A Parser Generator System for
Level-based Programming Languages !

Michael Hanus”and Jan Rasmus Tikovsky?

Abstract: A programming language is usually taught by starting with a small kernel that is con-
tinuously extended to the full set of language features. Unfortunately, the existence of advanced
language features might confuse students if they accidentally use them and get incomprehensible er-
ror messages. To avoid these problems, one should group the language features into different levels
so that beginners start with a simple level and advance to higher levels with more features if they
become more experienced. In order to support such a concept for arbitrary programming languages,
we present a parser generator system, called Levels, for level-based programming languages. With a
level-based language, one can stepwise increase the language level in order to match the experience
of the students. Furthermore, one can implement level-specific semantic analyses in order to provide
comprehensible error messages. Our Levels system generates level-specific parsers from a unified
syntax description and provides an infrastructure to implement level-specific semantic analyses as
well as program editors to develop level-specific programs.

1 Introduction

When teaching a programming language to programming novices, one usually begins with
rather small programs introducing the syntax as well as simple constructs of the language.
For instance, a Java beginners’ course might start off with the introduction of simple ex-
pressions and statements, proceed with the explanation of abstractions like the definition
of methods and classes and conclude with advanced concepts, like inheritance or generics.

Hence, one can split up the teaching and learning contents of a programming course into
levels of growing complexity building on one another. It would simplify the teaching and
learning of programming languages considerably, if we could somehow represent these
levels of programming experience in the implementation of a language environment.

With a level-based programming language, we could hide advanced language components
on lower levels and provide students with specific warnings or compiler errors if they ac-
cidentally use them. By performing level-specific semantic analyses, one could provide
students with novice-friendlier warnings and error messages on beginner levels. Further-
more, one could also consider the definition of so-called white and black lists to permit
and prohibit the usage of certain language features, respectively. As the course proceeds,
more complex language features can be made available by raising the language level.

! Copyright © 2016 for the individual papers by the papers’ authors. Copying permitted for private and aca-
demic purposes. This volume is published and copyrighted by its editors.

2 Institut fiir Informatik, CAU Kiel, D-24098 Kiel, Germany, mh@informatik.uni-kiel.de

3 Institut fiir Informatik, CAU Kiel, D-24098 Kiel, Germany, jrt@informatik.uni-kiel.de

This approach to teaching programming has been pioneered for the language Scheme with
the DrScheme environment [FCF"02] and the corresponding textbook [FEFKOT]. In order
to support the development of arbitrary level-based programming languages, we need a
formal description of the syntax components that are available on each level. From such a
description, one could generate a corresponding parser for each level. Moreover, to facili-
tate the implementation of semantic analyses performed on an abstract syntax tree (AST),
it would be desirable that each parser produces the same type of AST. Furthermore, the
implementation of a level-based language should be distributed in form of an editor plugin
providing students with an integrated development environment (IDE) to write level-based
programs.

Unfortunately, existing parser generator tools like ANTLRE] [ParO7] or HappyE], a parser
generator system for Haskell, do not have features to directly model the syntax of a level-
based programming language. Such parser generators produce one parser which, possibly,
generates a corresponding AST from a given program. In order to define a language with
levels—each with a corresponding parser—using one of these tools, we would have to
specify a grammar and generate a parser for each level. Such an approach is not only
cumbersome but also results in the generation of a separate AST for each level. This makes
the implementation of semantic analyses for level-based languages more elaborate.

As mentioned above, there already exist approaches to use level-based programming lan-
guages to simplify the learning of a language. For instance, in the context of functional
programming, there is the DrRacket system (formerly called DrScheme [FCET02]]) for
the Scheme dialect Racket. DrRacket is a programming IDE with levels partitioning the
features of Racket into several logical units. Advanced language concepts, like opera-
tions with side effects, are not unlocked until one selects a higher language level. DrJava
[ACSO02] is a similar system for the object-oriented language Java. It is a lightweight IDE
enabling users to interactively evaluate Java code. Simple expressions can be directly in-
terpreted and evaluated without the definition of classes or a main method.

In this work we present a parser generator system, called Levels, for level-based program-
ming languages. Levels is provided as a plugin for the Eclipse IDEﬂ The EBNF-like syntax
description language of our system supports level annotations enabling language develop-
ers to restrict language features to certain levels. In contrast to existing parser generators,
our system produces one parser for each level and a common AST structure for all levels
(represented as a Haskell data type). Furthermore, the Levels system supports the combi-
nation of Levels-generated components with existing compilers and interpreters for a given
programming language in a seamless way. This combination enables language developers
to add levels to existing programming languages and implement (level-)specific semantic
analyses for them. Finally, we show that IDEs for level-based languages developed with
our system can be implemented in the form of editor plugins.

4http://www.antlr.org/
Shttp://www.haskell.org/happy/
Shttp://www.eclipse.org/

http://www.antlr.org/
http://www.haskell.org/happy/
http://www.eclipse.org/

The rest of the paper is structured as follows. In Sect. [2| we present the syntax description
language of our parser generator system and use it to develop a level-based language for
a simple desk calculator. Section [3|shows further annotations provided by Levels in order
to adapt the structure of the generated AST to specific demands. The usage of the parser
generator and the generated components are described in Sect. @] Section [§] provides a
brief overview of the implementation of our tool. The application of the parser generator
system to develop a level-based version of Ruby is presented in Sect. [f|before we conclude
in Sect.[Z

2 Syntax Description of Level-Based Programming Languages

The syntax of a language is usually specified by regular expressions for the lexical units
and context-free grammars for the language structure. The (extended) Backus-Naur Form
(EBNF [Wir77]) has become the main notation to specify grammar rules in an easily com-
prehensible way.

In this section we present an EBNF-style grammar extended with level annotations serving
as the input language for our parser generator system. Following up, we will show the
syntactic components of Levels by developing the language for a simple desk calculator.

2.1 Lexer Rules

A Levels grammar is divided into three sections:

1. Token classes
2. Lexer rules

3. Parser rules

The token class section of Levels is optional and enables the declaration of names for token
classes. These names can be used by tokens defined in the lexer section. The primary pur-
pose of a token class is to categorize tokens. For instance, the following Levels declaration
defines token classes for keywords and comments in order to denote tokens accordingly,
enabling a common syntax highlighting for all tokens of a class:

TokenClasses {
Keyword, Comment;

X

The lexer section of Levels allows the declaration of tokens by specifying lexer rules of
the following form:

LexerRule ::= TokName ’=" Regex [Flags] [’ : :” Type] [Str2Type] [Type2Str] [TokClass] ’;’

Flags = Macro | NoAction

Type ©= String|Int |Bool |Float|...
Str2Type = Read|’»” HaskellLambdaExp’>’
Type2Str = Show | '« HaskellLambdaExp ’<«’

TokClass = [’ DeclaredTokenClass ’]1’

For each token we must at least specify a name and a regular expressiorﬂ determining the
form of accepted strings. The token name (TokName) must start with a lowercase letter
and each lexer rule is terminated with a semicolon. Besides the name and the regular
expression, a lexer rule has a number of optional arguments. For instance, there are two
flags which can be specified for a lexer rule: the Macro and the NoAction flag. With the
former, a lexer rule is identified as a macro which can only be used in the definition of
other lexer rules and is not considered during the actual lexing process. The latter denotes
strings which shall be skipped by the lexer, e.g., comments. Each token defined in the
lexer section can optionally be associated with a previously declared token class. Listing[3]
shows a small example of a Levels’ lexer section introducing tokens for numbers, variables
beginning with a lowercase letter or an underscore, and Haskell-like inline comments.

For reasons explained in Sect. [3] we want to generate an abstract syntax tree (AST) rep-
resented by data structures implemented in the functional programming language Haskell
[PJO3]]. Therefore, we allow the optional specification of Haskell types and type conver-
sion functions for each lexer rule. In the default case, each lexed value is represented as a
Haskell String. However, if we want to define a token for integer numbers and represent
the corresponding lexed values in the generated AST using Haskell’s Int type, we have
to add this type to the rule (see Listing [3] for an example). Moreover, in order to convert
between the string representation read by the lexer and the representation of the specified
type and vice versa, we have to declare proper Haskell conversion functions (Str2Type and
Type2Str). Since many Haskell types already provide such conversion functions by imple-
menting the type classes Read and Show, respectively, Levels is able to directly reuse these
implementations if the keywords Read and Show are stated. Apart from this standard be-
havior, a developer can also use conversion functions of his own by specifying appropriate
functions as Haskell lambda expressions encapsulated in French quotes.

2.2 Parser Rules

The syntax of parser rules in a Levels grammar is similar to that of EBNF grammar rules.
Each rule consists of a name and a definition and must be terminated with a semicolon. The
name of a rule starts with an uppercase letter. Parser rule definitions can be constructed us-
ing a sequence of simple elements, like terminal symbols and non-terminal symbols (which
refer to other parser rules). Terminal symbols can be specified directly by encapsulating

7 We do not specify the detailed structure of the non-terminal Regex since it follows the usual syntax of regular
expressions.

the corresponding symbol in single or double quotes or indirectly by referencing a token
declared in the lexer section of the grammar. In the former case, an appropriate regular
expression for the terminal symbol is automatically created during the generation of the
lexer.

Similar to EBNF grammars, Levels’ grammar elements can be grouped by encapsulating
them in parentheses. Moreover, elements can be denoted as optional and repetitive us-
ing square brackets and curly braces, respectively. Finally, alternative definitions can be
specified by separating them with vertical bars.

Listing |1| shows most of these features of Levels by modeling the grammar for statements
of a very simple imperative language. Programs written in this language consist of variable
declarations, assignments, and if statements with optional else branches.

Parser {
Stms = Stm ’;’ {Stm ’;’};
Stm ’declare’ var

var ’=’ Expr

’if’> Expr ’then’ Stms [’else’ Stms] ’end’;

Expr = number |

List. 1: An example of a Levels parser section

In addition to the well-known EBNF-like grammar components presented above, Lev-
els supports the declaration of level annotations. For this purpose, all grammar elements,
(non-)terminals as well as complex grammar expressions, can be annotated with informa-
tion denoting their (non-)availability on certain levels. Grammar elements without level
annotations are available on all levels of the language. A level annotation is introduced by
the symbol @ followed by a level declaration in parentheses. Level declarations are lists of
level specifications with at least one level specification. Each level specification consists
of an optional flag and a level range. Valid ranges are positive integer numbers including
0 and intervals of numbers, where the upper boundary is optional. The following grammar
summarizes the syntax of level annotations:

LvlAnnotation u= @ ’(C LviDeclaration’)’
LvlDeclaration = LviSpecification {’,” LvISpecification}
LviSpecification ::= [LviFlag] LviRange

LvlFlag SC N

LvIRange = Number [’-’ [Number]]

If n is the maximal level annotation specified in a Levels grammar, our system generates
n+ 1 parsers, i.e., one parser for each level starting from the base level 0. Hence, if level
n is the only level annotation used in a grammar, our system produces n — 1 identical

parsers and one parser which additionally takes the level-annotated grammar element(s)
into account.

As an alternative approach, one could generate parsers only for levels explicitly specified
in the grammar, thus, allowing language developers to provide for intermediate levels in
case a grammar needs to be modified or extended by additional levels at a later time.

Listing [2] shows a level-annotated version of our simple statement language. According to
the level annotations, compound statements are only available from level 2 on and else
branches of if statements can only be used on level 3. For this level-annotated grammar,
our tool would generate four parsers with identical parsers for the levels 0 and 1.

Parser {
Stms = Stm ’;’ {Stm ’;’}0(2-);
Stm ’declare’ var

var ’=’ Expr

’if’> Expr ’then’ Stms [’else’ Stms]@(3) ’end’

— — |

Expr = number |

List. 2: Parser section with level annotations

The level flags can be used to switch between optional and mandatory elements on certain
levels. For instance, the flag “!” denotes an optional grammar element as mandatory on
the specified levels, and the flag “?” transforms a mandatory element into an optional one
on the specified levels. For instance, consider the following excerpt of a Levels grammar:

Parser {

Method = (’public’ | ’private’ | ’protected’)@(?70,1-) MethodId Stms;
Stms Stm [?;°]@(!'0,1-) {Stm [’;°]@('0,1-)};

In this level-based language, the access modifiers of methods are optional on level 0 and
mandatory from level 1 onwards. Statements have to be terminated with a semicolon on
level 0. Starting from level 1, ending a statement explicitly with a semicolon becomes
optional. Note that the “!” flag can only be used in level annotations for grammar ele-
ments which were declared as optional, whereas the “?” flag can only be specified for
non-optional grammar elements.

We conclude this section by presenting a complete Levels grammar for a simple level-
based expression calculator, as shown in Listing [3] In this example, we use a further
feature of Levels. Similarly to parser generators like Yacc or Happy, the parser section
of a Levels grammar can also contain declarations of operator precedences and associa-
tivities in order to solve conflicts that might occur during the generation of the parsing

tables. The operators can be specified directly as a string or by reference to a lexer rule
defined in the lexer section. Each operator declaration states an associativity, i.e., whether
the operator is left-, right-, or non-associative. The order in which operators are declared
determines their precedences. If two operators share the same precedence and associativ-
ity, they can be declared in one line. For instance, consider the upper part of the Levels
parser section of Listing [3| defining common arithmetic operators and their precedences
for the input language of the calculator. Here, the right-associative power operator has the
highest precedence. All other operators are left-associative with “+” binding more tightly
than “+” and “-”.

The level annotations in the calculator grammar are used to introduce expressions of in-
creasing complexity in the various levels. On the first level, only simple arithmetic ex-
pressions like addition, subtraction, and multiplication of numbers can be handled by our
calculator. From level 1 onwards, the computation of the n-th power is also permitted. Fi-
nally, level 2 enables the binding and usage of local variables introduced by Haskell-like
let expressions to the level-based language of the calculator.

TokenClasses {
Keyword, Comment;

}
Lexer {
digit = /[0-9]1/ Macro;
number = /@digit+/ :: Int Read Show;
var = /[a-z_ledigit*/ :: String;
comment = /\-\-.*/ NoAction [Comment];
let = /"let"/ :: String [Keyword];
in = /"in"/ :: String [Keyword];
}
Parser {
Yleft 4+ 1o
hleft %7,
%hright 2x*’;
TopExpr = (let var ’=’ Expr in Expr)@(2-) | Expr;
Expr = number | Expr ’+’ Expr | Expr ’-’ Expr | Expr ’*’ Expr
| (Expr ’#*’ Expr)@(1-)
| >(> TopExpr ’)’
| var@(2-);
}

List. 3: Levels grammar for a level-based calculator

3 Abstract Syntax Tree Generation

In this section we will discuss the transformation of a grammar into a corresponding type
describing an abstract syntax tree (AST) to represent programs, as supported by the Levels
system. First, we will take a look at the generation of an AST type for simple grammars
without level annotations. Then we will show further annotations provided by Levels in
order to specify more descriptive names for components of the AST structure and, thus,
improving its comprehensibility considerably. Finally, we will explain how level-annotated
grammars can be transformed to a single AST type, which provides the means to include
the necessary information for each level.

An important objective of our approach is an easy integration of user-defined semantic
analyses into the compiler components automatically generated by our tool. Typically,
a semantic analysis traverses an AST, collects semantic information and annotates the
AST with this information. Hence, the implementation of a semantic analysis involves
the traversal and transformation of structured data terms. Since these kinds of tasks can
be easily implemented with functional programming languages by exploiting algebraic
data types, pattern matching, and function composition [Hug89], we chose the functional
language Haskell to represent ASTs and implement semantic analyses. In principle, we
could also generate AST representations in other languages by modifying the semantic
actions of the parsers generated by the Levels system.

In the following, we assume familiarity with the basic features of Haskell [PJO3]. In order
to demonstrate the representation of grammar elements and level annotations as Haskell
data types, we will look at excerpts of Levels grammars and show the corresponding AST
structures generated by our tool. We start by considering the Levels grammar for the simple
imperative language already shown in Listing[I] Our system generates the following AST
structure for this grammar:

data Stms = Stms Pos Stm [Repetition]

data Stm = Stm Pos (Pos, String)

| Stm_0 Pos (Pos, String) Expr
| Stm_1 Pos Expr Stms (Maybe Option)

data Expr = Expr Pos (Pos, Int)

data Repetition = Repetition Pos Stm

data Option = Option Pos Stms
List. 4: AST structure generated from Listing

Thus, non-terminal symbols, like Stms, Stm and Expr, are mapped to Haskell data types
with the same name. For each alternative definition of a non-terminal, a constructor is
added to the corresponding type declaration, e.g., Stm, Stm_0, or Stm_1.

Terminal symbols that are explicitly declared in the lexer section of the grammar are rep-
resented by the Haskell type which was specified in their declaration. If a specific Haskell
type was omitted, a terminal symbol is per default represented as a String. Terminal sym-
bols without an explicit declaration in the lexer section are not part of the abstract syntax
and, thus, our tool ignores them when generating the AST type. In the calculator example
(see Listing , variables (var) and numbers (number) were explicitly declared as terminal
symbols. Hence, they are represented in the AST structure by the String and Int type, re-
spectively. However, the equal sign, the semicolon, and keywords like “declare” or “if”
are not important for the abstract representation of a program and, thus, they are omitted
in the AST type.

The AST structure also contains position information collected during the lexical analysis
of the program. Position information is represented by the type

type Pos = (Int, Int, Int)

The first component of this triple represents the absolute position, the second and third
refer to the line and the column number in the considered input string, respectively.

Hence, terminal symbols are represented as pairs of the position information and their
Haskell type, and each AST constructor contains the information about its starting position
as the first argument. The position information is useful to generate meaningful warnings
and error messages when performing a semantic analysis on the AST.

Compound grammar elements, like groups, repetitions and optionals, are represented in the
AST structure by introducing a new data type for each compound element, like Repetition
or Option in Listing |4 (if there are several of these elements, the data type names are
suffixed with some index in order to avoid name conflicts). These types are then used
at the position of the original compound elements in the AST type, where repetitions are
mapped to lists, and optionals are mapped to Haskell’s Maybe type. For instance, our simple
imperative language allows the usage of an arbitrary number of compound statements.
This repetition is represented as the list argument [Repetition] of the AST constructor
Stms. The elements of the repetition are defined by the type Repetition which basically
corresponds to the type of Stm. Similarly, the optional else branch in an if statement is
represented by the type (Maybe Option).

In principle, we could already use the AST structure in Listing] to implement a semantic
analysis for our imperative language. However, in its current form the generated AST type
does not really meet the quality of a manually written functional program. For instance,
it is hard to identify the different kinds of statements provided by our example language
in the AST with automatically generated names like Stm_0. Of course, we could simply
perform some renamings and refactorings in the programs generated by our tool. However,
this simple approach would be rather cumbersome and also error-prone, since we would
have to perform these renamings and refactorings again whenever we modify the original
Levels grammar.

Fortunately, Levels supports the definition of user-defined names for the components of the
generated AST structure by adding further annotations to the parser rules of a grammar. For
instance, we can specify descriptive names for alternative definitions of non-terminals by
simply adding an appropriate name followed by “:” in front of the respective alternative.
Furthermore, we can also define names for non-terminals and complex grammar elements
occurring on the right-hand side of parser rules by denoting these names encapsulated in

angle brackets directly after the particular grammar element.

Parser {
Stms

Stm ’;’ {Stm ’;’}<CompStmItem>;

Stm = DeclareStm: ’declare’ var
| AssignStm: var ’=’ Expr
| IfStm: ’if’ Expr<Cond> ’then’ Stms

[’else’ Stms]<ElseBranch> ’end’

Expr = NumExpr: number;

List. 5: Levels Parser rules with naming annotations

Listing[5]shows such naming annotations, where these annotations are used to improve the
readability of the generated AST code. For instance, the alternatives of the non-terminals
Stm and Expr are annotated with descriptive names like DeclareStm, AssignStm, IfStm,
and NumExpr. Moreover, compound statement items, the conditional expression, and the
optional else branch of the if statement have also specific names.

data Stms = Stms Pos Stm [CompStmItem]

data Stm = DeclareStm Pos (Pos, String)

| AssignStm Pos (Pos, String) Expr
| IfStm Pos Cond Stms (Maybe ElseBranch)

data Expr = NumExpr Pos (Pos, Int)

data CompStmItem = CompStmItem Pos Stm
data ElseBranch = ElseBranch Pos Stms
type Cond = Expr

List. 6: AST structure with descriptive names, generated from Listing

The types generated to describe a corresponding AST for this annotated Levels grammar
is shown in Listing [6} Now the constructors for alternative definitions of non-terminals
have descriptive names like AssignStm instead of Stm_0. Defining names of non-terminals

occurring on the right-hand side of a parser rule are represented by the introduction of
type synonyms, like the type Cond for the conditional expression in an if statement of
our example. The naming annotation of complex grammar elements, like repetitions and
optionals, yields more descriptive names for the AST data types. For instance, by giving
the optional else branch of the if statement a defining name, the Option type shown in
Listing |4] is changed to ElseBranch. Note that arbitrary sequences of grammar elements
occurring on the right-hand side of a parser rule can be annotated with a name by grouping
them before adding an appropriate annotation.

If we do not specify a defining name in a naming annotation, but just annotate a grammar
element with an opening and closing angle bracket, this grammar element is not repre-
sented in the generated AST structure. Applying naming annotations in that way can be
useful to enforce the omission of certain grammar elements in the AST representation.
For instance, if we want the keywords of our language to be equally highlighted in a text
editor, we have to introduce a token class keyword and explicitly declare a lexer rule for
each keyword referencing this token class as explained in Sect. [2] However, applying these
explicitly defined tokens in the specification of parser rules results in their explicit repre-
sentation in the AST. Since keywords are usually not part of the abstract representation of
a program, we can enforce their omission in the AST representation by annotating them
with <>.

In the remaining part of this section, we discuss the generation of AST types for grammars
containing level annotations. As already mentioned, our system generates several parsers
but a single AST structure for an input grammar with level annotations. The generation
of only one AST type is motivated by the fact to reuse common parts of the semantic
analyses at different levels. Since level annotations allow to hide the usage of language
components on particular levels, we have to ensure that the generated AST is valid even
if these components are hidden. Therefore, the corresponding parts of the AST have to
be optional, which can be expressed in Haskell by the type constructor Maybe. Thus, our
system transforms level-annotated grammar elements into Maybe types.

For instance, consider again our running example. Suppose we want to modify the gram-
mar of Listing[5]in two ways: First, we want if statements to be only available from level
1 onwards (remember that the numbering of levels starts at 0). Second, we want to include
type information in our language on higher levels. Hence, on level 2 the specification of
a primitive type is required when declaring a variable. For the implementation of these
extensions we modify the grammar as follows:
Stm DeclareStm: ’declare’ var (’:’ Type)<TypeDecl>Q(2-)

AssignStm: var ’=’ Expr
IfStm: (’if’ Expr<Cond> ’then’ Stms

[’else’ Stms]<ElseBranch> ’end’)@(1-)

Type = Int: ’int’ | Float: ’float’ | Bool: ’bool’

In order to add a level annotation for the complete if statement, we group all its grammar
elements using parentheses. Furthermore, we define a name for the newly introduced group
to maintain the readability of the generated AST. In a similar way, we specify that an
annotation of a primitive type, like int, is required on level 2 when declaring a variable.

Observe that a naming annotation always has to be specified before a level annotation
when both of them are used for the same grammar element. The AST generated from this
modified grammar is shown in Listing

data Stms = Stms Pos Stm [CompStmItem]

data Stm = DeclareStm Pos (Pos, String) (Maybe TypeDecl)

| AssignStm Pos (Pos, String) Expr
| IfStm Pos Cond Stms (Maybe ElseBranch)
data TypeDecl = TypeDecl Pos Type

data Type = Int Pos | Float Pos | Bool Pos

data Expr = NumExpr Pos (Pos, Int)

data CompStmItem = CompStmItem Pos Stm
data ElseBranch = ElseBranch Pos Stms

type Cond = Expr

List. 7: AST structure generated from a level-annotated grammar

If we compare Listing [6] and Listing [7] we see that the additional types TypeDecl and
Type were generated to represent the newly introduced level-restricted group for optional
type annotations. Moreover, with the generated types describing the AST we can represent
programs including if statements and variable declarations with type annotations as well
as programs in which those statements are not available. The fact that programs include
additional type annotations in variable declarations on level 2 is represented in the AST
structure by the type (Maybe TypeDecl) in the constructor DeclareStm. However, if an
entire grammar rule alternative, like the if statement in our running example, is only
available at specific levels, there is no need to use a Maybe type in the AST representation,
because, depending on the chosen parser level, an AST will either include only complete
if statements or no if statements at all.

Note that all level-annotated grammar elements are represented as optional using Maybe
in the generated AST types. In fact, it does not make a difference, if we specify flags
like 7 or ! in the level annotation or if we annotate simple grammar elements like non-
terminals or complex grouped elements. In all of these cases, a Maybe type will be used
in the AST representation. However, there are two exceptions to this general rule. As
mentioned before, if an entire grammar rule alternative is level-annotated, no optional

type is required in the AST representation, because the corresponding syntactic alternative
will be either completely included in a generated AST or not included at all. The second
exception are terminal symbols which were not explicitly declared in Levels’ lexer section.
Since these terminal symbols are not part of the abstract syntax, they are not represented
in the AST, regardless of the level annotations specified.

As mentioned above, the generation of a single AST structure for all language levels en-
ables the reuse of semantic analyses on different language levels. For instance, consider
we want to check that every identifier used in a statement was declared in some preceding
statement. Listing [§] shows an excerpt of the implementation of such an analysis for our
running example using the generated AST structure depicted in Listing

type Varld
type SymTable

String
[(VarId, Pos, Maybe TypeDecl)]

declared :: Stms — SymTable
declared (Stms _ stm csi) = foldr addDecl [] (stm : stms)
where stms = map (\(CompStmItem _ s) — s) csi

addDecl :: Stm — SymTable — SymTable
addDecl (DeclareStm _ (p, i) mty) sym = (i, p, mty) : sym

-- performed for all programs
usedDeclCheck :: SymTable — Stms — Either LevelsError ()

-- only performed for level 2 programs
typeCheck :: SymTable — Stms — Either LevelsError ()

List. 8: Implementation of a used-declared analysis (excerpt)

In order to check that every identifier used in a program was properly declared, we traverse
the AST structure and create a symbol table. Whenever we come across a declaration state-
ment during this traversal, we add information like the position or the optional type of the
corresponding variable to the table. Then we can implement the used-declared analysis
using the information collected in the symbol table. Since our tool generates only a single
AST type for all levels of a language, we can perform this analysis for all programs regard-
less of their level. Furthermore, we can also specify level-specific analyses. For example,
we could implement a type checker for our running example using the type information
collected in the symbol table for each identifier. As type declarations are only required on
level 2, the type checker is an example for a level-specific semantic analysis.

4 Generated Components of a Levels Project

After having introduced the syntax of Levels grammars and the transformation of Levels
grammars into corresponding abstract syntax trees, we discuss in this section the overall

structure of a Levels project and the (remaining) components automatically generated from
a Levels grammar by our system.

1. Create Levels project

grammar . lps config. json Executable.hs Interface .hslﬁ

=
I
I
|
I
I
I
I
|
[l
I
'

4. Implement interface

Lexer.x Parser0O.y AST.hs
ParserN.y Pretty.hs

T
1
v

Alex (= === Happy R 3./5. Run build script

/ / ™~ !

Lexer.hs Parser0.hs ParserN.hs main

G
N

Fig. 1: Development of a level-based programming language with Levels

Basically, our system is provided as a plugin for the Eclipse IDE. Hence, if we want to
begin with the development of a new level-based programming language, we run Eclipse
Luna (or higher), install the plugin and select the option to generate a new Levels project.
By generating a new project, an initial project framework is created in Eclipse’s workspace.
Among other things, this project template provides an empty Levels grammar file, a con-
figuration file, Haskell source files for a simple command line executable and an Anlﬁ
build script. With a configuration file written in JSON syntax, we can configure a Levels
project. The file contains

) meta information, like the name of the level-based language,
° names and descriptions for the supported levels, and
° information and commands for the execution of level-based programs.

The command line executable and similar back ends use this information to compile and
run level-based programs. In Sect. [6| we will show more details about the configuration file
and the functionality of the executable for a concrete application of Levels.

8http://ant.apache.org/

http://ant.apache.org/

The next step when developing a level-based language with our tool is to define its syn-
tax by specifying a Levels grammar. As it is general practice for most Eclipse language
plugins, our tool supports auto-completion for Levels as well as immediate detection and
notification of syntax errors when the lexer and parser rules are written. As soon as we have
specified the Levels grammar for a language and saved it, the Levels system automatically
generates the following files:

1. A Haskell module (AST.hs) with the data structures representing the abstract syntax
tree generated from the syntax description of the level-based language, as described
in Sect.

2. A Haskell module (Pretty.hs) with a pretty printer (based on standard Haskell
modules for pretty printing [WadO03]]) to transform an abstract representation of a
program back into its concrete syntax. This pretty printer could be used to pro-
duce a modified source program that is fed to the actual language compiler or inter-
preter. For instance, in a level-based language for Java, where the basic level contains
only procedures and statements but not classes, one can extend the generated pretty
printer in order to wrap a program of this basic level with a class definition, add
public modifiers to each procedure, and enclose the statements in a main method.

3. A scanner description file: Since we use Haskell for the representation of the AST,
we decided to use scanner and parser tools available for Haskell, i.e., Alex and
Happy, to implement the lexical and syntactic analysis. Hence, the Levels system
produces an Alex specification (Lexer.x) from which a scanner can be generated.
Since level annotations are only used in the parser rules of a Levels grammar, a
single scanner is generated for all parser levels.

4. A parser description file: For each level n, starting from level O up to the max-
imum level specified in the given Levels grammar, a Happy parser specification
(Parsern.y) is generated.

In the next step, we can run the Ant build script generated by Levels. By executing this
script, Alex and Happy are called in order to produce Haskell source files for the lexer and
the parsers—one for each level—from the previously generated .x and .y files.

Before we can put everything together in order to build an executable which can analyze
and run level-based programs, we have to implement an Interface.hs module which
is used in the implementation of the executable. The Levels system already provides a
template version of this module when a new Levels project is started. Basically, one has to
define the function

compilelLevelCode :: Int — FilePath — IO FilePath

in this module. This function takes a level and a level-based program, parses it, possibly
performs semantic analyses and yields a corresponding object code file of the compiled
level-based program. We can implement this function by applying the operations of the
previously generated modules together with a compiler or interpreter for the actual lan-
guage.

In order to support the generation of warnings and error messages during the semantic
analysis, the interface provides the following data types for the representation of errors:

data LevelsError = LevelsError

{ errorSource :: Source

, errorPosition :: Maybe Pos
, errorMessage :: String

}

data Source = Lexer | Parser | Analyzer | Printer |

Thus, an error includes information about the component in which the error occured, an
optional position, and an error message. In order to create a new error message when
implementing a semantic analysis for a Levels project, one can use the function

analyzerError :: Maybe Pos — String — LevelsError
analyzerError = LevelsError Analyzer

For the implementation of warnings, similar types and functions are provided. The actual
printing of the warnings and error messages collected during the semantic analysis must
be explicitly performed in the implementation of the main function compileLevelCode
introduced above.

The final step in the development of a level-based language is to once again run the pro-
vided build script. Now, everything will be put together by building the command line
executable with the Haskell package system Cabalﬂ

Figure [T| summarizes the necessary steps to develop a level-based programming language
with Levels. The picture also shows most of the generated components and tools involved
during the development. Arrows with a solid line point to components that are automati-
cally generated by performing the action or using the tool which is depicted at the origin
of the arrow. Dashed arrows represent the invocation of an action to a certain component
or the fact that one component is used as input for a certain tool. The result of the build
process is a command-line executable (denoted with main in the picture) which—in com-
bination with the information specified in the configuration file—allows the execution of
level-based programs.

S Implementation

This section will give a brief overview of the implementation of Levels. As explained in
the previous section, Levels is a plugin for the Eclipse IDE.

The Levels syntax description language is implemented with Xtexm a framework to de-
velop textual domain-specific languages. For this purpose, we define an Xtext grammar

https://www.haskell.org/cabal/
0http://www.eclipse.org/Xtext/

https://www.haskell.org/cabal/
http://www.eclipse.org/Xtext/

which specifies the basic syntactic structure of Levels’ grammar input language, i.e., the
lexer and parser sections of a Levels grammar together with level and naming annotations
as described in Sections E] and E} By the use of the Xtext framework, an ANTLR3 lexer
and parser [Par07] is provided, which transform a given Levels grammar into an EBNF
object.

In order to automatically generate input files for Alex and Happy as well as Haskell code
for an AST and a pretty printer for a given Levels grammar, we implement conversion tools
and generators using Xtenﬂ a statically typed, functional, and object-oriented program-
ming language for the JVM. Since Happy can only handle grammars specified in BNF
syntax, we first apply a converter to transform the EBNF object of a given Levels gram-
mar into a corresponding BNF object. Complex grammar components like optionals, rep-
etitions and groups are removed by introducing fresh non-terminals and additional rules.
For the remaining grammar components, i.e., terminals, non-terminals, level annotations,
and lexer rules, Xtend classes are implemented. For instance, the class BNFLevel for rep-
resenting level annotations provides the methods getMaxLevel and isAvailableAtLevel.
These methods can be used to determine the maximum level occuring in an annotation and
to check whether a given level is available in an annotation, respectively.

The BNF object created for an input grammar bundles all necessary information for the
creation of the parser components. It includes a hash set of lexer rule objects, a hash
map representing the parser rules, i.e., mapping non-terminal objects to lists of grammar
objects occurring in the right-hand sides of rules, and the maximum level specified in the
input grammar.

By using the information provided by the BNF object, we implement a set of generators
to create input files for Alex and Happy as well as Haskell files for the representation of
the AST and the pretty printer, as described in Sect. 4] For example, the AST generator
introduces Haskell data type definitions for all non-terminals occuring in the BNF object.
Each constructor of such a data type definition matches an alternative of the right-hand
side of a parser rule in the BNF object.

Figure[2] gives an overview of the implementation of Levels.

6 Application

In this section we will briefly outline a practical application of the Levels system to develop
a level-based version of Ruby [FMOS]], a dynamically typed object-oriented language. At
Kiel university, our team offers a programming course for students who chose computer
science as minor subject. In this course we teach programming concepts with Ruby. In or-
der to simplify the learning and enforce some programming discipline, we want to restrict
the usage of Ruby for the beginners with different language levels.

The levels we introduce comply with certain stages of the lecture. For instance, there is a
beginners level in which all statements have to be explicitly terminated with a semicolon.

Whttp://www.eclipse.org/xtend/

http://www.eclipse.org/xtend/

Lexer Lexer.x
Levels.xtext _—
Generator

)/ \ Parser Parser0Q.y
’ N —_—
/ v Generator | ParserN.y
input r\élmma EBNF object
put g ANTLR3) EBNF2BNF BNF object
Lexer/Parser Converter

Pretty Pretty.hs
_—
Generator

AST AST.hs
LR L RN
Generator

Fig. 2: Overview of the implementation of Levels

Moreover, on this level we distinguish functions and procedures regarding their usage: The
former can only be used in expressions and the latter may only be applied in statements.

As the lecture proceeds, more advanced levels become available to the students. On higher
levels, the termination of statements with semicolons is optional, and functions and pro-
cedures are not distinguished in their usage anymore. Additionally, concepts like block
structures can only be used on advanced levels.

In order to extend Ruby with programming levels, we define a Levels grammar for Ruby
with appropriate level annotations as explained in Sect. [2] Furthermore, we implement
some simple semantic analyses based on the AST structure generated by our tool. For in-
stance, there is a used-declared analysis very similar to the one presented in Section [3]
which checks that every identifier used in a program is also defined. While the used-
declared analysis is performed on every level, we also implement some level-specific anal-
yses. For example, only on the beginners level, we check the correct usage of functions
and procedures in expressions and statements as mentioned above and issue a warning in
case of incorrect usage. Moreover, our level-based version of Ruby provides white and
black lists for specific code fragments explicitly allowing and prohibiting their usage, re-
spectively.

As mentioned in Sect.] for each Levels project a configuration file is provided in which
meta information is specified in JSON syntax. Listing [9] shows an excerpt of the configu-
ration file for the level-based Ruby language. Besides specifying names for the language
and their levels, we can also define file extensions for the level-based language. Addition-
ally, we can specify a command pattern for the execution of level-based programs. This
information is used for the compilation and execution of level-based Ruby programs ap-
plying the command-line executable provided with each Levels project. Remember that
this executable is a binary built from a Haskell program which combines all generated
components, i.e., lexer, level-specific parsers, pretty printer, as well as all manually imple-
mented components, like semantic analyses and program transformations.

"name": "Lv1Ruby",

"levels": [
{
"name": "Beginners Level",
"description": "This level is for Ruby beginners."
1,
1,

"levelCodeFileTypes": ["1lrb","rbl"],
"objectCodeFileType": "rb",
"executionCommandPatterns": ["ruby <filePath>"]

List. 9: config. json for level-based Ruby

In case of our level-based Ruby system, the compilation and execution process performed
by this tool is done in the following steps. In order to run a program with a particular level,
the main executable is invoked with the chosen level, the path to the level-based program,
and the path to the language configuration file. For instance, the command

> main 1 Example.lrb -1 /path/to/config.json

compiles and executes the Ruby program Example.lrb on level 1. This initiates in the
following actions:

1. The given input program is read by the scanner and parser for the corresponding
level.

2. The semantic analysis is performed. This annotates the AST generated during pars-
ing with additional information and might yield warnings or error messages.

3. The (annotated) AST is pretty printed by applying the generated pretty printer or a
properly modified version in case the original AST structure has changed.

4. Finally, if no errors were detected, the resulting Ruby file is compiled and executed
applying the command pattern provided in the configuration file.

By the configuration file shown in Listing [0] level-based Ruby programs are simply exe-
cuted by invoking the standard Ruby compiler. Figure [3] shows this compilation process.
The light grey components are automatically generated by Levels while the dark grey
component need to be implemented or extended by the user.

H Level-specific Semantic Pretty
Example.lrb Example.rb
P Lexer Parsers Analyses Printer P

Fig. 3: Overview of the compilation process of a level-based Ruby program

12 In fact, the pretty printer is also automatically created by Levels, but the implementation can be modified if
necessary.

Furthermore, the executable and the configuration file can be used to implement additional
tools, like graphical user interfaces (GUI) for the development of level-based programs.
In case of our level-based Ruby system, we developed plugins for the Komodo Edi@ and
Atonﬂ text editors. Using these plugins, a programmer can write a level-based program,
select one of the levels provided by the language and directly execute the program within
the editor. Besides level-specific syntax highlighting, the plugins also support graphical
notifications of errors. A screenshot of an editor session with the Atom plugin of our level-
based Ruby language is shown in Fig.[4]

@ Echo.Irb - atom:/fconfig - Atom
File Edit View Selection Find Packages Help
Echolrb x
1 # Language: Ruby, Level: Level 1
2 def echo
3 str = gets();
4 puts(str)‘ k
5 end; @D at line 4, column 12 Source: Parser
6)
Error at (Line:4, Colum:12): I couldn't
parse your program. Things I couldn't
read: end ; eof . Common mistakes: Forgot
a ';', 'end;'?'. Check the parentheses'.
w Hide Terminal | X Clear § Scroll ToTop % Scrol To Bortom | @ Font Size: 12 > Run
Running level code...
Echo.lrb:4:12: Parser srror:
Error at (Line:4, Golum:12): I couldn't parse your program. Things I couldn't read:
end ;
eof
. Common mistakes: Forgot a ';'., 'end;'?'. Check the parentheses'.
tevela> ||
Inetimedocihomefin/ivi-rubylexamples/Echoh - 4:12 LF UTF-8 Ruby (Levels) (Level 1)

Fig. 4: Developing a level-based Ruby program using the Atom plugin

7 Conclusions and Future Work

In this work we presented Levels, a parser generator system for the development of level-
based programming languages. A level-based programming language consists of various
language levels where some syntactic elements can be omitted or enforced on a particular
language level. In this way, we can group a language into levels of different complexity

hiding advanced features and providing specific warnings and error messages on lower
levels.

In order to support the implementation of level-based languages, we developed a parser
generator system for such languages, called Levels. Levels provides a syntax description
language with an EBNF-like syntax. Besides defining lexer and parser rules to describe

13 http://komodoide . com/komodo-edit/
4 https://atom.io/

http://komodoide.com/komodo-edit/
https://atom.io/

the syntax of a language, a Levels grammar can also include specific level annotations
for each grammar element. Moreover, the Levels system supports also the generation of
appropriate abstract syntax trees from a given program. In order to reuse semantic analy-
ses for different levels, we decided to use a single abstract syntax tree for all levels. The
main task of implementing a level-based language with Levels is, beyond the grammar
definition, the implementation of specific semantic analyses to provide warnings and error
messages appropriate for the different levels. Since this task usually consists of traversing
and transforming or annotating the AST, we chose Haskell with its support of algebraic
data types and pattern matching to implement these components. While EBNF-like gram-
mar components like repetitions and optionals can be represented in the AST structure
using Haskell’s list and Maybe types, all level-annotated grammar elements are treated like
optionals. In addition to level annotations, Levels input language also supports naming
annotations. With these annotations, a user can specify more descriptive names for gram-
mar components like alternatives, groups, etc. This improves the comprehensibility of the
generated types representing the AST considerably.

Besides a corresponding AST structure, Levels automatically generates a lexer, a parser for
each specified level, and a pretty printer, as soon as a syntactically correct Levels gram-
mar is defined. The actual lexer and parsers are created using the Haskell tools Alex and
Happy. Furthermore, a Levels project enables the easy integration of semantic analyses im-
plemented in Haskell with the Levels-generated components by providing an appropriate
infrastructure to create a single executable.

Levels is provided as a plugin for the Eclipse IDE supporting standard features, like auto-
completion and error notifications, when defining a level-based grammar. We implemented
Levels’ input language using Xtext. The EBNF object, which is automatically created by
ANTL3 when specifying a Levels grammar, is then transformed into BNF syntax. Finally,
we implemented various generators with Xtend to build the different Haskell components
from the given BNF object.

As a proof of concept, Levels was applied to develop a level-based version of Ruby with
level-specific semantic analyses. The language levels added to Ruby comply with certain
stages of a programming lecture taught at Kiel university. Hence, they can be increased
as the students become more experienced during the term. Moreover, building upon the
executable provided by Levels, we developed two integrated development environments
for level-based Ruby programs in the form of plugins for the Komodo Edit and Atom text
editors. These editor plugins are currently successfully used in the practical exercises of
the lecture “Computer Science as a Minor Subject”.

For future work it might be interesting to apply Levels to the development of further level-
based languages. For instance, one could develop a level-based version of Java for a be-
ginner’s course in (object-oriented) programming. By introducing levels to Java, one could
hide complex features like classes and methods and start off with a small imperative ker-
nel of the language including only expressions and simple statements. When compiling a
level-based Java program, these simple statements are automatically inserted into the body
of the main method of a class. Other languages like Python could be extended with levels
in a similar way. Furthermore, one could provide additional integrated development envi-

ronments for level-based programs by implementing plugins for other text editors or IDEs
like Eclipse.

Acknowledgements

The authors are grateful to the development team of the Levels system (Thorben Droste,
Malte Hecht, Julia Kunst, Lasse Kristopher Meyer, Jonas Oberschweiber, Thomas Rossow,
Jasper Paul Sikorra, Mike Tallarek, and Thomas Ulrich) and Frank Huch for his sugges-
tions that led to this development.

References

[ACS02]

[FCFT02]

[FFFKO1]

[FMO08]
[Hug89]

[Par07]
[PJO3]

[Wad03]

[Wir77]

E.E. Allen, R. Cartwright, and B. Stoler. DrJava: a lightweight pedagogic environment
for Java. In Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science
Education, pages 137-141. ACM, 2002.

R.B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler, and
M. Felleisen. DrScheme: a programming environment for Scheme. Journal of Func-
tional Programming, 12(2):159-182, 2002.

M. Felleisen, R.B. Findler, M. Flatt, and S. Krishnamurthi. How fo Design Programs.
MIT Press, 2001.

D. Flanagan and Y. Matsumoto. The Ruby Programming Language. O’Reilly, 2008.

J. Hughes. Why Functional Programming Matters. Computer Journal, 32(2):98-107,
1989.

T. Parr. The Definitive ANTLR Reference. Pragmatic Bookshelf, 2007.

S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-
bridge University Press, 2003.

P. Wadler. A prettier printer. In J. Gibbons and O. de Moor, editors, The Fun of Pro-
gramming, pages 223-243. Palgrave Macmillan, 2003.

N. Wirth. What Can We Do about the Unnecessary Diversity of Notation for Syntactic
Definitions? Communications of the ACM, 20(11):822-823, 1977.

	Introduction
	Syntax Description of Level-Based Programming Languages
	Lexer Rules
	Parser Rules

	Abstract Syntax Tree Generation
	Generated Components of a Levels Project
	Implementation
	Application
	Conclusions and Future Work

