
Electronic Notes in Theoretical Computer Science 76 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume76.html 19 pages

Operational Semantics for
Functional Logic Languages ?

Elvira Albert1 Michael Hanus2 Frank Huch2

Javier Oliver3 Germán Vidal3

1 DSIP, UCM, Avda. Complutense s/n, E-28040 Madrid, Spain
elvira@fdi.ucm.es

2 Institut für Informatik, CAU Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
{mh,fhu}@informatik.uni-kiel.de

3 DSIC, UPV, Camino de Vera s/n, E-46022 Valencia, Spain
{fjoliver,gvidal}@dsic.upv.es

Abstract

In this work we provide a semantic description of functional logic languages covering
notions like laziness, sharing, and non-determinism. Such a semantic description is
essential, for instance, to have appropriate language definitions in order to reason
about programs and check the correctness of implementations. First, we define
a “big-step” semantics in natural style to relate expressions and their evaluated
results. Since this semantics is not sufficient to reason about the operational aspects
of programs, we also define a “small-step” operational semantics covering the main
features of functional logic languages. Finally, we demonstrate the equivalence of
the “small-step” semantics and the natural semantics.

1 Introduction

This work is motivated by the fact that there does not exist a precise definition
of an operational semantics covering all aspects of modern functional logic
languages, like laziness and pattern-matching, sharing, logical variables, and
non-determinism. For instance, the report on the multi-paradigm language
Curry [14] contains a fairly precise operational semantics but covers sharing
only informally. The operational semantics of the functional logic language
Toy [18] is based on narrowing and sharing but the formal definition is based

? This work has been partially supported by CICYT TIC 2001-2705-C03-01, by Acción
Integrada Hispano-Alemana HA2001-0059, by Acc. Int. Hispano-Austriaca HU2001-0019,
by Acc. Int. Hispano-Italiana HI2000-0161, and by the DFG under grant Ha 2457/1-2.

c©2002 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume76.html
mailto:elvira@fdi.ucm.es
mailto:mh@informatik.uni-kiel.de
mailto:fhu@informatik.uni-kiel.de
mailto:fjoliver@dsic.upv.es
mailto:gvidal@dsic.upv.es

Albert, Hanus, Huch, Oliver, Vidal

on a narrowing calculus [10] which does not include a particular pattern-
matching strategy. However, the latter becomes important, e.g., if one wants
to reason about costs of computations (see [4] for a discussion about narrowing
strategies and calculi).

In order to define an appropriate basis for reasoning about programs, cor-
rectness of implementations, optimizations, or costs of computations, we pro-
vide a semantic description covering the important aspects of current func-
tional logic languages. For this purpose, we proceed in two steps. First,
we introduce a natural semantics which defines the intended results by re-
lating expressions to values. This “big-step” semantics accurately models
sharing which is important not only to reason about the space behavior of
programs (as in [17]) but also for the correctness of computed results in the
presence of non-confluent function definitions [10]. Then, we provide a more
implementation-oriented semantics based on the definition of individual com-
putation steps. This final semantics is the formal reference to reason about
operational aspects of programs (e.g., to develop appropriate debugging tools).
It is also a basis to provide a comprehensive definition of Curry (in contrast
to [12,14] which contain only partial definitions). Moreover, one can use it to
prove the correctness of implementations by further refinements, as done in
[20].

This work is organized as follows. In the next section we introduce some
foundations for understanding the subsequent development. Section 3 intro-
duces a semantics for functional logic programs in natural style. This is refined
in Section 4 to a semantics describing individual execution steps and the equiv-
alence between both semantics is proven. Section 5 includes a comparison to
related work. Finally, Section 6 concludes and points out several directions
for further research.

2 Foundations

In this section, we describe the kernel of a modern functional logic language
whose execution model combines lazy evaluation with non-determinism and
residuation. This model has been introduced in [12] without formalizing the
sharing of common subterms. The accurate definition of the latter aspect is
the purpose of the subsequent sections.

In this context, a program is a set of function definitions, where each
function is defined by rules describing different cases for input arguments. For
instance, the conjunction on Boolean values (True, False) can be defined by
the following rules:

and True x = x

and False x = False

(data constructors usually start with upper case letters and function appli-
cation is denoted by juxtaposition). There are no limitations w.r.t. over-

2

Albert, Hanus, Huch, Oliver, Vidal

lapping rules; in particular, one can also have non-confluent rules to define
functions that yield more than one result for a given input (these are called
non-deterministic or set-valued functions). For instance, the following func-
tion “choose” non-deterministically returns one of its two arguments:

choose x y = x

choose x y = y

A subtle question is the meaning of nested applications containing such func-
tions, e.g., the set of possible values of “double (choose 1 2)” w.r.t. the def-
inition “double x = x + x.” Similarly to [10], we follow the “call-time choice”
semantics where all descendants of a subterm are reduced to the same value
in a derivation, i.e., the previous expression reduces non-deterministically to
one of the values 2 or 4 (but not to 3). This choice is consistent with a
lazy evaluation strategy where all descendants of a subterm are shared [17].
The goal of this work is to describe the combination of laziness, sharing, and
non-determinism in a precise and understandable manner.

In order to provide an understandable operational description, we assume
that source programs are translated into a “flat” form, which is a convenient
standard representation for functional logic programs. The main advantage
of the flat form is the explicit representation of the pattern matching strategy
by the use of case expressions which is important for the operational reading.
Moreover, source programs can easily be translated into this flat form [13].
The syntax for flat programs is as follows:

P ::= D1 . . . Dm

D ::= f(x1, . . . , xn) = e

e ::= x (variable)

| c(e1, . . . , en) (constructor call)

| f(e1, . . . , en) (function call)

| case e of {p1 → e1; . . . ; pn → en} (rigid case)

| fcase e of {p1 → e1; . . . ; pn → en} (flexible case)

| e1 or e2 (disjunction)

| let x1 = e1, . . . , xn = en in e (let binding)

p ::= c(x1, . . . , xn)

where P denotes a program, D a function definition, p a pattern and e ∈
Exp an arbitrary expression. A program P consists of a sequence of func-
tion definitions D such that the left-hand side has pairwise different variable
arguments. The right-hand side is an expression e composed by variables
Var = {x, y, z, . . .}, data constructors (e.g., a, b, c,. . .), function calls (e.g.,

3

Albert, Hanus, Huch, Oliver, Vidal

f , g, h,. . .), case expressions, disjunctions (e.g., to represent set-valued func-
tions), and let bindings where the local variables x1, . . . , xn are only visible in
e1, . . . , en, e. A case expression has the form: 1

(f)case e of {c1(xn1
)→ e1; . . . ; ck(xnk

)→ ek}

where e is an expression, c1, . . . , ck are different constructors, and e1, . . . , ek

are expressions. The pattern variables xni
are locally introduced and bind

the corresponding variables of the subexpression ei. The difference between
case and fcase only shows up when the argument e is a free variable: case
suspends whereas fcase nondeterministically binds this variable to the pat-
tern in a branch of the case expression and proceeds with the appropriate
branch. Let bindings are in principle not required for translating source pro-
grams but they are convenient to express sharing without the use of complex
graph structures (like, e.g., [9,11]). Operationally, let bindings introduce new
structures in memory that are updated after evaluation, which is essential for
lazy computations.

As an example of the flat representation, we show the translation of func-
tions “and” and “choose” into flat form:

and(x, y) = case x of { True→ y; False→ False }

choose(x, y) = x or y

Laziness (or neededness) of computations will show up in the description of
the behavior of function calls and case expressions. In a function call, param-
eters are not evaluated but directly passed to the body of the function. In a
case expression, the form of the outermost symbol of the case argument is re-
quired; therefore, the case argument should be evaluated to head normal form
(i.e., a variable or an expression with a constructor at the outermost position).
Consequently, our operational semantics will describe the evaluation of expres-
sions only to head normal form. This is not a restriction since the evaluation
to normal form or the solving of equations can be reduced to head normal
form computations (see [13]). Similarly, the higher-order features of current
functional languages can be reduced to first-order definitions by introducing
an auxiliary “apply” function [22]. Therefore, we base the definition of our
operational semantics on the flat form described above. This is also consistent
with current implementations which use the same intermediate language [5].
Indeed, the flat representation for programs constitutes the kernel of modern
declarative multi-paradigm languages like Curry [12,14] or Toy [18].

Extra variables are those variables in a rule which do not occur in the left-
hand side. Such extra variables are intended to be instantiated by constraints
in conditions or right-hand sides. For instance, they are usually introduced in
Curry programs by a declaration of the form:

let x free in ...

1 We write on for the sequence of objects o1, . . . , on and (f)case for either fcase or case.

4

Albert, Hanus, Huch, Oliver, Vidal

As Antoy [4] pointed out, the use of extra variables in a functional logic
language causes no conceptual problem if these extra variables are renamed
whenever a rule is applied. We will model this renaming similar to the re-
naming of local variables in let bindings. For this purpose, we assume that
all extra variables x are explicitly introduced in flat programs by a direct
circular let binding of the form let x = x in e. Throughout this paper, we
call such variables which are bound to themselves logical variables. For in-
stance, an expression x + y with logical variables x and y is represented as
let x = x, y = y in x + y. Our representation of logical variables does not
exclude the use of other circular data structures, as in let x = 1 : x in . . . It
is interesting to note that circular bindings are also used in implementations
of Prolog to represent logical variables [23].

3 A Natural Semantics for Functional Logic Programs

In this section, we introduce a natural (big-step) semantics for functional logic
programs which is in the midway between a (simple) denotational semantics
and a (complex) operational semantics for a concrete abstract machine. Our
semantics is non-deterministic and accurately models sharing. This is achieved
by using the let construct, which can be thought of as a naming of subcom-
putations that are only evaluated when required. Let us illustrate the effect
of sharing by means of an example.

Example 3.1 Consider the following flat program:

foo(x) = addB(x, x)

bit = 0 or 1

addB(x, y) = case x of {0→ y; 1→ case y of {0→ 1; 1→ BO}}

In a sharing-based implementation, the computation of “foo(e)” must evalu-
ate the expression e only once. Therefore, the evaluation of the goal “foo(bit)”
must return either 0 or BO (binary overflow). Note that, without sharing, the
results would be 0, 1, or BO.

The definition of our semantics mainly follows the natural semantics defined
by Launchbury [17] for the lazy evaluation of functional programs. In this
(higher-order) functional semantics, the let construct is used for the creation
and sharing of closures (i.e., functional objects created as the value of lambda
expressions). The key idea in Launchbury’s natural semantics is to describe
the semantics in two stages: a “normalization” process—which consists in con-
verting the λ-calculus into a form where the creation and sharing of closures
is made explicit—followed by the definition of a simple semantics at the level
of closures. Similarly, we also describe our (first-order) semantics for func-
tional logic programs in two separated phases. In the first phase, we apply
a normalization process in order to ensure that the arguments of functions
and constructors are always variables. These variables will be interpreted as

5

Albert, Hanus, Huch, Oliver, Vidal

references to express sharing and need not be pairwise different.

Definition 3.2 (normalization) The normalization of an expression e flat-
tens all the arguments of function (or constructor) calls by means of the map-
ping e∗, which is defined inductively as follows:

x∗ = x

ϕ(x1, . . . , xn)
∗ = ϕ(x1, . . . , xn)

ϕ(x1, . . . , xi−1, ei, ei+1, . . . , en)
∗ = let xi = e∗i in ϕ(x1, . . . , xi−1, xi, ei+1, . . . , en)

∗

where ei is not a variable and xi is fresh

(let {xk = ek} in e)∗ = let {xk = ek
∗} in e∗

(e1 or e2)
∗ = e1

∗ or e2
∗

((f)case e of {pk → ek})
∗ = (f)case e∗ of {pk 7→ ek

∗}

Here, ϕ denotes either a constructor or a function symbol. The extension of
this normalization process to programs is straightforward.

Normalization introduces one new let construct for each non-variable argu-
ment. Trivially, this could be modified in order to produce one single let with
the bindings for all non-variable arguments of a function (or constructor) call,
which we assume for the subsequent examples. In contrast to [17], our nor-
malization process does not need to perform “α-conversion” (i.e., a renaming
of bound variables in e using completely fresh variables) since our natural se-
mantics already introduces fresh variable names for all bound variables in e,
as we will explain in subsequent paragraphs.

For the definition of our semantics, we consider that both the program
and the expression to be evaluated have been previously normalized as in
Definition 3.2.

Example 3.3 Consider again the program and goal of Example 3.1. Their
normalization returns the program unchanged and the following goal:

let x1 = bit in foo(x1)

The state transition semantics is defined in Figure 1. Our rules obey the
following naming conventions:

Γ,∆,Θ ∈ Heap = Var → Exp v ∈ Value ::= x | c(en)

A heap is a partial mapping from variables to expressions (the empty heap is
denoted by []). The value associated to variable x in heap Γ is denoted by
Γ[x]. Γ[x 7→ e] denotes a heap with Γ[x] = e, i.e., we use this notation either
as a condition on a heap Γ or as a modification of Γ. In a heap Γ, a logical
variable x is represented by a circular binding of the form Γ[x] = x, i.e., x
is not instantiated w.r.t. Γ. A value is a constructor-rooted term or a logical
variable (w.r.t. the associated heap).

6

Albert, Hanus, Huch, Oliver, Vidal

(VarCons) Γ[x 7→ t] : x ⇓ Γ[x 7→ t] : t where t is constructor-rooted

(VarExp)
Γ[x 7→ e] : e ⇓ ∆ : v

Γ[x 7→ e] : x ⇓ ∆[x 7→ v] : v
where e is not constructor-rooted

and e 6= x

(Val) Γ : v ⇓ Γ : v where v is constructor-rooted
or a variable with Γ[v] = v

(Fun)
Γ : ρ(e) ⇓ ∆ : v

Γ : f(xn) ⇓ ∆ : v
where f(yn) = e ∈ P and ρ = {yn 7→ xn}

(Let)
Γ[yk 7→ ρ(ek)] : ρ(e) ⇓ ∆ : v

Γ : let {xk = ek} in e ⇓ ∆ : v
where ρ = {xk 7→ yk}

and yk are fresh variables

(Or)
Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v
where i ∈ {1, 2}

(Select)
Γ : e ⇓ ∆ : c(yn) ∆ : ρ(ei) ⇓ Θ : v

Γ : (f)case e of {pk → ek} ⇓ Θ : v
where pi = c(xn)

and ρ = {xn 7→ yn}

(Guess)
Γ : e ⇓ ∆ : x ∆[x 7→ ρ(pi), yn 7→ yn] : ρ(ei) ⇓ Θ : v

Γ : fcase e of {pk → ek} ⇓ Θ : v

where pi = c(xn), ρ = {xn 7→ yn}, and yn are fresh variables

Fig. 1. Natural Semantics for Functional Logic Programs

We use judgements of the form “Γ : e ⇓ ∆ : v”, which should be
interpreted as “the expression e in the context of the heap Γ evaluates to
the value v with the (possibly modified) heap ∆”. Let us briefly explain the
rules of our semantics:

(VarCons). In order to evaluate a variable which is bound to a constructor-
rooted term in the heap, we simply reduce the variable to this term. The
heap remains unchanged.

(VarExp). This rule achieves the effect of sharing. If the variable to be evalu-
ated is bound to some expression in the heap, then the expression is eval-
uated and the heap is updated with the computed value; finally, we return
this value as the result. In contrast to [17], we do not remove the bind-
ing for the variable from the heap; this becomes useful to generate fresh
variable names easily. [20] solves this problem by introducing a variant of
Launchbury’s relation which is labeled with the names of the already used
variables. The only disadvantage of our approach is that black holes (a
detectably self-dependent infinite loop) are not detected at the semantical
level. However, this does not affect the natural semantics since black holes
have no value.

7

Albert, Hanus, Huch, Oliver, Vidal

(Val). For the evaluation of a value, we return it without modifying the heap.

(Fun). This rule corresponds to the unfolding of a function call. The result
is obtained by reducing the right-hand side of the corresponding rule. We
assume that the considered program P is a global parameter of the calculus.

(Let). In order to reduce a let construct, we add the bindings to the heap
and proceed with the evaluation of the main argument of let. Note that we
rename the variables introduced by the let construct with fresh names in
order to avoid variable name clashes.

(Or). This rule non-deterministically evaluates an or expression by either eval-
uating the first argument or the second argument.

(Select). This rule corresponds to the evaluation of a case expression whose
argument reduces to a constructor-rooted term. In this case, we select the
appropriate branch and, then, proceed with the evaluation of the expression
in this branch by applying the corresponding matching substitution.

(Guess). This rule corresponds to the evaluation of a flexible case expression
whose argument reduces to a logical variable. It non-deterministically binds
this variable to one of the patterns and proceeds with the evaluation of the
corresponding branch. Renaming of pattern variables is also necessary in
order to avoid variable name clashes. Additionally, we update the heap with
the (renamed) logical variables of the pattern.

A proof of a judgement corresponds to a derivation sequence using the rules
of Figure 1. Given a normalized program P and a normalized expression e

(to be evaluated), the initial configuration has the form “[] : e.” We say that a
derivation is successful if it computes a value. The computed answer can be
extracted from Γ by a simple process of dereferencing in order to obtain the
values associated to the logical variables in the initial expression e. If we try
to construct a proof, then this may fail because of two different situations:
there may be no finite proof that a reduction is valid—which corresponds to
an infinite loop—or there may be no rule which applies in a (sub-part) of the
proof. In the latter case, we have two possibilities: either rule Select is not
applicable because there is no matching branch or rule Guess cannot be applied
because a logical variable has been obtained as the argument of a rigid case
expression. The natural semantics of Figure 1 does not distinguish between
all the above failures. However, they will become observable in the small-step
operational semantics.

Figure 2 illustrates the sharing behavior of the semantic description with
one of the possible (non-deterministic) derivations for the program and ex-
pression of Example 3.3. Note that the heap in the final configuration, [x2 7→
1] : BO, does not contain bindings for the variable x1 of the initial expression
(due to the renaming of local variables in let expressions). This corresponds
to the fact that the computed answer is the empty substitution.

8

Albert, Hanus, Huch, Oliver, Vidal

[x2 7→ bit] : 1 ⇓ [x2 7→ bit] : 1
Val

[x2 7→ bit] : 0 or 1 ⇓ [x2 7→ bit] : 1
Or

[x2 7→ bit] : bit ⇓ [x2 7→ bit] : 1
Fun

[x2 7→ bit] : x2 ⇓ [x2 7→ 1] : 1
VarExp sub-proof

[x2 7→ bit] : case x2 of {0→ 0; 1→ case x2 . . .} ⇓ [x2 7→ 1] : BO
[x2 7→ bit] : addB(x2,x2) ⇓ [x2 7→ 1] : BO
[x2 7→ bit] : foo(x2) ⇓ [x2 7→ 1] : BO

[] : let x1 = bit in foo(x1) ⇓ [x2 7→ 1] : BO
Let

Fun
Fun

Select

where sub-proof has the following form:

[x2 7→ 1] : x2 ⇓ [x2 7→ 1] : 1
VarCons

[x2 7→ 1] : BO ⇓ [x2 7→ 1] : BO
Val

[x2 7→ 1] : case x2 of {0→ 1; 1→ BO} ⇓ [x2 7→ 1] : BO
Select

Fig. 2. Big-Step Semantics of Example 3.3

The following result states that our natural semantics only computes val-
ues.

Lemma 3.4 If Γ : e ⇓ ∆ : v, then either v is rooted by a constructor symbol
or it is a logical variable in ∆ (i.e., ∆[v] = v).

Proof. It is an easy consequence of the fact that the non-recursive rules of the
natural semantics (i.e., VarCons and Val) can only return a constructor-rooted
term or a logical variable w.r.t. the associated heap. 2

4 A Small-Step Semantics

From an operational point of view, an evaluation in the natural semantics
builds a proof for “[] : e0 ⇓ Γ : e1” in a bottom-up manner, whereas a
computation by using a small-step semantics builds a sequence of states [20].
In order to transform a natural (big-step) semantics into a small-step one,
we need to represent the context of sub-proofs in the big-step semantics. For
instance, when applying rule VarExp, a sub-proof for the premise is built. The
context (i.e., the rule) indicates that we must update the heap ∆ at x with the
computed value v for the expression e. This context must be made explicit in
the small-step semantics. Similarly to [20], the context is extensible (i.e., if P ′

is a sub-proof of P , then the context of P ′ is an extension of the context of
P). Thus, the representation of the context is made by a stack.

A configuration “Γ : e” of the big-step semantics consists of a heap Γ and
an expression e to be evaluated. Now, a state (or goal) of the small-step
semantics is a triple (Γ, e, S), where Γ is the current heap, e is the expression
to be evaluated (often called the control of the small-step semantics), and S

is the stack which represents the current context. Goal denotes the domain

9

Albert, Hanus, Huch, Oliver, Vidal

Heap × Control × Stack .

The complete small-step semantics is presented in Figure 3. Let us briefly
describe the transition rules:

• Rule varcons is perfectly analogous to rule VarCons in the natural semantics.

• In rule varexp, the evaluation of a variable x which is bound to an expression
e (which is not a value) proceeds by evaluating e and adding to the stack
the reference to variable x. Here, the stack S is a list (the empty stack is
denoted by []). If a value v is eventually computed and there is a variable
x on top of the stack, rule val updates the heap with x 7→ v. In the big-step
semantics, this situation corresponds to the application of rule VarExp.

• Rules fun, let and or are quite similar to their counterparts in the natural
semantics.

• Rule case initiates the evaluation of a case expression by evaluating the case
argument and pushing the alternatives (f){pk → ek} on top of the stack.
If we reach a constructor-rooted term, then rule select is used to select
the appropriate branch and continue with the evaluation of this branch. If
we reach a logical variable, then rule guess is used to non-deterministically
choose one alternative and continue with the evaluation of this branch;
moreover, the heap is updated with the binding of the logical variable to
the corresponding pattern.

In order to evaluate an expression e, we construct an initial goal of the form
([], e, []) and apply the rules of Figure 3. We denote by =⇒∗ the reflexive and
transitive closure of =⇒. A derivation ([], e, []) =⇒∗ (Γ, e′, S) is successful
if e′ is in head normal form (i.e., the computed value) and S is the empty
stack. Similarly to the big-step semantics, the computed answer can easily
be extracted from Γ by dereferencing the variables of the initial goal. The
equivalence of the small-step semantics and the natural semantics is stated in
the following theorem.

Theorem 4.1 ([], e, []) =⇒∗ (∆, v, []) if and only if [] : e ⇓ ∆ : v.

In order to prove this theorem, we first need some auxiliary results. Our proof
technique is an extension of the proof scheme in [20].

The following lemma shows that our small-step semantics can simulate
derivations by the natural semantics.

Lemma 4.2 (completeness) If Γ : e ⇓ ∆ : v then (Γ, e, S) =⇒∗ (∆, v, S).

Proof. We prove it by induction on the structure of the derivation Γ : e ⇓ ∆ :
v. We distinguish the following cases:

(VarCons). Then, Γ[x 7→ t] : x ⇓ Γ[x 7→ t] : t. Trivially,

(Γ[x 7→ t], x, S) =⇒ (Γ[x 7→ t], t, S) (by rule varcons)

(VarExp). We have Γ[x 7→ e] : x ⇓ ∆[x 7→ v] : v. Then, the following

10

Albert, Hanus, Huch, Oliver, Vidal

Rule Heap Control Stack

varcons Γ[x 7→ t] x S

=⇒ Γ[x 7→ t] t S

varexp Γ[x 7→ e] x S

=⇒ Γ[x 7→ e] e x : S

val Γ v x : S

=⇒ Γ[x 7→ v] v S

fun Γ f(xn) S

=⇒ Γ ρ(e) S

let Γ let {xk = ek} in e S

=⇒ Γ[yk 7→ ρ(ek)] ρ(e) S

or Γ e1 or e2 S

=⇒ Γ ei S

case Γ (f)case e of {pk → ek} S

=⇒ Γ e (f){pk → ek} : S

select Γ c(yn) (f){pk → ek} : S

=⇒ Γ ρ(ei) S

guess Γ[x 7→ x] x f{pk → ek} : S

=⇒ Γ[x 7→ ρ(pi), yn 7→ yn] ρ(ei) S

where in varcons: t is constructor-rooted

varexp: e is not constructor-rooted and e 6= x

val: v is constructor-rooted or a variable with Γ[v] = v

fun: f(yn) = e ∈ P and ρ = {yn 7→ xn}

let: ρ = {xk 7→ yk} and yk are fresh

or: i ∈ {1, 2}

select: pi = c(xn) and ρ = {xn 7→ yn}

guess: i ∈ {1, . . . k}, pi = c(xn), ρ = {xn 7→ yn}, and yn are fresh

Fig. 3. Small-Step Semantics for Functional Logic Programs

11

Albert, Hanus, Huch, Oliver, Vidal

derivation holds:

(Γ[x 7→ e], x, S)

=⇒ (Γ[x 7→ e], e, x : S) (by rule varexp)

=⇒∗ (∆, v, x : S) (by premise and induction hypothesis)

=⇒ (∆[x 7→ v], v, S) (by rule val)

(Val). We have Γ : v ⇓ Γ : v. In this case,

(Γ, v, S) =⇒∗ (Γ, v, S) (by considering an empty sequence)

(Fun). We have Γ : f(xn) ⇓ ∆ : v. Then, the following derivation holds:

(Γ, f(xn), S)

=⇒ (Γ, ρ(e), S) (by rule fun, with f(yn) = e ∈ P and ρ = {yn 7→ xn})

=⇒∗ (∆, v, S) (by premise and induc. hyp.)

(Let). We have Γ : let {xk = ek} in e ⇓ ∆ : v. Now, the following derivation
holds:

(Γ, let {xk = ek} in e, S)

=⇒ (Γ[yk 7→ ρ(ek)], ρ(e), S) (by rule let, with ρ = {xk 7→ yk})

=⇒∗ (∆, v, S) (by premise and induc. hyp.)

Furthermore, we assume that yk are the same fresh variables used in rule Let
which is always possible since both derivations can use the same variables
in corresponding steps.

(Or). We have Γ : e1 or e2 ⇓ ∆ : v. Then, the following derivation holds:

(Γ, e1 or e2, S)

=⇒ (Γ, ei, S) (by rule or, i ∈ {1, 2})

=⇒∗ (∆, v, S) (by premise and induc. hyp.)

Furthermore, we assume that ei is the same argument selected in the premise
of rule Or.

(Select). We have Γ : (f)case e of {pk → ek} ⇓ Θ : v. Then, the following
derivation holds:

(Γ, (f)case e of {pk → ek}, S)

=⇒ (Γ, e, (f){pk → ek} : S) (by rule case)

=⇒∗ (∆, c(yn), (f){pk → ek} : S) (by left premise and induc. hyp.)

=⇒ (∆, ρ(ei), S) (by rule select)

=⇒∗ (Θ, v, S) (by right premise and induc. hyp.)

12

Albert, Hanus, Huch, Oliver, Vidal

where pi = c(xn), and ρ = {xn 7→ yn}.

(Guess). We have Γ : fcase e of {pk → ek} ⇓ Θ : v. Then, the following
derivation holds:

(Γ, fcase e of {pk → ek}, S)

=⇒ (Γ, e, f{pk → ek} : S) (by rule case)

=⇒∗ (∆, x, f{pk → ek} : S) (by left premise and induc. hyp.)

=⇒ (∆[x 7→ ρ(pi), yn 7→ yn], ρ(ei), S) (by Lemma 3.4 and rule guess)

=⇒∗ (Θ, v, S) (by right premise and ind. hyp.)

where pi = c(xn), ρ = {xn 7→ yn} and yn are the same fresh variables se-
lected in rule Guess.

2

In order to show the soundness of the small-step semantics, i.e., that it com-
putes no more results than the natural (big-step) semantics, we introduce the
concept of balanced computations.

Definition 4.3 (balanced computation) A computation

(Γ, e, S) =⇒∗ (∆, e′, S)

is balanced if the initial and final stacks are the same and every intermediate
stack extends the initial one.

In particular, every successful computation ([], e, []) =⇒∗ (Γ, v, []) is balanced.

Definition 4.4 (trace, balanced trace) The trace of a computation is the
sequence of transition rules used in the computation. A balanced trace is the
trace of a balanced computation.

There are several possibilities for a trace to be balanced. Clearly, the empty
trace is balanced. Now, consider nonempty traces and an arbitrary initial
stack S. Nonempty balanced traces must start with any of the following
rules: varcons, varexp, fun, let, or, and case. The remaining rules cannot
produce a nonempty balanced trace since they would produce an intermediate
stack which does not extend the initial stack S.

A trace that begins with varcons can only contain this single transition,
since it produces an intermediate stack S and an expression t which should
be a constructor-rooted term. The only rules that could be applied are val
and select, but both rules would remove an element from the stack which
contradicts the balancedness of the trace.

If the trace begins with varexp, producing an intermediate stack of the
form x : S, then rule val must be eventually applied in order to restore the
initial stack to S. In this case, the derived expression is constructor-rooted
and, thus, only rules val and select could be applied. However, since they
would remove an element from the stack, this contradicts the balancedness of

13

Albert, Hanus, Huch, Oliver, Vidal

the computation; hence, the trace must have the form (varexp bal val), where
bal stands for arbitrary balanced traces.

A trace that begins with fun is balanced whenever the subtrace after fun
is balanced. Thus, it must have the form (fun bal). Similarly, the traces (let
bal) and (or bal) are balanced.

If the trace begins with case, then an intermediate stack of the form
(f){pk → ek} : S is produced. The initial stack must be restored by ap-
plying either rule select or guess. Such balanced traces must have the form
(case bal select bal) and (case bal guess bal), respectively.

In summary, all balanced traces can be derived from the grammar

bal ::= ε | varcons | varexp bal val

| fun bal | let bal | or bal

| case bal select bal | case bal guess bal

where ε denotes the empty trace. Each balanced trace corresponds to one of
the rules in the big-step semantics. The following lemma formalizes the proof
of this statement.

Lemma 4.5 (soundness) If (Γ0, e0, S) =⇒∗ (Γ1, v, S) is balanced, then
Γ0 : e0 ⇓ Γ1 : v.

Proof. The proof is done by induction on the structure of balanced traces
following the grammar above.

(ε). Then e0 must be a constructor-rooted term or a logical variable. Thus,
the proof follows by applying rule Val.

(varcons). Then e0 = x and Γ0 = Γ[x 7→ t]. Thus, (Γ1, t, S) is the derived
state, where Γ1 = Γ[x 7→ t]. Now, the proof follows by applying rule
VarCons.

(varexp bal val). Then e0 = x and Γ0 = Γ[x 7→ e] (where e is not constructor-
rooted nor a logical variable). The state after applying rule varexp must be
(Γ[x 7→ e], e, x : S), and the state before applying rule val must have the
form (∆, v, y : S ′). Since the trace between these states is balanced, we have
y = x, S ′ = S, and Γ[x 7→ e] : e ⇓ ∆ : v by the inductive hypothesis. The
state after applying rule val must be (∆[x 7→ v], v, S), where Γ1 = ∆[x 7→ v].
Therefore, using rule VarExp, we have Γ[x 7→ e] : x ⇓ ∆[x 7→ v] : v.

(fun bal). Then e0 = f(yn), where f(xn) = e ∈ P and ρ = {xn 7→ yn}. The
state after applying rule fun must be (Γ0, ρ(e), S). Since (Γ0, ρ(e), S) =⇒

∗

(Γ1, v, S) is balanced, we have Γ0 : ρ(e) ⇓ Γ1 : v by the inductive hypothesis.
Then, by applying rule Fun, we obtain Γ0 : f(yn) ⇓ Γ1 : v.

(let bal). Then e0 = let {xk = ek} in e, ρ = {xk 7→ yk} and yk are fresh vari-
ables. The state after applying rule let must be (Γ0[yk 7→ ρ(ek)], ρ(e), S).
Since (Γ0[yk 7→ ρ(ek)], ρ(e), S) =⇒∗ (Γ1, v, S) is a balanced trace, we
have Γ0[yk 7→ ρ(ek)] : ρ(e) ⇓ Γ1 : v by the inductive hypothesis. Ap-

14

Albert, Hanus, Huch, Oliver, Vidal

plying rule Let to this judgement with the same renaming ρ, we obtain
Γ0 : let {xk = ek} in e ⇓ Γ1 : v.

(or bal). Then e0 = e1 or e2. The state after applying rule or must be
(Γ0, ei, S), with i ∈ {1, 2}. Since (Γ0, ei, S) =⇒∗ (Γ1, v, S) is balanced,
we have Γ0 : ei ⇓ Γ1 : v by the inductive hypothesis. Then, the proof
follows by applying rule Or, Γ0 : e1 or e2 ⇓ Γ1 : v (selecting the same
argument as in the application of rule or).

(case bal select bal). Then e0 = (f)case e of {pk 7→ ek}. The state after ap-
plying rule case must be (Γ0, e, (f){pk → ek} : S), and the state before
applying rule select must have the form (∆, c(yn), (f){pk → ek} : S). Since
the trace between these states is balanced, we have Γ0 : e ⇓ ∆ : c(yn) by
the inductive hypothesis. Now, the state after applying rule select must be
(∆, ρ(ei), S), where pi = c(xn) and ρ = {xn 7→ yn}. Since the trace from
(∆, ρ(ei), S) to (Γ1, v, S) is also balanced, we have ∆ : ρ(ei) ⇓ Γ1 : v by
the inductive hypothesis. Finally, the proof follows by applying rule Select,
Γ0 : (f)case e of {pk → ek} ⇓ Γ1 : v.

(case bal guess bal). Then e0 = fcase e of {pk 7→ ek}. The state after apply-
ing rule case must be (Γ0, e, f{pk → ek} : S), and the state before applying
rule guess must have the form (∆[x 7→ x], x, f{pk → ek} : S). Since the
trace between these states is balanced, we have Γ0 : e ⇓ ∆[x 7→ x] : x by
the inductive hypothesis. Now, the state after applying rule guess must be
(∆[x 7→ ρ(pi), yn 7→ yn], ρ(ei), S), where pi = c(xn) and ρ = {xn 7→ yn},
and yn are the same fresh variables selected in the application of rule
guess. Since the trace from (∆[x 7→ ρ(pi), yn 7→ yn], ρ(ei), S) to (Γ1, v, S)
is also balanced, we have ∆[x 7→ ρ(pi), yn 7→ yn], ρ(ei) ⇓ Γ1 : v by the
inductive hypothesis. Finally, the proof follows by applying rule Guess,
Γ0 : fcase e of {pk → ek} ⇓ Γ1 : v.

2

Now, we can proceed with the proof of Theorem 4.1.

Proof. The “if” part follows directly from Lemma 4.2. The “only if” part is
a consequence of Lemma 4.5 and the fact that any computation of the form
([], e, []) =⇒∗ (∆, v, []) is balanced. 2

5 Related Work

In the field of functional programming, Launchbury [17] defined the first op-
erational semantics for purely lazy functional languages which provides an
accurate model for sharing. It is separated into two stages: the first stage
is a static conversion of the λ-calculus into a form where the creation and
sharing of closures is explicit; the semantics is then defined at the level of
closures. Our semantics is defined in a similar manner, though our language
is first-order and it has logical variables and non-determinism. Later, Sestoft

15

Albert, Hanus, Huch, Oliver, Vidal

[20] developed an abstract machine for the λ-calculus with lazy evaluation
starting from Launchbury’s natural semantics, where lazy evaluation means
non-strict evaluation with sharing of argument evaluation, i.e., call-by-need.
Similarly, we have defined a small-step semantics for functional logic programs
with sharing from the previous natural semantics. Our small-step semantics
can be seen as an extension of Sestoft’s abstract machine to consider also logi-
cal variables and non-determinism. Starting from Sestoft’s semantics, Samsom
and Peyton Jones [19] developed the first source-level profiler for a compiled,
non-strict, higher-order, purely functional language capable of measuring time
and space usage. We could extend our operational semantics with cost infor-
mation in a similar way in order to develop a profiler for lazy functional logic
programs. For this purpose, however, we would first need a deterministic ver-
sion of the semantics which properly models search strategies. Otherwise, we
could only compute the cost of each single derivation in the search tree, since
some computation steps may be shared by more than one derivation. Thus,
the definition of a deterministic version of the small-step semantics becomes
essential (see [2]).

As for logic programming, [16] and [8] contain operational and denotational
descriptions of Prolog with the main emphasis on specifying the backtrack-
ing strategy and the “cut” operator. However, laziness and sharing are not
covered. The same holds for Börger’s descriptions of Prolog’s operational
semantics (e.g., [6,7]) which consist of various small-step semantics for the
different language constructs.

As for functional logic programming, the report on the multi-paradigm lan-
guage Curry [14] contains a complete operational semantics but covers sharing
only informally. The operational semantics of the functional logic language
Toy [18] is based on narrowing (with sharing) but the formal definition is based
on a narrowing calculus [10] which does not consider a particular pattern-
matching strategy. However, the latter becomes important, e.g., if one wants
to reason about costs of computations. The approach of [15], the closest to our
work, contains an operational semantics for a lazy narrowing strategy which
considers sharing, non-deterministic functions, and allows partial applications
in patterns. However, they do not consider the distinction between flexible
and rigid case expressions, which is necessary for defining an operational se-
mantics combining narrowing and residuation (as in Curry). Furthermore,
we presented two characterizations of our operational semantics: a high-level
description in natural style and a more detailed small-step semantics, and
formally proved their equivalence. Finally, [9,11] present graph narrowing re-
lations by extending graph rewriting with some form of unification. Graph
narrowing requires a complex machinery to represent and manipulate graphs.
Nevertheless, for the purpose of modeling sharing, our approach based on the
use of let bindings is sufficient.

16

Albert, Hanus, Huch, Oliver, Vidal

6 Conclusions and Future Work

We presented an operational semantics for functional logic languages based on
lazy evaluation with sharing and non-determinism. We developed our seman-
tics in several steps. First, we transformed programs into a normalized form
in order to make the pattern matching strategy, common subexpressions, etc.
explicit. Then, we defined a natural semantics for these normalized programs
covering laziness, sharing and non-determinism. Finally, we presented a cor-
responding small-step semantics and proved its equivalence with the natural
semantics. To the best of our knowledge, this is the first attempt of a rig-
orous operational description for functional logic languages—including both
flexible and rigid case expressions—based on lazy evaluation with sharing and
non-determinism.

Our final semantics is an appropriate basis to define concrete functional
logic languages. Nevertheless, in order to obtain a complete operational de-
scription of a practical language like Curry, one has to add descriptions for
modeling search strategies and concurrency, for solving equational constraints,
evaluating external functions and higher-order applications. These extensions
are orthogonal to the other operational aspects (sharing, non-determinism)
and they are the subject of ongoing research (see [2]). Indeed, we are working
on the implementation of an interpreter for Curry—based on such an extended
operational description—covering all the aforementioned features [2].

The complete operational description could be used, e.g., as a basis to
define a cost-augmented semantics in the style of [1,3,19,21], to develop de-
bugging and optimization tools (like partial evaluators), and to check or derive
new implementations (like in [20]) for Curry.

References

[1] E. Albert, S. Antoy, and G. Vidal. Measuring the Effectiveness of Partial
Evaluation in Functional Logic Languages. In Proc. of the 10th Int’l Workshop
on Logic-based Program Synthesis and Transformation (LOPSTR’00), pages
103–124. Springer LNCS 2042, 2001.

[2] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics
for Lazy Functional Logic Programs. In Proc. of Workshop on Reduction
Strategies in Rewriting and Programming (WRS’02), pages 97–112, 2002.

[3] E. Albert and G. Vidal. Symbolic Profiling of Multi-Paradigm Declarative
Languages. In Proc. of Int’l Workshop on Logic-based Program Synthesis and
Transformation (LOPSTR’01), pages 148–167. Springer LNCS 2372, 2002.

[4] S. Antoy. Constructor-based Conditional Narrowing. In Proc. of the 3rd
International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP 2001), pages 199–206. ACM Press, 2001.

17

Albert, Hanus, Huch, Oliver, Vidal

[5] S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs into
Prolog. In Proc. of the Int’l Workshop on Frontiers of Combining Systems
(FroCoS’2000), pages 171–185. Springer LNCS 1794, 2000.

[6] E. Börger. A Logical Operational Semantics of Full Prolog. Part I: Selection
Core and Control. In Proc. of the 3rd Int’l Workshop on Computer Science
Logic (CSL’89), pages 36–64. Springer LNCS 440, 1990.

[7] E. Börger. A logical operational semantics of full Prolog. Part II: Built-in
predicates for database manipulations. In Proc. of Mathematical Foundations
of Computer Science (MFCS’90), pages 1–14. Springer LNCS 452, 1990.

[8] S.K. Debray and P. Mishra. Denotational and Operational Semantics for
Prolog. Journal of Logic Programming (5), pages 61–91, 1988.

[9] R. Echahed and J. Janodet. Admissible Graph Rewriting and Narrowing. In
Proc. of the 1998 Joint Int’l Conference and Symposium on Logic Programming
(JICSLP’98), pages 325–340. MIT Press, 1998.

[10] J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An Approach to Declarative Programming based on
a Rewriting Logic. Journal of Logic Programming, 40:47–87, 1999.

[11] A. Habel and D. Plump. Term Graph Narrowing. Mathematical Structures in
Computer Science, 6(6):649–676, 1996.

[12] M. Hanus. A Unified Computation Model for Functional and Logic
Programming. In Proc. of the 24th ACM Symp. on Principles of Programming
Languages (POPL’97), pages 80–93. ACM, New York, 1997.

[13] M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees.
Journal of Functional Programming, 9(1):33–75, 1999.

[14] M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available
at: http://www.informatik.uni-kiel.de/~mh/curry/.

[15] T. Hortalá-González and E. Ullán. An Abstract Machine Based System for a
Lazy Narrowing Calculus. In Proc. of the 5th Int’l Symp. on Functional and
Logic Programming (FLOPS 2001), pages 216–232. Springer LNCS 2024, 2001.

[16] N.D. Jones and A. Mycroft. Stepwise Development of Operational and
Denotational Semantics for Prolog. In S. Tärnlund, editor, Proc. of the 2nd
Int’l Conf. on Logic Programming (ICLP’84), pages 281–288, 1984.

[17] J. Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. of the ACM
Symp. on Principles of Programming Languages (POPL’93), pages 144–154.
ACM Press, 1993.

[18] F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm
Declarative System. In Proc. of the 10th Int’l Conf. on Rewriting Techniques
and Applications (RTA’99), pages 244–247. Springer LNCS 1631, 1999.

18

Albert, Hanus, Huch, Oliver, Vidal

[19] P.M. Sansom and S.L. Peyton-Jones. Formally Based Profiling for Higher-
Order Functional Languages. ACM Transactions on Programming Languages
and Systems, 19(2):334–385, 1997.

[20] P. Sestoft. Deriving a Lazy Abstract Machine. Journal of Functional
Programming, 7(3):231–264, 1997.

[21] G. Vidal. Cost-Augmented Narrowing-Driven Specialization. In Proc. of
the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM’02), pages 52–62. ACM Press, 2002.

[22] D. H. D. Warren. Higher-Order Extensions to Prolog – Are they needed? In
Michie Hayes-Roth and Pao, editors, Machine Intelligence, volume 10. Ellis
Horwood, 1982.

[23] D.H.D. Warren. An Abstract Prolog Instruction Set. Technical note 309, SRI
International, Stanford, 1983.

19

