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Abstra
t. We introdu
e a denotational 
hara
terization of narrowing,the 
omputational engine of many fun
tional logi
 languages. We use afun
tional domain for giving a denotation to the narrowing spa
e asso
i-ated to a given initial expression under an arbitrary narrowing strategy.Su
h a semanti
 des
ription highlights (and favours) the operational no-tion of evaluation instead of the more usual model-theoreti
 notion ofinterpretation as the basis for the semanti
 des
ription. The motivationis to obtain an abstra
t semanti
s whi
h en
odes information about thereal operational framework used by a given (narrowing-based) fun
tionallogi
 language. Our aim is to provide a general, suitable, and a

urateframework for the analysis of fun
tional logi
 programs.Keywords: domain theory, fun
tional logi
 languages, narrowing, pro-gram analysis, semanti
s.1 Introdu
tionThe ability of reasoning about program properties is essential in software design,implementations, and program manipulation. Program analysis is the task ofprodu
ing (usually approximated) information about a program without a
tu-ally exe
uting it. The analysis of fun
tional logi
 programs is one of the most
hallenging problems in de
larative programming. Many works have already ad-dressed the analysis of 
ertain run-time properties of programs (e.g., [3, 11, 13,15, 23℄). Nevertheless, most of these approa
hes have been done in a rather adho
 setting, gearing the analysis towards the appli
ation on hand. Up to now,there is no general approa
h for formulating and analyzing arbitrary propertiesof fun
tional logi
 programs in an arbitrary operational framework. In this paperwe address this problem.The key of our approa
h is domain theory [19, 20℄ sin
e it provides a jun
tionbetween semanti
s (spa
es of points = denotations of 
omputational pro
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and logi
s (latti
es of properties of pro
esses) [2, 20, 22℄. The 
omputational pro-
ess we are interested in is evaluation. In a programming language, the notion ofevaluation emphasizes the idea that there exists a distinguished set of synta
ti
elements (the values) whi
h have a prede�ned mathemati
al interpretation [10℄.The other synta
ti
 elements take meaning from the program de�nitions and theoperational framework for the program's exe
ution. In this way, the evaluationpro
ess (under a given operational framework) maps general input expressions(having an a priori unknown meaning) to values. This point of view favoursthe operational notion of evaluation instead of the more usual model-theoreti
notion of interpretation as the basis for the semanti
 des
ription.Sin
e fun
tional logi
 languages with a 
omplete operational semanti
s arebased on narrowing, we 
enter our attention on it. The idea of using narrowing asan evaluation me
hanism for integrated languages 
omes from Reddy's [18℄: nar-rowing is the operational prin
iple whi
h 
omputes the non-ground value (ngv)of an input expression. Given a domain D, a ngv is a mapping from valuations(on D) to values (in D). In moving valuations from being parameters of semanti
fun
tions (as usual in many approa
hes, e.g., [9, 16℄) to be 
omponents of a se-manti
 domain, we understand narrowing as an evaluation me
hanism whi
hin
orporates the instantiation of variables as a part of su
h evaluation me
h-anism. Sin
e ngv's are fun
tional values, we use the domain-theoreti
 notion ofapproximable mapping [19, 20℄ to give them a 
omputable representation. Weargue that this is a good starting point for expressing and managing observableproperties of fun
tional logi
 programs (along the lines of [2, 22℄). Moreover, itreveals that, within an integrated framework, there exist semanti
 
onne
tionsbetween purely fun
tional and logi
 properties of programs. Termination andgroundness are examples of su
h related properties. On the other hand, thanksto in
luding operational information into the semanti
 des
ription, we are ableto derive interesting optimizations for program exe
ution.Se
tion 2 gives some preliminary de�nitions. Se
tion 3 introdu
es a domaintheoreti
 approa
h to pure rewriting and narrowing 
omputations. Se
tion 4dis
usses a semanti
-based analysis framework for fun
tional logi
 languages.Se
tion 5 
ontains our 
on
lusions.2 PreliminariesIn this se
tion, we give some preliminary de�nitions (further details in [6, 21℄).Given sets A;B, BA is the set of mappings from A to B and P(A) denotesthe set of all subsets of A. An order v on a set A is a re
exive, transitive andantisymmetri
 relation. An element ? of an ordered set (A;v) is 
alled a leastelement (or a minimum) if ? v a for all a 2 A. If su
h an element exists, then(A;v;?) is 
alled a pointed ordered set. Given S � A, an element a 2 A is anupper bound of S if x v a for all x 2 S. In this 
ase we also say that S is a
onsistent set. An upper bound of S is a least upper bound (or lub, written FS)if, for all upper bounds b of S, we have FS v b. A set S � A is downward(upward) 
losed if whenever a 2 S and b v a (a v b), we have that b 2 S. If



S = fx; yg, we write x t y instead of FS. A non-empty set S � A is dire
ted if,for all a; b 2 S, there is an upper bound 
 2 S of fa; bg. An ideal is a downward
losed, dire
ted set and Id(A) is the set of ideals of an ordered set A. A pointedordered set (A;v;?) is a 
omplete partial order (
po) if every dire
ted set S � Ahas a lub FS 2 A. An element a 2 A of a 
po is 
alled 
ompa
t (or �nite) if,whenever S � A is a dire
ted set and a v FS, then there is x 2 S su
h thata v x. The set of 
ompa
t elements of a 
po A is denoted as K(A). A 
po A isalgebrai
 if for ea
h a 2 A, the set approx(a) = fx 2 K(A) j x v ag is dire
tedand a = F approx(a). An algebrai
 
po D is a domain if, whenever the setfx; yg � K(D) is 
onsistent, then xt y exists in D. Given ordered sets (A;vA),(B;vB), a fun
tion f : A! B is monotoni
 if 8a; b 2 A, a vA b) f(a) vB f(b);f : A! A is idempotent if 8a 2 A; f(f(a)) = f(a).By V we denote a 
ountable set of variables; � denotes a signature, i.e., aset of fun
tion symbols ff; g; : : :g, ea
h with a �xed arity given by a fun
tionar : � ! IN. We assume � \ V = �. We denote by T (�; V ) the set of (�nite)terms built from symbols in the signature � and variables in V . A k-tuplet1; : : : ; tk of terms is denoted as t, where k will be 
lari�ed from the 
ontext.Given a term t, Var(t) is the set of variable symbols in t. Sometimes, we 
onsidera fresh 
onstant ? and �? = � [ f?g. Terms from T (�?; V ) are ordered bythe usual approximation ordering whi
h is the least ordering v satisfying ? v tfor all t and f(t) v f(s) if t v s, i.e., ti v si for all 1 � i � ar(f).Terms are viewed as labeled trees in the usual way. Positions p; q; : : : arerepresented by 
hains of positive natural numbers used to address subterms oft. By �, we denote the empty 
hain. The set of positions of a term t is denotedby Pos(t). A linear term is a term having no multiple o

urren
es of the samevariable. The subterm of t at position p is denoted by tjp. The set of positions ofnon-variable symbols in t is Pos�(t), and PosV (t) is the set of variable positions.We denote by t[s℄p the term t with the subterm at the position p repla
ed by s.A substitution is a mapping � : V ! T (�; V ) whi
h homomorphi
ally ex-tends to a mapping � : T (�; V ) ! T (�; V ). We denote by " the \identity"substitution: "(x) = x for all x 2 V . The set Dom(�) = fx 2 V j �(x) 6= xgis 
alled the domain of � and Rng(�) = [x2Dom(�)Var(�(x)) its range. �jU de-notes the restri
tion of a substitution � to a subset of variables U � Dom(�).We write � � �0 if there is � su
h that �0 = � Æ �. A uni�er of two terms t1; t2is a substitution � with �(t1) = �(t2). A most general uni�er (mgu) of t1; t2 is auni�er � with � � �0 for all other uni�ers �0 of t1; t2.A rewrite rule (labeled �) is an ordered pair (l; r), written � : l ! r (orjust l ! r), with l; r 2 T (�; V ), l 62 V and Var(r) � Var(l). l and r are
alled left-hand side (lhs) and right-hand side (rhs) of the rule, respe
tively. Aterm rewriting system (TRS) is a pair R = (�;R) where R is a set of rewriterules. A TRS (�;R) is left-linear, if for all l ! r 2 R, l is a linear term.Given R = (�;R), we 
onsider � as the disjoint union � = C ℄ F of symbols
 2 C, 
alled 
onstru
tors, and symbols f 2 F , 
alled de�ned fun
tions, whereF = ff j f(l)! r 2 Rg and C = � �F . A 
onstru
tor-based TRS (CB-TRS) isa TRS with l1; : : : ; ln 2 T (C; V ) for all rules f(l1; : : : ; ln)! r.



For a given TRS R = (�;R), a term t rewrites to a term s (at position p),written [p;�℄! R (or just t p!R s, t!R s, or t! s) if tjp = �(l) and s = t[�(r)℄p, forsome rule � : l ! r 2 R, position p 2 Pos(t) and substitution �. A term t is innormal form if there is no term s with t!R s. A TRS R (or the rewrite relation!R) is 
alled 
on
uent if for all terms t; t1; t2 with t!�R t1 and t!�R t2, thereexists a term t3 with t1 !�R t3 and t2 !�R t3. A term t narrows to a term s,written t ;[p;�;�℄ s (or just t ;� s), if there is p 2 Pos�(t) and a variant (i.e., arenamed version) of a rule � : l ! r su
h that tjp and l unify with (idempotent)mgu �, and s = �(t[r℄p). A narrowing derivation t;�� s is su
h that either t = sand � = " or t ;�0 t1 ;�1 � � � tn�1 ;�n�1 s and � = �n�1Æ� � �Æ�1Æ�0. In orderto show the progress of a narrowing derivation w.r.t. the 
omputed answer andthe evaluated goal, we also de�ne the narrowing relation on substitution/termpairs by h�; ti; h�0; si if t ;� s and �0 = �jVar(t) Æ� (i.e., we 
onsider only thesubstitution of goal variables).3 The Semanti
 Approa
hA (�rst-order) program P = (R; t) 
onsists of a TRS R (whi
h establishes thedistin
tion between 
onstru
tor and de�ned symbols of the program), and aninitial expression t to be fully evaluated. We make t expli
it sin
e the di�eren
esbetween the purely fun
tional and fun
tional logi
 styles arise in the di�erentstatus of the variables o

urring in the initial expression: in fun
tional program-ming, those variables are not allowed (or they are 
onsidered as 
onstants and
annot be instantiated). Fun
tional logi
 languages deal with expressions havinglogi
 variables and narrowing provides for the ne
essary instantiations.We 
hara
terize the information whi
h is 
urrently 
ou
hed by a term bymeans of a mapping (j j) from terms to (partial) values (remind that values areexpe
ted to be espe
ial synta
ti
 obje
ts). We 
all (j j) an observation mapping.The adequa
y of a given mapping (j j) for observing 
omputations performedby a given operational me
hanism should be ensured by showing that (j j) is ahomomorphism between the relation among synta
ti
 obje
ts indu
ed by theoperational me
hanism and the approximation ordering on values. This meansthat the operational me
hanism re�nes the meaning of an expression as the
omputation 
ontinues.As a preliminary, simple example, 
onsider pure rewriting 
omputations:The synta
ti
 obje
ts are terms t 2 T (�?; V ) and the values are taken from(T 1(C?);v;?), the domain of in�nite, ground 
onstru
tor (partial) terms1.(T 1(C?; V );v;?) is the domain (T 1(C? [ V );v;?), where 8x 2 V; ar(x) = 0.For fun
tional 
omputations, we use (j j)F : T (�?; V )! T (C?; V ) given by(jxj)F = x (j?j)F = ?(j
(t)j)F = 
((jtj)F ) if 
 2 C (jf(t)j)F = ? if f 2 F1 Formally, (T 1(C?);v;?) is obtained from T (C?), whi
h is not even a 
po, as (iso-morphi
 to) its ideal 
ompletion (Id(T (C?));�; f?g) (see [21℄).



Proposition 1 (Redu
tion in
reases information). Let R be a TRS andt; s 2 T (�?; V ). If t!� s, then (jtj)F v (jsj)F .The fun
tion Rew : T (�?; V ) ! P(T (C?; V )) gives a representation Rew(t) =f(jsj)F j t!� sg of the rewriting spa
e of a given term t.Proposition 2. Let R be a 
on
uent TRS. For all t 2 T (�?; V ), Rew(t) is adire
ted set.The semanti
 fun
tion CRew1 : T (�?; V ) ! T 1(C?; V ) gives the meaning ofa term under evaluation by rewriting: CRew1(t) = FRew(t). Thus, CRew1(t)is the most de�ned (possibly in�nite) value whi
h 
an be obtained (or approx-imated) by issuing rewritings from t. Note that the use of in�nite terms in the
odomain of CRew1 is ne
essary for dealing with non-terminating programs.3.1 Narrowing as the Evaluation Me
hanismIn the 
ontext of a program, a term t with variables denotes a 
ontinuous fun
tiontD 2 [DV ! D℄ whi
h yields the evaluation of t under ea
h possible valuation2� 2 DV of its variables on a domain D. This is 
alled a non-ground value (ngv)in [18℄ and a derived operator in [8℄.Given domains D and E, the set [D ! E℄ of (stri
t) 
ontinuous fun
tionsfrom D to E (pointwise) ordered by f v g i� 8x 2 V; f(x) v g(x), is a domain[10, 21℄. For proving that [DV ! D℄ is a domain whenever D is, assume thatV 
ontains a distinguished (unused) variable ?. Thus, V supplied by the leastordering v su
h that ? v x and x v x for all x 2 V is a domain. The setDV�f?g of arbitrary valuations from V �f?g to D is isomorphi
 to the domain[V !? D℄ of 
ontinuous, stri
t valuations. We assume this fa
t from now on byremoving ? from V and 
onsidering that DV is a domain. Therefore, [DV ! D℄is a domain and, in parti
ular, [T 1(C?)V ! T 1(C?)℄ also is.Our synta
ti
 obje
ts, now, are substitution/term pairs h�; ti. We 
ouldna��vely extend (j j)F to deal with those pairs: (jh�; sij)F = h(j�j)F ; (jsj)F i where(j�j)F is a substitution given by (j�j)F (x) = (j�(x)j)F for all x 2 V . Unfortunately,the semanti
 progress of a narrowing evaluation might not be 
aptured by the
omputational ordering v (extended by (�; Æ) v (�0; Æ0) i� 8x 2 V:�(x) v �0(x)and Æ v Æ0) and su
h an extension of (j j)F .Example 1. Consider the TRS0+x ! x 0 � x ! trues(x)+y ! s(x+y) s(x) � s(y) ! x � yand the narrowing step h"; [x,x+y℄i ; hfx 7!0g; [0,y℄i ([�,�℄ denotes a 2-element list). We have (jh"; [x,x+y℄ij)F = h"; [x,?℄i and (jhfx 7!0g; [0,y℄ij)F =hfx 7!0g; [0,y℄i. Therefore, we do not get the desired in
reasing 
omputation,be
ause " 6v fx 7!0g and [x,?℄ 6v [0,y℄.2 By abuse, we say that the `domain' of a valuation � 2 DV is Dom(�) = fx 2V j �(x) 6= ?g.



The problem is that narrowing introdu
es a new 
omputational me
hanism forin
reasing the information asso
iated to a given term, i.e., instantiation of logi
variables. Thus, we introdu
e the observation mapping (j j)FL : T (�?; V ) !T (C?) whi
h interprets uninstantiated variables as least de�ned elements:(jxj)FL = ? (j?j)FL = ?(j
(t)j)FL = 
((jtj)FL) if 
 2 C (jf(t)j)FL = ? if f 2 FNote that (jtj)FL = ?Subst((jtj)F ) and (j�j)FL = ?Subst Æ (j�j)F .Example 2. Now, (jh"; [x,x+y℄ij)FL = h?Subst; [?,?℄i v hfx 7!0g; [0,?℄i =(jhfx 7!0g; [0,y℄ij)FL, i.e., (j j)FL satis�es the desired property.Narrowing 
omputations are 
ompatible with the new observation mapping.Proposition 3. LetR be a TRS. If h�; ti ;� h�0; si, then (jh�; tij)FL v (jh�0; sij)FL.3.2 The Narrowing Spa
e as an Approximable MappingAnalogously to Rew(t), we 
an build a semanti
 des
ription Narr(t) of thenarrowing evaluation of t. Nevertheless, sin
e Narr(t) is intended to be a rep-resentation of a ngv, i.e., a fun
tional value, we need to use the 
orrespondingstandard S
ott's 
onstru
tion of approximable mappings [20, 21℄.A pre
usl is a stru
ture P = (P;v;t;?) where v is a preorder, ? is adistinguished minimal element, and t is a partial binary operation on P su
hthat, for all a; b 2 P , a t b is de�ned if and only if fa; bg is 
onsistent in Pand then a t b is a (distinguished) supremum of a and b [21℄. Approximablemappings allow us to represent arbitrary 
ontinuous mappings between domainson the representations of those domains (their 
ompa
t elements) as relationsbetween approximations of a given argument and approximations of its value atthat argument [21℄.De�nition 1. [21℄ Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be pre
usl's. Arelation f � P � P 0 is an approximable mapping from P to P 0 if1. ? f ?0.2. a f b and a f b0 imply a f (b t b0).3. a f b, a v a0, and b0 v0 b imply a0 f b0.The ideal 
ompletion (Id(P );�; f?g) of a pre
usl is a domain (see [21℄). Anapproximable mapping de�nes a 
ontinuous fun
tion between Id(P ) and Id(P 0):f : Id(P )! Id(P 0) is given by f(I) = fb 2 P 0 j 9a 2 I with a f bg.Proposition 4. Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be pre
usl's, andf; f 0 � P � P 0 be approximable mappings from P to P 0. If f � f 0, then f v f 0.Given a term t, NDeriv(t) is the set of narrowing derivations issued from t. Weasso
iate an approximable mapping NarrA(t) to a given narrowing derivationA 2 NDeriv(t).



De�nition 2. Given a term t 2 T (�?; V ) and a narrowing derivationA : h"; ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniwe de�ne NarrA(t) = [0�i�nNarrAi (t) where:NarrAi (t) = fh&; Æi j 9� 2 T (C?)V :(j� Æ �ij)FL v & ^ Æ v (j�(ti)j)FLgProposition 5. Let R be a TRS, t be a term, and A be a narrowing derivationstarting from t. Then, NarrA(t) is an approximable mapping.De�nition 3. Given a term t 2 T (�?; V ), we de�ne the relation Narr(t) �T (C?)V � T (C?) to be Narr(t) = SA2NDeriv(t)NarrA(t).Unfortunately, these semanti
 de�nitions are not 
onsistent w.r.t. rewriting.Example 3. Consider the TRSf(f(x)) ! a
 ! band A : h"; ti = h"; f(x)i ; hfx 7! f(x')g; ai. If m = NarrA(t), then fx 7!agm a (we take � = ?Subst , � = fx 7! f(x')g in De�nition 2; hen
e, (j� Æ �j)FL =?Subst v fx 7! ag = &). Thus, NarrA(t)(fx 7! ag) = a. However, fx 7! ag(t) =f(a) 6!� a.The problem here is that (j j)FL identi�es (as ?) parts of the bindings �(x) of a
omputed substitution � whi
h 
an be semanti
ally re�ned by instantiation (ofthe variables in �(x)) and other whi
h 
annot be further re�ned by instantiation(the operation-rooted subterms in �(x)). If we deal with left-linear CB-TRS'sand 
hoose (idempotent) mgu's as uni�ers for the narrowing pro
ess, the sub-stitutions whi
h we deal with are linear 
onstru
tor substitutions, i.e., for allnarrowing derivations h"; ti ;� h�; si and all x 2 V , �(x) is a 
onstru
tor termand f�(x) j x 2 Dom(�)g is a linear set of terms (i.e., no variable appearstwi
e within them). Hen
e, the substitutions 
omputed by narrowing have nopartial information apart from the variable o

urren
es. In this 
ase, (j�j)F = �,(j�j)FL = ?Subst Æ (j�j)F = ?Subst Æ �, and we have the following result.Proposition 6. Let � be a linear 
onstru
tor substitution and �; & 2 T (C?)V .If � Æ � v &, then there exists �0 2 T (C?)V su
h that � v �0 and �0 Æ � = &.Thus, we obtain a simpler, more readable expression for the approximable map-ping whi
h is asso
iated to a given left-linear CB-TRS by noting thatNarrAi (t) = fh&; Æi j 9� 2 T (C?)V :(j� Æ �ij)FL v & ^ Æ v (j�(ti)j)FLg= fh&; Æi j 9� 2 T (C?)V :� Æ �i = & ^ Æ v (j�(ti)j)FLgThe union of approximable mappings (
onsidered as binary relations) need notto be an approximable mapping. Nevertheless, we have the following result.



Proposition 7. Let R be a left-linear, 
on
uent CB-TRS and t be a term. ThenNarr(t) is an approximable mapping.We de�ne the semanti
 fun
tion CNarr1 : T (�?; V )! [T 1(C?)V ! T 1(C?)℄as follows: CNarr1(t) = Narr(t), i.e., CNarr1(t) is the 
ontinuous mappingasso
iated to the approximable mappingNarr(t) whi
h represents the narrowingderivations starting from t. This semanti
s is 
onsistent w.r.t. rewriting.Theorem 1. Let R be a left-linear, 
on
uent CB-TRS. For all t 2 T (�?; V ),� 2 T (C?)V , CNarr1(t) � = CRew1(�(t)).Narrowing strategies. A narrowing strategy N is a restri
tion on the set ofpossible narrowing steps. Given a narrowing strategy N and a term t, we 
an
onsider the set NDerivN (t) � NDeriv(t) of derivations whi
h start from t and
onform to N . By Proposition 5, ea
h A 2 NDerivN (t) de�nes an approximablemapping NarrA(t) whi
h is obviously 
ontained in Narr(t). By Proposition 4,NarrA(t) v Narr(t) = CNarr1(t). Therefore, fNarrA(t) j A 2 NDerivN (t)gis bounded by CNarr1(t). Sin
e [T 1(C?)V ! T 1(C?)℄ is a domain, it is 
on-sistently 
omplete, i.e., the lub of every bounded subset a
tually exists (Theorem3.1.10 in [21℄). Thus, for left-linear CB-TRSs, we �xCNarr1N (t) =GfNarrA(t) j A 2 NDerivN (t)gto be the meaning of t when it is evaluated under the narrowing strategy N .Clearly, for all narrowing strategies N , CNarr1N v CNarr1. Thus, CNarr1provides a semanti
 referen
e for narrowing strategies. Strategies that satisfyCNarr1N = CNarr1 
an be thought of as 
orre
t strategies.Remark 1. Narrowing is able to yield the graph of a fun
tion f by 
omputingCNarr1(f(x)), where x1; : : : ; xar(f) are di�erent variables. This gives an in-teresting perspe
tive of narrowing as an operational me
hanism whi
h 
omputesdenotations of fun
tions as a whole, rather than only values of parti
ular fun
tion
alls. A similar observation 
an be made for narrowing strategies.3.3 Computational Interpretation of the Semanti
 Des
riptionsOur semanti
 des
riptions are intended to provide a 
lear 
omputational inter-pretation of the semanti
 information. This is essential for de�ning a

urateanalyses by using the semanti
 des
ription.Proposition 8. Let R be a 
on
uent TRS, t 2 T (�?; V ), and Æ = CRew1(t).If Æ 2 T (C; V ), then t!� Æ.Con
erning narrowing 
omputations, we have the following result.Proposition 9. Let R be a left-linear, 
on
uent CB-TRS. Let t be a term,& 2 T (C?)V , m = CNarr1(t), and Æ = m(&).



1. If Æ 2 T (C?), there exists a narrowing derivation h"; ti ;� h�; si su
h that� Æ � = & and Æ = (j�(s)j)FL.2. For every narrowing derivation h"; ti ;� h�; si su
h that � Æ � = &, it is(j�(s)j)FL v Æ.3. If Æ 2 T (C), then there exists a narrowing derivation h"; ti ;� h�; si su
hthat s 2 T (C; V ), � Æ � = &, and Æ = �(s).We are able to re�ne the 
omputational information 
ou
hed by the narrowingsemanti
s by introdu
ing a small modi�
ation on it.De�nition 4. Given a term t 2 T (�?; V ), and a narrowing derivationA : h"; ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniwe de�ne BNarrA(t) = [0�i�nBNarrAi (t) where:BNarrAi (t) = fh&; Æi j (j�ij)FL v & ^ Æ v (jtij)FLgProposition 10. Let R be a TRS, t be a term and A be a narrowing derivationstarting from t. Then BNarrA(t) is an approximable mapping.If we de�ne BNarr(t) = SA2NDeriv(t)BNarrA(t), we have the following result.Proposition 11. Let R be a left-linear, 
on
uent CB-TRS and t be a term.Then BNarr(t) is an approximable mapping.The basi
 des
ription BNarr1(t) = BNarr(t) is 
loser to the 
omputationalme
hanism of narrowing. The following proposition formalizes this 
laim.Proposition 12. Let R be a left-linear, 
on
uent CB-TRS, t be a term, & 2T (C?)V , m = BNarr1(t), and Æ = m(&).1. If Æ 2 T (C?), there exists a narrowing derivation h"; ti ;� h�; si su
h that� Æ � = & and Æ = (jsj)FL.2. For every narrowing derivation h"; ti ;� h�; si su
h that (j�j)FL v &, it is(jsj)FL v Æ.Proposition 13. Let R be a left-linear, 
on
uent CB-TRS, t be a term, andm = BNarr1(t). If h"; ti;� h�; Æi and Æ 2 T (C), then m((j�j)FL) = Æ.Sin
e ea
h BNarrAi (t) is a spe
ial 
ase of NarrAi (t), by Proposition 11 andProposition 4, BNarr1(t) v CNarr1(t).4 A Semanti
s-Based Analysis FrameworkDomain theory provides a framework for formulating properties of programs anddis
ussing about them [2, 20℄: A property � of a program P whose denotation[[P ℄℄ is taken from a domain D (i.e., [[P ℄℄ 2 D) 
an be identi�ed with a predi
ate� : D ! 2, where 2 is the two point domain 2 = f?;>g ordered by ? v >



(where ? 
an be thought of as false and > as true). A program P satis�es �if �([[P ℄℄) = > (alternatively, if [[P ℄℄ 2 ��1(>)). As usual in domain theory, werequire 
ontinuity of � for a
hieving 
omputability (or observability, see [22℄).The set [D ! 2℄ of observable properties is (isomorphi
 to) the family of opensets of the S
ott's topology asso
iated to D [2℄. A topology is a pair (X; �) whereX is a set and � � P(X) is a family of subsets of X (
alled the open sets) su
hthat [21℄: X;� 2 � ; if U; V 2 � , then U \ V 2 � ; and if Ui 2 � for i 2 I , thenSi2I Ui 2 � . The S
ott's topology asso
iated to a domain D is given by the setof upward 
losed subsets U � D su
h that, whenever A � D is dire
ted andFA 2 U , then 9x 2 A:x 2 U [21℄.The family � of open sets of a given topology (X; �) ordered by in
lusion is a
omplete latti
e. The top element of the latti
e is X . Note that, when 
onsideringthe S
ott's topology (D; �D) of a domain D, the open set D denotes a trivialproperty whi
h every program satis�es; �, the least element of latti
e �D, denotesthe `impossible' property, whi
h no program satis�es.4.1 Analysis of Fun
tional Logi
 ProgramsA program analysis 
onsists in the de�nition of a 
ontinuous fun
tion � : D !A between topologi
 spa
es (D; �D) and (A; �A) whi
h expresses 
on
rete andabstra
t properties, respe
tively. By the topologi
al de�nition of 
ontinuity, ea
hopen set V 2 �A maps to an open set U 2 �D via ��1, i.e., ��1 : �A ! �D is amapping from abstra
t properties (open sets of �A) to 
on
rete properties (opensets of �D). It is easy to see that (D; f��1(V ) j V 2 �Ag) is a subtopology of D(i.e., f��1(V ) j V 2 �Ag � �D). Therefore, ea
h analysis distinguishes a subsetof properties of D whi
h is itself a topology. For instan
e, the S
ott's topologyof 2 is given by �2 = f�; f>g;2g. Su
h a topology permits to express only onenon-trivial property, namely, the one whi
h 
orresponds to the open set f>g.In fun
tional logi
 languages, the semanti
 domain under observation is[DV ! D℄. Observable properties of fun
tional logi
 programs are open setsof its S
ott's topology. Approximations to su
h properties 
an be obtained byabstra
ting [DV ! D℄ into a suitable abstra
t domain (see below).Every 
ontinuous fun
tion f : D ! E maps observable properties of the
odomain E into observable properties of D (by f�1 : �E ! �D). In parti
u-lar, elements of [DV ! D℄, i.e., denotations of fun
tional logi
 programs, mapproperties of D (we 
all them `fun
tional' properties) into properties of DV (`lo-gi
' properties). This provides an additional, interesting analyti
 perspe
tive:By rephrasing Dybjer [7℄, we 
an 
omputationally interpret this 
orresponden
eas establishing the extent that a `logi
 property' (
on
erning valuations) needsto be ensured to guarantee a property of its fun
tional part (
omputed value).There is a simple way to obtain an abstra
tion of the logi
 part DV of [DV ! D℄from an abstra
tion of its fun
tional part D.De�nition 5. Let D;V;A be sets. Let �F : D ! A be a mapping. Then, �L :DV ! AV given by �L(�) = �F Æ�, for all � 2 DV , is 
alled the logi
 abstra
tionindu
ed by �F .



If �F : D ! A is stri
t (surje
tive, 
ontinuous), then �L is stri
t (surje
tive,
ontinuous). Whenever �F is a 
ontinuous mapping from a domain D to 2, �Fexpresses, in fa
t, a single observable property ��1(f>g) of D. We 
an thoughtof �F as a fun
tional property. Thus, De�nition 5 asso
iates an abstra
tion �L ofDV to a given property identi�ed by �F . Thus, ea
h fun
tional property indu
esa related set of logi
 properties whi
h is a subtopology of �DV . In Se
tion 4.3 weshow that groundness (a logi
 property), is indu
ed by the fun
tional propertyof termination.4.2 Approximation of Fun
tionsAbstra
tions �D : D ! A and �E : E ! B (A and B being algebrai
 latti
es),indu
e safety and liveness abstra
tions �SD!E ; �LD!E : (D ! E)! (A! B), of
ontinuous mappings by [1℄�SD!E(f)(d) = tf(�E Æ f)(d0) j �D(d0) v dg; and�LD!E(f)(d) = uf(�E Æ f)(d0) j �D(d0) w dgwhere the following 
orre
tness result holds:Theorem 2 (The semi-homomorphism property [1℄). Let f : D ! E,fS = �SD!E(f), and fL = �LD!E(f). Then, fL Æ �D v �E Æ f v fS Æ �D.Consider an abstra
tion �E : E ! 2 whi
h 
an be thought of as a property ofelements of the 
odomain E of f : D ! E. For analyti
 purposes, the 
orre
tness
ondition fS Æ �D w �E Æ f ensures that, for all x 2 D, whenever the abstra
t
omputation fS(�D(x)) yields ?, the 
on
rete 
omputation f(x) does not sat-isfy the property �E , i.e., �E(f(x)) = ?. On the other hand, the 
orre
tness
ondition fL Æ �D v �E Æ f ensures that, whenever fL(�D(x)) yields >, the
on
rete 
omputation f(x) a
tually satis�es �E , i.e., �E(f(x)) = >. We use this
omputational interpretation later.4.3 Termination Analysis and Groundness AnalysisThe fun
tional stru
ture of the semanti
 domain of ngv's reveals 
onne
tionsbetween apparently unrelated analyses. Consider ht : T 1(C?)! 2 de�ned byht(Æ) = �> if Æ 2 T (C)? otherwiseand let hg : T 1(C?)V ! 2V be the logi
 abstra
tion indu
ed by ht. Note thatboth ht and hg are stri
t and 
ontinuous. Abstra
tions ht and hg express theobservable properties of termination and groundness, respe
tively: Re
all thatthe only nontrivial open set of the S
ott's topology of 2 is f>g. By 
ontinuityof ht, h�1t (f>g) is the (open) set of �nite, totally de�ned values whi
h a
tually




orresponds to terminating su

essful evaluations3. On the other hand, ea
hopen set of 2V is (isomorphi
 to) an upward 
losed 
olle
tion of sets of variablesordered by in
lusion. In this 
ase, h�1g (F ) for a given open set F is a set ofsubstitutions whose bindings for variables belonging to X 2 F are ground. Thisformally relates groundness and termination: groundness is the `logi
' propertywhi
h 
orresponds to the `fun
tional' property of termination. In fa
t, 2V is thestandard abstra
t domain for groundness analysis in logi
 programming.4.4 Using Semanti
 Information for Improving the EvaluationGroundness information 
an be used to improve the narrowing evaluation of aterm t = C[t1; : : : ; tn℄: if we know that every su

essful evaluation of ti groundsthe variables of tj , for some 1 � i; j � n, i 6= j, then it is sensible to evaluatet by �rst narrowing ti (up to a value) and next evaluating t0j (i.e., tj afterinstantiating its variables using the bindings 
reated by the evaluation of ti) byrewriting be
ause, after evaluating ti, we know that t0j is ground and we do notneed to provide 
ode for uni�
ation, instantiation of other variables, et
.Example 4. Consider the following TRS:0+x ! x if(true,x,y) ! xs(x)+y ! s(x+y) if(false,x,y) ! yeven(0) ! true even(s(s(x))) ! even(x)even(s(0)) ! falseFor an initial (
onditional) expression \if even(x) then x+x else s(x+x)"(we use the more familiar notation if then else for if expressions), it is 
learthat x be
omes ground after every su

essful narrowing evaluation of the 
ondi-tion even(x). Thus, we 
an evaluate x+x by rewriting instead of narrowing.Additionally, we need to ensure that the evaluation of ti is safe under the 
ontextC (i.e., that failing evaluations of ti do not prevent the evaluation of t). Eventu-ally, we should also ensure that the 
omplete evaluation of t0j is safe. Stri
tnessinformation 
an be helpful here: if the (normalizing) narrowing strategy is notable to obtain any value, this means that the whole expression does not have avalue. However, we should only use non-
ontextual stri
tness analyses (like My-
roft's [17℄ is). In this way, we ensure that the stri
t 
hara
ter of an argumentis not altered after a possible instantiation of its surrounding 
ontext.In order to ensure that every su

essful narrowing derivation grounds a givenvariable x 2 Var(t), we use the safety abstra
tion mS 2 2V ! 2 of m =BNarr1(t) (based on ht and hg).3 ht and My
roft's abstra
tion: halt(d) = �> if d 6= ?? if d = ? for termination analysis [17℄are similar. However, halt only expresses termination if C only 
ontains 
onstantsymbols. It is easy to see that, in this 
ase, ht = halt.



Example 5. (Continuing Example 4) For t = even(x), we have:BNarr1(t) = f fx 7! ?g 7! ?; fx 7! 0g 7! true;fx 7! s(?)g 7! ?; fx 7! s(0)g 7! false;fx 7! s(s(?))g 7! ?; fx 7! s(s(0))g 7! true; : : : gIn general, if we 
an prove that, for all abstra
t substitutions �# 2 2V with�#(x) = ?, it is mS(�#) = ?, then we 
an ensure that x is grounded in everysu

essful derivation from t. To see this point, 
onsider a su

essful derivationh"; ti ;� h�; Æi su
h that Æ 2 T (C) and �(x) 62 T (C), i.e., x is not grounded.By Proposition 13, m((j�j)FL) = Æ. By de�nition of mS , mS(hg((j�j)FL)) = >.Sin
e (j�j)FL(x) 62 T (C), we have hg((j�j)FL)(x) = ht((j�j)FL(x)) = ?, thus
ontradi
ting (a 
ase of) our initial assumption, mS(hg((j�j)FL)) = ?.Example 6. (Continuing Example 5) For t = even(x), we have mS = ffx 7!?g 7! ?; fx 7! >g 7! >g. Thus, x is grounded in every su

essful derivation ofeven(x).The previous 
onsiderations make 
lear that the semanti
 dependen
y expressedby the ngv's has the 
orresponding translation for the analysis questions.5 Related Work and Con
luding RemarksThe idea of giving denotational des
riptions of di�erent operational frameworksis not new. For instan
e, [5℄ assigns di�erent �xpoint semanti
s for a programunder either 
all-by-name or 
all-by-value strategies. This shows that, in somesense, the semanti
 des
riptions also (silently) assume some underlying opera-tional approa
h (usually, 
all-by-name like).In [18℄, the notion of ngv as the semanti
 obje
t that a narrowing 
omputationshould 
ompute was already introdu
ed. It was also noted that narrowing only
omputes a representation of the obje
t, not the obje
t itself. However, it wasnot 
learly explained how this 
onne
tion 
an be done.In [16℄, domains are used to give semanti
s to the fun
tional logi
 languageBABEL. However, the style of the presentation is model-theoreti
: all symbolstake meaning from a given interpretation and the 
onne
tion between the de-
larative and operational semanti
s (lazy narrowing) are given by means of theusual 
ompleteness/
orre
tness results. The semanti
 domain is di�erent fromours be
ause valuations are just a parameter of the semanti
 fun
tions ratherthan a 
omponent of the domain. Thus, the Herbrand domain T 1(C?) is thesemanti
 domain in [16℄.The semanti
 approa
h in [9℄ is mu
h more general than [16℄ (
overing non-deterministi
 
omputations), but the style of the presentation is model-theoreti
too. The basi
 semanti
 domain is also di�erent from ours: no fun
tional do-main for denotations is used and, in fa
t, bounded 
ompleteness, whi
h is essen-tial in our setting to deal with the fun
tional 
onstru
tion and with narrowingstrategies, is not required in [9℄.



In [23℄, a denotational des
ription of a parti
ular narrowing strategy (theneeded narrowing strategy [4℄) is given. The semanti
s is ni
ely applied to de-mandedness analysis but nothing has been said about how to use it for moregeneral analysis problems. This question is important sin
e the notion of deman-dedness pattern is essential for the de�nition of the semanti
s itself.We have presented a domain-theoreti
 approa
h for des
ribing the semanti
sof integrated fun
tional logi
 languages based on narrowing. Our semanti
s isparameterized by the narrowing strategy whi
h is used by the language. Thesemanti
s is not `model-theoreti
' in the sense that we let within the operationalme
hanism (the narrowing strategy) to establish the `real' meaning of the fun
-tions de�ned by the program rules. In this way, we are able to in
lude more op-erational information into the semanti
 des
ription. As far as we know, previousworks have not expli
itly 
onsidered di�erent arbitrary strategies for parameter-izing the semanti
s of fun
tional logi
 languages, that is, the operational-orienteddenotational des
ription formalized in this work is novel in the literature of thearea.Another interesting point of our work is its appli
ability to the analysis offun
tional logi
 programs. Sin
e we use a fun
tional domain (the domain of non-ground-values), we are able to asso
iate a denotation to a term with variables.Thus, narrowing is reformulated as an evaluation me
hanism whi
h 
omputesthe denotation of the input expression. This was already suggested by Reddy[18℄ but it is only formally established in this paper by using approximablemappings. Thanks to this perspe
tive, we 
an easily use the standard frame-works for program analysis based on the denotational des
ription of programs.In other words, the approximation of the domain of non-ground values enablesthe analysis of fun
tional logi
 programs. Our des
ription also reveals unexplored
onne
tions between purely fun
tional and logi
 properties. These 
onne
tionssuggest that, within the fun
tional logi
 setting, we have as
ertained a kind of`duality' between purely fun
tional and purely logi
 properties. As far as weknow, this had not been established before.Future work in
ludes a more detailed study about how to use this semanti
sto develop pra
ti
al methods for the analysis of fun
tional logi
 programs. An-other interesting task is to extend this semanti
s to more general 
omputationmodels for de
larative languages [12℄.Referen
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