” is usually written as [a] and
finite lists e1:e2:. . .:en:[] are written as [e1,e2,. . .,en]. We can define opera-
tions on recursive types by inductive definitions where pattern matching supports
the convenient separation of the different cases. For instance, the concatenation
operation “++” on polymorphic lists can be defined as follows (the optional type
declaration in the first line specifies that “++” takes two lists as input and pro-
duces an output list, where all list elements are of the same unspecified type):

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : xs++ys

Beyond its application for various programming tasks, the operation “++” is also
useful to specify the behavior of other operations on lists. For instance, the be-
havior of an operation last that yields the last element of a list can be specified
as follows: for all lists l and elements e, last l = e iff ∃xs : xs ++[e] = l.3 Based
on this specification, one can define an operation and verify that this definition
satisfies the given specification (e.g., by inductive proofs as shown in [34]). This
is one of the situations where functional logic languages become handy. Simi-
larly to logic languages, functional logic languages provide search for solutions
for existentially quantified variables. In contrast to pure logic languages, they
support equation solving over nested functional expressions so that an equation
like xs ++[e] = [1,2,3] is solved by instantiating xs to the list [1,2] and e to
the value 3. For instance, in Curry one can define the operation last as follows:

last l | xs++[e] =:= l = e where xs,e free

Here, the symbol “=:=” is used for equational constraints in order to provide
a syntactic distinction from defining equations. Similarly, extra variables (i.e.,
variables not occurring in the left-hand side of the defining equation) are ex-
plicitly declared by “where...free” in order to provide some opportunities to
detect bugs caused by typos. A conditional equation of the form l | c = r is
applicable for reduction if its condition c has been solved. In contrast to purely
functional languages where conditions are only evaluated to a Boolean value,
functional logic languages support the solving of conditions by guessing values
for the unknowns in the condition. As we have seen in the previous example,
this reduces the programming effort by reusing existing operations and allows
the direct translation of specifications into executable program code. The im-
portant question to be answered when designing a functional logic language is:
How are conditions solved and are there constructive methods to avoid a blind
guessing of values for unknowns? This is the purpose of narrowing strategies
that are discussed next.

3 The exact meaning of the equality symbol is omitted here since it will be discussed
later.

4

2.2 Narrowing

Techniques for goal solving are well developed in the area of logic programming.
Since functional languages advocate the equational definition of operations, it
is a natural idea to integrate both paradigms by adding an equality predicate
to logic programs, leading to equational logic programming [93,115,116]. On the
operational side, the resolution principle of logic programming must be extended
to deal with replacements of subterms. Narrowing, originally introduced in auto-
mated theorem proving [125], is a constructive method to deal with such replace-
ments. For this purpose, defining equations are interpreted as rewrite rules that
are only applied from left to right (as in functional programming). In contrast
to functional programming, the left-hand side of a defining equation is unified
with the subterm under evaluation. In order to provide more detailed defini-
tions, some basic notions of term rewriting [31,48] are briefly recalled. Although
the theoretical part uses notations from term rewriting, its mapping into the
concrete programming language syntax should be obvious.

Since we ignore polymorphic types in the theoretical part of this paper, we
consider a many-sorted signature Σ partitioned into a set C of constructors and a
set F of (defined) functions or operations. We write c/n ∈ C and f/n ∈ F for n-
ary constructor and operation symbols, respectively. Given a set of variables X ,
the set of terms and constructor terms are denoted by T (C∪F ,X) and T (C,X),
respectively. The set of variables occurring in a term t is denoted by Var(t). A
term t is ground if Var(t) = ∅. A term is linear if it does not contain multiple
occurrences of one variable. A term is operation-rooted (constructor-rooted) if its
root symbol is an operation (constructor). A head normal form is a term that is
not operation-rooted, i.e., a variable or a constructor-rooted term.

A pattern is a term of the form f(d1, . . . , dn) where f/n ∈ F and d1, . . . , dn ∈
T (C,X). A term rewriting system (TRS) is set of rewrite rules, where an (uncon-
ditional) rewrite rule is a pair l→ r with a linear pattern l as the left-hand side
(lhs) and a term r as the right-hand side (rhs). Note that this definition reflects
the specific properties of functional logic programs. Traditional term rewriting
systems [48] differ from this definition in the following points:

1. We have required that the left-hand sides must be linear patterns. Such
rewrite systems are also called constructor-based and exclude rules like

(xs ++ ys) ++ zs = xs ++ (ys ++zs) (assoc)
last (xs ++ [e]) = e (last)

Although this seems to be a restriction when one is interested in writing
equational specifications, it is not a restriction from a programming lan-
guage point of view, since functional as well as logic programming languages
enforces the same requirement (although logic languages do not require lin-
earity of patterns, this can be easily obtained by introducing new variables
and adding equations for them in the condition; conditional rules are dis-
cussed below). Often, non-constructor-based rules specify properties of op-
erations rather than providing a constructive definition (compare rule assoc
above that specifies the associativity of “++”), or they can be transformed

5

into constructor-based rules by moving non-constructor terms in left-hand
side arguments into the condition (e.g., rule last). Although there exist nar-
rowing strategies for non-constructor-based rewrite rules (see [66,116,125] for
more details), they often put requirements on the rewrite system that are too
strong or difficult to check in universal programming languages, like termi-
nation or confluence. An important insight from recent works on functional
logic programming is that the restriction to constructor-based programs is
quite reasonable since this supports the development of efficient and practi-
cally useful evaluation strategies (see below). Although narrowing has been
studied for more general classes of term rewriting systems, those extensions
are often applied to areas like theorem proving rather than programming
(e.g., [52]).

2. Traditional rewrite rules l → r require that Var(r) ⊆ Var(l). A TRS where
all rules satisfy this restriction is also called a TRS without extra variables.4

Although this makes sense for rewrite-based languages, it limits the expres-
sive power of functional logic languages (see the definition of last in Sec-
tion 2.1). Therefore, functional logic languages usually do not have this vari-
able requirement, although some theoretical results have only been proved
under this requirement.

In order to formally define computations w.r.t. a TRS, we need a few further
notions. A position p in a term t is represented by a sequence of natural numbers.
Positions are used to identify particular subterms. Thus, t|p denotes the subterm
of t at position p, and t[s]p denotes the result of replacing the subterm t|p by
the term s (see [48] for details). A substitution is an idempotent mapping σ :
X → T (C ∪ F ,X) where the domain Dom(σ) = {x ∈ X | σ(x) 6= x} is finite.
Substitutions are obviously extended to morphisms on terms. We denote by
{x1 7→ t1, . . . , xn 7→ tn} the substitution σ with σ(xi) = ti (i = 1, . . . , n) and
σ(x) = x for all other variables x. A substitution σ is constructor (ground
constructor), if σ(x) is a constructor (ground constructor) term for all x ∈
Dom(σ).

A rewrite step t →p,R t′ (in the following, p and R will often be omitted
in the notation of rewrite and narrowing steps) is defined if p is a position in
t, R = l → r is a rewrite rule with fresh variables,5 and σ is a substitution
with t|p = σ(l) and t′ = t[σ(r)]p. The instantiated lhs σ(l) is also called a redex
(reducible expression). A term t is called irreducible or in normal form if there is

no term s with t→ s.
∗→ denotes the reflexive and transitive closure of a relation

→.
Rewrite steps formalize functional computation steps with pattern matching

as introduced in Section 2.1. The goal of a sequence of rewrite steps is to compute

4 In case of conditional rules, which are discussed later, the condition is considered as
belonging to the right-hand side so that variables occurring in the condition but not
in the left-hand side are also extra variables.

5 In classical traditional term rewriting, fresh variables are not used when a rule is
applied. Since we consider also rules containing extra variables in right-hand sides,
it is important to replace them by fresh variables when the rule is applied.

6

a normal form. A rewrite strategy determines for each rewrite step a rule and a
position for applying the next step. A normalizing strategy is one that terminates
a rewrite sequence in a normal form, if it exists. Note, however, that normal
forms are not necessarily the interesting results of functional computations, as
the following example shows.

Example 1. Consider the operation

idNil [] = []

that is the identity on the empty list but undefined for non-empty lists. Then,
a normal form like “idNil [1]” is usually considered as an error rather than a
result. Actually, Haskell reports an error for evaluating the term “idNil [1+2]”
rather than delivering the normal form “idNil [3]”. 2

Therefore, the interesting results of functional computations are constructor
terms that will be also called values. Evaluation strategies used in functional
programming, such as lazy evaluation, are not normalizing, as the previous ex-
ample shows.

Functional logic languages are able to do more than pure rewriting since they
instantiate variables in a term (also called free or logic variables) so that a rewrite
step can be applied. The combination of variable instantiation and rewriting is
called narrowing. Formally, t;p,R,σ t

′ is a narrowing step if p is a non-variable
position in t (i.e., t|p is not a variable) and σ(t)→p,R t′. Since the substitution
σ is intended to instantiate the variables in the term under evaluation, one often
restricts Dom(σ) ⊆ Var(t). We denote by t0 ;∗σ tn a sequence of narrowing
steps t0 ;σ1 . . . ;σn tn with σ = σn ◦ · · · ◦ σ1 (where σ = {} in the case of
n = 0). Since in functional logic languages we are interested in computing values
(constructor terms) as well as answers (substitutions), we say that the narrowing
derivation t;∗σ c computes the value c with answer σ if c is a constructor term.

The above definition of narrowing is too general for a realistic implementation
since it allows arbitrary instantiations of variables in the term under evaluation.
Thus, all possible instantiations must be tried in order to compute all possible
values and answers. Obviously, this does not lead to a practical implementation.
Therefore, older narrowing strategies (see [66] for a detailed account) were in-
fluenced by the resolution principle and required that the substitution used in a
narrowing step must be a most general unifier of t|p and the left-hand side of the
applied rule. As shown in [19], this condition prevents the development of opti-
mal evaluation strategies. Therefore, most recent narrowing strategies relax this
traditional requirement but provide another constructive method to compute a
small set of unifiers in narrowing steps, as we will see below. The next example
shows the non-optimality of narrowing with most general unifiers.

Example 2. Consider the following program containing a declaration of natural
numbers in Peano’s notation and two operations for addition and a “less than
or equal” test (the pattern “_” denotes an unnamed anonymous variable):

data Nat = O | S Nat

7

add O y = y

add (S x) y = S (add x y)

leq O _ = True (leq1)
leq (S _) O = False (leq2)
leq (S x) (S y) = leq x y (leq3)

Consider the initial term “leq v (add w O)” where v and w are free variables.
By applying rule leq1, v is instantiated to O and the result True is computed:

leq v (add w O) ;{v 7→O} True

Further answers can be obtained by instantiating v to (S...). This requires the
evaluation of the subterm (add w O) in order to allow the application of rule
leq2 or leq3. For instance, the following narrowing derivation computes the value
False with answer {v 7→ S z, w 7→ O}:

leq v (add w O) ;{w 7→O} leq v O ;{v7→S z} False

However, we can also apply rule leq1 in the second step of the previous narrowing
derivation and obtain the following derivation:

leq v (add w O) ;{w 7→O} leq v O ;{v7→O} True

Obviously, the last derivation is not optimal since it computes the same value
as the first derivation with a less general answer and needs one more step. This
derivation can be avoided by instantiating variable v to S z in the first narrowing
step:

leq v (add w O) ;{v 7→S z, w 7→O} leq (S z) O

Now, rule leq1 is no longer applicable, as intended. However, this first narrow-
ing step contains a substitution that is not a most general unifier between the
evaluated subterm (add w 0) and the left-hand side of some rule for add. 2

Needed Narrowing. The first narrowing strategy that advocated the use of
non-most general unifiers and for which optimality results have been shown is
needed narrowing [19]. Furthermore, needed narrowing steps can be efficiently
computed. Therefore, it has become the basis of modern functional logic lan-
guages.6

Needed narrowing is based on the idea to perform only narrowing steps that
are in some sense necessary to compute a result (such strategies are also called
lazy or demand-driven). For doing so, it analyzes the left-hand sides of the rewrite
rules of an operation under evaluation (starting from an outermost operation).
If there is an argument position where all left-hand sides are constructor-rooted,
the corresponding actual argument must be also rooted by one of the constructors
in order to apply a rewrite step. Thus, the actual argument is evaluated to head

6 Concrete languages and implementations add various extensions in order to deal
with larger classes of programs that will be discussed later.

8

normal form if it is operation-rooted and, if it is a variable, nondeterministically
instantiated with some constructor.

Example 3. Consider again the program of Example 2. Since the left-hand sides
of all rules for leq have a constructor-rooted first argument, needed narrowing
instantiates the variable v in “leq v (add w 0)” to either O or S z (where z is a
fresh variable). In the first case, only rule leq1 becomes applicable. In the second
case, only rules leq2 or leq3 become applicable. Since the latter rules have both
a constructor-rooted term as the second argument, the corresponding subterm
(add w 0) is recursively evaluated to a constructor-rooted term before applying
one of these rules. 2

Since there are TRSs with rules that do not allow such a reasoning, needed
narrowing is defined on the subclass of inductively sequential TRSs. This class
can be characterized by definitional trees [12] that are also useful to formal-
ize and implement various narrowing strategies. Since only the left-hand sides
of rules are important for the applicability of needed narrowing, the following
characterization of definitional trees [13] considers patterns partially ordered by
subsumption (the subsumption ordering on terms is defined by t ≤ σ(t) for a
term t and substitution σ).

A definitional tree of an operation f is a non-empty set T of linear patterns
partially ordered by subsumption having the following properties:

Leaves property: The maximal elements of T , called the leaves, are exactly the
(variants of) the left-hand sides of the rules defining f . Non-maximal ele-
ments are also called branches.

Root property: T has a minimum element, called the root, of the form
f(x1, . . . , xn) where x1, . . . , xn are pairwise distinct variables.

Parent property: If π ∈ T is a pattern different from the root, there exists a
unique π′ ∈ T , called the parent of π (and π is called a child of π′), such
that π′ < π and there is no other pattern π′′ ∈ T (C∪F ,X) with π′ < π′′ < π.

Induction property: All the children of a pattern π differ from each other only
at a common position, called the inductive position, which is the position of
a variable in π.7

An operation is called inductively sequential if it has a definitional tree and its
rules do not contain extra variables. A TRS is inductively sequential if all its
defined operations are inductively sequential. Intuitively, inductively sequential
functions are defined by structural induction on the argument types. Purely
functional programs and the vast majority of operations in functional logic pro-
grams are inductively sequential. Thus, needed narrowing is applicable to most
operations, although extensions are useful for particular operations (see below).

It is often convenient and simplifies the understanding to provide a graphic
representation of definitional trees, where each inner node is marked with a pat-
tern, the inductive position in branches is surrounded by a box, and the leaves

7 There might be more than one potential inductive position when constructing a
definitional tree. In this case one can select any of them since the results about
needed narrowing do not depend on the selected definitional tree.

9

leq O x2 = True leq (S x) x2

leq (S x) O = False leq (S x) (S y)
= leq x y

leq x1 x2

�
�

��

Q
Q
QQ

�
�
��

Q
Q
QQ

add O x2 = x2 add (S x) x2
= S (add x x2)

add x1 x2

�
�

��

Q
Q
QQ

Fig. 1. Definitional trees of the operations add and leq

contain the corresponding rules. For instance, the definitional trees of the opera-
tions add and leq, defined in Example 2, are illustrated in Figure 1. Definitional
trees have also a strong correspondence to traditional pattern matching by case
expressions in functional languages, as we will see later.

The formal definition of needed narrowing is based on definitional trees and
can be found in [19]. A definitional tree can be computed at compile time (see
[15,69] for algorithms to construct definitional trees) and contains all information
for the efficient implementation of the decisions to be made at run time (compare
Example 3). Intuitively, a needed narrowing step is applied to an operation-
rooted term t by considering a definitional tree (with fresh variables) for the
operation at the root. The tree is recursively processed from the root until one
finds a maximal pattern that unifies with t. Thus, to compute a needed narrowing
step, one starts with the root pattern of the definitional tree and performs at
each level with pattern π the following case distinction:

– If π is a leaf, we apply the corresponding rule.
– If π is a branch and p its inductive position, we consider the corresponding

subterm t|p:
1. If t|p is rooted by a constructor c and there is a child π′ of π having c at

the inductive position, we proceed by examining π′. If there is no such
child, we fail, i.e., no needed narrowing step is applicable.

2. If t|p is a variable, we nondeterministically instantiate this variable by
the constructor term at the inductive position of a child π′ of π and
proceed with π′.

3. If t|p is operation-rooted, we recursively apply the computation of a
needed narrowing step to σ(t|p), where σ is the instantiation of the vari-
ables of t performed in the previous case distinctions.

As discussed above, the failure to compute a narrowing step in case (1) is not
a weakness but advantageous when we want to compute values. For instance,
consider the term t = idNil [1+2] where the operation idNil is as defined
in Example 1. A normalizing strategy performs a step to compute the normal
form idNil [3] whereas needed narrowing immediately fails since there exists
no value as a result. Thus, the early failure of needed narrowing avoids wasting
resources.

10

As a consequence of the previous behavior, the properties of needed nar-
rowing are stated w.r.t. constructor terms as results. In particular, the equality
symbol “=:=” in goals is interpreted as the strict equality on terms, i.e., the
equation t1 =:= t2 is satisfied iff t1 and t2 are reducible to the same ground con-
structor term. In contrast to the mathematical notion of equality as a congruence
relation, strict equality is not reflexive. Similarly to the notion of result values,
this is intended in programming languages where an equation between functional
expressions that do not have a value, like “idNil [1] =:= idNil [1]”, is usu-
ally not considered as true. Furthermore, normal forms or values might not exist
(note that we do not require terminating rewrite systems) so that reflexivity is
not a feasible property of equational constraints (see [60] for a more detailed
discussion on this topic).

Strict equality can be defined as a binary operation by the following set of
(inductively sequential) rewrite rules. The constant Success denotes a solved
(equational) constraint and is used to represent the result of successful evalua-
tions.8

c =:= c = Success ∀c/0 ∈ C
c x1 . . . xn =:= c y1 . . . yn = x1=:=y1 &...& xn=:=yn ∀c/n ∈ C, n > 0
Success & Success = Success

Thus, it is sufficient to consider strict equality as any other operation. Concrete
functional logic languages provide more efficient implementations of strict equal-
ity where variables can be bound to other variables instead of instantiating them
to ground terms (see also Section 3.2).

Now we can state the main properties of needed narrowing. A (correct) solu-
tion for an equation t1 =:= t2 is a constructor substitution σ (note that construc-
tor substitutions are desired in practice since a broader class of solutions would
contain unevaluated or undefined expressions) if σ(t1) =:=σ(t2)

∗→ Success.
Needed narrowing is sound and complete, i.e., all computed solutions are correct
and for each correct solution a possibly more general one is computed, and it
does not compute redundant solutions in different derivations:

Theorem 1 ([19]). Let R be an inductively sequential TRS and e an equation.

1. (Soundness) If e;∗σ Success is a needed narrowing derivation, then σ is a
solution for e.

2. (Completeness) For each solution σ of e, there exists a needed narrowing
derivation e;∗σ′ Success with σ′(x) ≤ σ(x) for all x ∈ Var(e).

3. (Minimality) If e ;∗σ Success and e ;∗σ′ Success are two distinct needed
narrowing derivations, then σ and σ′ are independent on Var(e), i.e., there
is some x ∈ Var(e) such that σ(x) and σ′(x) are not unifiable.

Furthermore, in successful derivations, needed narrowing computes only steps
that are necessary to obtain the result and, consequently, it computes the shortest

8 Since narrowing is used to solve equations, it does not compute solutions such that an
equation is not satisfied. This is the motivation to use the specific constant Success
rather than the Boolean values True and False as the outcome of equation solving.

11

of all possible narrowing derivations if derivations on common subterms are
shared (a standard implementation technique in non-strict functional languages)
[19, Corollary 1]. Needed narrowing is currently the only narrowing strategy with
such strong results. Therefore, it is an adequate basis for modern functional
logic languages, although concrete implementations support extensions that are
discussed next.

Weakly Needed Narrowing. Inductively sequential TRS are a proper sub-
class of (constructor-based) TRSs. Although the majority of function definitions
is inductively sequential, there are also operations where it is more convenient
to relax this requirement. The next interesting superclass are weakly orthogonal
TRSs. These are rewrite systems where left-hand sides can overlap in a semanti-
cally trivial way. Formally, a TRS without extra variables (recall that we consider
only left-linear constructor-based rules) is weakly orthogonal if σ(r1) = σ(r2) for
all (variants of) rules l1 → r1 and l2 → r2 and substitutions σ with σ(l1) = σ(l2).

Example 4. A typical example of a weakly orthogonal TRS is the parallel-or,
defined by the rules:

or True _ = True (or1)
or _ True = True (or2)
or False False = False (or3)

A term like “or s t” could be reduced to True whenever one of the arguments
s or t evaluates to True. However, it is not clear which of the arguments should
be evaluated first, since any of them could result in a nonterminating rewriting
or narrowing derivation. or has no definitional tree and, thus, needed narrowing
cannot be applied. 2

In rewriting, several normalizing strategies for weakly orthogonal TRSs have
been proposed, such as parallel outermost [114] or weakly needed [122] rewriting
that are based on the idea to replace several redexes in parallel in one step.
Since strategies for functional logic languages already support nondeterminis-
tic evaluations, one can exploit this feature to extend needed narrowing to a
weakly needed narrowing strategy. The basic idea is to generalize the notion of
definitional trees to include or-branches which conceptually represent a union
of definitional trees [12,18,100]. If such an or-branch is encountered during the
evaluation of a narrowing step, weakly needed narrowing performs a nondeter-
ministic guess and proceeds with the subtrees below the or-branches.

Example 5. Consider again the rules for the operation or shown in Example 4
and the operation f defined by

f O = True

One can construct separate definitional trees for the rule sets {or1, or3} and
{or2} and join them by an or-branch. Then there are the following different
weakly needed narrowing derivations based on this generalized definitional tree
for the term “or (f x) (f x)”:

12

or (f x) (f x) ;{x7→O} or True (f O) ;{} True

or (f x) (f x) ;{x7→O} or True (f O) ;{} or True True ;{} True

or (f x) (f x) ;{x7→O} or (f O) True ;{} or True True ;{} True

or (f x) (f x) ;{x7→O} or (f O) True ;{} True

2

Obviously, weakly needed narrowing is no longer optimal in the sense of needed
narrowing. However, it is sound and complete for weakly orthogonal TRS in the
sense of Theorem 1 [18].

Weakly needed narrowing can be improved by computing weakly needed
narrowing steps in parallel, discarding steps with non-minimal substitutions and
replacing several outermost redexes in parallel. The resulting strategy, called
parallel narrowing [18], computes only one derivation for Example 5 and has the
general property (beyond soundness and completeness) that it behaves deter-
ministically (i.e., without choices) on ground terms. However, the computation
of parallel narrowing steps is quite complex (see [18] for details) so that it has
not been integrated in existing functional logic languages, in contrast to weakly
needed narrowing that is implemented in languages such as Curry [69,92] or
TOY [101].

Overlapping Inductively Sequential Systems. Inductively sequential and
weakly orthogonal TRSs are confluent, i.e., each term has at most one normal
form. This property is sensible for functional languages since it ensures that
operations are well defined (partial) functions in the mathematical sense. Since
the operational mechanism of functional logic languages is more powerful due
to its built-in search mechanism, in this context it makes sense to consider also
operations defined by non-confluent TRSs. Such operations are also called non-
deterministic. The prototype of such a nondeterministic operation is a binary
operation “?” that returns one of its arguments:

x ? y = x

x ? y = y

Thus, the expression “0 ? 1” has two possible results, namely 0 or 1.
Since functional logic languages already handle nondeterministic computa-

tions, they are also capable of dealing with such nondeterministic operations. To
provide a reasonable semantics for functional logic programs, constructor-based
rules are sufficient but confluence is not required [62]. If operations are inter-
preted as mappings from values into sets of values (actually, due to the presence
of recursive non-strict operations, algebraic structures with cones of partially
ordered sets are used instead of sets, see [62] for details), one can provide model-
theoretic and proof-theoretic semantics with the usual properties (minimal term
models, equivalence of model-theoretic and proof-theoretic solutions, etc). Thus,
functional logic programs with nondeterministic operations are still in the de-
sign space of declarative languages. Moreover, nondeterministic operations have
advantages w.r.t. demand-driven evaluation strategies so that they became a

13

standard feature of current functional logic languages, whereas older languages,
like ALF [65], Babel [109], K-Leaf [60], or SLOG [58], put confluence require-
ments on their programs. The following example discusses this in more detail.

Example 6. Based on the binary operation “?” introduced above, one can define
an operation insert that nondeterministically inserts an element at an arbitrary
position in a list:

insert e [] = [e]

insert e (x:xs) = (e : x : xs) ? (x : insert e xs)

Exploiting this operation, one can define an operation perm that returns an
arbitrary permutation of a list:

perm [] = []

perm (x:xs) = insert x (perm xs)

One can already see an important property when reasoning about nondeter-
ministic operations: the computation of results is arbitrary, i.e., one result is
as good as any other. For instance, if one evaluates perm [1,2,3], any permu-
tation (e.g., [3,2,1] as well as [1,3,2]) is an acceptable result. If one puts
specific conditions on the results, the completeness of the underlying computa-
tional model (e.g., INS, see below) ensures that the appropriate results meeting
these conditions are selected.

For instance, one can use perm to define an operation psort to sort a list
based on a “partial identity” function sorted that returns its input list if it is
sorted:

sorted [] = []

sorted [x] = [x]

sorted (x1:x2:xs) | leq x1 x2 =:= True = x1 : sorted (x2:xs)

psort xs = sorted (perm xs)

Thus, psort xs returns only those permutations of xs that are sorted. The ad-
vantage of this definition of psort in comparison to traditional “generate-and-
test” solutions becomes apparent when one considers the demand-driven evalu-
ation strategy (note that one can apply the weakly needed narrowing strategy
to such kinds of programs since this strategy is only based on the left-hand
sides of the rules but does not exploit confluence). Since in an expression like
sorted (perm xs) the argument of sorted is only evaluated as demanded by
sorted, the permutations are not fully computed at once. If a permutation starts
with a non-ordered prefix, like S 0 : O : perm xs, the application of the third rule
of sorted fails and, thus, the computation of the remaining part of the permu-
tation (which can result in n! different permutations if n is the length of the list
xs) is discarded. The overall effect is a reduction in complexity in comparison
to the traditional generate-and-test solution. 2

This example shows that nondeterministic operations allow the transformation of
“generate-and-test” solutions into “test-of-generate” solutions with a lower com-
plexity since the demand-driven narrowing strategy results in a demand-driven

14

construction of the search space (see [13,62] for further examples). Antoy [13]
shows that desirable properties of needed narrowing can be transferred to pro-
grams with nondeterministic operations if one considers overlapping inductively
sequential systems. These are TRSs with inductively sequential rules where each
rule can have multiple right-hand sides (basically, inductively sequential TRSs
with occurrences of “?” in the top-level of right-hand sides), possibly containing
extra variables. For instance, the rules defining insert form an overlapping in-
ductively sequential TRS if the second rule is interpreted as a single rule with
two right-hand sides (“e:x:xs” and “x : insert e xs”). The corresponding strat-
egy, called INS (inductively sequential narrowing strategy), is defined similarly
to needed narrowing but computes for each narrowing step a set of replacements.
INS is a conservative extension of needed narrowing and optimal modulo non-
deterministic choices of multiple right-hand sides, i.e., if there are no multiple
right-hand sides or there is an oracle for choosing the appropriate element from
multiple right-hand sides, INS has the same optimality properties as needed
narrowing (see [13] for more details).

A subtle aspect of nondeterministic operations is their treatment if they are
passed as arguments. For instance, consider the nondeterministic operation coin

defined by

coin = 0 ? 1

and the expression “double coin” (where double is defined as in Section 2.1). If
the argument coin is evaluated (to 0 or 1) before it is passed to double, we obtain
the possible results 0 and 2. However, if the argument coin is passed unevaluated
to double, we obtain after one rewrite step the expression coin+coin which has
four possible further rewrite derivations resulting in the values 0, 1, 1, and 2. The
former behavior is referred to as call-time choice semantics [94] since the choice
for the desired value of a nondeterministic operation is made at call time, whereas
the latter is referred to as need-time choice semantics. There are arguments for
either of these semantics depending on the programmer’s intention (see [15] for
more examples).

Although call-time choice suggests an eager or call-by-value strategy, it fits
well into the framework of demand-driven evaluation where arguments are shared
to avoid multiple evaluations of the same subterm. For instance, the actual sub-
term (e.g., coin) associated to argument x in the rule “double x = x+x” is not
duplicated in the right-hand side but a reference to it is passed so that, if it
is evaluated by one subcomputation, the same result will be taken in the other
subcomputation. This technique, called sharing, is essential to obtain efficient
(and optimal) evaluation strategies. If sharing is used, the call-time choice se-
mantics can be implemented without any further machinery. Furthermore, in
many situations call-time choice is the semantics with the “least astonishment”.
For instance, consider the reformulation of the operation psort in Example 6 to

psort xs = idOnSorted (perm xs)

idOnSorted xs | sorted xs =:= xs = xs

15

Then, for the call psort xs, the call-time choice semantics delivers only sorted
permutations of xs, as expected, whereas the need-time choice semantics deliv-
ers all permutations of xs since the different occurrences of xs in the rule of
idOnSorted are not shared. For instance, to evaluate the call psort [3,2,1],
one has to verify that the condition

sorted (perm [3,2,1]) =:= perm [3,2,1]

of idOnSorted is satisfied (see below for more details about conditional rules).
This can be shown by reducing both occurrences of “perm [3,2,1]” to the list
[1,2,3]. Since the condition is satisfied, the call idOnSorted (perm [3,2,1])

will be reduced to perm [3,2,1] w.r.t. the need-time choice semantics. Thus,
one finally obtains all permutations of the input list.

Due to these reasons, current functional logic languages usually adopt the
call-time choice semantics.

Conditional Rules. The narrowing strategies presented so far are only defined
for rewrite rules without conditions, although some of the concrete program
examples indicate that conditional rules are convenient in practice. Formally,
a conditional rewrite rule has the form l → r ⇐ C where l and r are as in
the unconditional case and the condition C consists of finitely many equational
constraints of the form s =:= t. Due to the interpretation of equational constraints
as strict equalities, one can define a rewrite step with a conditional rule similar
to the unconditional case with the additional requirement that each equational
constraint in the condition of an applicable rule must be joinable, i.e., both sides
of the equation must be reducible to the same ground constructor term.9 A more
precise definition will be provided in Section 2.3.

To extend narrowing to conditional rules, one can define narrowing steps on
equational goals, i.e., (multi)sets of equations, where an application of a condi-
tional rule adds new conditions to the equational goal. However, to obtain an
efficient implementation, functional logic languages often use another technique.
As discussed before, efficient narrowing strategies exploit the structure of the
left-hand sides of rewrite rules to decide its applicability. In order to do the
same for conditional rules, one can consider conditions as part of the right-hand
side. This can be achieved by transforming a conditional rule of the form

l → r ⇐ s1 =:= t1 & . . . & sn =:= tn

into an unconditional rule

l → cond(s1 =:= t1 & . . . & sn =:= tn, r)

where the “conditional” is defined by cond(Success, x) → x. Since overlapping
inductively sequential TRSs allow rules with multiple right-hand sides, one can
transform also sets of conditional rules with identical left-hand sides, in con-
trast to pure term rewriting with confluence requirements where only restricted

9 The recursion in this intuitive definition of conditional rewriting can be avoided by
an iterative definition using levels for rewriting conditions, see [33].

16

subsets of conditional rules can be transformed into unconditional ones (e.g.,
[33]). Actually, Antoy [14] has shown a systematic method to translate any con-
ditional constructor-based TRS into an overlapping inductively sequential TRS
performing equivalent computations.

For restricted subsets of conditional rules, other transformations that allow
the application of more sophisticated narrowing strategies are possible. For in-
stance, in [17] it is shown how to transform any weakly orthogonal conditional
TRS into an unconditional TRS so that the weakly needed and parallel narrowing
strategies are sound and complete on the transformed programs. The application
of parallel narrowing to the transformed programs has the effect that conditions
are evaluated in parallel so that nondeterministic evaluation steps are completely
avoided on ground terms.

Further Works. Although weakly needed narrowing or INS are reasonable nar-
rowing strategies for rather general classes of functional logic programs, further
works investigated improvements for specific classes of TRSs. For instance, [97]
proposes a refinement of definitional trees if there is more than one inductive po-
sition (e.g., in operations like “=:=” and “&” defined above). This is exploited to
implement needed narrowing in a way that reduces the number of nondetermin-
istic choices. [50,51] proposes natural narrowing as a refinement of weakly needed
narrowing by incorporating a better treatment of demandedness properties.

Since the formal reasoning about sophisticated narrowing strategies could be
fairly complex, narrowing calculi have been studied. Usually, such calculi are
defined by a set of inference rules on equational goals so that properties like
soundness and completeness can be shown by proving invariants w.r.t. the ap-
plication of inference rules. This simplifies the proof of properties of narrowing
techniques but has the disadvantage that a connection to efficient implementa-
tions required for real languages is more difficult to establish. Examples for such
narrowing calculi are LNC [107] for confluent TRSs, OINC [95] for orthogonal
TRSs and goals with ground normal forms as right-hand sides, or CLNC [62] as
the narrowing equivalent to CRWL (see below). LNC and OINC do not require
constructor-based TRSs. This has useful applications for applicative TRSs [111]
in order to study narrowing calculi for programs with higher-order operations.

2.3 Constructor-based Rewriting Logic

As discussed in the previous section on overlapping inductively sequential TRS,
sharing becomes important for the semantics of nondeterministic operations.
This has the immediate consequence that traditional equational reasoning is
no longer applicable. For instance, the expressions double coin and coin+coin

are not equal since the latter can reduce to 1 while this is impossible for the
former w.r.t. a call-time choice semantics. In order to provide a semantical ba-
sis for such general functional logic programs, González-Moreno et al. [62] have
proposed the rewriting logic CRWL (Constructor-based conditional ReWriting
Logic) as a logical (execution- and strategy-independent) foundation for declara-
tive programming with non-strict and nondeterministic operations and call-time

17

choice semantics. This logic has been also used to link a natural model theory
as an extension of the traditional theory of logic programming and to establish
soundness and completeness of narrowing strategies for rather general classes of
TRSs [47].

To deal with non-strict operations, CRWL considers signatures Σ⊥ that are
extended by a special symbol ⊥ to represent undefined values. For instance,
T (C ∪ {⊥},X) denotes the set of partial constructor terms, e.g., 1:2:⊥ denotes
a list starting with elements 1 and 2 and an undefined rest. Such partial terms
are considered as finite approximations of possibly infinite values. CRWL defines
the deduction of two kinds of basic statements: approximation statements e→ t
with the intended meaning “the partial constructor term t approximates the
value of e”, and joinability statements e1 =:= e2 with the intended meaning that
e1 and e2 have a common total approximation t ∈ T (C,X) with e1 → t and
e2 → t, thus modeling strict equality with terms containing variables. To model
call-time choice semantics, rewrite rules are only applied to partial values. Hence,
the following notation for partial constructor instances of a set of (conditional)
rules R is useful:

[R]⊥ = {σ(l→ r ⇐ C) | l→ r ⇐ C ∈ R, σ : X → T (C ∪ {⊥},X)}

Then CRWL is defined by the following set of inference rules (where the
program is represented by a TRS R):

Bottom: e→ ⊥ e ∈ T (C ∪ F ∪ {⊥},X)

Restricted
reflexivity: x→ x x ∈ X

Decomposition:
e1 → t1 · · · en → tn

c(e1, . . . , en)→ c(t1, . . . , tn)
c/n ∈ C, ti ∈ T (C ∪ {⊥},X)

Function
reduction:

e1 → t1 · · · en → tn C r → t
f(e1, . . . , en)→ t

f(t1, . . . , tn)→ r ⇐ C ∈ [R]⊥
and t 6= ⊥

Joinability:
e1 → t e2 → t

e1 =:= e2
t ∈ T (C,X)

Rule (Bottom) specifies that ⊥ approximates any expression. The condition
t 6= ⊥ in rule (Function reduction) avoids unnecessary applications of this
rule since this case is already covered by the first rule. The restriction to
partial constructor instances in this rule formalizes non-strict operations with
a call-time choice semantics. Operations might have non-strict arguments that
are not evaluated since the corresponding actual arguments can be derived to
⊥ by rule (Bottom). If the value of an argument is required to evaluate the
right-hand side of a rule, it must be evaluated to a partial constructor term
before it is passed to the right-hand side (since [R]⊥ contains only partial
constructor instances), which corresponds to a call-time choice semantics. Note
that this does not prohibit the use of lazy implementations since this semantical
behavior can be enforced by sharing unevaluated expressions. Actually, [62]
defines a lazy narrowing calculus that reflects this behavior.

18

Fapp f(σ(t1), . . . , σ(tn)) →l σ(r) f(t1, . . . , tn)→ r ∈ R, σ : X → T (C,X)

LetIn g(. . . , e, . . .) →l e = f(. . .) (f ∈ F) or e = let . . .
let x = e in g(. . . , x, . . .) g ∈ C ∪ F , x ∈ X fresh variable

Flat let x = (let y = e1 in e2) in e3 →l

let y = e1 in (let x = e2 in e3) y does not appear free in e3

Bind let x = t in e →l σ(e) t ∈ T (C,X), σ = {x 7→ t}
Elim let x = e1 in e2 →l e2 x does not appear free in e2

Contx e[e1]p →l e[e2]p e1 →l e2 and p position in e

Fig. 2. Rules for let-rewriting [103]

CRWL can be used as the logical foundation of functional logic languages
with non-strict nondeterministic operations. It is a basis for the verification of
functional logic programs [45] and has been extended in various directions, e.g.,
higher-order operations [63], algebraic types [30], polymorphic types [61], failure
[104], constraints [102] etc. An account on CRWL and its applications can be
found in [119].

As discussed in [103], a disadvantage of CRWL is its high level of abstraction:
CRWL relates expressions to computed (partial) results but misses a one-step
evaluation mechanism similarly to rewriting for functional programs or narrow-
ing for functional logic programs. Thus, it is sometimes difficult to use CRWL to
reason about computations in functional logic languages. To overcome this draw-
back, López-Fraguas et al. [103] proposed specific reduction relations conform
with CRWL (for simplicity, we consider here only rules without conditions). The
following reduction relation � is similarly to standard rewriting but restricts
the reduction of operations to situations where the arguments are partial terms.
Furthermore, any expression can be approximated by ⊥.

e[f(t1, . . . , tn)]p � e[r]p if f(t1, . . . , tn)→ r ∈ [R]⊥ and p position in e

e � e[⊥]p if p is a position in e

CRWL and the relation � are equivalent in the sense that CRWL and � relates
the same partial terms to each expression [103].

This reduction relation is more appropriate to reason about computations.
For instance, it has been applied in [79] to approximate call patterns in func-
tional logic computations. On the negative side, this reduction relation allows
a nondeterministic choice between reducing or approximating a call to some
operation which leads to a large computation space. Furthermore, the order of
reduction steps does not reflect the typical demand-driven order of evaluation
steps. Therefore, López-Fraguas et al. [103] proposed let-rewriting, i.e., rewriting
on expressions containing let-bindings which denote arguments that need to be
evaluated in order to reduce some operation. For this purpose, let-expressions
are expressions where the extended form “let x = e1 in e2” is also permitted
(x is visible in e2 but not in e1, i.e., lets are not recursive). The let-rewriting

19

relation →l is defined by the rules in Figure 2 (we omit the precise definition
of free variable occurrences and substitutions on let-expressions since they are
standard). In contrast to CRWL, let-rewriting does not use ⊥ to approximate
expressions that are not demanded. Instead, such expressions are moved from
an argument position to a let-binding (LetIn) which can be eliminated (Elim) if
they are not demanded. Thus, a function call is reduced if the arguments do not
contain any operation (Fapp) which reflects the call-time choice semantics. The
equivalence of CRWL and let-rewriting is shown in [103]. There it is also shown
that let-rewriting is equivalent to standard rewriting for deterministic programs.
Let-rewriting does not enforce any reduction strategy. This will be considered in
Section 2.5 where a more strategy-oriented semantics will be discussed.

2.4 Residuation

Although narrowing extends soundness and completeness results of logic pro-
gramming to the general framework of functional logic programming, it is not
the only method that has been proposed to integrate functions into logic pro-
grams. An alternative technique, called residuation, is based on the idea to delay
or suspend function calls until they are ready for deterministic evaluation. The
residuation principle is used, for instance, in the languages Escher [99], Le Fun [2],
Life [1], NUE-Prolog [110], and Oz [126]. Since the residuation principle evaluates
function calls by deterministic reduction steps, nondeterministic search must be
encoded by predicates [1,2,110] or disjunctions [99,126]. Moreover, if some part
of a computation might suspend, one needs a primitive to execute computations
concurrently. For instance, the conjunction of constraints “&” needs to evaluate
both arguments to Success so that it is reasonable to do it concurrently, i.e., if
the evaluation of one argument suspends, the other one is evaluated.

Example 7. Consider Example 2 together with the operation

nat O = Success

nat (S x) = nat x

If the operation add is evaluated by residuation, i.e., suspends if the first argu-
ment is a variable, the expression “add y O =:= S O & nat y” is evaluated as
follows:

add y O =:= S O & nat y →{y 7→S x} add (S x) O =:= S O & nat x

→{} S (add x O) =:= S O & nat x

→{} add x O =:= O & nat x

→{x 7→O} add O O =:= O & Success

→{} O =:= O & Success

→{} Success & Success

→{} Success

Thus, the solution {y 7→ S O} is computed by switching between the residuating
operation add and the constraint nat that instantiates its argument to natural
numbers. 2

20

Narrowing and residuation are quite different approaches to integrate functional
and logic programming. Narrowing is sound and complete but requires the non-
deterministic evaluation of function calls if some arguments are unknown. Resid-
uation might not compute some result due to the potential suspension of evalua-
tion but avoids guessing on operations. From an operational point of view, there
is no clear advantage of one of the strategies. One might have the impression
that the deterministic evaluation of operations in the case of residuation is more
efficient, but there are examples where residuation has an infinite computation
space whereas narrowing has a finite one (see [67] for more details). On the other
hand, residuation offers a concurrent evaluation principle with synchronization
on logic variables (sometimes also called declarative concurrency [128]) and a
conceptually clean method to connect external operations to declarative pro-
grams [35] (note that narrowing requires operations to be explicitly defined by
rewrite rules). Therefore, it is desirable to integrate both principles in a single
framework. This has been proposed in [69] where residuation is combined with
weakly needed narrowing by extending definitional trees with branches deco-
rated with a flexible/rigid tag. Operations with flexible tags are evaluated as
with narrowing whereas operations with rigid tags suspend if the arguments are
not sufficiently instantiated. The overall strategy is similar to weakly needed
narrowing with the exception that a rigid branch with a free variable in the cor-
responding inductive position results in the suspension of the operation under
evaluation. For instance, if the branch of add in Figure 1 has a rigid tag, then
add is evaluated as shown in Example 7.

2.5 Flat Programs

The constructor-based rewriting logic defines the meaning of functional logic
programs without referring to a concrete evaluation strategy. However, reasoning
about the behavior of programs (e.g., program analysis), optimizing programs
(e.g., partial evaluation), or building language specific tools (e.g., debuggers,
profilers) demands for a more detailed description of the operational semantics
of programs. On the one hand, such a description should reflect all details of the
program execution, like pattern matching, sharing, binding logic variables, etc.
On the other hand, it should be high level so that properties of programs can
be formally derived.

It has been shown that such a description can be better based on an interme-
diate flat representation of programs rather than on the source-level functional
logic programs. Figure 3 shows the syntax of such a flat language which has been
successfully applied for this purpose. Flat programs contain an explicit represen-
tation of pattern matching (case/fcase corresponds to branches in definitional
trees, or represents a choice between definitional trees in the case of rules with
overlapping left-hand sides). The difference between case and fcase corresponds
to residuation and narrowing: when the argument e evaluates to a free variable,
case suspends whereas fcase nondeterministically binds this variable to a pattern
in a branch of the case expression.

21

P ::= D1 . . . Dm (program)
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable)
| c(e1, . . . , en) (constructor call)
| f(e1, . . . , en) (function call)
| case e of {p1 → e1; . . . ; pn → en} (rigid case)
| fcase e of {p1 → e1; . . . ; pn → en} (flexible case)
| e1 or e2 (disjunction)
| let {x1 = e1, . . . , xn = en} in e (let binding)

p ::= c(x1, . . . , xn) (pattern)

Fig. 3. Syntax for flat programs

Let bindings as shown in Figure 3 are in principle not required for translat-
ing functional logic programs into flat programs. However, they can be used to
translate extended classes of programs containing circular data structures and
are convenient to express sharing without the use of complex graph structures
[49,64]. Operationally, let bindings introduce new structures in memory that are
updated after evaluation, which is essential for lazy computations [98]. Further-
more, let bindings are also useful to represent free variables in expressions by a
direct circular binding of the form “let {x = x} in e”.

For instance, the operations add and “?” defined in Section 2.2 have the
following flat representations:

add x y = fcase x of { O → y; S z → S (add z y) }
x ? y = x or y

[87] defines a mapping between definitional trees and flat programs and shows the
equivalence of needed narrowing and outermost narrowing on flat programs. A
precise description of (weakly needed) narrowing and residuation with sharing is
given in [3] as an extension of Launchbury’s natural semantics for lazy evaluation
[98]. For this purpose, one considers only normalized flat programs, i.e., programs
where the arguments of constructor and function calls are always variables. Any
flat program can be normalized by introducing new variables by let expressions
[3]. For instance, the expression “double coin” is normalized into “let {x =
coin} in double x”. In order to model sharing, the variables are interpreted as
references into a heap where new let bindings are stored and function calls are
updated with their evaluated results.

To be more precise, a heap, denoted by Γ,∆, or Θ, is a partial mapping from
variables to expressions (the empty heap is denoted by []). The value associated
to variable x in heap Γ is denoted by Γ [x]. Γ [x 7→ e] denotes a heap Γ ′ with
Γ ′[x] = e and Γ ′[y] = Γ [y] for all x 6= y. We use this notation either as a
condition or as an update of a heap. A logic variable x that is unbound in Γ is
represented by a circular binding of the form Γ [x] = x.

Using heap structures, one can provide a high-level description of the op-
erational behavior of residuation and demand-driven narrowing with call-time

22

VarCons Γ [x 7→ t] : x ⇓ Γ [x 7→ t] : t where t is constructor-rooted

VarExp
Γ [x 7→ e] : e ⇓ ∆ : v

Γ [x 7→ e] : x ⇓ ∆[x 7→ v] : v

where e is not constructor-rooted
and e 6= x

Val Γ : v ⇓ Γ : v
where v is constructor-rooted

or a variable with Γ [v] = v

Fun
Γ : ρ(e) ⇓ ∆ : v

Γ : f(xn) ⇓ ∆ : v
where f(yn) = e ∈ P and ρ = {yn 7→ xn}

Let
Γ [yk 7→ ρ(ek)] : ρ(e) ⇓ ∆ : v

Γ : let {xk = ek} in e ⇓ ∆ : v

where ρ = {xk 7→ yk}
and yk are fresh variables

Or
Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v
where i ∈ {1, 2}

Select
Γ : e ⇓ ∆ : c(yn) ∆ : ρ(ei) ⇓ Θ : v

Γ : (f)case e of {pk → ek} ⇓ Θ : v

where pi = c(xn)
and ρ = {xn 7→ yn}

Guess
Γ : e ⇓ ∆ : x ∆[x 7→ ρ(pi), yn 7→ yn] : ρ(ei) ⇓ Θ : v

Γ : fcase e of {pk → ek} ⇓ Θ : v

where pi = c(xn), ρ = {xn 7→ yn}, and yn are fresh variables

Fig. 4. Natural semantics of normalized flat programs [3]

choice in form of a natural semantics (also called big-step semantics). The nat-
ural semantics uses judgements of the form “Γ : e ⇓ ∆ : v” with the meaning
that in the context of heap Γ the expression e evaluates to value (head normal
form) v and produces a modified heap ∆. Figure 4 shows the rules defining this
semantics w.r.t. a given normalized flat program P (ok denotes a sequence of
objects o1, . . . , ok). The rules VarCons and VarExp retrieve expressions from the
heap: VarCons retrieves values whereas the expressions retrieved by VarExp are
further evaluated. In order to avoid the reevaluation of the same expression,
VarExp updates the heap with the computed value, which models sharing. Val-
ues (i.e., head normal forms) are just returned by rule Val. Fun unfolds function
calls by evaluating the right-hand side after binding the formal parameters to the
actual ones. Let introduces new bindings in the heap and renames the variables
in the expressions with the fresh names introduced in the heap. Or nondeter-
ministically evaluates one of its arguments. Finally, Select and Guess deal with
case expressions. If the first argument of case evaluates to a constructor-rooted

23

term, Select evaluates the corresponding branch of the case expression, otherwise
(if the argument evaluates to an unbound variable), Guess nondeterministically
binds the argument to one of the patterns of the case expression and continues
with the corresponding branch.

By introducing a stack to model the context of a computation, one can also
define an equivalent small-step semantics which can be enriched with more de-
tails of realistic implementations, such as search strategies, concurrency, external
operations etc (see [3] for details).

The flat representation of programs and its operational semantics has been
used for various language-oriented tools (e.g., compilers [20,27], partial evalua-
tors [4,5], trace-oriented debuggers [40], profilers [39]) and extended in various
ways (e.g., higher-order functions [87], memoization [53], encapsulated search
[38], computation costs [39]).

Flat programs can be considered as a kernel language for functional logic
programming since programs written in concrete functional logic languages like
Curry with all its syntactic sugar can be automatically translated into flat pro-
grams. It is interesting to note that the language of flat programs is not minimal
since it contains two concepts that can be simulated by each other: logic vari-
ables and overlapping rules (i.e., disjunctions expressed by or). For instance, a
rule like

x ? y = x or y

can be expressed without or by introducing a logic variable z that ranges over
two data constructors I0 and I1:

x ? y = let {z = z} in fcase z of { I0 → x; I1 → y }

On the other hand, logic variables can be eliminated by defining nondeterministic
generator operations for each type. For instance, a generator for type Nat defined
in Example 2 is the operation genNat defined by

genNat = O ? S genNat

so that genNat evaluates to all possible values of type Nat. Now each occur-
rence of a logic variable can be replaced by a corresponding generator, e.g., the
expression

let {x = x} in leq x (S O)

can be transformed into

let {x = genNat} in leq x (S O)

without changing the computed results. These equivalences have been used in
implementations of functional logic languages [41,42]. Further details can be
found in [24].

24

3 Language Concepts: Curry

After the review of recent results and techniques for functional logic program-
ming, this section shows how they influenced the design of a concrete program-
ming language. For this purpose, we consider Curry [69,92] (the relation to other
languages will be briefly discussed in Section 7), a functional logic language based
on many of the concepts introduced so far. The development of Curry is the out-
come of an international initiative of researchers in the area of functional logic
programming with the goal to provide a common standard for the research,
teaching, and application of integrated functional logic languages.

The syntax of Curry is very similar to the syntax of Haskell [117] and has
been already introduced in an informal manner. Curry is a polymorphically typed
language with a Hindley/Milner-like type system supporting type inference [46].
Since the type concept is fairly standard and orthogonal to the other issues of the
language, it is not explicitly addressed in the following. Therefore, this section
is devoted to discuss concepts and design decisions that are unique to Curry.

3.1 Semantics

A Curry program is formally a constructor-based TRS. Thus, its declarative
semantics is given by the rewriting logic CRWL, i.e., operations and constructors
are non-strict with a call-time choice semantics for nondeterministic operations.

The operational semantics is based on an extension of needed narrowing on
generalized definitional trees with sharing and residuation. The precise descrip-
tion is based on normalized flat programs as already shown in Section 2.5. Thus,
for (flexible) inductively sequential operations, which form the vast majority of
operations in application programs, the evaluation strategy is optimal w.r.t. the
length of derivations and number of computed solutions and always computes a
value if it exists (in case of nondeterministic choices only if the underlying imple-
mentation is fair w.r.t. such choices, as [26,27,88]). Therefore, the programmer
can concentrate on the declarative meaning of programs and needs less attention
to the consequences of the particular evaluation strategy (see [73] for a more de-
tailed discussion). The following example shows that Curry is an improvement
compared to Haskell which does not have a similar behavior for all inductively
sequential operations.

Example 8. Consider the inductively sequential operation f defined by

f 0 [] = 0

f x (y:ys) = y

and a nonterminating operation ⊥. Then the expression “f⊥ [1]” has the value
1, but Haskell does not terminate on this expression due to the strict left-to-right
top-down pattern matching strategy. Furthermore, if the operation g is defined
by

g x = 0

g 1 = 1

25

in Haskell the expression “g 1” is evaluated to 0 although the second equation
indicates that 1 is also an acceptable result. As a consequence, program rules in
Haskell cannot be interpreted as equations but all the rules defining an opera-
tion in a Haskell program must be passed through a complex pattern-matching
compiler [129] in order to understand their meaning. 2

As discussed above, external operations not implemented by explicit rules, like
basic arithmetic operators or I/O operations, cannot be handled by narrowing.
Therefore, Curry exploits residuation to connect external operations in a con-
ceptually clean way (see also [35]). Since external operations can not usually
deal with unevaluated arguments possibly containing logic variables, the argu-
ments of external operations are reduced to a ground value before the operation
is evaluated. If some arguments are not ground but contain logic variables, the
function call is suspended until the variables are bound to ground values. The
concurrent conjunction “&” on constraints is the basic concurrency operator that
evaluates both arguments in a non-specified order to success.

The discussion of residuation-based languages (see Section 2.4) might give the
impression that residuation is useful for user-defined operations. Therefore, pre-
vious versions of Curry had also the possibility to define operations as “rigid”.
However, it turned out that this is unnecessary in practice, since the suspen-
sion of operations often caused more complications than their active application
through narrowing (exceptions are related to concurrent objects and ports for
distributed programming, see below). Moreover, the optimality of needed nar-
rowing ensures that the argument guessing is restricted to a minimal part. There-
fore, all user-defined operations are evaluated by narrowing and only external
operations and conditionals like “if-then-else” or “case-of” are evaluated by
residuation. The latter is motivated by the fact that conditionals are often used
as guards to prevent infinite recursion. A useful primitive to define general “sus-
pension” combinators for concurrent programming is the predefined operation
ensureNotFree that returns its argument evaluated to head normal form but
suspends as long as the result is a logic variable.

3.2 Constraints

Functional logic languages are able to solve equational constraints. As shown in
Section 2.2, such constraints occur in conditions of conditional rules and are in-
tended to restrict the applicability of the rewrite rule, i.e., a replacement with a
conditional rule is only performed if the condition has been shown to be satisfied
(e.g., compare the definition of last in Section 2.1). Thus, constraints are solved
when conditional rules are applied. In terms of concurrent constraint program-
ming languages [121], solving constraints in conditions corresponds to tell con-
straints. The dual operation, ask, is used in conditionals like “if-then-else”.
Curry distinguishes these different uses by different types: Success and Bool.

Equational constraints are expressions of type Success. Since constraints are
ordinary expressions, they are first-class values that can be passed in arguments
or data structures. For instance, the following “constraint combinator” takes a

26

list of constraints as input and creates a new constraint that is satisfied if all
constraints in the input list are satisfied:

allValid :: [Success] -> Success

allValid [] = success

allValid (c:cs) = c & allValid cs

Here, success is not a constructor but denotes the trivial constraint that is
always satisfied. Exploiting the higher-order features of Curry (see below), one
can define it also by

allValid = foldr (&) success

Note that the constructor Success was introduced in Section 2.2 only to provide
a rewrite-based definition of strict equality. It is not available in Curry where
a more efficient implementation of strict equality is used. The main difference
shows up when an equational constraint “x =:= y” between two logic variables x
and y is solved. Solving it with the rewrite rules shown in Section 2.2, x and y are
nondeterministically bound to ground constructor terms which usually results
in an infinite search space. This is avoided in Curry by binding one variable to
the other, similar to logic programming.

Hence, the type Success is a type without constructors but with a few basic
constraints like success and “=:=” and a concurrent conjunction “&” to combine
constraints into larger units. Actually, one can consider Success as equivalent to
the functional type “ConstraintStore → ConstraintStore” mapping a constraint
store into a new constraint store. Then, the trivial constraint success is the
identity mapping and a constraint like x=:=2 maps a constraint store into a new
one which is extended by the binding of x to 2. Constraint stores are implicitly
chained through a derivation, cloned in nondeterministic steps, and extended
when evaluating a condition of a rule. This view has been used in [106] to connect
a solver for real arithmetic constraints to a Curry implementation. By adding
basic constraints that deal with other constraint domains, like real arithmetic or
finite domain constraints, typical applications of constraint logic programming
can be covered and combined with features of lazy higher-order programming
[20,54,55,102,106,119].

The condition of a rule is any expression of type Success, i.e., it is not only a
conjunction of equational constraints but can also be constructed by constraint
combinators like allValid. By contrast, the condition in an “if-then-else”
must be an expression of type Bool since two different values (True and False)
are required to select the then or else branch according to the result of the
Boolean test. For this purpose, Curry also supports a test equality predicate
“==” of type “a->a->Bool” to check the equality of two ground constructor
terms. In contrast to “=:=”, a call to “==” is suspended if an argument contains
logic variables so that the equality cannot be decided without instantiating
these variables. Hence, one can consider “==” as a rigid operation defined by
the rules

27

c == c = True ∀c/0 ∈ C
c x1 . . . xn == c y1 . . . yn = x1==y1 &&...&& xn==yn ∀c/n ∈ C, n > 0
c x1 . . . xn == d y1 . . . ym = False ∀c/n 6= d/m ∈ C

True && x = x

False && x = False

As an alternative to the distinction between equational constraints in conditions
and Boolean tests in conditionals, one might also use equational constraints
in conditionals, as, for instance, done in the purely narrowing-based language
TOY [101]. This demands for the negation of constraints so that a conditional
“if c then e1 else e2” is evaluated by nondeterministically evaluating c ∧
e1 or ¬c ∧ e2. Actually, this is implemented in TOY by the use of disequality
constraints. However, the complexity of the handling of disequality constraints
puts more demands on the implementation side.

3.3 Higher-order Operations

The use of higher-order operations, i.e., operations that take other operations
as arguments or yield them as results, is an important programming technique
in functional languages so that it should be covered also by functional logic
languages. Typical examples are the mapping of an operation to all elements of
a list (map) or a generic accumulator for lists (foldr):

map :: (a->b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

foldr :: (a->b->b) -> b -> [a] -> b

foldr _ z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

Logic languages often provide higher-order features through a transformation
into a first-order program [131] by defining a predicate apply that implements
the application of an arbitrary operation of the program to an expression. This
technique is also known as “defunctionalization” [118] and enough to support the
higher-order features of current functional languages (e.g., lambda abstractions
can be replaced by new function definitions). Therefore, this solution is also used
in Curry.

As an example, consider a program containing the unary operation not and
the binary operations add and leq. Then, one can define the meaning of apply
by the following rules:

apply not x = not x (apply1)
apply add x = add x (apply2)
apply (add x) y = add x y (apply3)
apply leq x = leq x (apply4)
apply (leq x) y = leq x y (apply5)

28

Thus, a partially applied function call, i.e., a n-ary operation called with less than
n arguments, is considered as a constructor-rooted, i.e., not further evaluable,
term (one can also make this distinction clear by introducing new constructor
symbols for such partial applications). Thus, the first argument in each rule for
apply is always a constructor-rooted term. If an n-ary function call with n − 1
arguments is applied to its final argument, the operation is evaluated (e.g., as
in the rules apply1, apply3, apply5). This explicit definition has been used in
Prolog-based implementations of functional logic languages [20].

An important difference to purely functional languages shows up when the
operation to be applied (i.e., the first argument of apply) is a logic variable. In
this case, one can instantiate this variable to all possible operations occurring
in the program [63]. Since this might result also in instantiations that are not
intended w.r.t. the given types, one can restrict these instantiations to well-typed
ones which requires to keep type information at run time [29,61]. Another option
is the instantiation of variables denoting functions to (well-typed) lambda terms
in order to cover programs that can reason about bindings and block structure
[87]. Since all these options might result in huge search spaces due to function
instantiation, and the feasibility and usefulness for larger application programs
is not clear, Curry chooses a more pragmatic solution: function application apply
is rigid, i.e., it suspends if the first functional argument is a logic variable. For
this behavior, we can avoid the explicit introduction of rules for apply : it can be
considered as a primitive operation with a meaning that is specified by extending
the natural semantics of Figure 4 with the following rule (where partially applied
function calls are considered as constructor-rooted terms in the rules VarCons
and Val):

Apply
Γ : x ⇓ ∆ : ϕ(xk) ∆ : ϕ(xk, y) ⇓ Θ : v

Γ : apply x y ⇓ Θ : v

where ϕ is either a constructor or an n-ary operation with k < n.

3.4 Encapsulated Search

An essential difference between functional and logic computations is their de-
terminism behavior. Functional computations are deterministic. This enables a
reasonable treatment of I/O operations by the monadic approach where I/O ac-
tions are considered as transformations on the outside world [130]. The monadic
I/O approach is also taken in Curry. However, logic computations might cause
(don’t know) nondeterministic choices, i.e., a computation can be cloned and
continued in two different directions. Since one can not clone the entire out-
side world, nondeterministic choices during monadic I/O computations are not
allowed and lead to a run-time error in Curry. Since this might restrict the
applicability of logic programming techniques in larger applications, there is a
clear need to encapsulate nondeterministic search between I/O actions. For this
purpose, [89] proposes the addition of a primitive search operator

try :: (a->Success) -> [a->Success]

29

that takes a constraint abstraction, e.g., (\x->x =:= coin), as input, evaluates
it until the first nondeterministic step occurs, and returns the result: the empty
list in case of failure, a list with a single element in case of success, or a list
with at least two elements representing a nondeterministic choice. For instance,
try (\x->x =:= coin) evaluates to [\x->x =:= 0, \x->x =:= 1]. Based on this
primitive, one can define various search strategies to explore the search space
and return its solutions. [105] shows an implementation of this primitive.

Although typical search operators of Prolog, like findall, once, or negation-
as-failure, can be implemented using the primitive try, it became also clear
that the combination with demand-driven evaluation and sharing causes further
complications. For instance, in an expression like

let y = coin in try (\x->x =:= y)

it is not obvious whether the evaluation of coin (introduced outside but de-
manded inside the search operator) should be encapsulated or not. Hence, the
result of this expression might depend on the evaluation order. For instance, if
coin is evaluated before the try expression, it results in two computations where
y is bound to 0 in one computation and to 1 in the other computation. Hence,
try does not encapsulate the nondeterminism of coin (this is also the semantics
of try implemented in [105]). However, if coin is evaluated inside the capsule
of try (because it is not demanded before), then the nondeterminism of coin is
encapsulated. These and more peculiarities are discussed in [38]. Furthermore,
the order of the solutions might depend on the textual order of program rules or
the evaluation time (e.g., in parallel implementations). Therefore, [38] contains
a proposal for another primitive search operator:

getSearchTree :: a -> IO (SearchTree a)

Since getSearchTree is an I/O action, its result (in particular, the order of
solutions) depends on the current environment, e.g., time of evaluation. It takes
an expression and delivers a search tree representing the search space when
evaluating the input:

data SearchTree a = Or [SearchTree a] | Val a | Fail

Based on this primitive, one can define various concrete search strategies as tree
traversals. To avoid the complications w.r.t. shared variables, getSearchTree
implements a strong encapsulation view, i.e., conceptually, the argument of
getSearchTree is cloned before the evaluation starts in order to cut any sharing
with the environment. Furthermore, the structure of the search tree is computed
lazily so that an expression with infinitely many values does not cause the non-
termination of the search operator if one is interested in only one solution. More
details about search trees and their operational semantics can be found in [38,41].

Although these concepts are sufficient to encapsulate nondeterministic com-
putations to avoid nondeterminism in I/O operations, it is often also desired
to collect all the values of an expression in some data structure at arbitrary
computation points, e.g., to accumulate all values, to compute a minimal value,
or to check whether some constraint has no solution (similarly to “negation as

30

failure” in logic programming). As mentioned above, the initial concepts for en-
capsulation in functional logic languages have the drawback that their result
might depend on the degree of evaluation of the argument (which is difficult to
grasp in non-strict languages). A solution to this problem is presented in [25] by
the introduction of set functions. For each defined operation f , fS denotes its
corresponding set function. In order to be independent of the evaluation order,
fS encapsulates only the nondeterminism caused by evaluating f except for the
nondeterminism caused by evaluating the arguments to which f is applied. For
instance, consider the operation decOrInc defined by

decOrInc x = (x-1) ? (x+1)

Then “decOrIncS 3” evaluates to (an abstract representation of) the set {2, 4},
i.e., the nondeterminism originating from decOrInc is encapsulated into a set.
However, “decOrIncS (2?5)” evaluates to two different sets {1, 3} and {4, 6}
due to its nondeterministic argument, i.e., the nondeterminism originating from
the argument is not encapsulated but produces different sets. It is shown in [25]
that the results of set functions do not depend on the evaluation order so that
the disadvantages of the earlier approaches are avoided. [104,120] contain similar
proposals but with the restriction to test only the failure of expressions. There,
an operation fails computes the set of all values of its argument expression and
returns true, if this set is empty, or false, otherwise.

4 Implementation

The definition of needed narrowing and its extensions shares many similarities
with pattern matching in functional or unification in logic languages. Thus, it
is reasonable to use similar techniques to implement functional logic languages.
Due to the coverage of logic variables and nondeterministic search, one could
try to translate functional logic programs into Prolog programs in order to ex-
ploit the implementation technology available for Prolog. Actually, there are
various approaches to implement functional logic languages with demand-driven
evaluation strategies in Prolog (e.g., [11,20,44,68,96,100]). A common idea is
the translation of source operations into predicates that compute only the head
normal form (i.e., a constructor-rooted term or a variable) of a call to this oper-
ation. Thus, an n-ary operation could be translated into a predicate with n+ 1
arguments where the last argument contains the head normal form of the eval-
uated call. For instance, the list concatenation “++” defined in Section 2.1 can
be translated into the following Prolog predicate conc:

conc(Xs,Ys,H) :- hnf(Xs,HXs), conc_1(HXs,Ys,H).

conc_1([],Ys,H) :- hnf(Ys,H).

conc_1([X|Xs],Ys,[X|conc(Xs,Ys)]).

Since the first argument of “++” is an inductive position, its value is needed
and, hence, computed by the predicate hnf before it is passed to the predicate
conc_1 implementing the pattern matching on the first argument. Since the

31

right-hand side of the second rule of “++” is already in head normal form, no
further evaluation is necessary. In the first rule of conc_1, it is unknown at
compile time whether the second argument Ys is already in head normal form.
Therefore, the evaluation to head normal form is enforced by the predicate hnf.
The goal hnf(t,h) evaluates any term t to its head normal form h. Some of the
clauses defining hnf are:

hnf(V,V) :- var(V), !.

hnf([],[]).

hnf([X|Xs],[X|Xs]).

...

hnf(conc(Xs,Ys),H) :- conc(Xs,Ys,H).

...

Using this scheme, there is a straightforward transformation of needed narrowing
and its extensions into Prolog. However, this scheme does not implement sharing
where it is required that each function call should be evaluated at most once.
This can be achieved by representing function calls as “suspensions” that contain
two further arguments: one indicates whether the suspension has been already
evaluated and the other contains the head normal form. Thus, the second rule
of conc_1 has then the form

conc_1([X|Xs],Ys,[X|susp(conc(Xs,Ys),E,H)]).

and the definition of hnf has the additional clause

hnf(susp(Call,E,H),H) :- var(E) -> hnf(Call,H), E=ready ; true.

Another implementation of sharing is proposed in [20] where only variables with
multiple occurrences in right-hand sides are shared instead of function calls. In
order to implement residuation, coroutining features of modern Prolog imple-
mentation can be exploited (see [20] for details).

The transformation of functional logic programs into Prolog programs has
many advantages. It is fairly simple to implement, one can use constraint solvers
available in many Prolog implementations in application programs, and one can
exploit the advances made in efficient implementations of Prolog (depending on
the Prolog implementation, one can improve the efficiency of the above code
by a couple of minor transformations). Thus, one obtains with a limited effort
an implementation that can be used for larger applications with a comparable
efficiency than other more low-level implementations (e.g., [81,101]).

Despite these advantages, the transformation into Prolog has the drawback
that one is fixed to Prolog’s backtracking strategy to implement nondetermin-
istic search. This hampers the implementation of encapsulated search or fair
search strategies. Therefore, there are also various approaches to use other target
languages than Prolog. For instance, [27] presents techniques to compile Curry
programs into Java programs that implement a fair search for solutions. A trans-
lation of Curry programs into Haskell programs is proposed in [41,42] which
offers a primitive operator to encapsulate search, similarly to getSearchTree

introduced in Section 3.4. Virtual machines to compile Curry programs are

32

proposed in [26,88,105]. In particular, [26,88] implement a fair (global) search
for solutions, and [105] covers the implementation of encapsulated search.

Beyond the compilation of programs into particular target languages or vir-
tual machines, the implementation of programming languages has many other
facets that have been considered also for functional logic languages. For in-
stance, partial evaluation is a powerful compile-time technique to optimize
source-level programs. [9] contains a general framework for the partial evalua-
tion of functional logic programs. It has been specialized to the case of needed
narrowing in [10] where the superiority of needed narrowing has been shown also
for partial evaluation. To provide a practical implementation of a partial evalu-
ator covering all features of Curry, [5] shows that this is possible if the partial
evaluator is based on the flat representation introduced in Section 2.5.

To understand the run-time behavior of functional logic programs, specific
tools are required since it is well known that even the operational behavior of
purely functional programs with lazy evaluation is difficult to understand [112].
This demands for tools specifically designed to show operational aspects of func-
tional logic programs. Thus, a few activities into this direction have started.
Since traditional tracing tools, although provided in practical systems, are of-
ten not helpful, the objective of debugging tools is usually a representation
of operational aspects that are more oriented towards the program text rather
than execution steps. For instance, COOSy [36] is a tool to observe the evalu-
ation of individual expressions, operations, or logic variables in a program. It
records the observable events during run time and presents the corresponding
results (computed values, variable bindings etc) with a separate viewer. TeaBag
[28] provides another view that connects the activities of virtual machine with
the source program under execution. Other debugging tools are more oriented
towards the semantics of functional logic programs. For instance, [40] describes
a formal semantics for a trace-based debugging tool, [39] proposes a profiling
tool based on a cost-augmented semantics of functional logic programs, [113]
proposes a debugging approach based on dynamic slicing, and [6,43] contain ap-
proaches to declarative debugging based on the ideas developed in the area of
logic programming [123].

5 Extensions

The language Curry described so far is based on the theoretical foundations on
functional logic programming surveyed in Section 2. Thus, it is a basis to show
the feasibility and usefulness of these concepts in practice. Nevertheless, vari-
ous extensions to this base language have been explored in recent years. In this
section, we review some of them: constraints, functional patterns, and support
for distributed programming. Other aspects, which are not discussed below, are
default rules [108], failure [104,120], inductive programming [56], tabling and
memoization [16,53], connecting databases [57,75], or proof tools for the verifi-
cation of functional logic programs [45].

33

5.1 Constraints

The integration of constraints has been already mentioned. Curry provides equa-
tional constraints that are solved in conditions. Further constraint domains, like
real arithmetic, Boolean, or finite domains, can be supported by adding ba-
sic constraints for these domains (e.g., see [20,32,54,55,102,106,119] for some
examples). It has been shown [54,55] that functional logic languages are good
frameworks to solve constraint problems in a high-level and maintainable way.

As an example demonstrating the compactness obtained by combining con-
straint programming and higher-order features, consider a solver for SuDoku
puzzles10 with finite domain constraints. If we represent the SuDoku matrix m as
a list of lists of finite domain variables, the “SuDoku constraints” can be easily
specified by

allValid (map allDifferent m) &

allValid (map allDifferent (transpose m)) &

allValid (map allDifferent (squaresOfNine m))

where allDifferent is the usual constraint stating that all variables in its ar-
gument list must have different values, transpose is the standard matrix trans-
position, and squaresOfNine computes the list of 3 × 3 sub-matrices. Then, a
SuDoku puzzle can be solved with these constraints by adding the usual domain
and labeling constraints (see [77] for more details).

5.2 Functional Patterns

We have discussed in Section 2.2 the fundamental requirement of functional
languages for constructor-based rewrite systems. This requirement is the key for
practically useful implementations and excludes rules like

last (xs ++ [e]) = e (last)

The non-constructor pattern (xs ++ [e]) in this rule can be eliminated by mov-
ing it into the condition part (see Section 2.1):

last l | xs++[e] =:= l = e where xs,e free (lastc)

However, the strict equality used in (lastc) has the disadvantage that all list
elements are completely evaluated. Hence, an expression like last [failed,3]

(where failed is an expression that has no value) leads to a failure. This dis-
advantage can be avoided by allowing functional patterns, i.e., expressions con-
taining defined functions, in arguments of a rule’s left-hand side so that (last)
becomes a valid rule. In order to base this extension on the existing foundations
of functional logic programming as described so far, a functional pattern is in-
terpreted as an abbreviation of the set of constructor terms that is the result of

10 A SuDoku puzzle consists of a 9 × 9 matrix of digits between 1 and 9 so that each
row, each column, and each of the nine 3× 3 sub-matrices contain pairwise different
digits. The challenge is to find the missing digits if some digits are given.

34

evaluating (by narrowing) the functional pattern. Thus, rule (last) abbreviates
the following (infinite) set of rules:

last [x] = x

last [x1,x] = x

last [x1,x2,x] = x

...

Hence, the expression last [failed,3] reduces to 3 w.r.t. these rules. In order
to provide a constructive implementation of this concept, [23] proposes a specific
demand-driven unification procedure for functional pattern unification that can
be implemented similarly to strict equality. Functional patterns are a powerful
concept to express transformation problems in a high-level way. Concrete pro-
gramming examples and syntactic conditions for the well-definedness of rules
with functional patterns can be found in [23]. [80] exploits functional patterns
for a declarative approach to process XML documents.

5.3 Distributed Programming

Distributed systems are of great importance but programming them is a non-
trivial task. Since Curry has already features for concurrent programming via
residuation, it provides a good basis that can be extended for distributed pro-
gramming. For this purpose, [70] proposes port constraints. Conceptually, a port
is a constraint between a multiset (of messages) and a list that is satisfied if all
elements in the multiset occur in the list and vice versa. Clients use a primitive
constraint sendmp that extends a port p by an element (message) m. A server is
just a recursive operation that processes the list of messages of a port and waits
until the tail of the list is instantiated with the next message, i.e., it is rigid w.r.t.
the message list. By sending messages containing logic variables, the server can
instantiate them so that answers can be easily returned without explicit return
channels. By making ports accessible through symbolic names similar to URLs,
clients can send messages to servers running on an arbitrary host. As shown in
[70], the use of ports provides a high-level concept to implement distributed sys-
tems and to integrate existing declarative programs fairly easy into distributed
environments.

The port concept can be also used to implement distributed objects in Curry.
It is well known from concurrent logic programming [124] that objects can be
easily implemented as predicates processing a stream of incoming messages. The
object’s internal state is a parameter that may change in each recursive call that
processes a message. By creating such object predicates with their own ports,
one immediately obtains distributed objects that can reside on various hosts.
To avoid the explicit modeling of objects by the programmer, [85] proposes
ObjectCurry, a syntactic extension of Curry which allows the direct definition of
templates that play the role of classes in conventional object-oriented languages.
A template defines a local state and messages that modify the state and send
messages to other objects. Templates can be directly transformed into standard

35

Fig. 5. A simple counter GUI

Curry code by a preprocessor. To provide inheritance between templates, the
preprocessor implements an extended type system that includes subtyping.

6 Applications

Although most of the published work on functional logic programming is re-
lated to foundational aspects, functional logic languages, in particular Curry,
have been used in various applications in order to demonstrate the feasibility
and advantages of functional logic programming. A summary of design patterns
exploiting combined functional and logic features for application programming
can be found in [21]. These patterns are unique to functional logic programming
and cannot be directly applied in other paradigms. For instance, the constraint
constructor pattern exploits the fact that functional logic languages can deal
with failure so that conditions about the validity of data represented by general
structures can be encoded directly in the data structures rather than in applica-
tions programs. This frees the application programs from dealing with complex
conditions on the constructed data. Another pattern, called locally defined global
identifier, has been used to provide high-level interfaces to libraries dealing with
complex data, like programming of dynamic web pages or graphical user inter-
faces (GUIs) (see below). This pattern exploits the fact that functional logic
data structures can contain logic variables which are globally unique when they
are introduced. This is helpful to create local structures with globally unique
identifiers and leads to improved abstractions in application programs. Further
design patterns and programming techniques are discussed in [21,22].

The combination of functional and logic language features are exploited in
[71] for the high-level programming of GUIs. The hierarchical structure of a GUI
(e.g., rows, columns, or matrices of primitive and combined widgets) is repre-
sented as a data term. This term contains call-back functions as event handlers,
i.e., the use of functions as first-class objects is natural in this application. Since
event handlers defined for one widget should usually influence the appearance
and contents of other widgets (e.g., if a slider is moved, values shown in other
widgets should change), GUIs have also a logical structure that is different from
its hierarchical structure. To specify this logical structure, logic variables in data
structures are handy, since a logic variable can specify relationships between dif-
ferent parts of a data term. As a concrete example, consider the simple counter
GUI shown in Figure 5. Using a Curry library designed with these ideas, one
can specify this GUI by the following data term:

36

Col [Entry [WRef val, Text "0", Background "yellow"],

Row [Button (updateValue incrText val) [Text "Increment"],

Button (setValue val "0") [Text "Reset"],

Button exitGUI [Text "Stop"]]]

where val free

The hierarchical structure of the GUI (a column with two rows) is directly re-
flected in the tree structure of this term. The first argument of each Button is the
corresponding event handler. For instance, the invocation of exitGUI terminates
the GUI, and the invocation of setValue assigns a new value to the referenced
widget. For this purpose, the logic variable val is used. Since the attribute WRef

of the entry widget defines its origin and it is used in various event handlers,
it appropriately describes the logical structure of the GUI, i.e., the dependen-
cies between different widgets. Note that other (more low level) GUI libraries
or languages (e.g., Tcl/Tk) use strings or numbers as widget references which is
potentially more error prone.

Similar ideas are applied in [72] to provide a high-level programming interface
for web applications (dynamic web pages). There, HTML terms are represented
as data structures containing event handlers associated to submit buttons and
logic variables referring to user inputs in web pages that are passed to event han-
dlers. These high-level APIs have been used in various applications, e.g., to im-
plement web-based learning systems [84], constructing web-based interfaces for
arbitrary applications [77,78], graphical programming environments [76], docu-
mentation tools [74], and web frameworks [86] for Curry. Furthermore, Curry has
also been used for embedded systems programming [82,83] with specific libraries
and application-specific compilers.

7 Conclusions and Related Languages

In this paper we surveyed foundations of functional logic programming and their
practical realization in the declarative multi-paradigm language Curry. Curry is
currently the only functional logic language which is based on such strong foun-
dations (e.g., soundness and completeness and optimal evaluation on inductively
sequential programs) and that has been also used to develop larger applications.
Nevertheless, there exist languages with similar goals. We briefly discuss some
of them and relate them to Curry.

The language TOY [101] has strong connections to Curry since it is based
on similar foundations (rewriting logic CRWL, demand-driven narrowing). In
contrast to Curry, it is purely narrowing-based and does not cover residuation
or concurrency. As a consequence, there is no distinction between constraints
and Boolean expressions, but disequality constraints are used to implement the
negation of equations in conditional expressions. Similarly to some implementa-
tions of Curry, TOY supports constraints over finite domains or real numbers.
In addition to Curry, TOY allows higher-order patterns in the left-hand sides of
program rules. Since residuation is not included in TOY, the connection with ex-

37

ternal operations is rather ad hoc. Furthermore, TOY does not provide a concept
to encapsulate search.

Escher [99] is a residuation-based functional logic language. Nondeterminism
is expressed by explicit disjunctions. The operational semantics is given by a set
of reduction rules to evaluate operations in a demand-driven manner and simplify
logical expressions. Due to its different computation model, the conditions under
which completely evaluated answers can be computed are not clear.

The language Oz [126] is based on a computation model that extends the
concurrent constraint programming paradigm [121] with features for distributed
programming and stateful computations. Similarly to Escher, nondeterministic
computations must be explicitly represented as disjunctions so that operations
used to solve equations require different definitions than operations to rewrite
expressions. In contrast to Escher and Curry, the base semantics is strict so that
optimal evaluations are not directly supported.

The functional logic language Mercury [127] restricts logic programming
features in order to provide a highly efficient implementation. In particular, pred-
icates and functions must have distinct modes so that their arguments are either
ground or unbound at call time. This inhibits the application of typical logic pro-
gramming techniques, like computation with partially instantiated structures, so
that some programming techniques for functional logic programming [21,71,72]
cannot be applied in Mercury. This condition has been relaxed in the language
HAL [59]. However, both languages are based on a strict operational semantics
that does not support optimal evaluations.

Although many encouraging results have been obtained in recent years, the
development of functional logic languages is ongoing and there are many topics
for future work:

Semantics and language concepts: The notion of strict equality, although
similar to functional languages, is for some applications too restrictive so
that a more flexible handling is often desirable. Are more powerful higher-
order features useful, and how can they be treated (from a semantical and
implementation point of view)? Are there other concepts for concurrency
and distribution together with a formal model? How can existing constraint
solvers be integrated in a generic way, and which kinds of constraint domains
and solvers are useful? More powerful type systems (e.g., type classes, sub-
types, dependent types) and concepts for object-orientation beyond existing
ones can be considered. Is the incorporation of modes useful? Are there ap-
propriate concepts for meta-programming beyond existing approaches (e.g.,
libraries of the PAKCS distribution [81])?

Implementation: More efficient implementations, in particular, of advanced
concepts such as encapsulated search, concurrency, fair scheduling, paral-
lelism. Compilation into various target languages or target architectures,
e.g., multi-core or embedded processors. Implementation of useful concepts
from related languages, like Haskell’s type classes, genericity, memoization.
Program optimization, e.g., by powerful transformations or for restricted
classes of programs. Domain-specific compilation for particular application

38

domains (e.g., constraints, web programming, embedded or pervasive sys-
tems). Better environments for program development. More domain-specific
libraries and APIs, standardization of libraries (e.g., for Curry) to improve
compatibility of different implementations, standard interfaces to external
operations.

Analysis and transformation: Only a few approaches exist for the analy-
sis of functional logic programs (e.g., [7,8,37,67,79,90,91,132]) so that this
area deserves more studies, like termination analyses, abstract interpreta-
tion frameworks, analysis of particular properties (e.g., determinism, suspen-
sion, modes). Similarly, more powerful and practically applicable methods
for transforming programs are required, like optimizing source and interme-
diate programs, more advanced program specialization, refactoring, and also
general transformation frameworks.

Debugging: Some works done in this area have been already mentioned, but
more work is required to provide practically useful support tools, like trac-
ers, declarative debuggers, program slicers, or profilers for functional logic
programs, integrated debugging environments, techniques and strategies for
program correction and program verification.

Results and advances in these areas are also useful to support the development
of more applications implemented with functional logic languages.

Acknowledgments

I am grateful to Harald Ganzinger who put me on this research track and created
a productive research environment in his group that lead to my most important
contributions in this area. Furthermore, I would like to thank Sergio Antoy,
Bernd Braßel, Germán Vidal, and the anonymous reviewers for their constructive
remarks on a previous version of this paper.

References

1. H. Aı̈t-Kaci. An Overview of LIFE. In J.W. Schmidt and A.A. Stogny, editors,
Proc. Workshop on Next Generation Information System Technology, pp. 42–58.
Springer LNCS 504, 1990.

2. H. Aı̈t-Kaci, P. Lincoln, and R. Nasr. Le Fun: Logic, equations, and Functions.
In Proc. 4th IEEE Internat. Symposium on Logic Programming, pp. 17–23, San
Francisco, 1987.

3. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics
for Declarative Multi-Paradigm Languages. Journal of Symbolic Computation,
Vol. 40, No. 1, pp. 795–829, 2005.

4. E. Albert, M. Hanus, and G. Vidal. Using an Abstract Representation to Spe-
cialize Functional Logic Programs. In Proc. of the 7th International Conference
on Logic for Programming and Automated Reasoning (LPAR 2000), pp. 381–398.
Springer LNCS 1955, 2000.

5. E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluator for a Multi-
Paradigm Declarative Language. Journal of Functional and Logic Programming,
Vol. 2002, No. 1, 2002.

39

6. M. Alpuente, F.J. Correa, and M. Falaschi. A Debugging Scheme for Functional
Logic Programs. Electronic Notes in Theoretical Computer Science, Vol. 64, 2002.

7. M. Alpuente, M. Falaschi, and F. Manzo. Analyses of Unsatisfiability for Equa-
tional Logic Programming. Journal of Logic Programming, Vol. 22, No. 3, pp.
223–254, 1995.

8. M. Alpuente, M. Falaschi, and G. Vidal. A Compositional Semantic Basis for the
Analysis of Equational Horn Programs. Theoretical Computer Science, Vol. 165,
No. 1, pp. 133–169, 1996.

9. M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic
Programs. ACM Transactions on Programming Languages and Systems, Vol. 20,
No. 4, pp. 768–844, 1998.

10. M. Alpuente, M. Hanus, S. Lucas, and G. Vidal. Specialization of Functional
Logic Programs Based on Needed Narrowing. Theory and Practice of Logic Pro-
gramming, Vol. 5, No. 3, pp. 273–303, 2005.

11. S. Antoy. Non-Determinism and Lazy Evaluation in Logic Programming. In Proc.
Int. Workshop on Logic Program Synthesis and Transformation (LOPSTR’91),
pp. 318–331. Springer Workshops in Computing, 1991.

12. S. Antoy. Definitional Trees. In Proc. of the 3rd International Conference on
Algebraic and Logic Programming, pp. 143–157. Springer LNCS 632, 1992.

13. S. Antoy. Optimal Non-Deterministic Functional Logic Computations. In Proc.
International Conference on Algebraic and Logic Programming (ALP’97), pp. 16–
30. Springer LNCS 1298, 1997.

14. S. Antoy. Constructor-based Conditional Narrowing. In Proc. of the 3rd Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP 2001), pp. 199–206. ACM Press, 2001.

15. S. Antoy. Evaluation Strategies for Functional Logic Programming. Journal of
Symbolic Computation, Vol. 40, No. 1, pp. 875–903, 2005.

16. S. Antoy and Z.M. Ariola. Narrowing the Narrowing Space. In Proc. Ninth
International Symposium on Programming Languages, Implementations, Logics,
and Programs (PLILP’97), pp. 1–15. Springer LNCS 1292, 1997.

17. S. Antoy, B. Braßel, and M. Hanus. Conditional Narrowing without Conditions.
In Proceedings of the 8th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP’03), pp. 20–31. ACM Press,
2003.

18. S. Antoy, R. Echahed, and M. Hanus. Parallel Evaluation Strategies for Functional
Logic Languages. In Proc. of the Fourteenth International Conference on Logic
Programming (ICLP’97), pp. 138–152. MIT Press, 1997.

19. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

20. S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs into
Prolog. In Proc. International Workshop on Frontiers of Combining Systems
(FroCoS’2000), pp. 171–185. Springer LNCS 1794, 2000.

21. S. Antoy and M. Hanus. Functional Logic Design Patterns. In Proc. of the 6th
International Symposium on Functional and Logic Programming (FLOPS 2002),
pp. 67–87. Springer LNCS 2441, 2002.

22. S. Antoy and M. Hanus. Concurrent Distinct Choices. Journal of Functional
Programming, Vol. 14, No. 6, pp. 657–668, 2004.

23. S. Antoy and M. Hanus. Declarative Programming with Function Patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis
and Transformation (LOPSTR’05), pp. 6–22. Springer LNCS 3901, 2005.

40

24. S. Antoy and M. Hanus. Overlapping Rules and Logic Variables in Functional
Logic Programs. In Proceedings of the 22nd International Conference on Logic
Programming (ICLP 2006), pp. 87–101. Springer LNCS 4079, 2006.

25. S. Antoy and M. Hanus. Set Functions for Functional Logic Programming. In
Proceedings of the 11th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP’09), pp. 73–82. ACM Press,
2009.

26. S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A Virtual Machine for Functional
Logic Computations. In Proc. of the 16th International Workshop on Implementa-
tion and Application of Functional Languages (IFL 2004), pp. 108–125. Springer
LNCS 3474, 2005.

27. S. Antoy, M. Hanus, B. Massey, and F. Steiner. An Implementation of Narrowing
Strategies. In Proc. of the 3rd International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming (PPDP 2001), pp. 207–217.
ACM Press, 2001.

28. S. Antoy and S. Johnson. TeaBag: A Functional Logic Language Debugger. In
Proc. 13th International Workshop on Functional and (Constraint) Logic Pro-
gramming (WFLP 2004), pp. 4–18, Aachen (Germany), 2004. Technical Report
AIB-2004-05, RWTH Aachen.

29. S. Antoy and A. Tolmach. Typed Higher-Order Narrowing without Higher-Order
Strategies. In Proc. 4th Fuji International Symposium on Functional and Logic
Programming (FLOPS’99), pp. 335–352. Springer LNCS 1722, 1999.

30. P. Arenas-Sánchez and M. Rodŕıguez-Artalejo. A Semantic Framework for Func-
tional Logic Programming with Algebraic Polymorphic Types. In Proc. CAAP’97,
pp. 453–464. Springer LNCS 1214, 1997.

31. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

32. R. Berghammer and S. Fischer. Implementing Relational Specifications in a Con-
straint Functional Logic Language. Electronic Notes in Theoretical Computer
Science, Vol. 177, pp. 169–183, 2007.

33. J.A. Bergstra and J.W. Klop. Conditional Rewrite Rules: Confluence and Termi-
nation. Journal of Computer and System Sciences, Vol. 32, No. 3, pp. 323–362,
1986.

34. R.S. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall,
1988.

35. S. Bonnier and J. Maluszynski. Towards a Clean Amalgamation of Logic Pro-
grams with External Procedures. In Proc. 5th Conference on Logic Programming
& 5th Symposium on Logic Programming (Seattle), pp. 311–326. MIT Press, 1988.

36. B. Braßel, O. Chitil, M. Hanus, and F. Huch. Observing Functional Logic Com-
putations. In Proc. of the Sixth International Symposium on Practical Aspects of
Declarative Languages (PADL’04), pp. 193–208. Springer LNCS 3057, 2004.

37. B. Braßel and M. Hanus. Nondeterminism Analysis of Functional Logic Pro-
grams. In Proceedings of the International Conference on Logic Programming
(ICLP 2005), pp. 265–279. Springer LNCS 3668, 2005.

38. B. Braßel, M. Hanus, and F. Huch. Encapsulating Non-Determinism in Functional
Logic Computations. Journal of Functional and Logic Programming, Vol. 2004,
No. 6, 2004.

39. B. Braßel, M. Hanus, F. Huch, J. Silva, and G. Vidal. Run-Time Profiling of
Functional Logic Programs. In Proceedings of the International Symposium on
Logic-based Program Synthesis and Transformation (LOPSTR’04), pp. 182–197.
Springer LNCS 3573, 2005.

41

40. B. Braßel, M. Hanus, F. Huch, and G. Vidal. A Semantics for Tracing Declar-
ative Multi-Paradigm Programs. In Proceedings of the 6th ACM SIGPLAN In-
ternational Conference on Principles and Practice of Declarative Programming
(PPDP’04), pp. 179–190. ACM Press, 2004.

41. B. Braßel and F. Huch. On a Tighter Integration of Functional and Logic Pro-
gramming. In Proc. APLAS 2007, pp. 122–138. Springer LNCS 4807, 2007.

42. B. Braßel and F. Huch. The Kiel Curry System KiCS. In Applications of Declar-
ative Programming and Knowledge Management, pp. 195–205. Springer LNAI
5437, 2009.

43. R. Caballero and M. Rodŕıguez-Artalejo. DDT: a Declarative Debugging Tool for
Functional-Logic Languages. In Proceedings of the 7th International Symposium
on Functional and Logic Programming (FLOPS 2004), pp. 70–84. Springer LNCS
2998, 2004.

44. P.H. Cheong and L. Fribourg. Implementation of Narrowing: The Prolog-Based
Approach. In K.R. Apt, J.W. de Bakker, and J.J.M.M. Rutten, editors, Logic
programming languages: constraints, functions, and objects, pp. 1–20. MIT Press,
1993.

45. J.M. Cleva, J. Leach, and F.J. López-Fraguas. A logic programming approach
to the verification of functional-logic programs. In Proceedings of the 6th Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pp. 9–19. ACM Press, 2004.

46. L. Damas and R. Milner. Principal type-schemes for functional programs. In Proc.
9th Annual Symposium on Principles of Programming Languages, pp. 207–212,
1982.

47. R. del Vado Virseda. A Demand-Driven Narrowing Calculus with Overlapping
Definitional Trees. In Proceedings of the 8th ACM SIGPLAN International Con-
ference on Principles and Practice of Declarative Programming (PPDP’03), pp.
253–263. ACM Press, 2003.

48. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pp. 243–320. Elsevier, 1990.

49. R. Echahed and J.-C. Janodet. Admissible Graph Rewriting and Narrowing.
In Proc. Joint International Conference and Symposium on Logic Programming
(JICSLP’98), pp. 325–340, 1998.

50. S. Escobar. Refining Weakly Outermost-Needed Rewriting and Narrowing. In
Proceedings of the 8th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP’03), pp. 113–123. ACM Press,
2003.

51. S. Escobar. Implementing Natural Rewriting and Narrowing Efficiently. In Pro-
ceedings of the 7th International Symposium on Functional and Logic Program-
ming (FLOPS 2004), pp. 147–162. Springer LNCS 2998, 2004.

52. S. Escobar, J. Meseguer, and P. Thati. Narrowing adn Rewriting Logic: from
Foundations to Applications. Electronic Notes in Theoretical Computer Science,
Vol. 177, pp. 5–33, 2007.

53. S. España and V. Estruch. A Memoizing Semantics for Functional Logic Lan-
guages. In Proc. ESOP 2004, pp. 109–123. Springer LNCS 2986, 2004.

54. A.J. Fernández, M.T. Hortalá-González, and F. Sáenz-Pérez. Solving Combina-
torial Problems with a Constraint Functional Logic Language. In Proc. of the 5th
International Symposium on Practical Aspects of Declarative Languages (PADL
2003), pp. 320–338. Springer LNCS 2562, 2003.

42

55. A.J. Fernández, M.T. Hortalá-González, F. Sáenz-Pérez, and R. del Vado-Vı́rseda.
Constraint Functional Logic Programming over Finite Domains. Theory and Prac-
tice of Logic Programming, Vol. 7, No. 5, pp. 537–582, 2007.

56. C. Ferri, J. Hernández, and M.J. Ramı́rez. Incremental Learning of Functional
Logic Programs. In Proc. of the 5th International Symposium on Functional and
Logic Programming (FLOPS 2001), pp. 233–247. Springer LNCS 2024, 2001.

57. S. Fischer. A Functional Logic Database Library. In Proc. of the ACM SIGPLAN
2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp.
54–59. ACM Press, 2005.

58. L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on Clausal
Superposition and Rewriting. In Proc. IEEE Internat. Symposium on Logic Pro-
gramming, pp. 172–184, Boston, 1985.

59. M.J. Garćıa de la Banda, B. Demoen, K. Marriott, and P.J. Stuckey. To the
Gates of HAL: A HAL Tutorial. In Proc. of the 6th International Symposium
on Functional and Logic Programming (FLOPS 2002), pp. 47–66. Springer LNCS
2441, 2002.

60. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic
plus Functional Language. Journal of Computer and System Sciences, Vol. 42,
No. 2, pp. 139–185, 1991.

61. J.C. Gonzáles-Moreno, M.T. Hortalá-González, and M. Rodŕıguez-Artalejo. Poly-
morphic Types in Functional Logic Programming. Journal of Functional and
Logic Programming, Vol. 2001, No. 1, 2001.

62. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming, Vol. 40, pp. 47–87, 1999.

63. J.C. González-Moreno, M.T. Hortalá-González, and M. Rodŕıguez-Artalejo. A
Higher Order Rewriting Logic for Functional Logic Programming. In Proc. of
the Fourteenth International Conference on Logic Programming (ICLP’97), pp.
153–167. MIT Press, 1997.

64. A. Habel and D. Plump. Term Graph Narrowing. Mathematical Structures in
Computer Science, Vol. 6, No. 6, pp. 649–676, 1996.

65. M. Hanus. Compiling Logic Programs with Equality. In Proc. of the 2nd Int.
Workshop on Programming Language Implementation and Logic Programming,
pp. 387–401. Springer LNCS 456, 1990.

66. M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

67. M. Hanus. Analysis of Residuating Logic Programs. Journal of Logic Program-
ming, Vol. 24, No. 3, pp. 161–199, 1995.

68. M. Hanus. Efficient Translation of Lazy Functional Logic Programs into Prolog.
In Proc. Fifth International Workshop on Logic Program Synthesis and Transfor-
mation, pp. 252–266. Springer LNCS 1048, 1995.

69. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93, 1997.

70. M. Hanus. Distributed Programming in a Multi-Paradigm Declarative Language.
In Proc. of the International Conference on Principles and Practice of Declarative
Programming (PPDP’99), pp. 376–395. Springer LNCS 1702, 1999.

71. M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In International Workshop on Practical Aspects of Declarative Languages
(PADL’00), pp. 47–62. Springer LNCS 1753, 2000.

43

72. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the
Third International Symposium on Practical Aspects of Declarative Languages
(PADL’01), pp. 76–92. Springer LNCS 1990, 2001.

73. M. Hanus. Reduction Strategies for Declarative Programming. In B. Gramlich and
S. Lucas, editors, Electronic Notes in Theoretical Computer Science, volume 57.
Elsevier Science Publishers, 2001.

74. M. Hanus. CurryDoc: A Documentation Tool for Declarative Programs. In Proc.
11th International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2002), pp. 225–228. Research Report UDMI/18/2002/RR, University of
Udine, 2002.

75. M. Hanus. Dynamic Predicates in Functional Logic Programs. Journal of Func-
tional and Logic Programming, Vol. 2004, No. 5, 2004.

76. M. Hanus. A Generic Analysis Environment for Declarative Programs. In Proc. of
the ACM SIGPLAN 2005 Workshop on Curry and Functional Logic Programming
(WCFLP 2005), pp. 43–48. ACM Press, 2005.

77. M. Hanus. Type-Oriented Construction of Web User Interfaces. In Proceedings
of the 8th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming (PPDP’06), pp. 27–38. ACM Press, 2006.

78. M. Hanus. Putting Declarative Programming into the Web: Translating Curry to
JavaScript. In Proceedings of the 9th ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming (PPDP’07), pp. 155–166.
ACM Press, 2007.

79. M. Hanus. Call Pattern Analysis for Functional Logic Programs. In Proceedings
of the 10th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming (PPDP’08), pp. 67–78. ACM Press, 2008.

80. M. Hanus. Declarative Processing of Semistructured Web Data. Technical Report
1103, Christian-Albrechts-Universität Kiel, 2011.

81. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/~pakcs/, 2010.

82. M. Hanus and K. Höppner. Programming Autonomous Robots in Curry. Elec-
tronic Notes in Theoretical Computer Science, Vol. 76, 2002.

83. M. Hanus, K. Höppner, and F. Huch. Towards Translating Embedded Curry to
C. Electronic Notes in Theoretical Computer Science, Vol. 86, No. 3, 2003.

84. M. Hanus and F. Huch. An Open System to Support Web-based Learning. In
Proc. 12th International Workshop on Functional and (Constraint) Logic Pro-
gramming (WFLP 2003), pp. 269–282. Technical Report DSIC-II/13/03, Univer-
sidad Politécnica de Valencia, 2003.

85. M. Hanus, F. Huch, and P. Niederau. An Object-Oriented Extension of the
Declarative Multi-Paradigm Language Curry. In Proc. of the 12th International
Workshop on Implementation of Functional Languages (IFL 2000), pp. 89–106.
Springer LNCS 2011, 2001.

86. M. Hanus and S. Koschnicke. An ER-based Framework for Declarative Web
Programming. In Proc. of the 12th International Symposium on Practical Aspects
of Declarative Languages (PADL 2010), pp. 201–216. Springer LNCS 5937, 2010.

87. M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees.
Journal of Functional Programming, Vol. 9, No. 1, pp. 33–75, 1999.

88. M. Hanus and R. Sadre. An Abstract Machine for Curry and its Concurrent
Implementation in Java. Journal of Functional and Logic Programming, Vol. 1999,
No. 6, 1999.

44

http://www.informatik.uni-kiel.de/~pakcs/

89. M. Hanus and F. Steiner. Controlling Search in Declarative Programs. In
Principles of Declarative Programming (Proc. Joint International Symposium
PLILP/ALP’98), pp. 374–390. Springer LNCS 1490, 1998.

90. M. Hanus and F. Steiner. Type-based Nondeterminism Checking in Functional
Logic Programs. In Proc. of the 2nd International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming (PPDP 2000), pp. 202–213.
ACM Press, 2000.

91. M. Hanus and F. Zartmann. Mode Analysis of Functional Logic Programs. In
Proc. 1st International Static Analysis Symposium, pp. 26–42. Springer LNCS
864, 1994.

92. M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available at
http://www.curry-language.org, 2011.

93. S. Hölldobler. Foundations of Equational Logic Programming. Springer LNCS
353, 1989.

94. H. Hussmann. Nondeterministic Algebraic Specifications and Nonconfluent Term
Rewriting. Journal of Logic Programming, Vol. 12, pp. 237–255, 1992.

95. T. Ida and K. Nakahara. Leftmost outside-in narrowing calculi. Journal of Func-
tional Programming, Vol. 7, No. 2, pp. 129–161, 1997.

96. J.A. Jiménez-Martin, J. Marino-Carballo, and J.J. Moreno-Navarro. Efficient
Compilation of Lazy Narrowing into Prolog. In Proc. Int. Workshop on Logic Pro-
gram Synthesis and Transformation (LOPSTR’92), pp. 253–270. Springer Work-
shops in Computing Series, 1992.

97. P. Julián Iranzo and C. Villamizar Lamus. Analysing Definitional Trees: Looking
for Determinism. In Proceedings of the 7th International Symposium on Func-
tional and Logic Programming (FLOPS 2004), pp. 55–69. Springer LNCS 2998,
2004.

98. J. Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. 20th ACM
Symposium on Principles of Programming Languages (POPL’93), pp. 144–154.
ACM Press, 1993.

99. J. Lloyd. Programming in an Integrated Functional and Logic Language. Journal
of Functional and Logic Programming, No. 3, pp. 1–49, 1999.

100. R. Loogen, F. López Fraguas, and M. Rodŕıguez Artalejo. A Demand Driven
Computation Strategy for Lazy Narrowing. In Proc. of the 5th International
Symposium on Programming Language Implementation and Logic Programming,
pp. 184–200. Springer LNCS 714, 1993.

101. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

102. F.J. López-Fraguas, M. Rodŕıguez-Artalejo, and R. del Vado Virseda. A lazy
narrowing calculus for declarative constraint programming. In Proceedings of
the 6th International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, pp. 43–54. ACM Press, 2004.

103. F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández. A Simple
Rewrite Notion for Call-time Choice Semantics. In Proceedings of the 9th ACM
SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’07), pp. 197–208. ACM Press, 2007.

104. F.J. López-Fraguas and J. Sánchez-Hernández. A Proof Theoretic Approach to
Failure in Functional Logic Programming. Theory and Practice of Logic Program-
ming, Vol. 4, No. 1, pp. 41–74, 2004.

105. W. Lux. Implementing Encapsulated Search for a Lazy Functional Logic Lan-
guage. In Proc. 4th Fuji International Symposium on Functional and Logic Pro-
gramming (FLOPS’99), pp. 100–113. Springer LNCS 1722, 1999.

45

http://www.curry-language.org

106. W. Lux. Adding Linear Constraints over Real Numbers to Curry. In Proc. of
the 5th International Symposium on Functional and Logic Programming (FLOPS
2001), pp. 185–200. Springer LNCS 2024, 2001.

107. A. Middeldorp, S. Okui, and T. Ida. Lazy Narrowing: Strong Completeness and
Eager Variable Elimination. Theoretical Computer Science, Vol. 167, No. 1,2, pp.
95–130, 1996.

108. J.J. Moreno-Navarro. Default Rules: An Extension of Constructive Negation for
Narrowing-based Languages. In Proc. Eleventh International Conference on Logic
Programming, pp. 535–549. MIT Press, 1994.

109. J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with Func-
tions and Predicates: The Language BABEL. Journal of Logic Programming,
Vol. 12, pp. 191–223, 1992.

110. L. Naish. Adding equations to NU-Prolog. In Proc. of the 3rd Int. Symposium
on Programming Language Implementation and Logic Programming, pp. 15–26.
Springer LNCS 528, 1991.

111. K. Nakahara, A. Middeldorp, and T. Ida. A Complete Narrowing Calculus for
Higher-Order Functional Logic Programming. In Proc. of the 7th International
Symposium on Programming Languages, Implementations, Logics and Programs
(PLILP’95), pp. 97–114. Springer LNCS 982, 1995.

112. H. Nilsson and P. Fritzson. Algorithmic debugging for lazy functional languages.
Journal of Functional Programming, Vol. 4, No. 3, pp. 337–370, 1994.

113. C. Ochoa, J. Silva, and G. Vidal. Dynamic Slicing Based on Redex Trails. In
Proc. of the ACM SIGPLAN 2004 Symposium on Partial Evaluation and Program
Manipulation (PEPM’04), pp. 123–134. ACM Press, 2004.

114. M.J. O’Donnell. Computing in Systems Described by Equations. Springer LNCS
58, 1977.

115. M.J. O’Donnell. Equational Logic as a Programming Language. MIT Press, 1985.

116. P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Mono-
graphs on Theoretical Computer Science. Springer, 1988.

117. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

118. J.C. Reynolds. Definitional Interpreters for Higher-Order Programming Lan-
guages. In Proceedings of the ACM Annual Conference, pp. 717–740. ACM Press,
1972.

119. M. Rodŕıguez-Artalejo. Functional and Constraint Logic Programming. In Con-
straints in Computational Logics: Theory and Applications (CCL’99), pp. 202–
270. Springer LNCS 2002, 2001.

120. J. Sánchez-Hernández. Constructive Failure in Functional-Logic Programming:
From Theory to Implementation. Journal of Universal Computer Science, Vol. 12,
No. 11, pp. 1574–1593, 2006.

121. V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

122. R.C. Sekar and I.V. Ramakrishnan. Programming in Equational Logic: Beyond
Strong Sequentiality. Information and Computation, Vol. 104, No. 1, pp. 78–109,
1993.

123. E. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, Mas-
sachusetts, 1983.

124. E. Shapiro and A. Takeuchi. Object Oriented Programming in Concurrent Prolog.
In E. Shapiro, editor, Concurrent Prolog: Collected Papers, volume 2, pp. 251–273.
MIT Press, 1987.

46

125. J.R. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Com-
mutativity, and Associativity. Journal of the ACM, Vol. 21, No. 4, pp. 622–642,
1974.

126. G. Smolka. The Oz Programming Model. In J. van Leeuwen, editor, Computer
Science Today: Recent Trends and Developments, pp. 324–343. Springer LNCS
1000, 1995.

127. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, Vol. 29, No. 1-3, pp. 17–64, 1996.

128. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-
gramming. MIT Press, 2004.

129. P. Wadler. Efficient Compilation of Pattern-Matching. In S.L. Peyton Jones,
editor, The Implementation of Functional Programming Languages, pp. 78–103.
Prentice Hall, 1987.

130. P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29,
No. 3, pp. 240–263, 1997.

131. D.H.D. Warren. Higher-order extensions to Prolog: are they needed? In Machine
Intelligence 10, pp. 441–454, 1982.

132. F. Zartmann. Denotational Abstract Interpretation of Functional Logic Programs.
In Proc. of the 4th International Symposium on Static Analysis (SAS’97), pp.
141–156. Springer LNCS 1302, 1997.

47

	Functional Logic Programming: From Theory to Curry

