(©Springer-Verlag
In Proc. of the 4th Fuji International Symposium on Functional and Logic
Programming (FLOPS’99), Tsukuba (Japan).
Springer LNCS 1722, pp. 353—-368, 1999

A Semantics for Program Analysis in
Narrowing-Based Functional Logic Languages

Michael Hanus'* Salvador Lucas?**

! Informatik II, RWTH Aachen, D-52056 Aachen, Germany
hanus@informatik.rwth-aachen.de
2 DSIC, UPV, Camino de Vera s/n, E-46022 Valencia, Spain.

slucas@dsic.upv.es

Abstract. We introduce a denotational characterization of narrowing,
the computational engine of many functional logic languages. We use a
functional domain for giving a denotation to the narrowing space associ-
ated to a given initial expression under an arbitrary narrowing strategy.
Such a semantic description highlights (and favours) the operational no-
tion of evaluation instead of the more usual model-theoretic notion of
interpretation as the basis for the semantic description. The motivation
is to obtain an abstract semantics which encodes information about the
real operational framework used by a given (narrowing-based) functional
logic language. Our aim is to provide a general, suitable, and accurate
framework for the analysis of functional logic programs.

Keywords: domain theory, functional logic languages, narrowing, pro-
gram analysis, semantics.

1 Introduction

The ability of reasoning about program properties is essential in software design,
implementations, and program manipulation. Program analysis is the task of
producing (usually approximated) information about a program without actu-
ally executing it. The analysis of functional logic programs is one of the most
challenging problems in declarative programming. Many works have already ad-
dressed the analysis of certain run-time properties of programs (e.g., [3,11,13,
15,23]). Nevertheless, most of these approaches have been done in a rather ad
hoc setting, gearing the analysis towards the application on hand. Up to now,
there is no general approach for formulating and analyzing arbitrary properties
of functional logic programs in an arbitrary operational framework. In this paper
we address this problem.

The key of our approach is domain theory [19, 20] since it provides a junction
between semantics (spaces of points = denotations of computational processes)

* Partially supported by the German Research Council (DFG) grant Ha 2457/1-1.
** Partially supported by EEC-HCM grant ERBCHRXCT940624, Spanish CICYT
grant TIC 98-0445-C03-01, and Accién Integrada hispano—alemana HA1997-0073.

and logics (lattices of properties of processes) [2, 20, 22]. The computational pro-
cess we are interested in is evaluation. In a programming language, the notion of
evaluation emphasizes the idea that there exists a distinguished set of syntactic
elements (the values) which have a predefined mathematical interpretation [10].
The other syntactic elements take meaning from the program definitions and the
operational framework for the program’s execution. In this way, the evaluation
process (under a given operational framework) maps general input expressions
(having an a priori unknown meaning) to values. This point of view favours
the operational notion of evaluation instead of the more usual model-theoretic
notion of interpretation as the basis for the semantic description.

Since functional logic languages with a complete operational semantics are
based on narrowing, we center our attention on it. The idea of using narrowing as
an evaluation mechanism for integrated languages comes from Reddy’s [18]: nar-
rowing is the operational principle which computes the non-ground value (ngv)
of an input expression. Given a domain D, a ngv is a mapping from valuations
(on D) to values (in D). In moving valuations from being parameters of semantic
functions (as usual in many approaches, e.g., [9,16]) to be components of a se-
mantic domain, we understand narrowing as an evaluation mechanism which
incorporates the instantiation of variables as a part of such evaluation mech-
anism. Since ngv’s are functional values, we use the domain-theoretic notion of
approzimable mapping [19,20] to give them a computable representation. We
argue that this is a good starting point for expressing and managing observable
properties of functional logic programs (along the lines of [2,22]). Moreover, it
reveals that, within an integrated framework, there exist semantic connections
between purely functional and logic properties of programs. Termination and
groundness are examples of such related properties. On the other hand, thanks
to including operational information into the semantic description, we are able
to derive interesting optimizations for program execution.

Section 2 gives some preliminary definitions. Section 3 introduces a domain
theoretic approach to pure rewriting and narrowing computations. Section 4
discusses a semantic-based analysis framework for functional logic languages.
Section 5 contains our conclusions.

2 Preliminaries

In this section, we give some preliminary definitions (further details in [6,21]).
Given sets A, B, B4 is the set of mappings from A to B and P(A) denotes
the set of all subsets of A. An order C on a set A is a reflexive, transitive and
antisymmetric relation. An element L of an ordered set (A,C) is called a least
element (or a minimum) if L C a for all @ € A. If such an element exists, then
(A,C, 1) is called a pointed ordered set. Given S C A, an element a € A is an
upper bound of S if x C a for all x € S. In this case we also say that S is a
consistent set. An upper bound of S is a least upper bound (or lub, written | | S)
if, for all upper bounds b of S, we have | |[S C b. A set S C A is downward
(upward) closed if whenever a € S and b C a (a C b), we have that b € S. If

S = {z,y}, we write x Uy instead of | | S. A non-empty set S C A is directed if,
for all a,b € S, there is an upper bound ¢ € S of {a,b}. An ideal is a downward
closed, directed set and Id(A) is the set of ideals of an ordered set A. A pointed
ordered set (A, C, 1) is a complete partial order (cpo) if every directed set S C A
has a lub | |S € A. An element a € A of a cpo is called compact (or finite) if,
whenever S C A is a directed set and a C | | S, then there is € S such that
a C z. The set of compact elements of a cpo A is denoted as K(A). A cpo A is
algebraic if for each a € A, the set approx(a) = {x € K(A) | C a} is directed
and a = | |approx(a). An algebraic cpo D is a domain if, whenever the set
{z,y} C K(D) is consistent, then Uy exists in D. Given ordered sets (4,C4),
(B,Cp), afunction f : A — BismonotonicifVa,b€ A,a T4 b= f(a) Cp f(b);
f:A— Aisidempotent if Va € A, f(f(a)) = f(a).

By V we denote a countable set of variables; X denotes a signature, i.e., a
set of function symbols {£f,g, ...}, each with a fixed arity given by a function
ar : ¥ — IN. We assume YNV = @. We denote by 7 (X, V) the set of (finite)
terms built from symbols in the signature X and variables in V. A k-tuple
ti,...,t of terms is denoted as t, where k will be clarified from the context.
Given a term ¢, Var(t) is the set of variable symbols in ¢. Sometimes, we consider
a fresh constant 1 and ¥} = ¥ U {L}. Terms from 7 (X, V) are ordered by
the usual approzimation ordering which is the least ordering C satisfying L C ¢
for all t and f(t) C f(5) if tC 5, i.e., t; C s; for all 1 < ¢ < ar(f).

Terms are viewed as labeled trees in the usual way. Positions p,q,... are
represented by chains of positive natural numbers used to address subterms of
t. By A, we denote the empty chain. The set of positions of a term ¢ is denoted
by Pos(t). A linear term is a term having no multiple occurrences of the same
variable. The subterm of ¢ at position p is denoted by t|,. The set of positions of
non-variable symbols in ¢ is Posx(t), and Posy (1) is the set of variable positions.
We denote by t[s], the term ¢ with the subterm at the position p replaced by s.

A substitution is a mapping o : V — T(X,V) which homomorphically ex-
tends to a mapping o : T(X,V) = T(X,V). We denote by ¢ the “identity”
substitution: e(z) = z for all z € V. The set Dom(o) = {x € V | o(x) # z}
is called the domain of o and Rng(0) = Uycpom(s)Var(o(x)) its range. o)y de-
notes the restriction of a substitution o to a subset of variables U C Dom(o).
We write o < o' if there is § such that o' = 0 o o. A unifier of two terms 1, o
is a substitution o with o(t1) = o(t2). A most general unifier (mgu) of ¢1,t5 is a
unifier 0 with o < ¢’ for all other unifiers o’ of ¢, t5.

A rewrite rule (labeled «) is an ordered pair (I,r), written a : [— r (or
just I — r), with I,r € T(X,V), 1 ¢ V and Var(r) C Var(l). I and r are
called left-hand side (lhs) and right-hand side (rhs) of the rule, respectively. A
term rewriting system (TRS) is a pair R = (X, R) where R is a set of rewrite
rules. A TRS (X, R) is left-linear, if for all | — r € R, | is a linear term.
Given R = (X, R), we consider X' as the disjoint union X' = C & F of symbols
¢ € C, called constructors, and symbols f € F, called defined functions, where
F={f|f() »r€R}and C = ¥ — F. A constructor-based TRS (CB-TRS) is
a TRS with l1,... ,l, € T(C,V) for all rules f(l1,...,l,) — 7.

For a given TRS R = (X, R), a term ¢ rewrites to a term s (at position p),

written [p—’C;]R (orjust t Bg s,t = s,ort = s)ift], = o(l) and s = t[o(r)],, for
some rule a : | — r € R, position p € Pos(t) and substitution o. A term ¢ is in
normal form if there is no term s with ¢ -z s. A TRS R (or the rewrite relation
—r) is called confluent if for all terms ¢,¢1,t> with t =% t; and ¢t =% to, there
exists a term t3 with ¢; —% t3 and t» —% t3. A term ¢ narrows to a term s,
written t ~sp, o 51 5 (or just ¢ ~», s), if there is p € Posx(t) and a variant (i.e., a
renamed version) of a rule a : I — r such that #|, and [unify with (idempotent)
mgu o, and s = o(t[r],). A narrowing derivation ¢ ~»% s is such that either ¢ = s
ando =cort ~sgy t1 ~gy tpo1 ~g,_, Sand o = g,_10---001000. In order
to show the progress of a narrowing derivation w.r.t. the computed answer and
the evaluated goal, we also define the narrowing relation on substitution/term
pairs by (0,t) ~ (0',5) if t ~»p s and 0’ = 0)y4,4) 00 (i.e., we consider only the
substitution of goal variables).

3 The Semantic Approach

A (first-order) program P = (R,t) consists of a TRS R (which establishes the
distinction between constructor and defined symbols of the program), and an
initial expression ¢ to be fully evaluated. We make ¢ explicit since the differences
between the purely functional and functional logic styles arise in the different
status of the variables occurring in the initial expression: in functional program-
ming, those variables are not allowed (or they are considered as constants and
cannot be instantiated). Functional logic languages deal with expressions having
logic variables and narrowing provides for the necessary instantiations.

We characterize the information which is currently couched by a term by
means of a mapping (| |) from terms to (partial) values (remind that values are
expected to be especial syntactic objects). We call (|) an observation mapping.
The adequacy of a given mapping (| for observing computations performed
by a given operational mechanism should be ensured by showing that (| |) is a
homomorphism between the relation among syntactic objects induced by the
operational mechanism and the approximation ordering on values. This means
that the operational mechanism refines the meaning of an expression as the
computation continues.

As a preliminary, simple example, consider pure rewriting computations:
The syntactic objects are terms ¢t € T (X', ,V) and the values are taken from
(T*°(C.1),C, 1), the domain of infinite, ground constructor (partial) terms®.
(T°°(CL,V),C, 1) is the domain (7°°(CL UV),C, 1), where Va € V,ar(z) = 0.
For functional computations, we use (| g : T(X.,V) — T(CL,V) given by

(z)r = & (L)r
(c@®)r = c(lthr) ifcecC (f@DrF

! Formally, (T°°(C.),C, 1) is obtained from 7(C.), which is not even a cpo, as (iso-
morphic to) its ideal completion (Id(7(CL1)),C,{L}) (see [21]).

1
L ifferF

Proposition 1 (Reduction increases information). Let R be a TRS and
t,s € T(XL, V). If t =* s, then (t)r C (s)r.

The function Rew : T(X,,V) — P(T(CL,V)) gives a representation Rew(t) =
{(s)F | t =* s} of the rewriting space of a given term ¢.

Proposition 2. Let R be a confluent TRS. For all t € T(X1,V), Rew(t) is a
directed set.

The semantic function CRew® : T (X ,V) = T>®(C,,V) gives the meaning of
a term under evaluation by rewriting: C Rew™ (t) = | | Rew(t). Thus, C Rew® (t)
is the most defined (possibly infinite) value which can be obtained (or approx-
imated) by issuing rewritings from ¢. Note that the use of infinite terms in the
codomain of C'Rew™ is necessary for dealing with non-terminating programs.

3.1 Narrowing as the Evaluation Mechanism

In the context of a program, a term ¢ with variables denotes a continuous function
tp € [DV — D] which yields the evaluation of ¢ under each possible valuation?
¢ € DV of its variables on a domain D. This is called a non-ground value (ngv)
in [18] and a derived operator in [8].

Given domains D and E, the set [D — E] of (strict) continuous functions
from D to E (pointwise) ordered by f C g iff Yz € V, f(x) C g(z), is a domain
[10,21]. For proving that [DY — D] is a domain whenever D is, assume that
V' contains a distinguished (unused) variable L. Thus, V supplied by the least
ordering C such that L C = and C z for all z € V is a domain. The set
DV—1L} of arbitrary valuations from V — {L} to D is isomorphic to the domain
[V — 1 D] of continuous, strict valuations. We assume this fact from now on by
removing 1 from V and considering that D" is a domain. Therefore, [DY — D]
is a domain and, in particular, [T7°°(C,)" — T°°(C.)] also is.

Our syntactic objects, now, are substitution/term pairs (o,t). We could
naively extend (|) to deal with those pairs: ({0, s))r = ((o)r, (s)r) where
(o) F is a substitution given by (o)) r(z) = (o(z)|)r for all z € V. Unfortunately,
the semantic progress of a narrowing evaluation might not be captured by the
computational ordering C (extended by (4,0) C (¢',4") iff Vo € V.¢(z) C ¢'(x)
and § C ¢') and such an extension of (| |)r.

Ezample 1. Consider the TRS

0+x — X 0 < x — true

s(x)+y — s(xty) s(x) <s(y) - x<y
and the narrowing step (e, [x,x+yl) ~ ({x—0}, [0,y]) ([-,-] denotes a 2-
element list). We have ((g, [x,x+y]))r = (¢, [x,L1) and (({x—0}, [0,y]))F =
({x—0}, [0,y]). Therefore, we do not get the desired increasing computation,
because € Z {x—0} and [x, L] [Z [0,y].

2 By abuse, we say that the ‘domain’ of a valuation ¢ € DV is Dom(¢) = {z €

V| o(z) # L}

The problem is that narrowing introduces a new computational mechanism for
increasing the information associated to a given term, i.e., instantiation of logic
variables. Thus, we introduce the observation mapping ()rr, : T(XL,V) —
7T (CL) which interprets uninstantiated variables as least defined elements:

1
L ifferF

(e)rr = L (L)rr
(c@®hrr = e(lt)rr) ifceC (f@®))rr

Note that (ItDFL = J—Subst((ltDF) and (IO'DFL = L supst © (IO'DF

Ezample 2. Now, ((g, [x,x+y]))rr. = (Lsupst, [L,L]) C ({x—0},[0,1]) =
({({x—0}, [0,y]))FrL, i-e., (|) L satisfies the desired property.

Narrowing computations are compatible with the new observation mapping.

Proposition 3. Let R be a TRS. If (o,t) ~* (o', s), then ((o,t))rr T (o', s))rL.

3.2 The Narrowing Space as an Approximable Mapping

Analogously to Rew(t), we can build a semantic description Narr(t) of the
narrowing evaluation of ¢. Nevertheless, since Narr(t) is intended to be a rep-
resentation of a ngv, i.e., a functional value, we need to use the corresponding
standard Scott’s construction of approzimable mappings [20, 21].

A precusl is a structure P = (P,C,U, 1) where C is a preorder, L is a
distinguished minimal element, and Ul is a partial binary operation on P such
that, for all a,b € P, a U b is defined if and only if {a,b} is consistent in P
and then a U b is a (distinguished) supremum of a and b [21]. Approximable
mappings allow us to represent arbitrary continuous mappings between domains
on the representations of those domains (their compact elements) as relations
between approximations of a given argument and approximations of its value at
that argument [21].

Definition 1. [21] Let P = (P,C,U, 1), P’ = (P',C,U, L") be precusl’s. A
relation f C P x P’ is an approzimable mapping from P to P' if

1. 1L f 1.
2.afbanda fO implya f (DUD).
3. afb,aCd,andb T bimplyad fb.

The ideal completion (Id(P),C,{L}) of a precusl is a domain (see [21]). An
approximable mapping defines a continuous function between Id(P) and Id(P'):
f:1d(P) — Id(P'") is given by f(I) ={b€ P' | Ja € I with a f b}.

Proposition 4. Let P = (P,C,U, 1),P" = (P',C',10', L") be precusl’s, and
f,f' € P x P' be approzimable mappings from P to P'. If f C f', then f C f'.

Given a term ¢, NDeriv(t) is the set of narrowing derivations issued from ¢. We
associate an approximable mapping Narr4(t) to a given narrowing derivation
A € NDeriv(t).

Definition 2. Given a termt € T(X,V) and a narrowing derivation
A (e, t) = (00, t0) ~ (o1, t1) ~ -+~ (On—1,tn—1) ~ (Tn, tn)
we define Narr(t) = Up<i<nNarr (t) where:

Narr(t) = {(,6) | 3¢ € T(C1)" (b o oihrr T AS C ((t:))rr}

Proposition 5. Let R be a TRS, t be a term, and A be a narrowing derivation
starting from t. Then, Narr®(t) is an approzimable mapping.

Definition 3. Given a term t € T(X,V), we define the relation Narr(t) C
T(CL)Y x T(CL) to be Narr(t) = Uaenperiv(e) Narrd(t).

Unfortunately, these semantic definitions are not consistent w.r.t. rewriting.

Ezample 3. Consider the TRS

f(f(x)) — a

c — b
and A : (g,t) = (,£(x)) ~ ({x = £(x?)},a). If m = Narr?(t), then {x
a} ma (wetake @ = Lgypst, 0 = {x — £(x’)} in Definition 2; hence, (¢ o o)1, =
Lsupst C {x = a} =¢). Thus, Narr4(t)({x — a}) = a. However, {x > a}(t) =
f(a) A* a.

The problem here is that (| | pz, identifies (as L) parts of the bindings o(z) of a
computed substitution o which can be semantically refined by instantiation (of
the variables in o(z)) and other which cannot be further refined by instantiation
(the operation-rooted subterms in o(z)). If we deal with left-linear CB-TRS’s
and choose (idempotent) mgu’s as unifiers for the narrowing process, the sub-
stitutions which we deal with are linear constructor substitutions, i.e., for all
narrowing derivations (g,t) ~* (0,s) and all z € V, o(z) is a constructor term
and {o(z) | © € Dom(o)} is a linear set of terms (i.e., no variable appears
twice within them). Hence, the substitutions computed by narrowing have no
partial information apart from the variable occurrences. In this case, (o))r = o,
(oD)rL = Lsubst © ()7 = Lsubst © 0, and we have the following result.

Proposition 6. Let o be a linear constructor substitution and ¢,¢ € T(CJ_)V.
If p oo C g, then there exists ¢' € T(CL)V such that ¢ C ¢' and ¢' oo = .

Thus, we obtain a simpler, more readable expression for the approximable map-
ping which is associated to a given left-linear CB-TRS by noting that

Narr{(t) = {{s,0) | 3p € T(C1)" .(p o oi)rr T AS C (b(t:i))rr}
{(,0) | 3p € T(CL)" . poos =< NS C (6(t:))rr}

The union of approximable mappings (considered as binary relations) need not
to be an approximable mapping. Nevertheless, we have the following result.

Proposition 7. Let R be a left-linear, confluent CB-TRS and t be a term. Then
Narr(t) is an approzimable mapping.

We define the semantic function CNarr™ : T(X,V) = [T=(CL)" = T(CL)]
as follows: CNarr>(t) = Narr(t), i.e., CNarr>(t) is the continuous mapping
associated to the approximable mapping Narr(t) which represents the narrowing

derivations starting from ¢. This semantics is consistent w.r.t. rewriting.

Theorem 1. Let R be a left-linear, confluent CB-TRS. For all t € T(X,V),
¢ €T(CL)Y, CNarr™®(t) ¢ = CRew™(¢(t)).

Narrowing strategies. A narrowing strategy A is a restriction on the set of
possible narrowing steps. Given a narrowing strategy N and a term ¢, we can
consider the set NDerivas(t) C NDeriv(t) of derivations which start from ¢ and
conform to A. By Proposition 5, each A € NDerivs(t) defines an approximable
mapping NarrA(t) which is obviously contained in Narr(t). By Proposition 4,
NarrA(t) C Narr(t) = CNarr™(t). Therefore, {NarrA(t) | A € NDerivy(t)}
is bounded by C'Narr™(t). Since [T>(C.)" — 7°°(C.)] is a domain, it is con-
sistently complete, i.e., the lub of every bounded subset actually exists (Theorem
3.1.10 in [21]). Thus, for left-linear CB-TRSs, we fix

CNarr@(t) = Ll{NarrA(t) | A€ NDerivy(t)}

to be the meaning of ¢ when it is evaluated under the narrowing strategy N.
Clearly, for all narrowing strategies N', CNarr§? C CNarr®. Thus, CNarr®
provides a semantic reference for narrowing strategies. Strategies that satisfy
CNarrg} = CNarr™ can be thought of as correct strategies.

Remark 1. Narrowing is able to yield the graph of a function f by computing
CNarr>(f(T)), where x1,...,2,,(s) are different variables. This gives an in-
teresting perspective of narrowing as an operational mechanism which computes
denotations of functions as a whole, rather than only values of particular function
calls. A similar observation can be made for narrowing strategies.

3.3 Computational Interpretation of the Semantic Descriptions

Our semantic descriptions are intended to provide a clear computational inter-
pretation of the semantic information. This is essential for defining accurate
analyses by using the semantic description.

Proposition 8. Let R be a confluent TRS, t € T(X,V), and 6 = CRew™(t).
If6 € T(C,V), then t —=* 6.

Concerning narrowing computations, we have the following result.

Proposition 9. Let R be a left-linear, confluent CB-TRS. Let t be a term,
ceT(CL)Y, m=CNarr>(t), and § = m(s).

1. If 6 € T(CL), there exists a narrowing derivation (¢,t) ~* (0,s) such that
poo=¢ and § = (¢(s))rrL.-

2. For every narrowing derivation {(e,ty ~™* (o,s) such that ¢ oo = ¢, it is

lo(s)hrr C 0.

3. If 6 € T(C), then there exists a narrowing derivation (g,t) ~* (0,s) such
that s € T(C,V), oo =g, and § = ¢(s).

We are able to refine the computational information couched by the narrowing
semantics by introducing a small modification on it.

Definition 4. Given a term t € T(X,V), and a narrowing derivation
A (e, ty = (o0,to) ~ (01,t1) ~ -~ (Op_1,tn—1) ~ {On, tn)

we define BNarr?(t) = Up<i<, BNarri (t) where:
BNarr{ () = {(<,8) | (oidrr S AS T (ti)rr}

Proposition 10. Let R be a TRS, t be a term and A be a narrowing derivation
starting from t. Then BNarr™(t) is an approzimable mapping.

If we define BNarr(t) = U ae nperiv(r) BNarr#(t), we have the following result.

Proposition 11. Let R be a left-linear, confluent CB-TRS and t be a term.
Then BNarr(t) is an approzimable mapping.

The basic description BNarr®(t) = BNarr(t) is closer to the computational
mechanism of narrowing. The following proposition formalizes this claim.

Proposition 12. Let R be a left-linear, confluent CB-TRS, t be a term, ¢ €
T(CL)", m = BNarr™>(t), and § = m(c).

1. If 6 € T(CL), there exists a narrowing derivation (g,t) ~* (0,s) such that
poo=¢ and § = (s)rrL.

2. For every narrowing derivation (e,t) ~* (0, s) such that (o)rr C <, it is
(shrr C 0.

Proposition 13. Let R be a left-linear, confluent CB-TRS, t be a term, and
m = BNarr™(t). If (e,t) ~* (0,0) and § € T(C), then m((o)rr) = 9.

Since each BNarrf(t) is a special case of Narr{(t), by Proposition 11 and
Proposition 4, BNarr>(t) C CNarr®™(t).

4 A Semantics-Based Analysis Framework

Domain theory provides a framework for formulating properties of programs and
discussing about them [2,20]: A property = of a program P whose denotation
[P] is taken from a domain D (i.e., [P] € D) can be identified with a predicate
m: D — 2, where 2 is the two point domain 2 = {L, T} ordered by L C T

(where L can be thought of as false and T as true). A program P satisfies 7
if 7([P]) = T (alternatively, if [P] € #='(T)). As usual in domain theory, we
require continuity of 7 for achieving computability (or observability, see [22]).
The set [D — 2] of observable properties is (isomorphic to) the family of open
sets of the Scott’s topology associated to D [2]. A topology is a pair (X,) where
X is aset and 7 C P(X) is a family of subsets of X (called the open sets) such
that [21]: X, 0 € 7, if U,V € 7, then UNV € 7; and if U; € 7 for i € I, then
U;er Ui € 7. The Scott’s topology associated to a domain D is given by the set
of upward closed subsets U C D such that, whenever A C D is directed and
L|A €U, then 3z € Az € U [21].

The family 7 of open sets of a given topology (X, 7) ordered by inclusion is a
complete lattice. The top element of the lattice is X. Note that, when considering
the Scott’s topology (D, 7p) of a domain D, the open set D denotes a trivial
property which every program satisfies; @, the least element of lattice 7p, denotes
the ‘impossible’ property, which no program satisfies.

4.1 Analysis of Functional Logic Programs

A program analysis consists in the definition of a continuous function a : D —
A between topologic spaces (D, 7p) and (A, 74) which expresses concrete and
abstract properties, respectively. By the topological definition of continuity, each
open set V € 74 maps to an open set U € 7p via o', ie., a1 74 = Tpis a
mapping from abstract properties (open sets of 74) to concrete properties (open
sets of 7p). It is easy to see that (D, {a (V) | V € 74}) is a subtopology of D
(ie., {a7Y(V) | V € ta} C 1p). Therefore, each analysis distinguishes a subset
of properties of D which is itself a topology. For instance, the Scott’s topology
of 2 is given by 12 = {Q,{T},2}. Such a topology permits to express only one
non-trivial property, namely, the one which corresponds to the open set {T}.

In functional logic languages, the semantic domain under observation is
[DY — D]. Observable properties of functional logic programs are open sets
of its Scott’s topology. Approximations to such properties can be obtained by
abstracting [DV — D] into a suitable abstract domain (see below).

Every continuous function f : D — E maps observable properties of the
codomain E into observable properties of D (by f~! : 7& — 7p). In particu-
lar, elements of [DY — D], i.e., denotations of functional logic programs, map
properties of D (we call them ‘functional’ properties) into properties of DV (‘lo-
gic’ properties). This provides an additional, interesting analytic perspective:
By rephrasing Dybjer [7], we can computationally interpret this correspondence
as establishing the extent that a ‘logic property’ (concerning valuations) needs
to be ensured to guarantee a property of its functional part (computed value).
There is a simple way to obtain an abstraction of the logic part DV of [DV — D]
from an abstraction of its functional part D.

Definition 5. Let D,V A be sets. Let ap : D — A be a mapping. Then, ay :
DV — AV given by ar(¢) = apod, for all ¢ € DV, is called the logic abstraction
induced by ap.

If ap : D — A is strict (surjective, continuous), then «ay, is strict (surjective,
continuous). Whenever ap is a continuous mapping from a domain D to 2, ap
expresses, in fact, a single observable property a1 ({T}) of D. We can thought
of ag as a functional property. Thus, Definition 5 associates an abstraction ay, of
DV to a given property identified by ay. Thus, each functional property induces
a related set of logic properties which is a subtopology of Tpv . In Section 4.3 we
show that groundness (a logic property), is induced by the functional property
of termination.

4.2 Approximation of Functions

Abstractions ap : D — A and ag : E — B (A and B being algebraic lattices),
induce safety and liveness abstractions a3, _, z,af .o : (D = E) — (A — B), of
continuous mappings by [1]

af_5(f)(d) = U{(apo f)(d) | ap(d') Cd}, and
ab 5 (£)(d) ={(apo f)(d) | ap(d) 3 d}

where the following correctness result holds:

Theorem 2 (The semi-homomorphism property [1]). Let f : D — E,
fS :a%—}E(f)a ande :a%A}E(f) Then, fLOaD Eanf EfSOaD-

Consider an abstraction ag : E — 2 which can be thought of as a property of
elements of the codomain F of f : D — E. For analytic purposes, the correctness
condition f% o ap J ag o f ensures that, for all z € D, whenever the abstract
computation f(ap(z)) yields L, the concrete computation f(z) does not sat-
isfy the property ag, i.e., ag(f(xz)) = L. On the other hand, the correctness
condition f* o ap C ag o f ensures that, whenever f’(ap(z)) yields T, the
concrete computation f(z) actually satisfies ag, i.e., ag(f(x)) = T. We use this
computational interpretation later.

4.3 Termination Analysis and Groundness Analysis

The functional structure of the semantic domain of ngv's reveals connections
between apparently unrelated analyses. Consider h; : T°°(C 1) — 2 defined by

_[TitseT(C)
hi(9) = { 1 otherwise
and let hy : T (1) — 2V be the logic abstraction induced by hy. Note that
both h; and h, are strict and continuous. Abstractions h; and h, express the
observable properties of termination and groundness, respectively: Recall that
the only nontrivial open set of the Scott’s topology of 2 is {T}. By continuity
of he, hy 1({T}) is the (open) set of finite, totally defined values which actually

corresponds to terminating successful evaluations®. On the other hand, each
open set of 2V is (isomorphic to) an upward closed collection of sets of variables
ordered by inclusion. In this case, h, ' (F) for a given open set F is a set of
substitutions whose bindings for variables belonging to X € F are ground. This
formally relates groundness and termination: groundness is the ‘logic’ property
which corresponds to the “functional’ property of termination. In fact, 2V is the
standard abstract domain for groundness analysis in logic programming.

4.4 Using Semantic Information for Improving the Evaluation

Groundness information can be used to improve the narrowing evaluation of a
term t = Clty,... ,t,]: if we know that every successful evaluation of ¢; grounds
the variables of t;, for some 1 < i,5 < n, ¢ # j, then it is sensible to evaluate
t by first narrowing #; (up to a value) and next evaluating t; (i.e., t; after
instantiating its variables using the bindings created by the evaluation of ¢;) by
rewriting because, after evaluating ¢;, we know that t;. is ground and we do not
need to provide code for unification, instantiation of other variables, etc.

Ezample 4. Consider the following TRS:

0+x — X if (true,x,y) — x
s(x)+y — s(x+y) if(false,x,y) — ¥
even(0) — true even(s(s(x))) — even(x)

even(s(0)) — false

For an initial (conditional) expression “if even(x) then x+x else s(x+x)”
(we use the more familiar notation if then else for if expressions), it is clear
that x becomes ground after every successful narrowing evaluation of the condi-
tion even(x). Thus, we can evaluate x+x by rewriting instead of narrowing.

Additionally, we need to ensure that the evaluation of ¢; is safe under the context
C (i.e., that failing evaluations of #; do not prevent the evaluation of ¢). Eventu-
ally, we should also ensure that the complete evaluation of ¢’ is safe. Strictness
information can be helpful here: if the (normalizing) narrowing strategy is not
able to obtain any value, this means that the whole expression does not have a
value. However, we should only use non-contextual strictness analyses (like My-
croft’s [17] is). In this way, we ensure that the strict character of an argument
is not altered after a possible instantiation of its surrounding context.

In order to ensure that every successful narrowing derivation grounds a given
variable x € Var(t), we use the safety abstraction m® € 2V — 2 of m =
BNarr®(t) (based on h; and hy).

Tifd# L1
Llifd=1
are similar. However, halt only expresses termination if C only contains constant
symbols. It is easy to see that, in this case, hy = halt.

% ht and Mycroft’s abstraction: halt(d) = { for termination analysis [17]

Ezample 5. (Continuing Example 4) For ¢ = even(x), we have:

BNarr>®(t)={{x— 1}~ 1, {x + 0} — true,
{xs()} - 1, {x—» s(0)} — false,
{x s}~ 1, {x—s(s(0))}— true,...}

In general, if we can prove that, for all abstract substitutions ¢# € 2V with
¢#(x) = L, it is m¥(¢#) = L, then we can ensure that z is grounded in every
successful derivation from t. To see this point, consider a successful derivation
(e,t) ~* (0,0) such that § € T(C) and o(z) & T(C), i.e., z is not grounded.
By Proposition 13, m((o))rr,) = d. By definition of m*, m®(h,((o)rr)) = T.
Since (o)rr(z) & T(C), we have hy((o)rr)(xz) = h((o)rr(z)) = L, thus
contradicting (a case of) our initial assumption, m®(h,((o)rr)) = L.

Ezample 6. (Continuing Example 5) For + = even(x), we have m® = {{z —
1} = L, {z— T} T}. Thus, x is grounded in every successful derivation of
even(x).

The previous considerations make clear that the semantic dependency expressed
by the ngv’s has the corresponding translation for the analysis questions.

5 Related Work and Concluding Remarks

The idea of giving denotational descriptions of different operational frameworks
is not new. For instance, [5] assigns different fizpoint semantics for a program
under either call-by-name or call-by-value strategies. This shows that, in some
sense, the semantic descriptions also (silently) assume some underlying opera-
tional approach (usually, call-by-name like).

In [18], the notion of ngv as the semantic object that a narrowing computation
should compute was already introduced. It was also noted that narrowing only
computes a representation of the object, not the object itself. However, it was
not clearly explained how this connection can be done.

In [16], domains are used to give semantics to the functional logic language
BABEL. However, the style of the presentation is model-theoretic: all symbols
take meaning from a given interpretation and the connection between the de-
clarative and operational semantics (lazy narrowing) are given by means of the
usual completeness/correctness results. The semantic domain is different from
ours because valuations are just a parameter of the semantic functions rather
than a component of the domain. Thus, the Herbrand domain T°°(CL) is the
semantic domain in [16].

The semantic approach in [9] is much more general than [16] (covering non-
deterministic computations), but the style of the presentation is model-theoretic
too. The basic semantic domain is also different from ours: no functional do-
main for denotations is used and, in fact, bounded completeness, which is essen-
tial in our setting to deal with the functional construction and with narrowing
strategies, is not required in [9].

In [23], a denotational description of a particular narrowing strategy (the
needed narrowing strategy [4]) is given. The semantics is nicely applied to de-
mandedness analysis but nothing has been said about how to use it for more
general analysis problems. This question is important since the notion of deman-
dedness pattern is essential for the definition of the semantics itself.

We have presented a domain-theoretic approach for describing the semantics
of integrated functional logic languages based on narrowing. Our semantics is
parameterized by the narrowing strategy which is used by the language. The
semantics is not ‘model-theoretic’ in the sense that we let within the operational
mechanism (the narrowing strategy) to establish the ‘real’ meaning of the func-
tions defined by the program rules. In this way, we are able to include more op-
erational information into the semantic description. As far as we know, previous
works have not explicitly considered different arbitrary strategies for parameter-
izing the semantics of functional logic languages, that is, the operational-oriented
denotational description formalized in this work is novel in the literature of the
area.

Another interesting point of our work is its applicability to the analysis of
functional logic programs. Since we use a functional domain (the domain of non-
ground-values), we are able to associate a denotation to a term with variables.
Thus, narrowing is reformulated as an evaluation mechanism which computes
the denotation of the input expression. This was already suggested by Reddy
[18] but it is only formally established in this paper by using approximable
mappings. Thanks to this perspective, we can easily use the standard frame-
works for program analysis based on the denotational description of programs.
In other words, the approximation of the domain of non-ground values enables
the analysis of functional logic programs. Our description also reveals unexplored
connections between purely functional and logic properties. These connections
suggest that, within the functional logic setting, we have ascertained a kind of
‘duality’ between purely functional and purely logic properties. As far as we
know, this had not been established before.

Future work includes a more detailed study about how to use this semantics
to develop practical methods for the analysis of functional logic programs. An-
other interesting task is to extend this semantics to more general computation
models for declarative languages [12].

References

1. S. Abramsky. Abstract Interpretation, Logical Relations, and Kan Extensions.
Journal of Logic and Computation 1(1):5-40, 1990.

2. S. Abramsky. Domain Theory in Logic Form. Annals of Pure and Applied Logic
51:1-77, 1991.

3. M. Alpuente, M. Falaschi, and F. Manzo. Analyses of Unsatisfiability for Equa-
tional Logic Programming. Journal of Logic Programming, 22(3):221-252, 1995.

4. S. Antoy, R. Echahed and M. Hanus. A needed narrowing strategy. In Confer-
ence Record of the ACM Symposium on Principles of Programming Languages,
POPL’9/, pages 268-279. ACM Press, 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

. J.W. de Bakker. Least Fixed Points Revisited. Theoretical Computer Science,

2:155-181, 1976.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

P. Dybjer. Inverse Image Analysis Generalises Strictness Analysis. Information
and Computation 90:194-216, 1991.

J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial Algebra
Semantics and Continuous Algebras. Journal of the ACM 24(1):68-95, 1977.
J.C. Gonzdlez-Moreno, M.T. Hortala-Gonzdlez, F.J. Loépez-Fraguas, and M.
Rodriguez-Artalejo. An approach to declarative programming based on a re-
writing logic. Journal of Logic Programming 40(1):47-87, 1999.

C.A. Gunter. Semantics of Programming Languages. The MIT Press, Cambridge,
MA, 1992.

M. Hanus. Towards the Global Optimization of Functional Logic Programs. In
P.A. Fritzson, editor, Proc. 5th International Conference on Compiler Construc-
tion, CC’94. LNCS 786:68-82, Springer Verlag, Berlin, 1994.

M. Hanus. A Unified Computation Model for Functional and Logic Program-
ming. In Conference Record of the 24th Symposium on Principles of Programming
Languages POPL’97, pages 80-93, ACM Press, 1997.

M. Hanus and F. Zartmann. Mode Analysis of Functional Logic Programs. In
B. Le Charlier, editor, Proc. of 1st International Static Analysis Symposium,
SAS’94. LNCS 864:26-42, Springer Verlag, Berlin, 1994.

J.-M. Hullot. Canonical forms and unification. In Proc. 5th Conference on
Automated Deduction, CADE’80, LNCS:318-334, Springer-Verlag, Berlin, 1980.
J.J. Moreno-Navarro, H. Kuchen, J. Marino, S. Winkler and W. Hans. Effi-
cient Lazy Narrowing using Demandedness Analysis. In M. Bruynooghe and J.
Penjam, editors, Proc. of 5th International Symposium on Programming Lan-
guage Implementation and Logic Programming, PLILP’93. LNCS 714:167-183,
Springer-Verlag, Berlin, 1993.

J.J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic programming with func-
tions and predicates: the language BABEL. Journal of Logic Programming,
12:191-223, 1992.

A. Mycroft. The theory and practice of transforming call-by-need into call-
by-value. In B. Robinet, editor, Proc. of the 4th International Symposium on
Programming, LNCS 83:269-281, Springer-Verlag, Berlin, 1980.

U.S. Reddy. Narrowing as the Operational Semantics of Functional Languages.
In Proc. of IEEFE International Symposium on Logic Programming, pages 138-
151, 1985.

D. Scott. Domains for Denotational Semantics. In M. Nielsen and E.M. Schmidt,
editors, Proc. of 9th International Colloquium on Automata, Languages and Pro-
gramming, ICALP’82, LNCS 140:577-613, Springer-Verlag, Berlin, 1982.

D. Scott. Lectures on a mathematical theory of computation. Monograph PRG-
19. Computing Laboratory, Oxford University, 1981.

V. Stoltenberg-Hansen, I. Lindstréom, and E.R. Griffor. Mathematical Theory of
Domains. Cambridge University Press, 1994.

S. Vickers. Topology via Logic. Cambridge University Press, 1989.

F. Zartmann. Denotational Abstract Interpretation of Functional Logic Pro-
grams. In P. Van Hentenryck, editor, Proc. of the 4th International Static Ana-
lysis Symposium, SAS’97, LNCS 1302:141-159, Springer-Verlag, Berlin, 1997.

