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Abstract

Many functional logic languages are based on narrowing, a unification-based goal-solving
mechanism which subsumes the reduction mechanism of functional languages and the
resolution principle of logic languages. Needed narrowing is an optimal evaluation strategy
which constitutes the basis of modern (narrowing-based) lazy functional logic languages. In
this work, we present the fundamentals of partial evaluation in such languages. We provide
correctness results for partial evaluation based on needed narrowing and show that the
nice properties of this strategy are essential for the specialization process. In particular,
the structure of the original program is preserved by partial evaluation and, thus, the
same evaluation strategy can be applied for the execution of specialized programs. This
is in contrast to other partial evaluation schemes for lazy functional logic programs which
may change the program structure in a negative way. Recent proposals for the partial
evaluation of declarative multi-paradigm programs use (some form of) needed narrowing
to perform computations at partial evaluation time. Therefore, our results constitute the
basis for the correctness of such partial evaluators.

KEYWORDS: partial evaluation, functional logic programming, needed narrowing

1 Introduction

Functional logic languages combine the operational principles of the most important
declarative programming paradigms, namely functional and logic programming. Ef-
ficient demand-driven functional computations are amalgamated with the flexible
use of logical variables providing for function inversion and search for solutions. The

∗ A preliminary short version of this paper appeared in the Proceedings of the International
Conference on Functional Programming (ICFP’99), pp. 273–283, Paris, 1999. This work has
been partially supported by CICYT TIC2001-2705-C03-01, by MCYT under grant HA2001-
0059, and by the German Research Council (DFG) under grant Ha 2457/1-2.
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operational semantics of such languages is usually based on narrowing, a general-
ization of term rewriting which combines reduction and variable instantiation. A
narrowing step instantiates variables of an expression and applies a reduction step
to a redex (reducible expression) of the instantiated expression. The instantiation
of variables is usually computed by unifying a subterm of the entire expression with
the left-hand side of some rule.

Example 1
Consider the following rules which define the less-or-equal predicate “6” on natural
numbers which are represented by terms built from data constructors 0 and s (note
that variable names always start with an uppercase letter):

0 6 N → true

s(M) 6 0 → false

s(M) 6 s(N) → M 6 N

The goal s(X) 6 Y can be solved (i.e., reduced to true) by instantiating Y to s(Y1)
to apply the third rule followed by the instantiation of X to 0 to apply the first rule:

s(X) 6 Y ;{Y 7→s(Y1)} X 6 Y1 ;{X 7→0} true

Narrowing provides completeness in the sense of logic programming (computation
of all solutions) as well as functional programming (computation of values). Since
simple narrowing can have a huge search space, great effort has been made to de-
velop sophisticated narrowing strategies without losing completeness; see (Hanus
1994) for a survey. To avoid unnecessary computations and to provide computa-
tions with infinite data structures as well as a demand-driven generation of the
search space, most recent work has advocated lazy narrowing strategies, e.g., (An-
toy et al. 2000; Giovannetti et al. 1991; Loogen et al. 1993; Moreno-Navarro and
Rodŕıguez-Artalejo 1992). Many lazy evaluation strategies are based on the notions
of demanded or needed computations. The following example informally explains
the difference between these two notions:

Example 2
Consider the rules for “6” in Example 1 together with the following rules defining
the addition on natural numbers:

0 + N → N

s(M) + N → s(M + N)

The initial term is X 6 X+ X. The evaluation of subterm X + X is demanded by the
second and third rules for “6”, since these rules cannot be applied to X 6 X + X

until the subterm X + X is reduced to a term rooted by a data constructor symbol.
However, evaluating this subterm is not needed since, if we instantiate X to 0, we
directly obtain true by using the first rule for “6.”

On the other hand, if the initial term is X + (0 + 0), the evaluation of 0 + 0 is
needed to compute its value whereas it is not demanded by any rule for “+.”

Needed narrowing (Antoy et al. 2000) is based on the idea of evaluating only sub-
terms which are needed in order to compute a result. For instance, in a term like
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t1 6 t2, it is always necessary to evaluate t1 (to some head normal form, i.e., either
a variable or a constructor-rooted term) since all three rules in Example 1 have
left-hand sides whose first argument is not a variable. On the other hand, the eval-
uation of t2 is only needed if t1 is of the form s(· · ·). Thus, if t1 is a free variable,
needed narrowing instantiates it to a constructor, here 0 or s(· · ·). Then, depend-
ing on this instantiation, either the first rule is applied or the second argument t2
is evaluated. Needed narrowing is currently the best narrowing strategy for first-
order functional logic programs due to its optimality properties w.r.t. the length
of derivations and the number of computed solutions (Antoy et al. 2000). Infor-
mally speaking, needed narrowing derivations are the shortest possible narrowing
derivations if common subterms are shared (as it is usually done in implementations
of functional languages), and the set of all solutions computed by needed narrow-
ing is minimal since needed narrowing computes only independent solutions (see
also Theorem 1 below). Furthermore, it can be efficiently implemented by pattern
matching and unification (Hanus 1995; Loogen et al. 1993). For instance, the op-
erational semantics of the declarative multi-paradigm language Curry (Hanus (ed.)
2003) is based on needed narrowing. Needed narrowing has also been extended to
higher-order functions and λ-terms as data structures and proved optimal w.r.t.
the independence of computed solutions (Hanus and Prehofer 1999).

Partial evaluation (PE) is a semantics-preserving performance optimization tech-
nique for computer programs which consists of the specialization of the program
w.r.t. parts of its input. PE has been widely applied in the fields of term rewrit-
ing systems (Bellegarde 1995; Bondorf 1988; Dershowitz and Reddy 1993; Lafave
and Gallagher 1997), functional programming (Consel and Danvy 1993; Jones
et al. 1993), and logic programming (Gallagher 1993; Lloyd and Shepherdson 1991;
De Schreye et al. 1999). Although the objectives are similar, the general methods are
often different due to the distinct underlying models and the different perspectives
(Alpuente et al. 1998a). This separation has the negative consequence of duplicated
work since developments are not shared and many similarities are overlooked. A
unified treatment can bring the different methodologies closer and lays the ground
for new insights in all three fields (Alpuente et al. 1998a; Alpuente et al. 1998b;
Glück and Sørensen 1994; Pettorossi and Proietti 1996a; Sørensen et al. 1996).

In order to perform reductions at specialization time, online partial evaluators
normally include an interpreter (Consel and Danvy 1993). This implies that the
power of the transformation is highly influenced by the properties of the evaluation
strategy in the underlying interpreter. Narrowing-driven PE (Alpuente et al. 1998a;
Albert and Vidal 2002) is the first generic algorithm for the specialization of func-
tional logic programs. The method is parametric w.r.t. the narrowing strategy which
is used for the automatic construction of the search trees. The method is formalized
within the theoretical framework established by Lloyd and Shepherdson (1991) for
the PE of logic programs (also known as partial deduction), although a number of
concepts have been generalized to deal with the functional component of the lan-
guage (e.g., nested function calls in expressions, different evaluation strategies, etc).
This approach has better opportunities for optimization thanks to the functional
dimension (e.g., by the inclusion of deterministic evaluation steps). Also, since uni-
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fication is embedded into narrowing, it is able to automatically propagate syntactic
information on the partial input (term structure) and not only constant values,
similar to partial deduction. Using the terminology of Glück and Sørensen (1996),
narrowing-driven PE is able to produce both polyvariant and polygenetic special-
izations, i.e., it can produce different specializations for the same function definition
and can also combine distinct original function definitions into a comprehensive spe-
cialized function. This means that narrowing-driven PE has the same potential for
specialization as positive supercompilation of functional programs (Sørensen et al.
1996) and conjunctive partial deduction of logic programs (De Schreye et al. 1999);
more detailed comparisons can be found in (Alpuente et al. 1998a; Alpuente et al.
1998b; Albert and Vidal 2002).

The main contribution of this work is the proof of the basic computational prop-
erties of PE based on needed narrowing. The most recent approaches for the PE of
multi-paradigm functional logic languages (Albert et al. 1999; Albert et al. 2002;
Albert et al. 2003) use (a form of) needed narrowing to perform computations at
PE time (see also Section 6). Therefore, our results constitute the basis for the
correctness of such partial evaluators. To be more precise, we provide the following
results for PE based on needed narrowing:

• We prove the strong correctness of the PE scheme: the answers computed
by needed narrowing in the original and the partially evaluated programs
coincide.
• We establish the relation between PE based on needed narrowing and PE

based on a different lazy evaluation mechanism—which is the basis of previous
partial evaluators (Alpuente et al. 1997). We formally prove the superiority
of needed narrowing to perform partial computations. In particular, we prove
that the structure of the original program is preserved by PE based on needed
narrowing and, thus, the same optimal evaluation strategy can be applied for
the execution of specialized programs. This is in contrast to previous PE
schemes (Alpuente et al. 1997) for lazy functional logic programs which may
change the program structure in a negative way.
• We show that specialized programs preserve deterministic evaluations, i.e., if

the source program can evaluate a goal without any choice, then the partially
evaluated program does just the same. This is important from an implemen-
tation point of view and it is not obtained by PE based on other operational
models, like lazy narrowing.

Providing experimental evidence of the practical advantages of using needed nar-
rowing to perform PE is outside the scope of this paper. We refer, e.g., to (Albert
et al. 2002) where this topic has been extensively addressed for a practical partial
evaluator based on the foundations presented in this paper.

The structure of the paper is as follows. After some basic definitions in the next
section, we recall in Section 3 the formal definition of inductively sequential pro-
grams and needed narrowing. Section 4 recalls the lazy narrowing strategy and
relates it to needed narrowing. The definition of partial evaluation based on needed
narrowing is provided in Section 5 together with results about the structure of
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specialized programs and the (strong) correctness of the transformation. Section 6
outlines several recent extensions of PE based on needed narrowing. Finally, Sec-
tion 7 concludes. Detailed proofs of selected results can be found in (Alpuente et al.
2004).

2 Preliminaries

Term rewriting systems (TRSs) provide an adequate computational model for func-
tional languages which allow the definition of functions by means of patterns (e.g.,
Haskell, Hope or Miranda). Within this framework, the class of inductively se-

quential programs, which we consider in this paper, has been defined, studied, and
used for the implementation of programming languages which provide for optimal
computations both in functional and functional logic programming (Antoy 1992;
Antoy et al. 2000; Hanus 1997; Hanus et al. 1998; Loogen et al. 1993). Inductively
sequential programs can be thought of as constructor-based TRSs with discrimi-
nating left-hand sides, i.e., typical functional programs where at most one rule is
used to reduce a particular subterm (without variables). Thus, in the remainder
of the paper we follow the standard framework of term rewriting (Dershowitz and
Jouannaud 1990) for developing our results.

We consider a (many-sorted) signature Σ partitioned into a set C of constructors

and a set F of (defined) functions or operations. We write c/n ∈ C and f /n ∈ F
for n-ary constructor and operation symbols, respectively. There is at least one sort
Bool containing the Boolean constructors true and false. Given a set of variables X ,
the set of terms and constructor terms are denoted by T (C ∪ F ,X ) and T (C,X ),
respectively. The set of variables occurring in a term t is denoted by Var(t). A
term t is ground if Var(t) = ∅. A term is linear if it does not contain multiple
occurrences of one variable. We write on for the sequence of objects o1, . . . , on .

A pattern is a term of the form f (dn) where f /n ∈ F and d1, . . . , dn ∈ T (C,X ). A
term is operation-rooted if it has an operation symbol at the root. root(t) denotes
the symbol at the root of the term t . A position p in a term t is represented by a
sequence of natural numbers (Λ denotes the empty sequence, i.e., the root position).
They are used to address the nodes of a term viewed as a tree (Dewey notation).
For instance, if t = f (t1, . . . , tn), positions 1, . . . ,n refer to arguments t1, . . . , tn
respectively; thus, given a position pi of a subterm of ti , position i · pi denotes the
corresponding subterm of t . Positions are ordered by the prefix ordering: u ≤ v , if
there exists w such that u ·w = v . Given a term t , Pos(t) and NVPos(t) denote the
set of positions and the set of non-variable positions of t , respectively. t |p denotes
the subterm of t at position p, and t [s]p denotes the result of replacing the subterm

t |p by the term s (see (Dershowitz and Jouannaud 1990) for details).
We denote by {x1 7→ t1, . . . , xn 7→ tn} the substitution σ with σ(xi) = ti for

i = 1, . . . ,n (with xi 6= xj if i 6= j ), and σ(x ) = x for all other variables x . The
set Dom(σ) = {x ∈ X | σ(x ) 6= x} is called the domain of σ. A substitution
σ is constructor (ground constructor), if σ(x ) is constructor (ground constructor)
for all x ∈ Dom(σ). The identity substitution is denoted by id . Substitutions are
extended to morphisms on terms by σ(f (tn)) = f (σ(tn)) for every term f (tn). Given



6 M. Alpuente et al.

a substitution θ and a set of variables V ⊆ X , we denote by θ|̀V the substitution
obtained from θ by restricting its domain to V . We write (θ = σ)[V ] if θ|̀V = σ |̀V ,
and (θ ≤ σ)[V ] denotes the existence of a substitution γ such that (γ ◦ θ = σ)[V ].

Term t ′ is an instance of t if there is a substitution σ with t ′ = σ(t). This implies
a (relative generality) subsumption ordering on terms which is defined by t ≤ t ′

iff t ′ is an instance of t . A unifier of two terms s and t is a substitution σ with
σ(s) = σ(t). The unifier σ is most general if (σ ≤ σ′)[X ] for each other unifier σ′.

A rewrite rule is an ordered pair (l , r), written l → r , with l , r ∈ T (C ∪ F ,X ),
l 6∈ X and Var(r) ⊆ Var(l). A set of rewrite rules is called a term rewriting system

(TRS). The terms l and r are called the left-hand side (lhs) and the right-hand side

(rhs) of the rule, respectively. A TRS R is left-linear if l is linear for all l → r ∈ R.
A TRS is constructor-based (CB) if each lhs l is a pattern. Two (possibly renamed)
rules l → r and l ′ → r ′ overlap, if there is a non-variable position p ∈ NVPos(l)
and a most general unifier σ such that σ(l |p) = σ(l ′). A left-linear TRS without
overlapping rules is called orthogonal. In the remainder of this paper, a functional

logic program is a finite left-linear CB-TRS. Conditions in program rules are treated
by using the predefined functions and, if then else, case of which are reduced
by standard defining rules (Moreno-Navarro and Rodŕıguez-Artalejo 1992).

A rewrite step is an application of a rewrite rule to a term, i.e., t →p,R s if there
is a position p in t , a rewrite rule R of the form l → r and a substitution σ with
t |p = σ(l) and s = t [σ(r)]p (p and R will often be omitted in the notation of a
rewrite step). The instantiated lhs σ(l) is called a redex. PosR(t) denotes the set
of redex positions of the term t in the TRS R. →+ (→∗) denotes the transitive
(reflexive and transitive) closure of →. If t →∗ s, we say that t is rewritten to s. A
term t is root-stable (often called a head-normal form) if it cannot be rewritten to
a redex. A constructor root-stable term is either a variable or a constructor-rooted

term, i.e., a term rooted by a constructor symbol. A term t is called irreducible or
in normal form if there is no term s with t → s.

In order to evaluate terms containing variables, narrowing non-deterministically
instantiates its variables such that a rewrite step is possible—usually by comput-
ing most general unifiers between a subterm and some lhs (Hanus 1994), but this
requirement is relaxed in needed narrowing steps in order to obtain an optimal
evaluation strategy (Antoy et al. 2000). Formally, t ;p,R,σ t ′ is a narrowing step

if p is a non-variable position in t and σ(t) →p,R t ′. We denote by t0 ;∗σ tn a
sequence of narrowing steps t0 ;σ1 . . . ;σn

tn with σ = σn ◦ · · · ◦σ1 (if n = 0 then
σ = id). Since we are interested in computing values (constructor terms) as well
as answers (substitutions), we say that the narrowing derivation t ;∗σ c computes

the result c with answer σ if c is a constructor term. The evaluation to ground
constructor terms is the most common semantics of functional (logic) languages. In
lazy functional (logic) languages, the equality predicate ≈ used in some examples
is defined as the strict equality on terms (note that we do not require terminating
rewrite systems and, thus, reflexivity is not desired), i.e., the equation t1 ≈ t2 is
satisfied if and only if t1 and t2 are reducible to the same ground constructor term.
Furthermore, a substitution σ is a solution for an equation t1 ≈ t2 if σ(t1) ≈ σ(t2)
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is satisfied. The strict equality can be defined as a binary Boolean function by the
following set of orthogonal rewrite rules:

c ≈ c → true c/0 ∈ C
c(X1, . . . , Xn) ≈ c(Y1, . . . , Yn) → (X1 ≈ Y1) ∧ . . . ∧ (Xn ≈ Yn) c/n ∈ C, n > 0

true ∧ X → X

Thus, we do not treat strict equality in any special way and it is sufficient to consider
it as a Boolean function. We say that σ is a computed answer substitution for an
equation e if there is a narrowing derivation e ;∗σ true. More details about strict
equality can be found in (Antoy et al. 2000; Giovannetti et al. 1991; Moreno-Navarro
and Rodŕıguez-Artalejo 1992).

As in logic programming, narrowing derivations can be represented by a (possibly
infinite) finitely branching tree. Formally, given a program R and an operation-
rooted term t , a narrowing tree for t inR is a tree satisfying the following conditions:
(a) each node of the tree is a term, (b) the root node is t , and (c) if s is a node
of the tree then, for each narrowing step s ;p,R,σ s ′, the node has a child s ′ and
the corresponding arc in the tree is labeled with (p,R, σ). A failing leaf contains
a term which is not a constructor term and which cannot be further narrowed.
Following (Lloyd and Shepherdson 1991), in this work we adopt the convention
that a derivation can be incomplete (thus, a branch can be failed, incomplete,
successful, or infinite).

3 Needed Narrowing

Since functional logic languages are intended to extend (pure) logic languages, com-
pleteness of the operational semantics is an important issue. Similarly to logic
programming, completeness means the ability to compute representatives of all
solutions for one or more equations (this will be formalized in Theorem 1). Nar-
rowing, as defined in the previous section, is complete but highly (don’t-know)
non-deterministic: if t is a term, we have to apply at all non-variable subterms
all possible rules with all possible substitutions in order to compute all solutions.
Clearly, this would be too inefficient for a realistic functional logic language. Thus,
a challenge in the design of functional logic languages is the definition of a “good”
narrowing strategy, i.e., a restriction on the narrowing steps issuing from a given
term t , without losing completeness. (Hanus 1994) contains a survey of various
attempts to define reasonable narrowing strategies.

Needed narrowing (Antoy et al. 2000) is currently the best known narrowing
strategy due to its optimality properties (see the discussion in Section 1 and Theo-
rem 1). Needed narrowing is defined on inductively sequential programs, a class of
CB-TRSs where the left-hand sides do not overlap (in particular, they are not unifi-
able). To provide a definition of this class of programs and the needed narrowing
strategy, we introduce definitional trees (Antoy 1992). Here we use the definition
of (Antoy 1997) which is more appropriate for our purposes.

A definitional tree of a finite set S of linear patterns is a non-empty set P of
linear patterns partially ordered by subsumption having the following properties:
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0 6 Y→ true s(X′) 6 Y

s(X′) 6 0→ false s(X′) 6 s(Y′)→ X′ 6 Y′

X 6 Y

�
�
��

Q
Q
QQ

�
�
��

Q
Q
QQ

Fig. 1. Definitional tree for the function “6”

Root property: P has a minimum element (that we denote as pattern(P)), also
called the pattern of the definitional tree.

Leaves property: The maximal elements of P, called the leaves of the definitional
tree, are the elements of S . Non-maximal elements are also called branch nodes.

Parent property: If π ∈ P, π 6= pattern(P), there exists a unique π′ ∈ P, called the
parent of π (and π is called a child of π′), such that π′ < π and there is no other
pattern π′′ ∈ T (C ∪ F ,X ) with π′ < π′′ < π.

Induction property: Given π ∈ P\S , there is a position o in π with π|o ∈ X (called
the inductive position), and constructors c1/k1, . . . , cn/kn ∈ C with ci 6= cj for
i 6= j , such that, for all π1, . . . , πn which have the parent π, πi = π[ci(xki

)]o
(where xki

are new distinct variables) for all 1 ≤ i ≤ n.1

If R is an orthogonal TRS and f /n a defined function, we call P a definitional tree

of f if pattern(P) = f (xn) for distinct variables xn and the leaves of P are all (and
only) variants of the left-hand sides of the rules in R defining f (i.e., rules l → r
such that root(t) = f , f ∈ F). Due to the orthogonality ofR, we can assign a unique
rule defining f to each leaf. A defined function is called inductively sequential if
it has a definitional tree. A rewrite system R is called inductively sequential if all
its defined functions are inductively sequential. An inductively sequential TRS can
be viewed as a set of definitional trees, each defining a function symbol. There can
be more than one definitional tree for an inductively sequential function. In the
following, we assume that there is a fixed definitional tree for each defined function.

It is often convenient and simplifies understanding to provide a graphic repre-
sentation of definitional trees, where each inner node is marked with a pattern, the
inductive position in branch nodes is surrounded by a box, and the leaves contain
the corresponding rules. For instance, the definitional tree of the function “6” in
Example 1 is illustrated in Figure 1.

The following auxiliary proposition shows that functions defined by a single rule
are always inductively sequential.

Proposition 1

1 There might be more than one potential inductive position when constructing a definitional
tree. In this case one can select any of them since the results about needed narrowing do not
depend on the selected definitional tree.
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If f (tn) is a linear pattern, then there exists a definitional tree for the set {f (tn)}
with pattern f (xn).

Proof
By induction on the number of constructor symbols occurring in t , where each
constructor symbol is introduced in a child of a branch node and each branch node
has only one child.

For the definition of needed narrowing, we assume that t is an operation-rooted
term and P is a definitional tree with pattern(P) = π such that π ≤ t . We define
a function λ from terms and definitional trees to sets of tuples (position, rule,
substitution) as the least set satisfying the following properties. We consider two
cases for P:2

1. If π is a leaf, i.e., P = {π}, and π → r is a variant of a rewrite rule, then

λ(t ,P) = {(Λ, π → r , id)}·

2. If π is a branch node, consider the inductive position o of π and a child
πi = π[ci(xn)]o ∈ P. Let Pi = {π′ ∈ P | πi ≤ π′} be the definitional tree
where all patterns are instances of πi . Then we consider the following cases
for the subterm t |o :

λ(t ,P) 3



(p,R, σ ◦ τ) if t |o = x ∈ X , τ = {x 7→ ci(xn)},
and (p,R, σ) ∈ λ(τ(t),Pi);

(p,R, σ ◦ id) if t |o = ci(tn) and (p,R, σ) ∈ λ(t ,Pi);

(o · p,R, σ ◦ id) if t |o = f (tn), f ∈ F , and (p,R, σ) ∈ λ(t |o ,P ′)
where P ′ is a definitional tree for f .

Informally speaking, needed narrowing applies a rule, if the definitional tree does
not require further pattern matching (case 1), or checks the subterm correspond-
ing to the inductive position of the branch node (case 2): if it is a variable, it is
instantiated to the constructor of a child; if it is already a constructor, we proceed
with the corresponding child (note that we do not actually need substitution id
but we include it to provide a normalized representation of a needed narrowing
step, see below); if it is a function, we evaluate it by recursively applying needed
narrowing. Thus, the strategy differs from typical lazy functional languages only in
the instantiation of free variables.

Note that, in each recursive step during the computation of λ, we compose the
current substitution with the local substitution of this step (which can be the iden-
tity). Thus, each needed narrowing step can be represented as (p,R, ϕk ◦ · · · ◦ ϕ1),
where each ϕj is either the identity or the replacement of a single variable computed
in each recursive step (see the following proposition). This is also called the canon-

ical representation of a needed narrowing step. As in proof procedures for logic
programming, we assume that the definitional trees always contain new variables

2 This description of a needed narrowing step is slightly different from (Antoy et al. 2000) but it
results in the same needed narrowing steps.
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if they are used in a narrowing step. This implies that all computed substitutions
are idempotent (we will implicitly assume this property in the following).

To compute needed narrowing steps for an operation-rooted term t , we take the
definitional tree P for the root of t and compute λ(t ,P). Then, for all (p,R, σ) ∈
λ(t ,P), t ;p,R,σ t ′ is a needed narrowing step. We call this step deterministic if
λ(t ,P) contains exactly one element.

Example 3
Consider the rules in Example 2. Then the function λ computes the following set
for the initial term X 6 X + X:

{(Λ, 0 6 N→ true, {X 7→ 0}), (2, s(M) + N→ s(M + N), {X 7→ s(M)})}

This corresponds to the following narrowing steps:

X 6 X + X ;{X 7→0} true

X 6 X + X ;{X 7→s(M)} s(M) 6 s(M + s(M))

In the following we state some interesting properties of needed narrowing which are
useful for our later results. The first proposition shows that each substitution in a
needed narrowing step instantiates only variables occurring in the initial term.

Proposition 2
If (p,R, ϕk ◦ · · · ◦ ϕ1) ∈ λ(t ,P) is a needed narrowing step, then, for i = 1, . . . , k ,
ϕi = id or ϕi = {x 7→ c(xn)} (where xn are pairwise different variables) with
x ∈ Var(ϕi−1 ◦ · · · ◦ ϕ1(t)).

Proof
By induction on k .

The next lemma shows that for different narrowing steps (computing different sub-
stitutions) there is always a variable which is instantiated to different constructors:

Lemma 1
Let t be an operation-rooted term, P a definitional tree with pattern(P) ≤ t and
(p,R, ϕk◦· · ·◦ϕ1), (p′,R′, ϕ′k ′◦· · ·◦ϕ′1) ∈ λ(t ,P), k ≤ k ′. Then, for all i ∈ {1, . . . , k},

• either ϕi ◦ · · · ◦ ϕ1 = ϕ′i ◦ · · · ◦ ϕ′1, or
• there exists some j < i with

1. ϕj ◦ · · · ◦ ϕ1 = ϕ′j ◦ · · · ◦ ϕ′1, and
2. ϕj+1 = {x 7→ c(· · ·)} and ϕ′j+1 = {x 7→ c′(· · ·)} with c 6= c′.

Proof
By induction on k (the number of recursive steps performed by λ to compute
(p,R, ϕk ◦ · · · ◦ ϕ1)):

k = 1: Then P = {π} and λ(t ,P) = {(Λ,R, id)}. Thus, the proposition trivially
holds.
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k > 1: Then π = pattern(P) is a branch node and there is an inductive position
o of π such that all children of π have the form πi = π[ci(xn)]o ∈ P. Let
Pi = {π′ ∈ P | πi ≤ π′} be the definitional tree where all patterns are instances
of πi , for i = 1, . . . ,n. We prove the induction step by a case distinction on the
form of the subterm t |o :

t |o = x ∈ X : Then ϕ1 = {x 7→ ci(xn)} and (p,R, ϕk ◦ · · · ◦ϕ2) ∈ λ(ϕ1(t),Pi) for
some i . If ϕ′1 = {x 7→ c(· · ·)} with c 6= ci , then the proposition directly holds.
Otherwise, if ϕ1 = ϕ′1, the proposition follows from the induction hypothesis
applied to (p,R, ϕk ◦ · · · ◦ ϕ2), (p′,R′, ϕ′k ′ ◦ · · · ◦ ϕ′2) ∈ λ(ϕ1(t),Pi).

t |o = ci(tn): Then ϕ1 = id and (p,R, ϕk ◦ · · · ◦ ϕ2) ∈ λ(t ,Pi). Clearly, ϕ′1 = id
by definition of λ. Hence the proposition follows from the induction hypothesis
applied to (p,R, ϕk ◦ · · · ◦ ϕ2), (p′,R′, ϕ′k ′ ◦ · · · ◦ ϕ′2) ∈ λ(t ,Pi).

t |o = f (tn): Then ϕ1 = id and (p,R, ϕk ◦ · · · ◦ ϕ2) ∈ λ(t |o ,P ′) where P ′ is a
definitional tree for f . By definition of λ, ϕ′1 = id . Then the proposition follows
from the induction hypothesis applied to (p,R, ϕk ◦ · · · ◦ϕ2), (p′,R′, ϕ′k ′ ◦ · · · ◦
ϕ′2) ∈ λ(t |o ,P ′).

For inductively sequential programs, needed narrowing is sound and complete w.r.t.
strict equality when we consider constructor substitutions as solutions (note that
constructor substitutions are sufficient in practice since a broader class of solutions
would contain unevaluated or undefined expressions for the considered programs).
Moreover, needed narrowing does not compute redundant solutions. These prop-
erties are formalized as follows, where we say that two substitutions σ and σ′ are
independent (on a set of variables V ⊆ X ) iff there is some x ∈ V such that σ(x )
and σ′(x ) are not unifiable.3

Theorem 1 (Antoy et al. 2000 )
Let R be an inductively sequential program and e an equation.

1. (Soundness) If e ;∗σ true is a needed narrowing derivation, then σ is a solution
for e.

2. (Completeness) For each constructor substitution σ that is a solution of e,
there exists a needed narrowing derivation e ;∗σ′ true with σ′ ≤ σ [Var(e)].

3. (Minimality) If e ;∗σ true and e ;∗σ′ true are two distinct needed narrowing
derivations, then σ and σ′ are independent on Var(e).

An important advantage of functional logic languages in comparison to pure logic
languages is their improved operational behavior by avoiding non-deterministic
computation steps. One reason for that is a demand-driven computation strat-
egy which can avoid the evaluation of potential non-deterministic expressions. For
instance, consider the rules in Examples 1 and 3 and the term 0 6 X + X. Needed
narrowing evaluates this term by one deterministic step to true. In an equivalent

3 Actually, (Antoy et al. 2000) prove a stronger property (disjointness of solutions) but this is
not necessary here.
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logic program, this nested term must be flattened into a conjunction of two predicate
calls, like +(X, X, Z) ∧6(0, Z), which causes a non-deterministic computation due to
the predicate call +(X, X, Z).4 Another reason for the improved operational behavior
of functional logic languages is the ability of particular evaluation strategies (like
needed narrowing or parallel narrowing (Antoy et al. 1997)) to evaluate ground
terms in a completely deterministic way, which is important to ensure an efficient
implementation of purely functional evaluations. This property, which is obvious by
the definition of needed narrowing, is formally stated in the following proposition.
For this purpose, we call a term t deterministically evaluable (w.r.t. needed narrow-
ing) if each step in a narrowing derivation issuing from t is deterministic. A term
t deterministically normalizes to a constructor term c (w.r.t. needed narrowing) if
t is deterministically evaluable and there is a needed narrowing derivation t ;∗id c
(i.e., c is the normal form of t).

Proposition 3
Let R be an inductively sequential program and t be a term.

1. If t ;∗id c is a needed narrowing derivation, then t deterministically normal-
izes to c.

2. If t is ground, then t is deterministically evaluable.

4 Lazy Narrowing and Uniform Programs

One of the main objectives of this work is to clarify the relation between the defini-
tion of a PE scheme based on needed narrowing and a previous PE method based
on lazy narrowing (Alpuente et al. 1997). In order to show the improvements ob-
tained by using needed narrowing to perform partial computations, we first provide
a brief review of the lazy narrowing strategy in this section.

Lazy narrowing reduces expressions at outermost narrowable positions. Narrow-
ing at inner positions is performed only if it is demanded (by the pattern in the
lhs of some rule). In the following, we specify a lazy narrowing strategy which is
similar to (Moreno-Navarro and Rodŕıguez-Artalejo 1992).

The following definitions are necessary for our formalization of lazy narrowing.
A linear unification problem is a pair of terms: δ = 〈f (dn), f (tn)〉, where f (dn) and
f (tn) do not share variables, and f (dn) is a linear pattern. Linear unification LU(δ)
can either succeed, fail or suspend, delivering (Succ, σ), (Fail,∅) or (Demand,P),
respectively, where P is the set of demanded positions which require further eval-
uation; details can be found in (Alpuente et al. 1997).

We define the lazy narrowing strategy in the following definition. Roughly speak-
ing, the set-valued function λlazy(t) returns the set of triples (p,R, σ) such that p
is a demanded position of t which can be narrowed by the rule R with substitution
σ (where σ is a most general unifier of t |p and the left-hand side of R). We assume
the rules of R to be numbered with R1, . . . ,Rm .

4 Such non-deterministic computations could be avoided using Prolog systems with coroutining
which allow the suspension of some non-deterministic computations, but then we are faced with
the problem of floundering and incompleteness.



Specialization of Functional Logic Programs Based on Needed Narrowing 13

Definition 1 (lazy narrowing strategy)

λlazy(t) =
⋃m

k=1 λ (t ,Λ, k)

λ (t , p, k) = if root(lk ) = root(t |p) then

case LU(〈lk , t |p〉) of


(Succ, σ) : {(p,Rk , σ)}
(Fail,∅) : ∅

(Demand,P) :
⋃

q∈P

⋃m
k=1 λ (t , p · q , k)

else ∅

where Rk = (lk → rk ) is a (renamed apart) rule of R.

Example 4
Consider the rules for “6” and “+” in Examples 1 and 3. Then lazy narrowing
evaluates the term X 6 X + X by applying a narrowing step at the top (with the
first rule for “6”) or by applying a narrowing step to the second argument X + X

since this is demanded by the second and third rule for “6”. Thus, there are three
lazy narrowing steps:

X 6 X + X ;{X 7→0} true

X 6 X + X ;{X 7→0} 0 6 0

X 6 X + X ;{X 7→s(M)} s(M) 6 s(M + s(M))

Note that the second lazy narrowing step is in some sense superfluous since it also
yields the final value true with the same binding as the first step. The avoidance
of such superfluous steps by using needed narrowing will have a positive impact on
the PE process, as we will see later.

In orthogonal programs, lazy narrowing is complete w.r.t. strict equality and con-
structor substitutions:

Proposition 4 (Moreno-Navarro and Rodŕıguez-Artalejo 1992 )
Let R be an orthogonal program, e an equation, and σ a constructor substitution
that is a solution for e. Then there is a lazy narrowing derivation e ;∗σ′ true such
that σ′ ≤ σ [Var(e)].

Thus, lazy narrowing is complete for a larger class of programs than needed nar-
rowing (since inductively sequential programs are always orthogonal), but it may
have a worse behavior than needed narrowing (see Example 4). Nevertheless, the
idea of needed narrowing can also be extended to almost orthogonal programs (An-
toy et al. 1997), but then the optimality properties are lost. There exists a class
of programs where the superfluous steps of lazy narrowing are avoided, since lazy
narrowing and needed narrowing coincide on this class. These are the uniform pro-
grams (Zartmann 1997) which are inductively sequential programs where at most
one constructor occurs in the left-hand side of each rule. A program is uniform if
each function f is defined by one rule f (xn)→ r or the left-hand side of every rule
Ri defining f is left-linear and has the form f (xk , ci(yni

), zm), where the construc-
tors ci are distinct in different rules. Note that uniform programs are orthogonal.
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In the latter case, an evaluation of a call to f demands its (k + 1)-th argument. A
different definition of uniform programs can be found in (Kuchen et al. 1990).

There is a simple mapping U from inductively sequential into uniform programs
which is based on flattening nested patterns, see (Zartmann 1997). For instance, if
R is the program in Example 1, then U(R) consists of the rules

0 6 N → true

s(M) 6 N → M 6′ N
M 6′ 0 → false

M 6′ s(N1) → M 6 N1

where 6′ is a new function symbol.
The following theorem states a correspondence between needed narrowing deriva-

tions using the original program and lazy narrowing derivations in the transformed
uniform program. For a more detailed comparison between needed narrowing and
lazy narrowing, we refer to (Alpuente et al. 2003).

Theorem 2 (Zartmann 1997 )
Let R be an inductively sequential program, U(R) the transformed uniform pro-
gram, and t an operation-rooted term. Then there exists a needed narrowing deriva-
tion t ;∗σ s w.r.t. R to a constructor root-stable form s iff there exists a lazy
narrowing derivation t ;∗σ s w.r.t. U(R).

5 Partial Evaluation with Needed Narrowing

In this section, we introduce the basic notions of PE in (lazy) functional logic
programming. Then, we analyze the fundamental properties of PE based on needed
narrowing and establish the relation with PE based on lazy narrowing.

Partial evaluation is a semantics-based program optimization technique which
has been investigated within different programming paradigms and applied to a
wide variety of languages. The first PE framework for functional logic programs
has been defined by (Alpuente et al. 1998a). In this framework, narrowing (the
standard operational semantics of integrated languages) is used to drive the PE
process; similarly to partial deduction, specialized program rules are constructed
from narrowing derivations using the notion of resultant. In the following, s ;+

σ t
denotes a narrowing derivation with at least one narrowing step.

Definition 2 (resultant)
Let R be a TRS and s be a term. Given a narrowing derivation s ;+

σ t , its
associated resultant is the rewrite rule σ(s)→ t .

Note that, whenever the specialized call s is not a linear pattern, the left-hand
sides of resultants may not be linear patterns either and hence resultants may not
be program rules:

Example 5
Consider the following inductively sequential program:

double(X) → X + X

0 + N → N

s(M) + N → s(M + N)
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Given the term double(W) + W and the following needed narrowing derivation (the
selected redex is underlined at each narrowing step):

double(W) + W ;id (W + W) + W ;{W 7→s(M)} s(M + s(M)) + s(M)

we compute the associated resultant:

double(s(M)) + s(M) → s(M + s(M)) + s(M)

This resultant is not a legal program rule since its left-hand side contains nested
defined function symbols (“+” and “double”) as well as multiple occurrences of
the same variable.

In order to produce legal program rules, we introduce a post-processing of renaming
which not only eliminates redundant structures but also obtains independent spe-
cializations in the sense of (Lloyd and Shepherdson 1991). Furthermore, it is also
necessary for the correctness of the PE transformation. Roughly speaking, indepen-
dence ensures that the different specializations for the same function definition are
correctly distinguished, which is crucial for polyvariant specialization.

The (pre–)partial evaluation of a term s is obtained by constructing a (possibly
incomplete) narrowing tree for s and then extracting the specialized definitions (the
resultants) from the non–failing, root–to–leaf paths of the tree.

Definition 3 (pre–partial evaluation)
LetR be a TRS and s a term. Let T be a finite (possibly incomplete) narrowing tree
for s in R such that no constructor root-stable term in the tree has been narrowed.
Let tn be the terms in the non-failing leaves of T. Then, the set of resultants
{σi(s)→ ti | i = 1, . . . ,n} for the narrowing sequences {s ;+

σi
ti | i = 1, . . . ,n} is

called a pre–partial evaluation of s in R.
The pre–partial evaluation of a set of terms S in R is defined as the union of the

pre–partial evaluations for the terms of S in R.

Example 6
Consider the following function append to concatenate two lists (here we use “nil”
and “:” as constructors of lists):

append(nil, Ys)→ Ys
append(X : Xs, Ys)→ X : append(Xs, Ys)

together with the set of calls S = {append(append(Xs, Ys), Zs), append(Xs, Ys)}.
Given the needed narrowing trees of Figure 2, the associated pre–partial evaluation
of S in R is as follows:

append(append(nil, Ys), Zs)→ append(Ys, Zs)
append(append(X : Xs, Ys), Zs)→ X : append(append(Xs, Ys), Zs)
append(nil, Zs)→ Zs
append(Y : Ys, Zs)→ Y : append(Ys, Zs)

The following example illustrates that the restriction not to evaluate terms in con-
structor root-stable form cannot be dropped.
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{Xs 7→ nil} {Xs 7→ X′ : X′s}

PPPPPPPPPPP

�����������

X′ : append(append(X′s, Ys), Zs)

append(X′ : append(X′s, Ys), Zs)append(Ys, Zs)

append(append(Xs, Ys), Zs)

{Ys 7→ nil} {Ys 7→ Y′ : Y′s}

PPPPPPPPPPP

�����������
Y′ : append(Y′s, Zs)Zs

append(Ys, Zs)

Fig. 2. Needed Narrowing trees for append(append(Xs, Ys), Zs) and append(Xs, Ys).

Example 7
Consider the following program R:

f(0) → 0

g(X) → s(f(X))
h(s(X)) → s(0)

together with the set of calls S = {g(X), h(X)}. Given the needed narrowing deriva-
tions:

g(X) ;id s(f(X)) ;{X 7→0} s(0)
h(X) ;{X 7→s(Y)} s(0)

a pre–partial evaluation of S in R is the following program R′:

g(0) → s(0)
h(s(X)) → s(0)

Now, the equation h(g(s(0))) ≈ X has the following successful needed narrowing
derivation in R:

h(g(s(0))) ≈ X ;id h(s(f(s(0)))) ≈ X ;id s(0) ≈ X ;∗{X 7→s(0)} true

whereas it fails in the specialized program R′.

The problem shown in the above example is due to the backpropagation of bindings
to the left-hand sides of resultants: within a lazy context, the instantiation of the
left-hand sides of resultants with bindings which come from the evaluation of terms
in constructor root-stable form may incorrectly restrict the domain of functions
(e.g., function “g” above).

A recursive closedness condition, which guarantees that each call which might
occur during the execution of the resulting program is covered by some program
rule, is formalized by inductively checking that the different calls in the rules are
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sufficiently covered by the specialized functions. For instance, a function call like
s(X) + Y cannot be considered closed w.r.t. the set of calls {0 + Y, s(0) + Y}.

Informally, a term t rooted by a defined function symbol is closed w.r.t. a set of
calls S , if it is an instance of a term of S and the terms in the matching substitution
are recursively closed by S .
Definition 4 (closedness)
Let S be a finite set of terms. We say that a term t is S -closed if closed(S , t) holds,
where the predicate closed is defined inductively as follows:

closed(S , t) ⇔


true if t ∈ X
closed(S , t1) ∧ . . . ∧ closed(S , tn) if t = c(tn), c ∈ C∗, n ≥ 0∧

x 7→t′∈θ closed(S , t ′) if ∃s ∈ S such that θ(s) = t
for some substitution θ

where C∗ = (C ∪ {≈,∧}).
We say that a set of terms T is S -closed, written closed(S ,T ), if closed(S , t)

holds for all t ∈ T , and we say that a TRS R is S -closed if closed(S ,Rcalls) holds.
Here we denote by Rcalls the set of the right-hand sides of the rules in R.

For instance, the pre–partial evaluation of Example 6 is closed w.r.t. the set of
partially evaluated calls {append(append(Xs, Ys), Zs), append(Xs, Ys)}.

According to the (non-deterministic) definition above, an expression rooted by a
“primitive” function symbol, such as a conjunction t1 ∧ t2 or an equation t1 ≈ t2,
can be proved closed w.r.t. S either by checking that t1 and t2 are S -closed or by
testing whether the conjunction (equation) is an instance of a call in S (followed
by an inductive test of the subterms). This is useful when we are not interested in
specializing complex expressions (like conjunctions or equations) but we still want
to run them after specialization. Note that this is safe since we consider that the
rules which define the primitive functions “≈” and “∧” are automatically added to
each program by existing programming environments, hence calls to these symbols
are steadily covered in the specialized program. A general technique for dealing
with primitive symbols which deterministically splits terms before testing them for
closedness can be found in (Albert et al. 1998).

In general, given a call s and a program R, there exists an infinite number of dif-
ferent pre–partial evaluations of s in R. A fixed rule for generating resultants called
an unfolding rule is assumed, which determines the expressions to be narrowed (by
using a fixed narrowing strategy) and which decides how to stop the construction
of narrowing trees; see (Albert et al. 1998; Alpuente et al. 1998a; Albert et al. 2002)
for the definition of concrete unfolding rules.

In the following, we denote by pre–NN–PE and pre–LN–PE the sets of resultants
computed for S inR by considering an unfolding rule which constructs finite needed
and lazy narrowing trees, respectively. We will use the acronyms NN–PE and LN–
PE for the renamed rules which will result from the corresponding post-processing
of renaming. The idea behind this transformation is that, for any call (which is
closed w.r.t. the considered set of calls), the answers computed for this call in the
original program and the answers computed for the renamed call in the specialized,
renamed program do coincide. In particular, in order to define a partial evaluator
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based on needed narrowing and to ensure that the resulting program is inductively
sequential whenever the source program is, we have to make sure that the set
of specialized terms (after renaming) contains only linear patterns with distinct
root symbols. This can be ensured by introducing a new function symbol for each
specialized term and then replacing each call in the specialized program by a call
to the corresponding renamed function. In particular, the left-hand sides of the
specialized program (which are constructor instances of the specialized terms) are
replaced by instances of the corresponding new linear patterns through renaming.

Definition 5 (independent renaming)
An independent renaming ρ for a set of terms S is a mapping from terms to terms
defined as follows: for s ∈ S , ρ(s) = fs(xn), where xn are the distinct variables in s
in the left-to-right ordering and fs is a new function symbol, which does not occur
in R or S and is different from the root symbol of any other ρ(s ′), with s ′ ∈ S and
s ′ 6= s. We also denote by ρ(S ) the set S ′ = {ρ(s) | s ∈ S}.

Example 8
Consider the set S = {append(append(Xs, Ys), Zs), append(Xs, Ys)}. The following
mapping:

ρ = {append(Xs, Ys) 7→ app(Xs, Ys), append(append(Xs, Ys), Zs) 7→ dapp(Xs, Ys, Zs)}

is an independent renaming for S .

While independent renamings suffice to rename the left-hand sides of resultants
(since they are constructor instances of the specialized calls), the right-hand sides
are renamed by means of the auxiliary function renρ, which recursively replaces
each call in the given expression by a call to the corresponding renamed function
(according to ρ).

Definition 6 (renaming function)
Let S be a finite set of terms and ρ an independent renaming of S . Given a term
t , the non-deterministic function renρ is defined as follows:

renρ(t) =



t if t ∈ X
c(renρ(tn)) if t = c(tn), c ∈ C∗, and n ≥ 0
θ′(ρ(s)) if ∃θ,∃s ∈ S such that t = θ(s) and

θ′ = {x 7→ renρ(θ(x )) | x ∈ Dom(θ)}
t otherwise

where C∗ = (C ∪ {≈,∧}).

Similarly to the test for closedness, an equation s ≈ t can be (non-deterministically)
renamed either by independently renaming s and t or by replacing the considered
equation by a call to the corresponding new, renamed function (when the equation
is an instance of some specialized call in S ). Note also that the renaming function
is a total function: if an operation-rooted term t is not an instance of any term in
S (which can occur if t is not S -closed), the function renρ(t) returns t itself (i.e.,
term t is not renamed).

The notion of partial evaluation can be formally defined as follows.
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Definition 7 (partial evaluation)
Let R be a TRS, S a finite set of terms and R′ a pre–partial evaluation of R w.r.t.
S . Let ρ be an independent renaming of S . We define the partial evaluation R′′ of
R w.r.t. S (under ρ) as follows:

R′′ =
⋃
s∈S

{θ(ρ(s))→ renρ(r) | θ(s)→ r ∈ R′ is a resultant for s in R}

We now illustrate these definitions with an example.

Example 9
Let us consider the program append and the set of terms S of Example 6, together
with the independent renaming ρ of Example 8. A partial evaluation R′ of R w.r.t.
S (under ρ) is:

dapp(nil, Ys, Zs) → app(Ys, Zs)
dapp(X : Xs, Ys, Zs) → X : dapp(Xs, Ys, Zs)

app(nil, Ys) → Ys
app(X : Xs, Ys) → X : app(Xs, Ys)

Note that, for a given renaming ρ, the renamed form of a program R may depend
on the strategy which selects the term from ρ(S ) which is used to rename a given
call t in R (e.g., append(append(Xs, Ys), Zs)), since there may exist, in general, more
than one term in S that covers the call t . Some potential specialization might be
lost due to an inconvenient choice. Appropriate heuristics which are able to produce
the best potential specialization have been introduced in the implementation of the
partial evaluator described in (Albert et al. 2002).

The correctness of LN-PE is stated in (Albert et al. 1998; Alpuente et al. 1997).
It is important to clarify that, even if the methodology for narrowing-driven PE in
(Alpuente et al. 1998a) is parametric w.r.t. the narrowing strategy, this framework
only ensures that:

• partially evaluated programs are closed w.r.t. the set of partially evaluated
calls—which is necessary, although does not suffice, to guarantee the com-
pleteness of the transformation—, and
• the PE process always terminates.

In particular, the correctness of the PE transformation cannot be proved in a way
independent of the narrowing strategy. These results are by their nature highly
dependent on the concrete strategy which is considered, as it is known that different
narrowing strategies have quite different semantic properties. In fact, the use of a
lazy evaluation strategy imposes some additional restrictions on PE, such as the use
of “strict equality”, the requirement not to evaluate terms in constructor root-stable
form during PE, or the need for an additional post-processing of renaming. All these
additional requirements are essential to ensure the correctness of the transformation
and were not present in the original framework of (Alpuente et al. 1998a; Alpuente
et al. 1998b), where correctness is only proved for an eager narrowing strategy.
Therefore, it was necessary to develop a new theory for PE based on lazy narrowing
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as a separate work (Alpuente et al. 1997), which is now overcome by the needed
narrowing methodology formalized in this article.

The following lemma shows that any PE based on needed narrowing can also be
obtained (but possibly with more steps) by PE of the transformed uniform pro-
gram based on lazy narrowing. This means that, in some sense, the specializations
computed by a partial evaluator based on needed narrowing cannot be worse than
the specializations computed by a partial evaluator based on lazy narrowing. On
the other hand, we will also show later that there are cases where a LN-PE is worse
than a NN-PE for the same original program.

Lemma 2
LetR be an inductively sequential program,Ru = U(R) the corresponding uniform
program, and S a finite set of operation-rooted terms. If R′ is an NN-PE of S in
R, then R′ is also an LN-PE of S in Ru .

Proof
Since the final renaming applied in the partial evaluation of a program does not
depend on the narrowing strategy used during the pre-partial evaluation, it suffices
to show that each resultant w.r.t. needed narrowing in R corresponds to a resultant
w.r.t. lazy narrowing in Ru . Due to the definition of a resultant, each rule in the
pre-partial evaluation w.r.t. needed narrowing in R has the form

σ(t)→ s

where t ∈ S and t ;+
σ s is a needed narrowing derivation w.r.t. R. By Theorem 2,

there exists a lazy narrowing derivation t ;+
σ s w.r.t. Ru which has the same

answer and result (note that Theorem 2 states this property only for derivations into
constructor-rooted terms, but it also holds in the direction used here for arbitrary
needed narrowing derivations since each needed narrowing step corresponds to a
sequence of lazy narrowing steps w.r.t. the transformed uniform programs, which
can be seen by the proof of this theorem). Thus, σ(t)→ s is a resultant of this lazy
narrowing derivation w.r.t. Ru .

The following theorem states an important property of PE based on needed nar-
rowing: if the input program is inductively sequential, then the partially evaluated
program is also inductively sequential and, thus, we can also apply the needed
narrowing strategy to evaluate calls in the specialized program. The proof of this
theorem can be found in (Alpuente et al. 2004). An extension of this theorem—
although it relies on the result below regarding the unfolding transformation—in
the context of a more general fold/unfold framework can be found in (Alpuente
et al. 2004).

Theorem 3
Let R be an inductively sequential program and S a finite set of operation-rooted
terms. Then each NN-PE of R w.r.t. S is inductively sequential.

The following example reveals that, when we consider lazy narrowing, the LN-PE
of a uniform program w.r.t. a linear pattern may not be uniform.
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Example 10
Let R be the following uniform program:

f(X, b) → g(X)
g(a) → a

and t = f(X, Y) and ρ(t) = f2(X, Y). Then a LN-PE R′ of t in R (under ρ) is

f2(a, b) → a

which is not uniform.

The residual program R′ in the example above is inductively sequential. This raises
the question whether the LN-PE of a uniform program is always inductively sequen-
tial. Corollary 1 will positively answer this question.

Corollary 1
Let R be a uniform program and S a finite set of operation-rooted terms. If R′ is
a LN-PE of S in R, then R′ is inductively sequential.

Proof
Since a uniform program is inductively sequential and lazy narrowing steps w.r.t.
uniform programs are also needed narrowing steps (cf. proof of Theorem 2), the
proposition is a direct consequence of Theorem 3.

The uniformity condition in Corollary 1 cannot be weakened to inductive sequential-
ity when LN-PEs are considered, as demonstrated by the following counterexample.

Example 11
Let R be the following inductively sequential program:

f(a, a, a) → b h(a, b, X) → b

f(b, b, X) → b h(e, X, k) → b

g(a, b, X) → b i(X, c, d) → b

g(X, c, d) → b i(e, X, k) → b

Let t = f(g(X, Y, Z), h(X, Y, Z), i(X, Y, Z)) ∈ S and ρ be a renaming such that ρ(t) =
f3(X, Y, Z). Then, every LN-PE R′ of S in R (considering depth-2 lazy narrowing
trees to construct the resultants) contains the rules:

f3(a, b, X) → · · ·
f3(e, X, k) → · · ·
f3(X, c, d) → · · ·

and thus R′ is not inductively sequential.

One of the main factors affecting the quality of a PE is the treatment of choice
points (Leuschel and Bruynooghe 2002; Gallagher 1993). The following examples
illustrate the different way in which NN-PE and LN-PE “compile-in” choice points
during unfolding, which is crucial to performance since a poor control choice dur-
ing the construction of the computation trees can inadvertently introduce extra
computation into a program.
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Example 12
Consider again the rules of Example 3 and the input term X 6 X+Y. The computed
LN-PE is as follows:

leq2(0, N) → true

leq2(0, N′) → true

leq2(s(M), N) → leq2(M, N)

where the renamed initial term is leq2(X, Y). The redundancy of lazy narrowing
has the effect that the first two rules of the specialized program are identical (up
to renaming). In contrast, a better specialization—without generating redundant
rules—is obtained by PE based on needed narrowing, since the NN-PE consists of
the following rules:

leq2(0, N) → true

leq2(s(M), N) → leq2(M, N)

Note that a call-by-value partial evaluator based on innermost narrowing (Alpuente
et al. 1998a) has an even worse behavior in this example since it does not specialize
the program at all.

In the example above, the superfluous rule in the LN-PE can be avoided by removing
duplicates in a post-processing step. The next example shows that this is not always
possible.

Example 13
Lazy evaluation strategies are necessary if one wants to deal with infinite data
structures and possibly non-terminating function calls. The following orthogonal
program makes use of these features:

f(0, 0) → s(f(0, 0)) g(0) → g(0)
f(s(N), X) → s(f(N, X)) h(s(X)) → 0

The specialization is initiated with the term h(f(X, g(Y))). Note that this term
reduces to 0 if X is bound to s(· · ·), and it does not terminate if X is bound to 0

due to the nonterminating evaluation of the second argument. The NN-PE of this
program perfectly reflects this behavior (the renamed initial term is h2(X, Y)):

h0 → h0 h2(0, 0) → h0

h2(s(X), Y) → 0

On the other hand, the LN-PE of this program has a worse structure:

h1(X) → h1(X) h2(X, 0) → h1(X)
h1(s(X)) → 0 h2(s(X), Y) → 0

h2(s(X), 0) → 0

The program specialized by LN-PE in the example above is not inductively se-
quential (nor orthogonal), in contrast to the original one. This does not only mean
that lazy and needed narrowing are not applicable to the specialized program but
also that the specialized program has a worse termination behavior than the orig-
inal one. For instance, consider the term h(f(s(0), g(0))). The evaluation of this
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term has a finite derivation tree w.r.t. lazy narrowing as well as needed narrow-
ing in the original program. However, the renamed term h2(s(0), 0) has a finite
derivation tree w.r.t. the NN-PE but an infinite derivation tree w.r.t. the LN-PE
(using lazy narrowing); the infinite branch is caused by the application of the rules
h2(X, 0)→ h1(X) and h1(X)→ h1(X).

This last example also shows that LN-PE can destroy the advantages of determi-
nistic reduction of functional logic programs, which is not possible using NN-PE.
This is ensured by the following theorem, which guarantees that a term which
is deterministically normalizable w.r.t. the original program cannot cause a non-
deterministic evaluation w.r.t. the specialized program obtained by NN-PE.

Theorem 4
LetR be an inductively sequential program, S a finite set of operation-rooted terms,
ρ an independent renaming of S , and e an equation. Let R′ be a NN-PE of R w.r.t.
S (under ρ) such that R′∪{e ′} is S ′-closed, where e ′ = renρ(e) and S ′ = ρ(S ). If e
deterministically normalizes to true w.r.t. R, then e ′ deterministically normalizes
to true w.r.t. R′.

Proof
Since e deterministically normalizes to true w.r.t. R, there is a needed narrowing
derivation e ;∗id true in R. By Theorem 5 (see below), there is a needed narrowing
derivation e ′ ;∗σ true in R′ with σ = id [Var(e)]. This implies σ = id by definition
of needed narrowing. Therefore, e ′ deterministically normalizes to true w.r.t. R′ by
Proposition 3.

This property of specialized programs is desirable and important from an im-
plementation point of view, since the implementation of non-deterministic steps
is an expensive operation in logic-oriented languages. Moreover, additional non-
determinism in the specialized programs can result in additional infinite derivations,
as shown in Example 13. This might have the effect that solutions are no longer
computable in a sequential implementation based on backtracking. Essentially, de-
terministic computations are preserved thanks to the use of needed narrowing over
inductively sequential programs to perform partial computations. For instance, con-
sider the function “leq” of Example 1 together with the simple function “foo”:

foo(0) → 0

Given a function call of the form X 6 foo(Y), many narrowing strategies (e.g., lazy
narrowing) have two ways to proceed: either by reducing the call to function “6”
using the first rule

X 6 foo(Y) ;{X 7→0} true

and by reducing the call to function “foo” (which is demanded by the second and
third rules of “6”)

X 6 foo(Y) ;{Y 7→0} X 6 0



24 M. Alpuente et al.

Thus, their associated resultants are as follows:

0 6 foo(Y) → true

X 6 foo(0) → X 6 0

Now, given a call of the form 0 6 foo(Z), both resultants are applicable but the
second one is clearly redundant. Actually, the second resultant is only meaningful
to evaluate those calls whose first argument is of the form s(· · ·), since only the
second and third rules of “6” demanded the evaluation of call foo(0) that gave
rise to this resultant. The advantage of using needed narrowing is that it applies
some additional bindings so that this information is made explicit in the computed
resultants, e.g., the resultants obtained by needed narrowing are

0 6 foo(Y) → true

s(Z) 6 foo(0) → s(Z) 6 0

thus avoiding the creation of additional non-determinism. This property is somehow
related to the notion of perfect splits used in (Abramov and Glück 2000; Abramov
and Glück 2002; Glück and Klimov 1993) to guarantee that no computations are
neither lost nor added when constructing—by driving (Turchin 1986), a symbolic
execution mechanism which shares many similarities with lazy narrowing—the per-
fect process trees of (positive) supercompilation (Sørensen et al. 1996).

Note that there is no counterpart of this property in the partial deduction of
logic programs, since the considered execution mechanism (some variant of SLD-
resolution) never demands—in a don’t-know non-deterministic way—the evaluation
of different atoms of the same goal.

Finally, we state the strong correctness of NN-PE, which amounts to the com-
putational equivalence between the original and the specialized programs (i.e., the
fact that the two programs compute exactly the same answers) for the considered
goals. The proof of this theorem can be found in (Alpuente et al. 2004).

Theorem 5 (strong correctness)
Let R be an inductively sequential program. Let e be an equation, V ⊇ Var(e) a
finite set of variables, S a finite set of operation-rooted terms, and ρ an independent
renaming of S . Let R′ be a NN-PE of R w.r.t. S (under ρ) such that R′∪{e ′} is S ′-
closed, where e ′ = renρ(e) and S ′ = ρ(S ). Then, e ;∗σ true is a needed narrowing
derivation for e in R iff there exists a needed narrowing derivation e ′ ;∗σ′ true in
R′ such that (σ′ = σ)[V ] (up to renaming).

It is worthwhile to note that the correctness of NN-PE cannot be derived from the
correctness of LN-PE (Alpuente et al. 1997), since the preservation of inductive se-
quentiality (cf. Theorem 3) is a crucial point in our proof scheme, and this property
does not hold for LN-PE.

On the other hand, it is well-known that partial evaluation can be defined within
the fold/unfold framework (Pettorossi and Proietti 1996b) by using only unfolding
and a restricted form of folding. Hence the correctness of NN-PE could be derived
from the correctness of a fold/unfold framework for the transformation of functional
logic programs based on needed narrowing. However, the only framework of this
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kind in the literature is (Alpuente et al. 1999; Alpuente et al. 2004) and their
proofs of correctness—regarding the unfolding transformation—rely on the results
in this article. The precise relation between partial evaluation and the fold/unfold
transformation—for lazy functional logic programs—can be found in (Alpuente
et al. 2000).

6 Further Developments

In the previous sections, we introduced the theoretical basis for PE in the context
of lazy functional logic programming. Since the preliminary publication of these re-
sults, several extensions as well as concrete partial evaluators have been developed.
In this section, we review some of these subsequent developments.

The computational model of modern declarative multi-paradigm languages, which
integrate the most important features of functional, logic and concurrent program-
ming, is based on a combination of two different operational principles: needed nar-
rowing and residuation (Hanus 1997). The residuation principle is based on the idea
of delaying function calls until they are sufficiently instantiated for a deterministic
evaluation by rewriting. The particular mechanism (narrowing or residuation) is
specified by evaluation annotations: deterministic functions are annotated as rigid

(which forces a delayed evaluation by rewriting), while non-deterministic functions
are annotated as flexible (which enables narrowing steps).

Although NN-PE is originally formulated for functional logic languages based
uniquely on needed narrowing, it is still possible to adapt it to the use of distinct
operational mechanisms. In fact, NN-PE has been already adjusted to perform
partial computations using the combined operational semantics described above
(Albert 2001; Albert et al. 1999).

On the other hand, NN-PE has also been extended (Albert et al. 2002) in order to
make it viable for defining partial evaluators for practical multi-paradigm functional
logic languages like Curry (Hanus (ed.) 2003) or Toy (López-Fraguas and Sánchez-
Hernández 1999). When one considers a practical language, several extensions have
to be considered, e.g., higher-order functions, concurrent constraints, calls to exter-
nal functions, etc. In order to deal with these additional features, the underlying
operational calculus becomes usually more complex. As we mentioned earlier, an
on-line partial evaluator normally includes an interpreter of the language (Consel
and Danvy 1993). Then, as the operational semantics becomes more elaborated,
the associated PE techniques become (more powerful but) also increasingly more
complex. To avoid this problem, an approach successfully tested in other contexts
(Bondorf 1989; Glück and Klimov 1993; Nemytykh et al. 1996) is to consider the
PE of programs written in a maximally simplified programming language.

Hanus and Prehofer (1999) have introduced a flat representation for functional
logic programs in which definitional trees are embedded in the rewrite rules by
means of case expressions:

Example 14
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Function “6” of Example 1 can be written in the flat representation as follows:

X 6 Y = case X of { 0 → true;
s(X1) → case Y of { 0→ false;

s(Y1)→ X1 6 Y1 } }

Two nice properties of the flat representation are that it provides more explicit
control—hence the associated calculus is simpler than needed narrowing—and source
programs can be automatically translated to the new representation. Moreover, it
constitutes the basis of a recent proposal for an intermediate language, FlatCurry,
used during the compilation of Curry programs (Antoy and Hanus 2000; Antoy
et al. 2001). A new PE scheme (Albert 2001; Albert et al. 2002) has been designed
by considering such a flat representation for functional logic programs.

However, the use of the standard semantics for flat programs—the LNT calcu-
lus (Hanus and Prehofer 1999), which is equivalent to needed narrowing—at PE
time does not avoid the backpropagation of bindings when evaluating terms in
constructor root-stable form, which can be problematic within a lazy context (see
Example 7). In order to overcome this problem, a residualizing version of the stan-
dard semantics is introduced: the RLNT calculus (Albert 2001; Albert et al. 2003).
Finally, since modern lazy functional logic languages can be automatically trans-
lated into this flat representation—which still contains all the necessary information
about programs—the resulting technique is widely applicable.

All these results laid the ground for the development of a partial evaluation
tool for Curry programs, which has been distributed with the Portland Aachen
Kiel Curry System (Hanus (ed.) et al. 2003) since April 2001. Our partial evalua-
tor constructs optimized, residual versions for selected calls of the input program.
These calls are annotated by means of the function PEVAL which is equivalent to
the identity function. Let us show a typical session with the partial evaluator. Here
we consider the optimization of a program containing several calls to higher-order
functions (since it is common to use higher-order combinators such as map, foldr,
etc. in Curry programs). Although the use of such functions makes programs con-
cise, some overhead is introduced at run time. Hence, we apply our partial evaluator
to optimize calls to these functions. As a concrete example, consider the following
(annotated) Curry program:5

main xs ys = (PEVAL (map (iter (+1) 2) xs)) ++ ys

iter f n = if n==0 then f else iter (comp f f) (n-1)

comp f g x = f (g x)

bench = main [1..20000] []

stored in the file map iter.curry. Function comp is a higher-order function to com-
pose two input functions, while iter composes a given function 2n times. Thus,
given two input lists, xs and ys, function main adds 4 to each element of xs—the
annotated expression—and then concatenates the result with the second list ys.

5 Here we follow the Curry syntax: both variables and functions (except for PEVAL) start with
lower case letters and function application is denoted by juxtaposition.
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The built-in function “++” denotes list concatenation in Curry (more details can
be found in (Hanus (ed.) 2003)). In order to measure the improvement achieved by
the process, we have also included the function bench with a simple call to function
main, where [1..20000] represents a list from 1 to 20000. First, we load the pro-
gram into PAKCS, turn on the time mode (to obtain the run time of computations),
and execute function bench:

prelude> :l map iter
...

compiled /tmp/map iter.pl in module user, 620 msec 9888 bytes

map iter> :set +time

map iter> bench

Runtime: 750 msec.

Result: [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,...]

Now, we run the partial evaluation tool and show the result of the process:

map iter> :peval
...

Writing specialized program into "map iter pe.flc"...

Loading partially evaluated program "map iter pe"...

map iter pe> :show

main xs ys = (map pe0 xs) ++ ys

iter f n = if n==0 then f else iter (comp f f) (n-1)

comp f g x = f (g x)

bench = main [1..20000] []

map pe0 [] = []

map pe0 (x : xs) = ((((x + 1) + 1) + 1) + 1) : map pe0 xs

Only two modifications have been performed over the original program: the anno-
tated expression has been replaced by a call to the new function map pe0 and the
residual (first-order) definition of map pe0 has been added. In order to check the
improvement achieved, we can run function bench again:

map iter pe> bench

Runtime: 170 msec.

Result: [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,...]

Thus, the new program runs approximately 4.5 times faster than the original one.
The reason is that it has a first-order definition and is completely “deforested”
(Wadler 1990) in contrast to the original definition. In fact, the most successful
experiences were achieved by specializing calls involving higher-order functions (ob-
taining speedups up to a factor of 9) and generic functions with some static data,
like a string pattern matcher where a speedup of 14 was obtained; experimental
results can be found in (Albert et al. 2002).

Note that all aforementioned proposals rely on the theoretical foundations pre-
sented in this work. Therefore, our results constitute the basis for the correctness
of all these developments.
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7 Conclusions

Few attempts have been made to investigate powerful and effective PE techniques
which can be applied to term rewriting systems, logic programs and functional
programs. In this work, we have introduced the theoretical basis for the PE of
functional logic programs based on needed narrowing. We have proved its strong
correctness, i.e., that the answers computed by needed narrowing in the original
and specialized programs for the considered goals are identical (up to renaming).
Furthermore, we have proved that the PE process keeps the inductively sequential
structure of programs so that the needed narrowing strategy can also be used for
the execution of specialized programs. As a consequence, our PE process preserves
the following desirable property for functional logic programs: deterministic evalu-
ations w.r.t. the original program are still deterministic in the specialized program.
This property is nontrivial as witnessed by counterexamples for the case of lazy
narrowing. This allows us to conclude that PE based on needed narrowing provides
the best known basis for specializing functional logic programs.

To summarize, the notions presented in this article seem to be the most promising
approach for the PE of modern functional logic languages based on a lazy semantics:

• We have shown that a partial evaluator based on lazy narrowing may lead
from orthogonal programs to programs outside this class. This is clearly im-
proved by PE based on needed narrowing as it preserves the original (induc-
tively sequential) structure of programs, which is the only requirement for the
completeness of the method.
• On the other hand, modern functional logic languages are based on (some form

of) needed narrowing and, thus, this article is intended to be the foundational
work in this area.

Finally, as we mentioned before, current approaches to the PE of multi-paradigm
functional logic languages (Albert et al. 1999; Albert et al. 2002) rely on the theoret-
ical foundations presented in this work. Therefore, our results provide the necessary
basis for the correctness of all these subsequent developments.
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Sadre, R., and Steiner, F. 2003. PAKCS 1.5.0: The Portland Aachen Kiel Curry
System User Manual. Tech. rep., University of Kiel, Germany.



Specialization of Functional Logic Programs Based on Needed Narrowing 31
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Moreno-Navarro, J. and Rodŕıguez-Artalejo, M. 1992. Logic Programming with
Functions and Predicates: The language Babel. Journal of Logic Programming 12, 3,
191–224.

Nemytykh, A., Pinchuk, V., and Turchin, V. 1996. A Self-Applicable Supercompiler.
In Partial Evaluation, Int’l Seminar, Dagstuhl Castle, Germany, O. Danvy, R. Glück,
and P. Thiemann, Eds. Springer LNCS 1110, 322–337.

Oyamaguchi, M. 1993. NV-Sequentiality: a Decidable Condition for Call-by-Need Com-
putations in Term-Rewriting Systems. SIAM Journal of Computation 22, 1, 114–135.

Pettorossi, A. and Proietti, M. 1996a. A Comparative Revisitation of Some Program
Transformation Techniques. In Partial Evaluation, Int’l Seminar, Dagstuhl Castle,
Germany, O. Danvy, R. Glück, and P. Thiemann, Eds. Springer LNCS 1110, 355–385.

Pettorossi, A. and Proietti, M. 1996b. Rules and Strategies for Transforming Func-
tional and Logic Programs. ACM Computing Surveys 28, 2, 360–414.

Sørensen, M., Glück, R., and Jones, N. 1996. A Positive Supercompiler. Journal of
Functional Programming 6, 6, 811–838.

Turchin, V. 1986. Program Transformation by Supercompilation. In Programs as Data
Objects, 1985, H. Ganzinger and N. Jones, Eds. Springer LNCS 217, 257–281.

Wadler, P. 1990. Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science 73, 231–248.

Zartmann, F. 1997. Denotational Abstract Interpretation of Functional Logic Programs.
In Proc. of the 4th Int’l Static Analysis Symposium (SAS’97), P. V. Hentenryck, Ed.
Springer LNCS 1302, 141–159.


