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Abstract. We present a high-level transformation scheme to translate lazy
functional logic programs into pure Haskell programs. This transformation
is based on a recent proposal to efficiently implement lazy non-deterministic
computations in Haskell into monadic style. We build on this work and de-
fine a systematic method to transform lazy functional logic programs into
monadic programs with explicit sharing. This results in a transformation
scheme which produces high-level and flexible target code. For instance,
the target code is parametric w.r.t. the concrete evaluation monad. Thus,
different monad instances could, for example, define different search strate-
gies (e.g., depth-first, breadth-first, parallel). We formally describe the basic
compilation scheme and some useful extensions.

1 Introduction

Functional logic languages (see [10] for a recent survey) integrate the most impor-
tant features of functional and logic languages to provide a variety of programming
concepts to the programmer. In particular, modern languages of this kind, such
as Curry [13] or T OY [16], amalgamate the concepts of demand-driven evalua-
tion from functional programming with non-deterministic evaluation from logic
programming. This combination is not only desirable to obtain efficient evalua-
tion but it has also a positive effect on the search space, i.e., lazy evaluation on
non-deterministic programs yields smaller search spaces due to its demand-driven
exploration of the search space (compare [10]).

Although the combination of such features is quite useful for high-level appli-
cation programming, their implementation is challenging. Many older implemen-
tations (e.g., [11, 16, 18]) are based on Prolog’s depth-first backtracking strategy
to explore the search space. Since this strategy leads to operational incomplete-
ness and reduces the potential of modern architectures for parallelism, more recent
implementations of functional logic languages offer more flexible search strategies
(e.g., [5, 7]). In order to avoid separate implementations for different strategies, it
would be desirable to specify the search strategy (e.g., depth-first, breadth-first,
parallel) as a parameter of the implementation. A first step towards such an im-
plementation has been done in [8] where a Haskell library for non-deterministic
programming w.r.t. different strategies is proposed. In this paper, we use this idea
to compile functional logic programs into pure Haskell programs that are parame-
terized such that the generated code works with different run-time systems (various
search strategies, call-time/run-time choice, etc).



Before presenting our compilation scheme, we review the features of functional
logic programming that we are going to implement as well as the language Curry
that we use for concrete examples. From a syntactic point of view, a Curry pro-
gram is a functional program (with a Haskell-like syntax [19]) extended by non-
deterministic rules and free (logic) variables in defining rules. For the sake of sim-
plicity, we do not consider free variables, since it has been shown that they can
be replaced by non-deterministic rules [4]. Actually, we use a kernel language, also
called overlapping inductively sequential programs [2], which are functional pro-
grams extended by a (don’t know) non-deterministic choice operator “?”. This is
not a loss of generality, since (1) any functional logic program (with extra vari-
ables and conditional, overlapping rules) can be transformed into an overlapping
inductively sequential program [1], and (2) narrowing computations in inductively
sequential programs with free variables are equivalent to computations in overlap-
ping inductively sequential programs without free variables [4, Th. 2].

A functional logic program consists of the definition of functions and data types
on which the functions operate. For instance, the data types of Booleans and poly-
morphic lists are defined as
data Bool = True | False
data List a = Nil | Cons a (List a)

Concatenation of lists and an operation that duplicates a list can be defined as:
append :: List a → List a → List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

dup :: List a → List a
dup xs = append xs xs

Note that functional logic programs require a strict separation between constructor
symbols (like True, False, Nil, or Cons) and defined functions or operations (like
append or dup). In contrast to general term rewriting, the formal parameters in
a rule defining a function contain only variables and constructor symbols. This
restriction also holds for pure functional or logic programs and is important to
provide efficient evaluation strategies (see [10] for more details).

Logic programming aspects become relevant when considering non-determinis-
tic operations, i.e., operations that yield more than one result. For this purpose,
there is a distinguished choice operator “?” which returns non-deterministically
one of its arguments. For instance, the following operation returns a one-element
list containing either True or False:
oneBool :: List Bool
oneBool = Cons (True ? False) Nil

Now, consider an expression that duplicates the result of the previous operation:
main = dup oneBool

What are possible values of main? One could argue (in pure term rewrit-
ing) that “Cons True (Cons False Nil)” is a value of main by deriving it to
“append oneBool oneBool”, and then the first argument to “Cons True Nil”
and the second to “Cons False Nil” (this semantics is called run-time choice
[14]). But this result is not desired as the operation dup is intended to duplicate
a given list (rather than return the concatenation of two different lists). In or-



der to obtain this behavior, González-Moreno et al. [9] proposed a rewriting logic
as a logical (execution- and strategy-independent) foundation for declarative pro-
gramming with non-strict and non-deterministic operations. This logic specifies the
call-time choice semantics [14] where values of the arguments of an operation are
determined before the operation is evaluated. Note that this does not necessar-
ily mean that operations are evaluated eagerly. One can still evaluate operations
lazily provided that actual arguments passed to operations are shared. For in-
stance, the two occurrences of argument “xs” of operation dup are shared, i.e.,
the actual argument oneBool is evaluated to the same value on both positions.
Thus, “Cons True (Cons True Nil)” and “Cons False (Cons False Nil)” are
the only values of main, as intended. Detailed descriptions of this operational se-
mantics can be found in [9, 10].

In functional logic programs, non-deterministic operations can occur in any
level of the program, in particular, inside nested structures, as shown in opera-
tion oneBool above. This makes the transformation of such programs into pure
functional programs non-trivial. For instance, the traditional functional represen-
tation of non-deterministic computations as “lists of successes” [20] is not easily
applicable, as one might expect, due to the arbitrary nesting of non-deterministic
operations. In the following section we review a recent solution to this problem [8].

2 Lazy, Monadic Non-determinism

In the previous section, we have introduced Curry which combines demand driven
with non-deterministic evaluation. While both features can be easily expressed
separately in a functional language, their combination is non-trivial. In this section
we summarize previous work [8] that shows why.

Demand-driven evaluation is built into lazy execution mechanisms of the func-
tional language Haskell. Laziness combines non-strict execution (expressions are
evaluated only if needed) with sharing (expressions are evaluated at most once).
Non-deterministic evaluation can be simulated in Haskell via lists or, more gen-
erally, non-determinism monads, i.e., instances of the MonadPlus type class. The
MonadPlus type class specifies the following overloaded operations to express non-
deterministic computations.1

mzero :: MonadPlus m ⇒ m a
return :: MonadPlus m ⇒ a → m a
mplus :: MonadPlus m ⇒ m a → m a → m a
( >>= ) :: MonadPlus m ⇒ m a → (a → m b) → m b

mzero denotes a failing computation, i.e., one without results, return creates a
deterministic computation, i.e., one with a single result, mplus creates a non-
deterministic choice between the results of the two argument computations, and
“>>=” applies a non-deterministic function to every result of a non-deterministic
computation. For lists, mzero is the empty list, return creates a singleton list,
mplus is list concatenation, and >>= (pronounced ’bind’) can be implemented by
mapping the given function over the given list and concatenating the results.
1 In fact, return and “>>=” have more general types because they are not only available

in non-determinism monads but in arbitrary instances of the Monad type class.



The Curry expression (True ? False) can be expressed monadically:
trueOrFalse :: MonadPlus ⇒ m Bool
trueOrFalse = mplus (return True) (return False)

The constructors True and False are wrapped with return and the resulting com-
putations are combined with mplus which replaces Curry’s non-deterministic choice
operator “?”. When evaluated in the list monad, trueOrFalse yields [True,False]
which can be verified in a Haskell environment:
ghci> trueOrFalse :: [Bool]
[True,False]

However, different implementations of the MonadPlus interface can be used, e.g.,
to influence the search strategy. If we use the Maybe monad rather than the list
monad, we just get one result in depth-first order:
ghci> trueOrFalse :: Maybe Bool
Just True

The overloading of trueOrFalse allows us to execute it using different types. Pro-
grams that are compiled with our transformation scheme are also overloaded and
can be executed by different monad instances.

We motivate the monadic implementation that we use in our transformation
by a sequence of ideas that leads to the final design. A simple idea to translate the
Curry operation oneBool into monadic Haskell is to reuse the existing Curry data
types and bind non-deterministic arguments of their constructors:
oneBoolM1 :: MonadPlus m ⇒ m (List Bool)
oneBoolM1 = trueOrFalse >>= λb → return (Cons b Nil)

We feed the result of function trueOrFalse above into a singleton list using the
“>>=” operator. Like the corresponding Curry operation, oneBoolM1 yields a sin-
gleton list that contains either True or False non-deterministically:
ghci> oneBoolM1 :: [List Bool]
[Cons True Nil, Cons False Nil]

However, there is a subtle difference w.r.t. laziness. In Curry, oneBool yields the
head-normal form of its result without executing the non-deterministic choice inside
the list, whereas oneBoolM1 first executes the non-deterministic choice between
True and False and yields a list with a deterministic first element in each non-
deterministic branch of the computation. Whereas in Curry, non-determinism can
be nested inside data structures, the monadic non-determinism presented so far
cannot.

To overcome this limitation, we can use data types with nested non-
deterministic components. Nested monadic lists can be defined by wrapping each
constructor argument with an additional type parameter “m” that represents a
non-determinism monad:
data MList m a = MNil | MCons (m a) (m (MList m a))

The additional “m”s around the arguments of MCons allow to wrap non-deterministic
computations inside lists. Here is a different translation of the Curry operation
oneBool into monadic Haskell:
oneBoolM :: MonadPlus m ⇒ m (MList m Bool)
oneBoolM = return (MCons trueOrFalse (return MNil))



This function deterministically yields a singleton list with an element that is a
non-deterministic choice:
ghci> oneBoolM :: [MList [] Bool]
[MCons [True,False] [MNil]]

This translation of the Curry operation is more accurate w.r.t. laziness because the
MCons constructor can be matched without distributing the non-determinism in its
first argument. In order to print such nested non-deterministic data in the usual
way, we need to distribute non-determinism to the top level [8].

Now that we have changed the list data type in order to support nested non-
determinism, we need to re-implement the list functions defined in Section 1. The
monadic variant of the dup function takes a monadic list as argument and yields a
monadic list as result:
dupM1 :: MonadPlus m ⇒ m (MList m a) → m (MList m a)
dupM1 xs = appendM xs xs

Similarly, the monadic variant of append takes two monadic lists and yields one.
appendM :: MonadPlus m ⇒ m (MList m a) → m (MList m a)

→ m (MList m a)
appendM l ys =
l >>= λl’ → case l’ of

MNil → ys
MCons x xs → return (MCons x (appendM xs ys))

This definition resembles the Curry definition of append but additionally handles
the monadic parts inside and around lists. In order to match on the first argument
“l” of appendM, we bind one of its non-deterministic head-normal forms to the
variable “l’”. Depending on the value of “l’”, appendM yields either the second
argument “ys” or a list that contains the first element “x” of “l’” and the result
of a recursive call (which can both be non-deterministic).

Although such a translation with nested monadic data accurately models non-
strictness, it does not ensure sharing of deterministic results. The definition of
dupM1 given above uses the argument list “xs” twice and hence, the value of “xs” is
shared via Haskell’s built-in laziness. However, in dupM1 the variable “xs” denotes
a non-deterministic computation that yields a list and the built-in sharing does
not ensure that both occurrences of “xs” in dupM1 denote the same deterministic
result of this computation. Hence, the presented encoding of nested monadic data
implements run-time choice instead of call-time choice:
ghci> dupM1 oneBoolM :: [MList [] Bool]
[MCons [True,False] [MCons [True,False] [MNil]]]

When distributed to the top-level, the non-determinism in the list elements leads to
lists with different elements because the information that both elements originate
from the same expression is lost.

The conflict between non-strictness and sharing in presence of monadic non-
determinism has been resolved recently using an additional monadic combinator
for explicit sharing [8]:
share :: (Sharing m, Shareable m a) ⇒ m a → m (m a)



The type class context of share specifies that “m” (referring to a non-determi-
nism monad throughout this paper) and the type denoted by “a” support explicit
sharing. Using share, the Curry function dup can be translated as follows:
dupM :: (MonadPlus m, Sharing m, Shareable m a) ⇒

m (MList m a) → m (MList m a)
dupM xs = share xs >>= λxs → appendM xs xs

The result of share xs is a monadic computation that yields itself a monadic
computation which is similar to “xs” but denotes the same deterministic result
when used repeatedly. Hence, the argument “xs” to appendM (which intentionally
shadows the original argument “xs” of dupM) denotes the same deterministic list
in both argument positions of appendM which ensures call-time choice. When ex-
ecuting “dupM oneBoolM” in a non-determinism monad with explicit sharing, the
resulting lists do not contain different elements.

The library that implements share, and that we use to execute transformed
functional logic programs, is available online2. The implementation ideas, the op-
eration that allows to observe results of computations with explicit sharing, as well
as equational laws that allow to reason about such computations are not in the
scope of this paper but described elsewhere [8].

3 Transforming Functional Logic Programs

In this section we formally define the transformation of functional logic programs
into monadic functional programs, i.e., pure Haskell programs. In order to simplify
the transformation scheme, we consider functional logic programs in flat form as a
starting point of our transformation. Flat programs are a standard representation
for functional logic programs where the strategy of pattern matching is explicitly
represented by case expressions. Since source programs can be easily translated
into the flat form [12], we omit further details about the transformation of source
programs into flat programs but define the syntax of flat programs before we present
our transformation scheme.

3.1 Syntax of Flat Functional Logic Programs

As a first step we fix the language of polymorphic type expressions. We denote by
on the sequence of objects o1, . . . , on.

Definition 1 (Syntax of Type Expressions). Type expressions are either type
variables α or type constructors T applied to type expressions:

τ ::= α | T (τn)

Function types are of the form τn → τ where τn, τ are type expressions. We denote
by T the set of all function types.

As discussed in Section 1, functional logic programs contain program rules as well
as declarations of data types. We summarize type declarations in the notion of a
program signature.
2 http://sebfisch.github.com/explicit-sharing



Definition 2 (Program signature). A program signature is a pair (Σ, ty) where
Σ = F ] C is the disjoint union of a set F of function symbols and a set C of
constructor symbols. The mapping ty : Σ → T maps each symbol in Σ to a function
type such that, for all C ∈ C, ty(C) = τ → T (α) for a type constructor T . If
ty(s) = τn → τ , then n is called the arity of symbol s, denoted by ar(s).

The signature for the program of Section 1 contains the following symbols

C = {True, False,Nil, Cons} F = {append, dup, oneBool,main}

as well as the following mapping of types:

ty(Nil) =→ List a
ty(Cons) = a, List a→ List a

...
ty(append) = List a, List a→ List a

ty(dup) = List a→ List a
...

Next we fix the syntax of programs w.r.t. a given program signature. We consider
flat programs where pattern matching is represented by case expressions.

Definition 3 (Syntax of Programs). Let (Σ, ty) be a program signature speci-
fying the types of all constructor and functions symbols occurring in a program and
X be a set of variables disjoint from the symbols occurring in Σ. A pattern is a
constructor C ∈ C applied to pairwise different variables xn where n = ar(C):

p ::= C(xn)

Expressions over (Σ, ty) are variables, constructor or function applications, case
expressions, or non-deterministic choices:

e ::= x x ∈ X is a variable
| C(en) C ∈ C is an n-ary constructor symbol
| f(en) f ∈ F is an n-ary function symbol
| case e of {pn → en} pi have pairwise different constructors
| e1 ? e2

Programs over (Σ, ty) contain for each n-ary function symbol f ∈ F one rule of the
form f(xn)→ e where xn are pairwise different variables and e is an expression.

The rules corresponding to the functions append and oneBool of Section 1 are:

append(xs, ys)→ case xs of { Nil→ ys,
Cons(z, zs)→ Cons(z, append(zs, ys)) }

oneBool→ Cons(True ?False,Nil)

For simplicity, we assume that expressions and programs are well typed w.r.t. the
standard Hindley/Milner type system. Furthermore, we assume that there is no
shadowing of pattern variables, i.e., the variables occurring in the patterns of a
case expression are fresh in the scope of the case expression.

Note that all constructor and function symbols are fully applied. The extension
to higher-order functions is discussed separately in Section 4.



3.2 Transforming Data Types

In the following transformations, we assume that m is a new type variable that does
not occur in the program to be transformed. This type variable will denote the
monad that implements non-deterministic evaluations in the target program. Since
evaluations can be non-deterministic in all levels of functional logic programs, we
have to insert m as a new argument in all data types. Thus, we start the definition
of our transformation by stating how type expressions of functional logic programs
are mapped to Haskell type expressions, adding m to all argument types.

Definition 4 (Transforming Types). The transformation tr(τ) on type expres-
sions τ is defined as follows:

tr(τn → τ) = m tr(τ1) → . . . →m tr(τn) →m tr(τ)
tr(α) = α

tr(T (τn)) = (T m tr(τ1) . . . tr(τn))

The transformation of data type declarations adds m to all constructors:

Definition 5 (Transforming Data Declarations). For each type constructor
T of arity n, let {Ck} = { C ∈ C | ty(C) = · · · → T (αn) } be the set of con-
structor symbols for this type constructor. Then we transform the definition of type
constructor T into the following Haskell data type declaration:
data T (m :: ∗ → ∗) α1 . . . αn = C1 (m tr(τ11)) . . . (m tr(τ1n1))

| . . .
| Ck (m tr(τk1)) . . . (m tr(τknk

))
where ty(Cj) = τjnj

→ T (αn).

The kind annotation (m :: ∗ → ∗) in the previous definition is necessary for data
types which have 0-ary data constructors only (i.e., enumeration types). Without
this annotation, a wrong kind for m would be deduced in this case due to default
assumptions in the Haskell type inferencer. Hence, for data types with at least one
non-constant data constructor, the kind annotation can be omitted. For instance,
the data types presented in the example of Section 1 are transformed into the
following Haskell data type declarations:
data Bool (m :: ∗ → ∗) = True | False
data List m a = Nil | Cons (m a) (m (List m a))

3.3 Transforming Functions

As discussed in Section 2, variables that have multiple occurrences in the body of
a program rule have to be shared in order to conform to the intended call-time
choice semantics of functional logic programs. In order to introduce sharing for
such variables in our transformation, we need the notion of the number of free
occurrences of a variable in an expression:

Definition 6 (Free Occurrences of a Variable). The number of free occur-
rences of variable x in expression e, denoted by occx(e), is defined as:



occx(y) =
{

1, if x = y
0, otherwise

occx(s(en)) =
∑n

i=1 occx(ei)

occx(e1 ? e2) = max{occx(e1), occx(e2)}

occx(case e of {pn → en}) =
{

0, if x occurs in some pi (1 ≤ i ≤ n)
occx(e) + max{occx(ei) | 1 ≤ i ≤ n}, otherwise

By varsn(e) we denote the set of variables occurring at least n times in e:

varsn(e) = {x ∈ X | occx(e) ≥ n}

Note that we count multiple occurrences for each possible computation path. Thus,
the variable occurrences in the two branches of a non-deterministic choice expres-
sion are not added but only the maximum is considered, i.e., if a variable occurs
only once in each alternative of a choice, it is not necessary to share it. The same
is true for the branches of a case expression.

In order to translate functional logic expressions into Haskell, we have to ap-
ply two basic transformations: (1) Introduce sharing for all variables with multi-
ple occurrences (defined by the transformation sh below) and (2) Translate non-
deterministic into monadic computations (defined by the transformation tr below).
Note that these transformations are mutually recursive.

Definition 7 (Transforming Expressions). The transformation sh(e) intro-
duces sharing for all variables with multiple occurrences in the expression e:

sh(e) = share(vars2(e), tr(e))

share({xk}, e) =


share x1 >>= λx1 →
...

share xk >>= λxk →
e

For the sake of simplicity, we do not rename the variables when introducing sharing
but exploit the scoping of Haskell, i.e., the argument xi of share is different from
the argument xi in the corresponding lambda abstraction.

Transformation tr replaces non-deterministic choices by monadic operations
and introduces sharing for the pattern variables of case expressions, if necessary:

tr(x) = x
tr(f(en)) = (f tr(e1) . . . tr(en))
tr(C(en)) = (return (C tr(e1) . . . tr(en)))
tr(e1 ? e2) = (mplus tr(e1) tr(e2))

tr(case e of {pn → en}) =



(tr(e) >>= λx →
case x of

p1 → sh(e1)
...

pn → sh(en)
_ → mzero)

where x fresh



Note that patterns of case expressions pi must also be translated into their cur-
ried form in Haskell, i.e., each pattern pi = C(xk) is translated into C x1 . . . xk,
but we omit this detail in the definition of tr for the sake of simplicity.

Now we are ready to describe the transformation of program rules by transforming
the rule’s right-hand side. In addition, we have to add the necessary class depen-
dencies in the type of the defined function as discussed in Section 2.

Definition 8 (Transforming Program Rules). Let (Σ, ty) be a program sig-
nature and f(xn) → e a rule of a functional logic program. We transform this
rule into the following Haskell definition, where α1, . . . , αk are all type variables
occurring in ty(f):
f :: (MonadPlus m, Sharing m,

Shareable m α1, . . ., Shareable m αk) ⇒ tr(ty(f))
f x1 . . . xn = sh(e)

According to the transformation scheme, the rules corresponding to operations
append, dup, and oneBool (cf. Section 1) are translated to the Haskell definitions:
append :: (MonadPlus m, Sharing m, Shareable m a) ⇒

m (List m a) → m (List m a) → m (List m a)
append xs ys = xs >>= λ l →

case l of Nil → ys
Cons z zs → return (Cons z (append zs ys))

dup :: (MonadPlus m, Sharing m, Shareable m a) ⇒
m (List m a) → m (List m a)

dup xs = share xs >>= λ xs → append xs xs

oneBool :: (MonadPlus m, Sharing m) ⇒ m (List m (Bool m))
oneBool = return (Cons (mplus (return True) (return False))

(return Nil))

4 Extensions

Up to now, we have described a basic transformation of a first-order kernel language.
In this section, we discuss extensions of this transformation scheme.

4.1 Higher-Order Programs

Higher-order programs can be translated with an extension of our transformation
scheme. We omit some details like the transformation of higher-order function and
data types due to lack of space.

In functional (logic) languages, functions are first class citizens which means
that functions can have other functions both as argument and as result. In order
to add higher-order features to our source language, we extend it with lambda
abstractions and higher-order applications:

e ::= · · · | λx→ e | apply(e1, e2)



We still require applications of function and constructor symbols to respect the
arity of the corresponding symbol. Over-applications can be expressed using apply
and partial applications can be transformed into applications of lambda abstrac-
tions. For example, the partial application “append oneBool” in Curry would be
expressed as

apply(λxs→ λys→ append(xs, ys), oneBool)

in our source language. Note that we do not use the simpler representation

λys→ append(oneBool, ys)

which has a different semantics in Curry because oneBool would not be shared if
this lambda abstraction is duplicated.

We use the function iterate as an example for a higher-order function:
iterate :: (a → a) → a → List a
iterate f x = Cons x (iterate f (f x))

The function iterate yields a list of iterated applications of a given function to
a value. In the definition, both arguments of iterate are shared. Therefore, the
transformation scheme of Section 3.3 would introduce sharing as follows:
iterate :: (MonadPlus m, Sharing m, Shareable m a) ⇒

m (m a → m a) → m a → m (List m a)
iterate f x = share f >>= λ f →

share x >>= λ x →
return (Cons x (iterate f (apply f x)))

The apply function is used to transform the higher-order application of the variable
“f” to “x” and is implemented as follows:
apply :: MonadPlus m ⇒ m (m a → m b) → m a → m b
apply f x = f >>= λf → f x

In order to translate the Curry expression “iterate (append oneBool) Nil”, we
transform the partial application of append as illustrated above and then apply
the following rule to transform lambda abstractions:

tr(λx→ e) = return (λ x → share x >>= λx → tr(e))
Note, that we precautionary share every argument of a lambda abstraction re-
gardless of whether it is shared in the body or not. This is necessary because the
lambda abstraction itself could be duplicated and the argument must be shared
also if only duplicated indirectly along with the lambda abstraction. We cannot
share already supplied arguments when partial applications are duplicated because
we reuse Haskell’s higher-order features and, hence, partial Curry applications are
represented as Haskell functions that we cannot inspect.

Here is the transformed version of the above call to iterate:
iterate (apply (return (λ xs → share xs >>= λ xs →

return (λ ys → share ys >>= λ ys →
append xs ys)))

oneBool)
(return Nil)



This translation shares the result of oneBool just like the original Curry expression
when the argument “f” of iterate is duplicated. Therefore, the result of this call
is an infinite list of boolean lists of increasing length where all elements are either
True or False but no list contains both True and False.

4.2 An Optimized Transformation Scheme

In this section we present a technique to optimize the programs obtained from the
transformation in Section 3.3. The basic idea is that the original transformation
scheme may introduce sharing too early. To keep things simple, Definitions 7 and
8 introduce sharing at the beginning of a rule or the case branches, respectively.
This scheme is straightforward and a similar scheme is used in PAKCS [11]. When
implementing the transformation presented here, we observed that sharing could
also be introduced individually for each variable as “late” as possible. Consequently,
the ideas presented in this section could also be employed to improve existing
compilers like that of PAKCS.

What does “late sharing” mean? Reconsider the transformed iterate function
given in Section 4.1. Due to the nature of iterate, the result is a potentially infinite
list. Therefore, in any terminating program the context of a call to iterate will only
demand the x of the result but not the value of the expression iterate f (f x).
It is clear that for yielding x in this case there is no need to share f (again). Thus,
sharing f later will improve the resulting code:
iterate f x = share x >>= λ x →

return (Cons x (share f >>= λ f →
iterate f (apply f x)))

The example also shows that the optimization requires to introduce sharing indi-
vidually for each variable.

How can we obtain this optimization in general? The idea is that the transfor-
mation of expressions needs some information about which variables occur in its
context. Whenever the situation arises that for a term s(en) a variable occurs in
more than one of the en but not in the context, we have to introduce sharing for
x right around the result of transforming s(en). Therefore, the transformation tr
is extended by an additional argument indicating the set of variables occurring in
the context. These ideas are formalized in the following definitions.

First we formalize the idea that variables “occur in more than one” of a sequence
of given expressions.

Definition 9. multocc(en) = {x | ∃i 6= j : x ∈ vars1(ei) ∩ vars1(ej)}

The optimizing transformation scheme for expressions is then expressed in the
following definition. There, the transformation gets as an additional argument the
set of variables for which sharing was already introduced. For a variable that does
not occur in that set, sharing will be introduced in two situations: (a) before an
application if it occurs in more than one argument, or (b) before a case expression
“case e of {pn → en}” if it occurs in e and in at least one of the branches en.

Definition 10 (Optimized Transformation of Expressions). The optimized
transformation of an expression e w.r.t. a set of variables V , denoted tr(V, e), is
defined as follows (the transformation share is as in Definition 7):



tr(V, x) = x
tr(V, s(en)) = share(S, s′(tr(V ∪ S, e1), . . . , tr(V ∪ S, en)))

where S = multocc(en) \ V

s′(tn) =
{
(s t1 . . . tn) , if s ∈ F
(return (s t1 . . . tn)) , if s ∈ C

tr(V, e1 ? e2) = (mplus tr(V, e1) tr(V, e2))

tr(V, case e of {pn → en}) = share(S,



(tr(V ∪ S, e) >>= λx →
case x of

p1 → tr(V ∪ S, e1)
. . .
pn → tr(V ∪ S, en)
_ → mzero)


)

where x fresh
S = (

⋃n
i=1 multocc(e, ei)) \ V

According to the idea that the additional argument of the transformation represents
the set of variables for which sharing was already introduced, the initial value of
the argument should be the empty set as expressed in the next definition.

Definition 11 (Optimized Transformation of Functions). The optimized
transformation of a function defined by a rule f(xn)→ e is similar to Definition 8
but uses the transformation from Definition 10.
f x1 . . . xn = tr(∅, e)

5 Conclusions and Related Work

In this paper we presented a scheme to translate functional logic programs into
pure Haskell programs. The difficulty of such a translation is the fact that non-
deterministic results can occur in any level of a computation, i.e., arbitrarily deep
inside data structures. This problem is solved by transforming all computations into
monadic ones, i.e., all argument and result values of functions and data constructors
have monadic types w.r.t. a “non-determinism monad”, i.e. a MonadPlus instance.
Furthermore, the monad must support explicit sharing in order to implement the
sharing of potentially non-deterministic arguments, which is necessary for a non-
strict functional logic language with call-time choice. As a result, we obtain target
programs which are parametric w.r.t. the concrete evaluation monad, i.e., one can
execute the same target code with different search strategies, choose between call-
time choice or run-time choice for parameter passing, or add additional run-time
information to implement specific tools.

Considering related work, many schemes to compile lazy functional logic pro-
grams into various target languages have been introduced. Due to the nature of
these languages, former approaches can be categorized with respect to the target
language: (a) schemes targeting a logic programming language (b) compiling to a



lazy functional language (c) generating code for a especially devised abstract ma-
chine (implemented in an imperative language, typically). Considering (a) there
have been several attempts to target Prolog and make use of the logic features of
that host language, e.g., the T OY system [16], and PAKCS [11]. With respect to
the implementation presented here, a system based on Prolog can not easily sup-
port different search strategies simply because Prolog does not support them. On
the other hand, Prolog implementations normally offer various constraint solvers,
which can therefore be easily integrated in a functional logic system. Typically,
however, these integrations suffer from the fact that constraint solvers for Prolog
are implemented with respect to a strict semantics. The resulting issues with a
lazy semantics make such an integration not as seamless as possible. With respect
to (b) there have been various proposals to implement logic programming in a
functional language. As discussed in detail in [8], most of these proposals do not
adequately represent laziness. The exception to this is KiCS [7], which employs a
different translation scheme to compile Curry to Haskell. In contrast to the scheme
presented here, the current implementation of KiCS employs side effects for the
implementation of logic features. Consequently, the resulting programs can not be
optimized by standard Haskell compilers. In addition, the attempt to introduce a
parallel search strategy to KiCS has failed due to the side effects. In contrast to
our approach, however, KiCS provides sharing of deterministic expressions across
non-deterministic computations [7]. Regarding (c), sharing across non-determinism
is also provided by FLVM, the abstract machine described in [5], which is imple-
mented in Java. The FLVM has undergone substantial changes from the imple-
mentation described in [5], and can still be considered to be in an experimental
state. Finally, the MCC [18] is based on an abstract machine implemented in C.
The MCC provides a programatic approach to support different search strategies,
i.e., the Curry programmer can influence the search strategy by calling primitive
operators provided in this system.

Bundles [15] improve laziness in purely functional non-deterministic computa-
tions similar to our translation of data types. The type for bundles is a transformed
list data type restricted to the list monad without non-deterministic list elements.
Nesting non-determinism inside constructors plays an essential role in achieving
full abstraction in a semantics for constructor systems under run-time choice [17].

By representing non-determinism explicitly using monads, we can collect results
of non-deterministic computations in a deterministic data structure which is called
encapsulated search [6, 3]. The monadic formulation of lazy non-determinism pro-
vides a new perspective on the problems described in previous work on encapsulated
search and possibilities for future work.

In a next step, we will implement the transformation scheme into a complete
compiler for Curry in order to test it on a number of benchmarks. Although it is
clear that one has to pay a price (in terms of execution efficiency) for the high-
level parametric target code, initial benchmarks, presented in [8], demonstrate that
the clean target code supports optimizations of the Haskell compiler so that the
monadic functional code can compete with other more low level implementations.
Based on such an implementation, it would be interesting to test it with various
monad instances in order to try different search strategies, in particular, parallel
strategies, or to implement support for run-time tools, like observation tools, de-



buggers etc. Furthermore, one could also use the monad laws of [8] together with
our transformation scheme in order to obtain a verified implementation of Curry.
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