
Declarative Programming of User Interfaces⋆

(Extended Abstract)

Michael Hanus Christof Kluß

Institut für Informatik, CAU Kiel, Germany
{mh|ckl}@informatik.uni-kiel.de

Abstract. This paper proposes a declarative description of user inter-
faces that abstracts from low-level implementation details. In particular,
the user interfaces specified in our framework are executable as graph-
ical user interfaces on single local host computers as well as web user
interfaces via web standard browsers. Thus, our approach combines the
advantages of existing user interface technologies in a flexible way with-
out demands on the programmer’s side. We sketch an implementation
of this concept in the declarative multi-paradigm programming language
Curry and show how the integrated functional and logic features of Curry
are exploited to enable a high-level implementation of this concept.

1 Motivation

The implementation of a good user interface for application programs is a nec-
essary but often non-trivial and tedious task. In order to support programmers
in the implementation of user interfaces, one can find specific libraries that re-
flect different approaches to the construction of user interfaces. From a user’s
perspective, there are two kinds of user interfaces (UIs) that are currently the
most important ones on conventional desktop computers:

Graphical User Interfaces (GUIs): These are user interfaces that followed
the early textual user interfaces on single host computers. GUIs enabled
non-expert users to easily interact with application programs. They provide
a good reaction time (since they run on the local host) and are relatively
easy to install as any other program, i.e., usually they are distributed with
the executable of the application program. On the negative side, application
programs with GUIs are not so easy to install for many users (since one has
to install them on all local hosts) and are difficult to maintain during their
life time (since updates must be performed on all existing installations).

Web User Interfaces (WUIs): These are user interfaces that became popu-
lar with the world-wide web and its opportunities for user interaction via
dynamic web pages. In this case, the application runs on a web server and
the user interacts with the application via a standard web browser. Thus,

⋆ This work was partially supported by the German Research Council (DFG) under
grant Ha 2457/5-2.



applications with WUIs are relatively easy to install for many users since ev-
ery single user needs only a web browser on his local host (which is usually
already installed). Moreover, such applications are easy to maintain since
one only has to update the central installation on the web server. On the
negative side, WUIs have a moderate reaction time (since the web server is
contacted for every state-changing interaction) and a complete application is
more difficult to install on a single host (since one has to install and configure
a web server).

A few years ago, there was also another important difference between GUIs and
WUIs: the model of interaction. In application with GUIs, the user could imme-
diate change the content of many widgets by mouse events, whereas with WUIs,
each page containing user input has to be sent to the web server which sends
back a new web page with some modified content. However, this disadvantage of
WUIs has been decreased or omitted by the development of the Ajax framework
that supports an interaction with a web server without submitting and receiving
complete new pages from the web server [6].

From these considerations, it is reasonable to combine the advantages of both
kinds of user interfaces in a single framework so that the programmer has no
additional burden to select between GUIs or WUIs (or both) for his application.
This paper presents a concrete proposal of such a concept and its implementation
in the declarative multi-paradigm language Curry.

Adobe AIR1 also enables the use of the same base code to create applications
that run in a web browser as well as on a desktop. In contrast to our approach,
Adobe AIR is not based on standard features of web browsers but requires
specific software to be installed on the client’s side. Another related work is
the Google Web Toolkit (GWT2). GWT is a framework to implement dynamic
web pages for Java programs similarly to GUI programming in order to create
highly interactive web applications with reasonable efforts. In contrast to our
proposal, GWT does not support the use of the same program to generate both
GUI and WUI applications. Moreover, our framework is based on declarative
programming concepts so that we exploit the abstract programming techniques
provided by declarative languages to support a high-level programming of user
interfaces. In our framework, one specifies the structure of user interfaces from
which the concrete implementations (GUIs or WUIs) are automatically inferred.

In the following section, we review the main features of functional logic pro-
gramming as required in this paper. Section 3 describes the concepts of our
framework followed by a few examples shown in Section 4. Implementation is-
sues are sketched in Sections 5 and 6 before we conclude in Section 7.

1 http://www.adobe.com/devnet/air/
2 http://code.google.com/webtoolkit/



2 Functional Logic Programming and Curry

We assume familiarity with functional logic programming (see [13] for a recent
survey) and Curry [7, 17]. Therefore, we review only the basic concepts relevant
for this paper.

Functional logic languages integrate the most important features of func-
tional and logic languages to provide a variety of programming concepts to the
programmer. Modern languages of this kind [7, 17, 18] combine the concepts
of demand-driven evaluation and higher-order functions from functional pro-
gramming with logic programming features like computing with partial infor-
mation (logic variables), unification, and nondeterministic search for solutions.
This combination, supported by optimal evaluation strategies [1] and new design
patterns [2], leads to better abstractions in application programs, e.g., as shown
for programming with databases [3, 5, 10] or web programming [9, 12, 14]. The
declarative multi-paradigm Curry [7, 17] is a functional logic language extended
by concurrent programming concepts and has been used in various applications.
In the following, we review the elements of Curry that are relevant to understand
the contents of this paper. Further features (e.g., constraints, search strategies,
concurrency, I/O concept, modules), more details about Curry’s computation
model and a complete description of the language can be found in [7, 17].

From a syntactic point of view, a Curry program is a functional program ex-
tended by the possible inclusion of free (logic) variables in conditions and right-
hand sides of defining rules. Curry has a Haskell-like syntax [21], i.e., (type)
variables and function names usually start with lowercase letters and the names
of type and data constructors start with an uppercase letter. The application
of f to e is denoted by juxtaposition (“f e”). A Curry program consists of the
definition of functions and data types on which the functions operate. Functions
are first-class citizens and evaluated lazily. To provide the full power of logic
programming, functions can be called with partially instantiated arguments and
defined by conditional equations with constraints in the conditions. Function
calls with free variables are evaluated by a possibly nondeterministic instan-
tiation of demanded arguments (i.e., arguments whose values are necessary to
decide the applicability of a rule) to the required values in order to apply a rule.

In general, functions are defined by (conditional) rules of the form
“f t1 . . . tn | c = e” with f being a function, t1, . . . , tn patterns (i.e., expres-
sions without defined functions) without multiple occurrences of a variable, the
(optional) condition c is a constraint (e.g., a conjunction of equations), and e

is a well-formed expression which may also contain function calls, lambda ab-
stractions etc. A conditional rule can be applied if its left-hand side matches the
current call and its condition is satisfiable.

The following Curry program defines the data types of Boolean values, pos-
sible values, and polymorphic lists, and functions to compute the concatenation
of lists and the last element of a list:

infixr 5 ++

data Bool = True | False



data Maybe a = Nothing | Just a

data List a = [] | a : List a

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] -> a

last xs | ys ++ [x] =:= xs = x where x,ys free

[] (empty list) and : (non-empty list) are the constructors for polymorphic lists
(a is a type variable ranging over all types and the type “List a” is written as
[a] for conformity with Haskell). The infix operator declaration “infixr 5 ++”
declares the symbol “++” as a right-associative infix operator with precedence 5

so that we can write function applications of this symbol with the convenient infix
notation. The (optional) type declaration (“::”) of the function “++” specifies
that “++” takes two lists as input and produces an output list, where all list
elements are of the same (unspecified) type.3

As one can see in this example, logic programming is supported by admitting
function calls with free variables (see “ys ++ [x]” above) and constraints in the
condition of a defining rule. For instance, the equation “ys ++ [x] =:= xs” is
solved by instantiating the first argument ys to the list xs without the last
argument, i.e., the only solution to this equation satisfies that x is the last
element of xs. In order to support some consistency checks, extra variables,
i.e., variables of a rule not occurring in a pattern of the left-hand side, must be
declared by “where...free” (see the rule defining last). In general, a constraint

is any expression of the built-in type Success. For instance, the trivial constraint
success is an expression of type Success that denotes the always satisfiable
constraint. “c1 & c2” denotes the concurrent conjunction of the constraints c1

and c2, i.e., this expression is evaluated by proving both argument constraints
concurrently. An equational constraint e1 =:= e2 is satisfiable if both sides e1

and e2 are reducible to unifiable constructor terms. Specific Curry systems also
support more powerful constraint structures, like arithmetic constraints on real
numbers or finite domain constraints (e.g., PAKCS [15]).

The operational semantics of Curry, described in detail in [7, 17], is based
on an optimal evaluation strategy [1] which is a conservative extension of lazy
functional programming and (concurrent) logic programming. Curry also offers
standard features of functional languages, like higher-order functions, modules,
or monadic I/O (which is identical to Haskell’s I/O concept [24]). Thus, “IO a”
denotes the type of an I/O action that returns values of type “a”. For instance,
the predefined I/O action getChar has the type “IO Char”, i.e., it returns the
next character from the keyboard when it is applied. Similarly, the predefined
I/O action readFile has the type “String -> IO String”, i.e., it takes a string
(the name of a file) and returns the contents of the file when it is applied.

3 Curry uses curried function types where α->β denotes the type of all functions
mapping elements of type α into elements of type β.



3 Specifying User Interfaces

In this section we describe our framework for the declarative programming of
user interfaces that can be executed either on a local host as a GUI (e.g., by the
use of Tcl/Tk [20]) or as a WUI on a web server that is accessed by a standard
web browser.

In order to develop appropriate abstractions for high-level UI programming,
one has to analyze the essential components of these programming tasks. Based
on earlier work on programming GUIs and WUIs with functional logic languages
[8, 9, 12], one can distinguish the following ingredients of UI programming:

Structure: Each UI has a specific hierarchical structure which typically consists
of basic elements (also called widgets), like text input fields or selection boxes,
and composed elements, like rows or columns of widgets. Thus, UIs have a
tree-like structure which can be easily specified by an algebraic data type in
a declarative language.

Functionality: If the user interacts with UI elements by mouse or keyboard
clicks, these UI elements emit some events on which the application program
should react. A convenient way to connect the application program to such
events is the concept of event handlers, i.e., functions that are associated to
events of some widget and that are called whenever such an event occurs.
Usually, the event handlers use the functionality of the application program
to compute some data that is shown in the widgets of the UI. Thus, event
handlers are associated to some widgets but need to refer to other widgets
independently of the structural hierarchy. This means that UIs have not
only a hierarchical (layout) structure but also a logical (graph-like) structure
that connects the event handlers with various widgets of the UI structure.
In previous works on GUI and WUI programming [8, 9] it has been shown
that free (logic) variables are an appropriate feature to describe this logical
structure and to avoid many problems that occur if fixed strings are used as
references to UI elements as in traditional GUI programming (e.g., [20, 23])
or WUI programming (e.g., [4, 19]).

Layout: In order to support a visually appealing appearance of a UI, it should
be possible to influence the standard layout of a UI. Whereas in older
approaches layout and structural information are often mixed (e.g., as in
Tcl/Tk or older versions of HTML, and similarly in previous approaches to
declarative GUI/WUI programming [8, 9]), it has been realized that these
issues should be distinguished in order to obtain clearer and reusable imple-
mentations. For instance, current versions of HTML recommend the use of
cascading style sheets (CSS) to separate structure from layout.

The distinction between structure, functionality, and layout and their appropri-
ate modelling in a declarative programming language are the key ingredients to
our framework for UI programming. Although parts of these ideas can be found
in our previous works [8, 9, 12], our current novel approach abstracts more from
the underlying technology (Tcl/Tk, HTML/CGI) so that it enables a common



method to specify user interfaces. In the following, we propose a concrete de-
scription of the structure, functionality, and layout of UIs in the language Curry
by presenting appropriate data types and operations on them. In principle, one
can transfer these ideas also to other declarative languages (where some restric-
tions might be necessary). However, we will see that the combined functional
and logic programming features of Curry are exploited for our high-level and
application-oriented description of UIs.

As discussed above, UIs have a hierarchical structure that can be appropri-
ately described by the following data type:

data Widget r e = Widget WidgetKind

(Maybe String)

(Maybe (Ref r))

[Handler e])

[StyleClass]

[Widget r e]

In order to avoid unnecessary restrictions, the definition of a widget is quite gen-
eral. In principle, one could also enumerate all kinds of widgets and distinguish
between widgets having no structure (basic widgets) and widgets with structure
(e.g., rows, columns). For the sake of generality, we have chosen one widget con-
structor where the concrete kind of widget is given as the first component (of
type WidgetKind). The last two components are a list of layout elements (see
below) and the widgets contained in this widget, respectively. The second com-
ponent contains the possible contents of the widget (e.g., the entry string of a
text input field, Nothing for widget combinators like row or column), the third
component a possible reference to a widget used by other event handlers, and
the fourth component a list of handlers for the various events that can occur in
this widget. The type parameter r varies over the possible reference types used
in concrete instantiations (e.g., Tcl/Tk references in GUIs, CGI references in
HTML), and the type parameter e varies over the possible environments passed
to event handlers in concrete instantiations. These type parameters are only
necessary to provide different instantiations of general UIs and need not to be
considered by the programmer. Concrete examples for widgets are shown below
after we have discussed the other data types used in widgets.

As discussed above, event handlers need to refer to other widgets indepen-
dently of the widget hierarchy. Therefore, a widget can be equipped with an
identity used as a reference by event handlers. Many approaches to user inter-
faces programming, like Tcl/Tk or HTML/CGI, use string constants as identi-
fiers. Since the use of concrete strings is error prone (e.g., if strings do not exists
due to typos in the program), we adapt the idea of previous works on declarative
GUI and WUI programming [8, 9] to make the type of widget references abstract
so that one cannot construct “wrong” identifiers but use free variables (whose
declarations are checked at compile time) for this purpose. Thus, our UI library
contains the type declaration

data Ref r = Ref r



where only the type name but not its data constructor is exported, i.e., Ref is
an abstract type. Since no constructor of this data type is available to the user
of the UI library, the only reasonable way to use values of type Ref is with a free
variable (see below for a concrete example).

In general, event handlers are used for two main purposes. Either they should
perform some calculations and show their results in some specific widgets of the
UI, i.e., they influence the state of the UI, or they should change the state of the
underlying application program, e.g., the execution of an event handler might
change some application data that is stored in a file or database. In order to
support the latter functionality, the result type of an event handler is always
“IO ()”, i.e., an event handler might have a side effect on the external world.
Since there are also I/O actions to influence the state of the UI (see below), this
result type of event handlers ensures that event handlers can influence the state
of the UI as well as the state of the application program.

Furthermore, the calculations and actions performed by event handlers usu-
ally depend on the user inputs stored in the widgets of the interface, i.e., these
input values must be passed as parameters to the event handlers. This can be ad-
equately modelled by an environment parameter that is conceptually a mapping
from widget references to the string values stored in the widgets. Altogether, the
UI library contains the type declarations

data Command e = Cmd (e -> IO ())

data Handler e = Handler Event (Command e)

where Event is the type of possible events issued by user interfaces:

data Event = DefaultEvent | FocusIn | FocusOut

| MouseButton1 | MouseButton2 | MouseButton3

| KeyPress | Return | Change | DoubleClick

Therefore, each element in the list of event handlers of a widget specifies a
command (an I/O action depending on the value of some environment e) that
is executed whenever the associated event occurs.

The type WidgetKind specifies the different kinds of widgets supported by
our library. Some constructors of this type are

data WidgetKind = Col | Row | Label | Button | Entry

| TextEdit Int Int | ...

The constructors Col and Row specify combinations of widgets as columns and
rows, respectively. Label is a widget containing a string not modifiable by the
user, Button is a simple button, Entry is an entry field for a line of text, and
TextEdit is a widget to edit larger text areas (the parameters are the height
and width of the edit area).

Since it would be tedious to define all widgets of a user interface by using the
constructor Widget only, the library contains a number of useful abbreviations,
like



col ws = Widget Col Nothing Nothing [] [] ws

row ws = Widget Row Nothing Nothing [] [] ws

label str = Widget Label (Just str) Nothing [] [] []

entry ref str = Widget Entry (Just str) (Just ref) [] [] []

button cmd label =

Widget Button (Just label) Nothing

[Handler DefaultEvent (Cmd cmd)]) [] []

For instance, a simple UI showing the text “Hello World!” and a button to exit
the UI can be specified as follows:

col [label "Hello World!",

button exitUI "Stop"]

exitUI is a predefined event handler to terminate the UI. The environment
passed to event handlers can be accessed and modified by the predefined I/O
actions getValue and setValue that take a widget reference as their first ar-
gument. Thus, “getValue r e” returns the value of the widget referenced by r

w.r.t. environment e, and “setValue r v e” updates the value of the widget
referenced by r so that it becomes visible to the user.

In order to influence the layout of UIs, widgets can take a list of style pa-
rameters of type StyleClass. This type contains options to align the widget
or the text contained in it, set the font and color of the widget’s text, set the
background color, and so on. The styles of a widget can be dynamically changed
by predefined operations like setStyles, addStyles, etc.

4 Examples

In order to demonstrate the concrete application of our concept, we show a few
programming examples in this section. As a first example, consider a simple
counter UI shown in Fig. 1. Using our library, its structure and functionality is
specified as follows:

counterUI = col [label "A simple counter:",

entry val "0",

row [button inc "Increment",

button reset "Reset",

button exitUI "Stop" ]]

where val free

reset env = setValue val "0" env

inc env = do v <- getValue val env

setValue val (show (readInt v + 1)) env

The free variable val denotes the reference to the entry field containing the string
representation of the counter’s value. It is used by the event handler reset to set



Fig. 1. A simple counter UI executed as a GUI (left) and as a WUI (right)

the value of this entry widget to "0". The event handler inc reads the current
value of this widget before replacing it by its incremented value.

The UI specification can be executed by the predefined I/O action runUI

that takes a string (usually shown as the label of the window containing the UI)
and a UI specification as parameters. For instance, the counter UI shown above
is executed by evaluating the main expression

runUI "Counter Demo" counterUI

Many interactive applications contain a state which is shown and modified by a
UI. We want to demonstrate the implementation of such kinds of UI with our
concept by a simple desk calculator UI shown in Fig. 2. The implementation of
this UI requires the access of the UI to some state that can be modified by the
event handlers associated to the different buttons. In our application, the value
of the state is a pair (d,f) containing the current operand d and an accumulator
function f that is applied to d when the button “=” is pressed (this idea is due
to [23]). In order to allow the change of the state’s value by event handlers,
we use IORefs, a concept from Haskell to deal with modifiable state. IORefs
are references to stateful objects, where their states can only be accessed and
changed by the predefined I/O actions readIORef and writeIORef (in order to
ensure referential transparency). Thus, the calculator UI can be implemented as
follows (where the parameter stref is an IORef to the calculator’s state):

calcUI stref = col [entryS [Class [Bg Yellow]] display "0",

row (map cbutton [’1’,’2’,’3’,’+’]),

row (map cbutton [’4’,’5’,’6’,’-’]),

row (map cbutton [’7’,’8’,’9’,’*’]),

row (map cbutton [’C’,’0’,’=’,’/’])]

where

display free

cbutton c = button (buttonPressed c) [c]

buttonPressed c env = do

state <- readIORef stref

let (d,f) = processButton c state

writeIORef stref (d,f)

setValue display (show d) env



Fig. 2. A simple desk calculator UI executed as a GUI (left) and as a WUI (right)

The operator entryS is similar to entry but has a further argument to specify
the initial layout of this widget (here: the background color). Note that we
exploit the higher-order features of Curry to create the individual buttons by
the generic function cbutton in a compact way. Each button has an associated
event handler buttonPressed that reads the current state, modifies it, and shows
the new operand in the entry widget referenced by the variable display. The
actual update of the state depending on the selected button is computed by the
operation processButton:

processButton :: Char -> (Int,Int->Int) -> (Int,Int->Int)

processButton b (d,f)

| isDigit b = (10*d + ord b - ord ’0’, f)

| b==’+’ = (0,((f d) +))

| b==’-’ = (0,((f d) -))

| b==’*’ = (0,((f d) *))

| b==’/’ = (0,((f d) ‘div‘))

| b==’=’ = (f d, id)

| b==’C’ = (0, id)

Finally, the complete application is executed by evaluating the operation main

that first creates a new IORef object and then runs the UI with this object:

main = do stref <- newIORef (0,id)

runUI "Calculator" (calcUI stref)

5 Implementation Issues

The definition of the components to specify a user interface, as discussed in Sec-
tion 3, are contained in a library UI so that one has to import this library in
order to define an interface. However, such an interface is not executable without
specifying whether it should be run as a GUI or a WUI. For this purpose, our
framework provides two implementations of the general UI concept by trans-
forming UIs into GUIs or into WUIs. The necessary functionality is contained



in the libraries UI2GUI and UI2HTML, respectively. In order to execute a UI as
a GUI (as shown in the left-hand sides of Fig. 1 and 2), one has to import the
library UI2GUI (which has the same interface as UI) instead of UI, i.e., one has
to put the import declaration

import UI2GUI

at the beginning of the module containing the corresponding UI specification. In
order to execute a UI as a WUI (as shown in the right-hand sides of Fig. 1 and 2),
one has to replace UI2GUI by UI2HTML in the import declaration, and everything
else is left unchanged (apart from the command to generate an executable from
the corresponding Curry program).

The implementation of the library UI2GUI is straightforward by exploiting
the existing Curry library GUI [8] and mapping UI elements into corresponding
GUI elements. The implementation of the library UI2HTML is more advanced
since the existing Curry library HTML [9] does not support server interaction
inside a web page. Since this is possible by the Ajax framework [6], we have
added extensions to the HTML library (based on Ajax) to support the interaction
model implied by the UI library.

6 Transforming GUIS into WUIs

Since the structure of UI elements is very similar to the elements of the Curry
library GUI, which has been already used for various programming applications
(e.g., [11, 16, 22]), one can also use our concept of UIs to enable the execution
of such GUI-based applications as web applications. For this purpose, we have
also implemented a library GUI2HTML that provides the same interface as the
library GUI but executes a GUI as a WUI by exploiting the library UI2HTML.
For instance, we have used this implementation to execute the Curry analysis
environment CurryBrowser (its implementation consists of almost 4000 lines of
Curry code), which is written in Curry and has a quite advanced graphical user
interface (see [11]), in a standard web browser. The only necessary change was
the replacement of the import of the library GUI by the import of the library
GUI2HTML in the source code of the CurryBrowser implementation.

7 Conclusions

We described a framework to implement user interfaces in a high level, declar-
ative manner. Our approach is based on separating the structural, functional,
and layout aspects of a user interface. We showed that the features available in
functional logic languages can be exploited to provide appropriate specifications
of these issues. The hierarchical structure of UIs can be easily specified as term
structures. The associated functionality can be specified by attaching event han-
dlers (i.e., functions) to the elements of these term structures. The connections
of event handlers to the individual widgets of the UI can be described by logic



variables. This avoids typical programming errors in untyped scripting languages
and supports compositionality in the construction of complex UIs (e.g., there can
be several instances of the same UI specification in a UI without name conflicts,
see also [9]). Finally, the concrete layout is separated from the structural and
functional aspects of the UI. This supports the use of the same UI specification
in different contexts, i.e., one can create either graphical user interfaces on single
local host computers or web-based user interfaces from such descriptions only
by importing the appropriate libraries. This simplifies the programming efforts
to combine the advantages of existing user interface technologies. Finally, our
framework also enables the transformation of existing GUI applications into web
applications and the embedding of UIs into arbitrary HTML pages (the latter
aspect was not discussed in detail in this extended abstract).

The various features of the declarative base language Curry, in particular,
algebraic data types, functions as first class citizens, logic variables, and poly-
morphic types, supports the high level, compact, and reliable specification of UIs
(see also [8, 9]) that can be used in different contexts. For future work it might
be interesting to explore whether the same or a slightly modified concept can be
also used to create user interfaces for other architectures, e.g., mobile devices.

Acknowledgements. The authors are grateful to the anonymous referees for help-
ful comments and suggestions.

References

1. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

2. S. Antoy and M. Hanus. Functional Logic Design Patterns. In Proc. of the 6th
International Symposium on Functional and Logic Programming (FLOPS 2002),
pp. 67–87. Springer LNCS 2441, 2002.

3. B. Braßel, M. Hanus, and M. Müller. High-Level Database Programming in Curry.
In Proc. of the Tenth International Symposium on Practical Aspects of Declarative
Languages (PADL’08), pp. 316–332. Springer LNCS 4902, 2008.

4. D. Cabeza and M. Hermenegildo. Internet and WWW Programming using Com-
putational Logic Systems. In Workshop on Logic Programming and the Internet,
1996. See also http://clip.dia.fi.upm.es/Software/pillow/.

5. S. Fischer. A Functional Logic Database Library. In Proc. of the ACM SIGPLAN
2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp.
54–59. ACM Press, 2005.

6. J.J. Garrett. Ajax: A New Approach to Web Applications. AdaptivePath.com,
2005.

7. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93, 1997.

8. M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In International Workshop on Practical Aspects of Declarative Languages
(PADL’00), pp. 47–62. Springer LNCS 1753, 2000.



9. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pp. 76–92. Springer LNCS 1990, 2001.

10. M. Hanus. Dynamic Predicates in Functional Logic Programs. Journal of Func-
tional and Logic Programming, Vol. 2004, No. 5, 2004.

11. M. Hanus. CurryBrowser: A Generic Analysis Environment for Curry Programs. In
Proc. of the 16th Workshop on Logic-based Methods in Programming Environments
(WLPE’06), pp. 61–74, 2006.

12. M. Hanus. Type-Oriented Construction of Web User Interfaces. In Proceedings of
the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’06), pp. 27–38. ACM Press, 2006.

13. M. Hanus. Multi-paradigm Declarative Languages. In Proceedings of the Interna-
tional Conference on Logic Programming (ICLP 2007), pp. 45–75. Springer LNCS
4670, 2007.

14. M. Hanus. Putting Declarative Programming into the Web: Translating Curry to
JavaScript. In Proceedings of the 9th ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming (PPDP’07), pp. 155–166.
ACM Press, 2007.

15. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/~pakcs/, 2007.

16. M. Hanus and J. Koj. An Integrated Development Environment for Declar-
ative Multi-Paradigm Programming. In Proc. of the International Workshop
on Logic Programming Environments (WLPE’01), pp. 1–14, Paphos (Cyprus),
2001. Also available from the Computing Research Repository (CoRR) at
http://arXiv.org/abs/cs.PL/0111039.

17. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8.2).
Available at http://curry-language.org, 2006.

18. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

19. E. Meijer. Server Side Web Scripting in Haskell. Journal of Functional Program-
ming, Vol. 10, No. 1, pp. 1–18, 2000.

20. J.K. Ousterhout. Tcl and the Tk toolkit. Addison Wesley, 1994.
21. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.

Cambridge University Press, 2003.
22. P.H. Sadeghi and F. Huch. The Interactive Curry Observation Debugger iCODE.

Electronic Notes in Theoretical Computer Science, Vol. 177, pp. 107–122, 2007.
23. T. Vullinghs, D. Tuijnman, and W. Schulte. Lightweight GUIs for Functional

Programming. In Proc. of the 7th International Symposium on Programming Lan-
guages, Implementations, Logics and Programs (PLILP’95), pp. 341–356. Springer
LNCS 982, 1995.

24. P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29,
No. 3, pp. 240–263, 1997.


