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Abstract. We present a system, called CASS, for the analysis of functional logic
programs. The system is generic so that various kinds of analyses (e.g., ground-
ness, non-determinism, demanded arguments) can be easily integrated. In order to
analyze larger applications consisting of dozens or hundreds of modules, CASS
supports a modular and incremental analysis of programs. Moreover, it can be
used by different programming tools, like documentation generators, analysis en-
vironments, program optimizers, as well as Eclipse-based development environ-
ments. For this purpose, CASS can also be invoked as a server system to get
a language-independent access to its functionality. CASS is completely imple-
mented in the functional logic language Curry as a master/worker architecture to
exploit parallel or distributed execution environments.

1 Introduction

Automated program analyses are useful for various purposes. For instance, compil-
ers can benefit from their results to improve the translation of source into target pro-
grams. Analysis information can be helpful to programmers to reason about the behav-
ior and operational properties of their programs. Moreover, this information can also
be documented by program documentation tools or interactively shown to developers
in dedicated programming environments. On the one hand, declarative programming
languages provide interesting opportunities for analyzing programs. On the other hand,
their complex or abstract execution model demands for good tool support to develop
reliable programs. For example, the detection of type errors in languages with higher-
order features or the detection of mode problems in the use of Prolog predicates.

This work is related to functional logic languages that combine the most important
features of functional and logic programming in a single language (see [4,14] for recent
surveys). In particular, these languages provide higher-order functions and demand-
driven evaluation from functional programming together with logic programming fea-
tures like non-deterministic search and computing with partial information (logic vari-
ables). This combination has led to new design patterns [2,5] and better abstractions for
application programming. Moreover, program implementation and analysis aspects for
functional as well as logic languages can be considered in a unified framework. For in-
stance, test cases for functional programs can be generated by executing functions with
logic variables as arguments [9].

Automated program analyses have been already used for functional logic program-
ming in various situations. For instance, CurryDoc [11] is an automatic documentation



tool for the functional logic language Curry that analyzes Curry programs to document
various operational aspects, like the non-determinism behavior or completeness issues.
CurryBrowser [12] is an interactive analysis environment that unifies various program
analyses in order to reason about Curry applications. KiCS2 [7], a recent implementa-
tion of Curry that compiles into Haskell, includes an analyzer to classify higher-order
and deterministic operations in order to support their efficient implementation which
results in highly efficient target programs. Similar ideas are applied in the implementa-
tion of Mercury [24] which uses mode and determinism information to reorder predicate
calls. Non-determinism information as well as information about definitely demanded
arguments has been used to improve the efficiency of functional logic programs with
flexible search strategies [13]. A recent Eclipse-based development environment for
Curry [21] also supports the access to analysis information during interactive program
development.

These different uses of program analyses is the motivation for the current work.
We present CASS (Curry Analysis Server System) which is intended to be a central
component of current and future tools for functional logic programs. CASS provides a
generic interface to support the integration of various program analyses. Although the
current implementation is strongly related to Curry, CASS can also be used for simi-
lar declarative programming languages, like TOY [20]. The analyses are performed on
an intermediate format into which source programs can be compiled. CASS supports
the analysis of larger applications by a modular and incremental analysis. The analysis
results for each module are persistently stored and recomputed only if it is necessary.
Since CASS is implemented in Curry, it can be directly used in tools implemented in
Curry, like the documentation generator CurryDoc, the analysis environment Curry-
Browser, or the Curry compiler KiCS2. CASS can also be invoked as a server system
providing a text-based communication protocol in order to interact with tools imple-
mented in other languages, like the Eclipse plug-in for Curry. CASS is implemented as
a master/worker architecture, i.e., it can distribute the analysis work to different pro-
cesses in order to exploit parallel or distributed execution environments.

In the next section, we review some features of Curry. Section 3 shows how various
kinds of program analyses can be implemented and integrated into CASS. Some uses
of CASS are presented in Section 4 before its implementation is sketched in Section 5
and evaluated in Section 6.

2 Curry and FlatCurry

In this section we review some aspects of Curry that are necessary to understand the
functionality and implementation of our analysis tool. More details about Curry’s com-
putation model and a complete description of all language features can be found in
[10,18].

Curry is a declarative multi-paradigm language combining in a seamless way fea-
tures from functional, logic, and concurrent programming. Curry has a Haskell-like syn-



tax1 [22] extended by the possible inclusion of free (logic) variables in conditions and
right-hand sides of defining rules. Curry also offers standard features of functional lan-
guages, like polymorphic types, modules, or monadic I/O which is identical to Haskell’s
I/O concept [25]. Thus, “IO α” denotes the type of an I/O action that returns values of
type α.

A Curry program consists of the definition of functions and the data types on which
the functions operate. Functions are defined by conditional equations with constraints
in the conditions. They are evaluated lazily and can be called with partially instantiated
arguments. For instance, the following program defines the types of Boolean values
and polymorphic lists and functions to concatenate lists (infix operator “++”) and to
compute the last element of a list:
data Bool = True | False
data List a = [] | a : List a

(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

last xs | _ ++ [x] =:= xs = x where x free

The data type declarations define True and False as the Boolean constants and []

(empty list) and : (non-empty list) as the constructors for polymorphic lists (a is a
type variable ranging over all types and the type “List a” is usually written as [a] for
conformity with Haskell). The (optional) type declaration (“::”) of the function (++)

specifies that (++) takes two lists as input and produces an output list, where all list
elements are of the same (unspecified) type.2

The operational semantics of Curry [1,10] is a conservative extension of lazy func-
tional programming (if free variables do not occur in the program or the initial goal) and
(concurrent) logic programming. To describe this semantics, compile programs, or im-
plement analyzers and similar tools, an intermediate representation of Curry programs
has been shown to be useful. Programs of this intermediate language, called FlatCurry,
contain a single rule for each function where the pattern matching strategy is repre-
sented by case/or expressions. The basic structure of FlatCurry is defined as follows:3

P ::= D1 . . . Dm e ::= x
| c e1 . . . en

D ::= f x1 . . . xn = e | f e1 . . . en
| case e0 of {pk → ek}

p ::= c x1 . . . xn | fcase e0 of {pk → ek}
| e1 or e2
| let xk free in e

A program P consists of a sequence of function definitions D with pairwise dif-

1 Variables and function names usually start with lowercase letters and the names of type and
data constructors start with an uppercase letter. The application of f to e is denoted by juxta-
position (“f e”).

2 Curry uses curried function types where α->β denotes the type of all functions mapping
elements of type α into elements of type β.

3 ok denotes a sequence of objects o1, . . . , ok.



ferent variables in the left-hand sides. The right-hand sides are expressions e com-
posed by variables, constructor and function calls, case expressions, disjunctions,
and introduction of free (unbound) variables. A case expression has the form
(f )case e of {c1 xn1 → e1, . . . , ck xnk

→ ek}, where e is an expression, c1, . . . , ck are
different constructors of the type of e, and e1, . . . , ek are expressions. The pattern vari-
ables xni

are local variables which occur only in the corresponding subexpression ei.
The difference between case and fcase shows up when the argument e is a free variable:
case suspends (which corresponds to residuation) whereas fcase nondeterministically
binds this variable to the pattern in a branch of the case expression (which corresponds
to narrowing).

Note that it is possible to translate other functional logic languages, like TOY [20],
or even Haskell into this intermediate format. Since our analysis tool is solely based
on FlatCurry, it can also be used for other source languages provided that there is a
translator from such languages into FlatCurry.

Mature implementations of Curry, like PAKCS [15] or KiCS2 [7], provide support
for meta-programming by a library containing data types for representing FlatCurry
programs and an I/O action for reading a module and translating its contents into the
corresponding data term. For instance, a module of a Curry program is represented as
an expression of type
data Prog = Prog String [String] [TypeDecl] [FuncDecl] [OpDecl]

where the arguments of the data constructor Prog are the module name, the names
of all imported modules, the list of all type, function, and infix operator declarations.
Furthermore, a function declaration is represented as
data FuncDecl = Func QName Int Visibility TypeExpr Rule

where the arguments are the qualified name (of type QName, i.e., a pair of module and
function name), arity, visibility (Public or Private), type, and rule (of the form
“Rule arguments expr”) of the function. Finally, the data type for expressions just
reflects its formal definition:4

data Expr = Var Int
| Lit Literal
| Comb CombType QName [Expr]
| Case CaseType Expr [(Pattern,Expr)]
| Or Expr Expr
| Free [Int] Expr

data CombType = FuncCall | ConsCall

Thus, variables are numbered, literals (like numbers or characters) are distinguished
from combinations (Comb) which have a first argument to distinguish constructor appli-
cations and applications of defined functions. The remaining data type declarations for
representing Curry programs are similar but we omit them for brevity.

4 We present a slightly simplified version of the actual type definitions.



3 Implementing Program Analyses

Basically, a program analysis can be considered as a mapping that associates a program
element with information about some aspect of its semantics. Since most interesting
semantical aspects are not computable, they are approximated by some abstract domain
where each abstract value describes some set of concrete values [8]. For instance, an
“overlapping rules” analysis determines whether a function is defined by a set of over-
lapping rules, which means that some ground call to this function can be reduced in
more than one way. An example for an operation that is defined by overlapping rules is
the “choice” operation
x ? y = x
x ? y = y

For this analysis one can use Bool as the abstract domain so that the abstract value
False is interpreted as “defined by non-overlapping rules” and True is interpreted as
“defined by overlapping rules”. Hence, the “overlapping rules” analysis has the type
FuncDecl → Bool

which means that we associate a Bool value to each function definition. Based on the
data type definitions sketched in Section 2 and some standard functions, such an anal-
ysis can be defined by looking for occurrences of Or in the defining expression as
follows:
isOverlapping :: FuncDecl → Bool
isOverlapping (Func _ _ _ _ (Rule _ e)) = orInExpr e

orInExpr :: Expr → Bool
orInExpr (Var _) = False
orInExpr (Lit _) = False
orInExpr (Comb _ _ es) = any orInExpr es
orInExpr (Case _ e bs) = orInExpr e || any (orInExpr . snd) bs
orInExpr (Or _ _) = True
orInExpr (Free _ e) = orInExpr e

Many interesting aspects require a more sophisticated analysis where dependencies are
taken into account. For instance, consider a “non-determinism” analysis with the ab-
stract domain
data DetDom = Det | NonDet

Here, Det is interpreted as “the operation evaluates in a deterministic manner on ground
arguments.” However, NonDet is interpreted as “the operation might evaluate in differ-
ent ways for given ground arguments.” The apparent imprecision is due to the approx-
imation of the analysis. For instance, if the function f is defined by overlapping rules
and the function g might call f, then g is judged as non-deterministic. In order to take
into account such dependencies, the non-determinism analysis requires to examine the
current function as well as all directly or indirectly called functions for overlapping
rules. Due to recursive function definitions, this analysis cannot be done in one shot but
requires a fixpoint computation. In order to make things simple for the analysis devel-
oper, CASS supports such fixpoint computations and requires from the developer only
the implementation of an operation of type



FuncDecl → [(QName,a)] → a

where “a” denotes the type of abstract values. The second argument of type
[(QName,a)] represents the currently known analysis values for the functions directly
used in this function declaration. Hence, the non-determinism analysis can be imple-
mented as follows:
nondetFunc :: FuncDecl → [(QName,DetDom)] → DetDom
nondetFunc (Func f _ _ _ (Rule _ e)) calledFuncs =
if orInExpr e || freeVarInExpr e ||

any (==NonDet) (map snd calledFuncs)
then NonDet
else Det

Thus, it computes the abstract value NonDet if the function itself is defined by overlap-
ping rules or contains free variables that might cause non-deterministic guessing (we
omit the definition of freeVarInExpr since it is quite similar to orInExpr), or if it
depends on some non-deterministic function. The actual analysis is performed by defin-
ing some start value for all functions (the “bottom” value of the abstract domain, here:
Det) and performing a fixpoint computation for the abstract values of these functions.
CASS uses a working list approach as default but also supports other methods to com-
pute fixpoints. The termination of the fixpoint computation can be ensured by standard
assumptions in abstract interpretation [8], e.g., by choosing a finite abstract domain and
monotonic operations, or by widening operations.

To support the inclusion of different analyses in CASS, there are an abstract type
“Analysis a” denoting a program analysis with abstract domain “a” and several con-
structor operations for various kinds of analyses. Each analysis has a name provided as
a first argument to these constructors. The name is used to store the analysis information
persistently and to pass specific analysis tasks to workers (see below for more details).
For instance, a simple function analysis which depends only on a given function defini-
tion can be created by
funcAnalysis :: String → (FuncDecl → a) → Analysis a

where the analysis name and analysis function are provided as arguments. Thus, the
overlapping analysis can be specified as
overlapAnalysis :: Analysis Bool
overlapAnalysis = funcAnalysis "Overlapping" isOverlapping

A function analysis with dependencies can be constructed by
dependencyFuncAnalysis ::
String → a → (FuncDecl → [(QName,a)] → a) → Analysis a

Here, the second argument specifies the start value of the fixpoint analysis, i.e., the
bottom element of the abstract domain. Thus, the complete non-determinism analysis
can be specified as
nondetAnalysis :: Analysis DetDom
nondetAnalysis = dependencyFuncAnalysis "Deterministic" Det nondetFunc

It should be noted that this definition is sufficient to execute the analysis with CASS
since the analysis system takes care of computing fixpoints, calling the analysis func-



tions with appropriate values, analyzing imported modules, etc. Thus, the programmer
can concentrate on implementing the logic of the analysis and is freed from many te-
dious implementation details.

Sometimes one is also interested in analyzing information about data types rather
than functions. For instance, the Curry implementation KiCS2 [7] has an optimization
for higher-order deterministic operations. This optimization requires some information
about the higher-order status of data types, i.e., whether a term of some type might
contain functional values. CASS supports such analyses by appropriate analysis con-
structors. A simple type analysis which depends only on a given type declaration can
be specified by
typeAnalysis :: String → (TypeDecl → a) → Analysis a

A more complex type analysis depending also on information about the types used in
the type declaration can be specified by
dependencyTypeAnalysis ::
String → a → (TypeDecl → [(QName,a)] → a) → Analysis a

Similarly to a function analysis, the second argument is the start value of the fixpoint
analysis and the third argument computes the abstract information about the type names
used in the type declaration.

The remaining entities in a Curry program that can be analyzed are data construc-
tors. Since their definition only contains the argument types, it may seem uninteresting
to provide a useful analysis for them. However, sometimes it is interesting to analyze
their context so that there is a analysis constructor of type
constructorAnalysis :: String → (ConsDecl → TypeDecl → a)

→ Analysis a

Thus, the analysis operation of type (ConsDecl -> TypeDecl -> a) gets for each
constructor declaration the corresponding type declaration. This information could be
used to compute the sibling constructors, e.g., the sibling for the constructor True is
False. The information about sibling constructors is useful to check whether a func-
tion is completely defined, i.e., contains a case distinction for all possible patterns. For
instance, the operation (in FlatCurry notation)
not x = case x of True → False

False → True

is completely defined whereas
cond x y = case x of True → y

is incompletely defined since it fails on False as the first argument. To check this
property, information about sibling constructors is obviously useful. But how can we
provide this information in an analysis for functions?

For this and similar purposes, CASS supports the combination of different analyses.
Thus, an analysis developer can define an analysis that is based on information com-
puted by another analysis. To make analysis combination possible, there is an abstract
type “ProgInfo a” to represent the analysis information of type “a” for a given mod-
ule and its imports. In order to look up analysis information about some entity, there is
an operation



lookupProgInfo:: QName → ProgInfo a → Maybe a

One can use the analysis constructor
combinedFuncAnalysis :: String → Analysis b

→ (ProgInfo b → FuncDecl → a) → Analysis a

to implement a function analysis depending on some other analysis. The second ar-
gument is some base analysis computing abstract values of type “b” and the analysis
function gets, in contrast to a simple function analysis, the analysis information com-
puted by this base analysis.

For instance, if the sibling constructor analysis is defined as
siblingCons :: Analysis [QName]
siblingCons = constructorAnalysis . . .

then the pattern completeness analysis might be defined by
patCompAnalysis :: Analysis Bool
patCompAnalysis =
combinedFuncAnalysis "PatComplete" siblingCons isPatComplete

isPatComplete :: ProgInfo [QName] → FuncDecl → Bool
isPatComplete siblinginfo fundecl = . . .

Similarly, other kinds of analyses can be also combined with some base analysis by
using the following analysis constructors:
combinedTypeAnalysis :: String → Analysis b

→ (ProgInfo b → TypeDecl → a) → Analysis a
combinedDependencyFuncAnalysis :: String → Analysis b → a

→ (ProgInfo b → FuncDecl → [(QName,a)] → a) → Analysis a
combinedDependencyTypeAnalysis :: String → Analysis b → a

→ (ProgInfo b → TypeDecl → [(QName,a)] → a) → Analysis a

For instance, an analysis for checking whether a function is totally defined, i.e., always
reducible for all ground arguments, can be based on the pattern completeness analysis.
It is a dependency analysis so that it can be defined as follows (in this case, True is the
bottom element since the abstract value False denotes “might not be totally defined”):
totalAnalysis :: Analysis Bool
totalAnalysis =
combinedDependencyFuncAnalysis "Total" patCompAnalysis True isTotal

isTotal :: ProgInfo Bool → FuncDecl → [(QName,Bool)] → Bool
isTotal pcinfo fdecl calledfuncs =
(maybe False id (lookupProgInfo (funcName fdecl) pcinfo))
&& all snd calledfuncs

Hence, a function is totally defined if it is pattern complete and depends only on totally
defined functions.

Further examples of combined analyses are the higher-order function analysis used
in KiCS2 (see above) where the higher-order status of a function depends on the higher-
order status of its argument types, and the non-determinism analysis of [6] where non-
determinism effects are analyzed based on groundness information.



In order to integrate some implemented analysis in CASS, one has to register it.
In principle, this could be done dynamically, but currently only a static registration is
supported. For the registration, the implementation of CASS contains a constant
registeredAnalysis :: [RegisteredAnalysis]

keeping the information about all available analyses. To register a new analysis, it has
to be added to this list of registered analyses and CASS has to be recompiled. Each
registered analysis must provide a “show” function to map abstract values into strings to
be shown to the user.5 This allows for some flexibility in the presentation of the analysis
information. For instance, showing the results of the totally definedness analysis can be
implemented as follows:
showTotal :: Bool → String
showTotal True = "totally defined"
showTotal False = "possibly partially defined"

An analysis can be registered with the auxiliary operation
cassAnalysis :: Analysis a → (a → String) → RegisteredAnalysis

For instance, we can register our analyses presented in this section by the definition
registeredAnalysis = [cassAnalysis overlapAnalysis showOverlap

,cassAnalysis nondetAnalysis showDet
,cassAnalysis siblingCons showSibling
,cassAnalysis patCompAnalysis showComplete
,cassAnalysis totalAnalysis showTotal ]

in the CASS implementation. After compiling CASS, they are immediately available as
shown in the next section.

4 Using the Analysis System

As mentioned above, a program analysis is useful for various purposes, e.g., the im-
plementation and transformation of programs, tool and documentation support for pro-
grammers, etc. Therefore, the results computed by some analysis registered in CASS
can be accessed in various ways. Currently, there are three methods for this purpose:

Batch mode: CASS is started with a module and analysis name. Then this analysis is
applied to the module and the results are printed (using the analysis-specific show
function, see above).

API mode: If the analysis information should be used in an application implemented
in Curry, the application program could use the CASS interface operations to start
an analysis and use the computed results for further processing.

Server mode: If the analysis results should be used in an application implemented in
some language that does not have a direct interface to Curry, one can start CASS
in a server mode. In this case, one can connect to CASS via some socket using a
communication protocol that is specified in the documentation of CASS.

5 Alternative visualizations of analysis information, e.g., as graphs, are planned for the future.
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Fig. 1. Using CASS in different contexts

Figure 1 shows some uses of CASS which are discussed in the following. The use of
CASS in batch mode is obvious. This mode is useful to get a quick access to analysis in-
formation so that one can experiment with different abstractions, fixpoint computations,
etc.

If one wants to access CASS inside an application implemented in Curry, one can
use some interface operation of CASS. For instance, CASS provides an operation
analyzeGeneric :: Analysis a → String

→ IO (Either (ProgInfo a) String)

to apply an analysis (first argument) to some module (whose name is given in the sec-
ond argument). The result is either the analysis information computed for this module
or an error message in case of some execution error. This access to CASS is used in the
documentation generator CurryDoc [11] to describe some operational aspects of func-
tions (e.g., pattern completeness, non-determinism, solution completeness), the Curry
compiler KiCS2 [7] to get information about the determinism and higher-order status of
functions, and the non-determinism optimizer described in [13] to obtain information
about demanded arguments and non-deterministic functions. Furthermore, there is also
a similar operation
analyzeModule :: String → String

→ IO (Either (ProgInfo String) String)



which takes an analysis name and a module name as arguments and yields the textual
representation of the computed analysis results. This is used in the CurryBrowser [12]
which allows the user to browse through the modules of a Curry application and apply
and visualize various analyses for each module or function. Beyond some specific anal-
yses like dependency graphs, all function analyses registered in CASS are automatically
available in the CurryBrowser.

The server mode of CASS is used in a recently developed Eclipse plug-in for Curry
[21] which also supports the visualization of analysis results inside Eclipse. Since
this plug-in is implemented in a Java-based framework, the access to CASS is imple-
mented via a textual protocol over a socket connection. This protocol has a command
GetAnalysis to query the names of all available analyses. This command is used to
initialize the analysis selection menus in the Eclipse plug-in. Furthermore, there are
commands to analyze a complete module or individual entities inside a module. The
analysis results are returned as plain strings or in XML format. Currently, we are work-
ing on more options to visualize analysis information in the Eclipse plug-in rather than
strings, e.g., term or graph visualizations.

5 Implementation

As mentioned above, CASS is implemented in Curry using the features for meta-
programming as sketched in Section 2. Since the analysis programmer only provides
operations to analyze a function, type, or data constructor, as shown in Section 3, the
main task of CASS is to supply these operations with the appropriate parameters in
order to compute the analysis results.

CASS is intended to analyze larger applications consisting of many modules. Thus,
a simple implementation by concatenating all modules into one large program to be
analyzed would not be efficient enough. Hence, CASS performs a separate analysis of
each module by the following steps:

1. The imported modules are analyzed.
2. The analysis information of the interface of the imported modules are loaded.
3. The module is analyzed. If the analysis is a dependency analysis, they are evaluated

by a fixpoint computation where the specified start value is used as initial values
for the locally defined (i.e., non-imported) entities.

Obviously, this scheme can be simplified in case of a simple analysis without depen-
dencies, since such an analysis does not require the imported entities. For a combined
analysis, the base analysis is performed before the main analysis is executed.

It should be noted that the separate analysis of each module allows only a bottom-
up but not a top-down analysis starting with the initial goal. A bottom-up analysis is
sufficient for interactive systems where the initial goal is not known at analysis time.
Nevertheless, it is sometimes possible to express “top-down oriented” analyses, like a
groundness analysis, in a bottom-up manner by choosing appropriate abstract domains,
as shown in [6] where a type and effect system is used to analyze groundness and non-
determinism information.



In order to speed up the complete analysis process, CASS implements a couple
of improvements to this general analysis process sketched above. First, the analysis
information for each module is persistently stored. Hence, before a module is analyzed,
it is checked whether there already exists a storage with the analysis information of
this module and whether the time stamp of this information is newer than the source
program with all its direct or indirect imports. If the storage is found and is still valid,
the stored information is used. Otherwise, the information is computed as described
above and then persistently stored. This has the advantage that, if only the main module
has changed and needs to be re-analyzed, the analysis time of a large application is still
small.

To exploit multi-core or distributed execution environments, the implementation of
CASS is designed as a master/worker architecture where a master process coordinates
all analysis activities and each worker is responsible to analyze a single module. Thus,
when CASS is requested to analyze some module, the master process computes all
import dependencies together with a topological order of all dependencies. Therefore,
the standard prelude module (without import dependencies) is the first module to be
analyzed and the main module is the last one. Then the master process iterates on the
following steps until all modules are analyzed:

– If there is a free worker and all imports of the first module are already analyzed,
pass the first module to the free worker and delete it from the list of modules.

– If the first module contains imports that are not yet analyzed, wait for the termina-
tion of an analysis task of a worker.

– If a worker has finished the analysis of a module, mark all occurrences of this
module as “analyzed.”

Since contemporary Curry implementations do not support thread creation, the workers
are implemented as processes that are started at the beginning and terminated at the
end of the entire execution. The number of workers can be defined by some system
parameter.

The current distribution of CASS6 contains fourteen program analyses, including
the analyses discussed in Section 3. Further analyses include a “solution complete-
ness” analysis (which checks whether a function might suspend due to residuation), a
“right-linearity” analysis (used to improve the implementation of functional patterns
[3]), an analysis of demanded arguments (used to optimize non-deterministic compu-
tations [13]), or a combined groundness/non-determinism analysis based on a type and
effect system [6]. New kinds of analyses can easily be added, since, as shown in Sec-
tion 3, the infrastructure provided by CASS simplifies their definition and integration.

6 Practical Evaluation

We have already discussed some practical applications of CASS in Section 4. These
applications demonstrate that the current implementation with a module-wise analysis,
storing analysis information persistently, and incremental re-analysis is good enough

6 CASS is part of the distributions of the Curry systems KiCS2 [7] and PAKCS [15].



Application: KiCS2 REPL CASS CurryBrowser ModuleDB
Modules: 32 46 71 85
Analysis: Demand Ground Demand Ground Demand Ground Demand Ground
1 worker: 8.09 8.25 10.25 10.30 19.53 19.36 27.97 28.15
2 workers: 5.75 5.82 6.87 7.48 12.33 12.49 18.32 18.56
4 workers: 5.41 5.47 6.17 6.47 10.20 10.38 16.98 17.15

Re-analyze: 1.40 1.38 1.26 1.26 2.01 1.99 2.34 2.34

Table 1. Using CASS in different contexts

to use CASS in practice. In order to get some ideas about the efficiency of the current
implementation, we made some benchmarks and report their results in this section.
Since all analyses contained in CASS have been developed and described elsewhere
(see the references above), we do not evaluate their precision but only their execution
efficiency.

CASS is intended to analyze larger systems. Thus, we omit the data for analyzing
single modules but present the analysis times for four different Curry applications: the
interactive environment (read/eval/print loop) of KiCS2, the analysis system presented
in this paper, the interactive analysis environment CurryBrowser [12], and the module
database, a web application generated from an entity/relationship model with the web
framework Spicey [17]. In order to get an impression of the size of each application, the
number of modules (including imported system modules) is shown for each application.
Typically, most modules contain between 100-300 lines of code, where the largest one
has more than 900 lines of code.

Table 1 contains the elapsed time (in seconds) needed to analyze these applications
for different numbers of workers. We ran two kinds of fixpoint analysis: an analysis of
demanded arguments [13] and a groundness analysis [6]. Each analysis has always been
started from scratch, i.e., all persistently stored information were deleted at the begin-
ning, except for the last row which shows the times to re-analyze the application where
only the main module has been changed. In this case, the actual analysis time is quite
small but most of the total time is spent to check all module dependencies for possible
updates. The benchmarks were executed on a Linux machine running Ubuntu 12.04
with an Intel Core i5 (2.53GHz) processor where CASS was compiled with KiCS2
(Version 0.2.4).

The speedup related to the number of workers is not optimal. This might be due to
the fact that the dependencies between the modules are complex so that there are not
many opportunities for an independent analysis of modules, i.e., workers might have
to wait for the termination of the analysis of modules which are imported by many
other modules. Nevertheless, the approach shows that there is a potential to exploit the
computing power offered by modern computers. Furthermore, the absolute run times
are acceptable. It should also be noted that, during system development, the times are
lower due to the persistent storing of analysis results.



7 Conclusions

In this paper we presented CASS, a tool to analyze functional logic programs. CASS
supports various kinds of program analyses by a general notion of analysis functions
that map program entities into analysis information. In order to implement an analysis
that also depends on information about other entities used in a definition, CASS sup-
ports “dependency analyses” that require a fixpoint computation to yield the final anal-
ysis information. Moreover, different analyses can be combined so that one can define
an analysis that is based on the results of another analysis. Using these different con-
structions, the analysis developer can concentrate on defining the logic of the analysis
and is freed from the details to invoke the analysis on modules and complete application
systems. To analyze larger applications efficiently, CASS performs a modular and in-
cremental analysis where already computed analysis information is persistently stored.
Thus, CASS does not support top-down or goal-oriented analyses but only bottom-up
analyses which is acceptable for large applications or interactive systems with unknown
initial goals. The implementation of CASS supports different modes of use (batch, API,
server) so that the registered analyses can be accessed by various systems, like com-
pilers, program optimizers, documentation generators, or programming environments.
Currently, CASS produces output in textual form. The support for other kinds of visu-
alizations is a topic for future work.

The analysis of programs is an important topic for all kinds of languages so that
there is a vast body of literature. Most of such works is related to the development and
application of various analysis methods (where some of them related to functional logic
programs have already been discussed in this paper), but there are less works on the
development or implementation of program analyzers. An example of such an approach,
that is in some aspects similar to our work, is Hoopl [23]. Hoopl is a framework for data
flow analysis and transformation. As our framework does, Hoopl eases the definition of
analyses by offering high-level abstractions and releases the user from tasks like writing
fixpoint computations. In contrast to our work, Hoopl works on a generic representation
of data flow graphs, whereas CASS performs incremental, module-wise analyses on an
already existing representation of functional logic programs. Another related system
is Ciao [19], a logic programming system with advanced program analysis features to
optimize and verify logic programs. CASS has similar goals but supports strongly typed
analysis constructors to make the analysis construction reliable.

There are only a few approaches or tools directly related to the analysis of combined
functional logic programs, as already discussed in this paper. The examples in this pa-
per show that this combination is valuable since analysis aspects of pure functional
and pure logic languages can be treated in this combined framework, like demand and
higher-order aspects from functional programming and groundness and determinism as-
pects from logic programming. An early system in this direction is CIDER [16]. CIDER
supports the analysis of single Curry modules together with some graphical tracing fa-
cilities. A successor of CIDER is CurryBrowser [12], already mentioned above, which
supports the analysis and browsing of larger applications. CASS can be considered as
a more efficient and more general implementation of the analysis component of Curry-
Browser.



For future work, we will add further analyses in CASS with more advanced abstract
domains. Since this might lead to analyses with substantial run times, the use of parallel
architectures might be more relevant. Thus, it would be also interesting to develop ad-
vanced methods to analyze module dependencies in order to obtain a better distribution
of analysis tasks between the workers.
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