
A Unified Computation Model for Functional and Logic Programming

Michael Hanus

Informatik II, RWTH Aachen

D-52056 Aachen, Germany

hanus@informatik.rwth-aachen.de

Abstract

We propose a new computation model which combines
the operational principles of functional languages (re-
duction), logic languages (non-deterministic search for
solutions), and integrated functional logic languages
(residuation and narrowing). This computation mod-
el combines efficient evaluation principles of functional
languages with the problem-solving capabilities of log-
ic programming. Since the model allows the delay of
function calls which are not sufficiently instantiated, it
also supports a concurrent style of programming. We
provide soundness and completeness results and show
that known evaluation principles of functional logic lan-
guages are particular instances of this model. Thus, our
model is a suitable basis for future declarative program-
ming languages.

1 Introduction

Declarative programming languages support the devel-
opment of reliable software by providing abstraction
facilities supported by closely underlying formal cal-
culi. This simplifies the development and use of pro-
gram transformation, analysis, and verification tools.
Unfortunately, the field of declarative programming is
split into two main fields, namely functional and log-
ic programming. Although the objectives are similar,
the methods are often different due to the different un-
derlying computation models. In order to combine the
advantages of both models into one language, there is
a growing interest in integrating functional and logic
languages (see [16] for a survey). Integrated functional
logic languages offer features from functional program-
ming (reduction of nested expressions, lazy evaluation,

In Proc. of the 24th Annual SIGPLAN-SIGACT

Symposium on Principles of Programming Languages

(POPL’97), pp. 80–93, Paris, 1997.

higher-order functions) and logic programming (logi-
cal variables, partial data structures, built-in search).
Compared to purely functional languages, they have
more expressive power due to the use of logical vari-
ables and built-in search mechanisms. Compared to
purely logic languages, they have more efficient evalua-
tion mechanisms due to the (deterministic!) reduction
of functional expressions (see [14, 18] for discussions
about the efficiency improvements of functional logic
languages in comparison to Prolog). However, the re-
search on integrating functional and logic programming
has led to different computation models, since there are
different ways to combine the search facilities of log-
ic programming with efficient evaluation principles of
functional programming. The most promising opera-
tional principles are residuation and narrowing.

Residuation is based on the idea to delay function
calls until they are ready for deterministic evaluation.
The residuation principle is used, for instance, in the
languages Escher [21, 22], Le Fun [2], Life [1], NUE-
Prolog [27], and Oz [29]. Since the residuation prin-
ciple evaluates function calls by deterministic reduc-
tion steps, non-deterministic search must be encoded
by predicates [1, 2, 27] or disjunctions [21].

Example 1.1 Consider the following rewrite rules and
clauses defining the natural numbers and their addition:

0 +X → X nat(0)
s(X) + Y → s(X + Y) nat(s(X))⇐ nat(X)

A function call like Z+0 is delayed since the first argu-
ment is not sufficiently instantiated. Thus, the following
goal, consisting of an equation and a predicate call, is
evaluated by delaying and awakening the function call
(the function or predicate evaluated in the next step is
underlined):

Z + 0
.
= s(0) ∧ nat(Z)

`{Z 7→s(X)} s(X)+0
.
= s(0) ∧ nat(X)

`{} s(X + 0)
.
= s(0) ∧ nat(X)

`{X 7→0} s(0+0)
.
= s(0)

`{} s(0)
.
= s(0)

Thus, the solution computed by residuation is {Z 7→
s(0)}. 2

The residuation principle preserves the deterministic
nature of functions and provides concurrent computa-
tions with synchronization on logical variables. Unfor-
tunately, it is incomplete, i.e., it is unable to compute
solutions if arguments of functions are not sufficiently
instantiated during the computation. Therefore, func-
tional logic languages with a complete operational se-
mantics, e.g., ALF [13], Babel [26], K-Leaf [11], LPG [7],
or SLOG [10], are based on narrowing, a combination
of the reduction principle of functional languages with
unification for parameter passing. A narrowing step in-
stantiates goal variables so that function calls become
reducible.

Example 1.2 Consider the rules for addition of the
previous example. To solve the equation Z + 0

.
= s(0),

Z is instantiated to s(X) and the second rule is applied.
In a further step, X is instantiated to 0 and the first
rule is applied:

Z + 0
.
= s(0) ;{Z 7→s(X)} s(X + 0)

.
= s(0)

;{X 7→0} s(0)
.
= s(0)

Thus, {Z 7→ s(0)} is the computed solution. Note that
residuation cannot compute this solution but flounders
on this goal. 2

Narrowing provides completeness in the sense of func-
tional programming (normal forms are computed if they
exist) as well as logic programming (solutions are com-
puted if they exist). In order to restrict the search
space, to avoid unnecessary computations, and to sup-
port typical functional programming techniques, most
recent work has concentrated on lazy narrowing strate-
gies [4, 5, 11, 15, 20, 23, 25, 26, 28]. Among these, there
is one strategy, called needed narrowing [4], which is op-
timal w.r.t. the length of derivations and the number of
computed solutions (for a restricted class of programs,
called inductively sequential systems, see Section 5.1).

Since each of these computation models have their
own advantages, our aim is to combine them into a sin-
gle framework. The difficulty in this combination is
the fact that residuation rewrites functional expressions
in a deterministic way and puts all non-determinism
into the level of predicates, whereas narrowing allows
non-deterministic steps also at the level of functions.
Moreover, recent residuation-based languages, like Es-
cher [21] or Oz [29], represent non-deterministic (don’t
know) choices by explicit disjunctions, whereas narrow-
ing is usually defined with implicit disjunctions as in
classical logic programming. A disadvantage of coding
all non-determinism by predicates in residuation-based
approaches is the loss of information about functional

dependencies (which is, on the other hand, the well-
known advantage of adding functions to logic program-
ming). Therefore, our computation model represents
non-deterministic choices by explicit disjunctions, and
narrowing steps are applied to subterms but may gen-
erate new disjunctions. We show that narrowing and
residuation are special cases of this framework. Hence,
residuation can be viewed as a restriction of the po-
tential non-determinism in the evaluation of partially
instantiated function calls.

In the next section, we recall basic notions from func-
tional logic programming. In Section 3, we specify our
computation model. Soundness and completeness re-
sults are presented in Section 4. Section 5 compares
this strategy with well-known strategies for functional
logic programs. The compilation of a concrete program-
ming language into our computation model is shown in
Section 6. Finally, Section 7 discusses possible exten-
sions of the basic model.

2 Preliminaries

We assume familiarity with basic notions of term rewrit-
ing [9] and functional logic programming [16]. We con-
sider a many-sorted signature partitioned into a set C
of constructors and a set F of (defined) functions or
operations. We write c/n ∈ C and f/n ∈ F for n-ary
constructor and operation symbols, respectively. There
is at least one sort Bool containing the 0-ary Boolean
constructors true and false. The set of terms and con-
structor terms with variables (e.g., X,Y, Z) from X are
denoted by T (C ∪ F ,X) and T (C,X). Var(t) denotes
the set of variables occurring in a term t. A term t is
ground if Var(t) = ∅. A pattern is a term of the form
f(t1, . . . , tn) where f/n ∈ F and t1, . . . , tn ∈ T (C,X).
A term is operation-rooted if it has an operation symbol
at the root, otherwise it is called a head normal form.
root(t) denotes the symbol at the root of the term t.
A position p in a term t is represented by a sequence
of natural numbers, t|p denotes the subterm of t at po-
sition p, and t[s]p denotes the result of replacing the
subterm t|p by the term s (see [9] for details).

We denote by X1 = t1, . . . , Xn = tn the substitu-
tion σ with σ(Xi) = ti (i = 1, . . . , n) and σ(X) = X
for all other variables. id denotes the identity substitu-
tion. Substitutions are extended to morphisms on terms
by σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)) for every term
f(t1, . . . , tn). A term t′ is an instance of t if there is a
substitution σ with t′ = σ(t). A unifier of two term s
and t is a substitution σ with σ(s) = σ(t).

A functional logic program is a term rewriting sys-
tem R consisting of a set of rewrite rules l → r where

2

l is a linear1 pattern and Var(r) ⊆ Var(l). l and r are
called left-hand side and right-hand side, respectively.2

A rewrite rule is called a variant of another rule if it is
obtained by a unique replacement of variables by other
variables. In order to ensure well-definedness of func-
tions (i.e., to ensure the confluence of the rewrite sys-
tem), we require that R contains only trivial overlaps,
i.e., if l1 → r1 and l2 → r2 are variants of rewrite rules
and σ is a unifier for l1 and l2, then σ(r1) = σ(r2) (weak
orthogonality).

A rewrite step is an application of a rewrite rule to
a term, i.e., t →R s if there exist a position p in t, a
rewrite rule l → r and a substitution σ with t|p = σ(l)
and s = t[σ(r)]p. A term t is called irreducible or in
normal form if there is no term s with t→R s.

Since we do not require terminating rewrite systems,
normal forms may not exist. Therefore, the predicate
.
= used in some examples is defined, like in functional
languages, as the strict equality on terms, i.e., the equa-
tion t1

.
= t2 is satisfied if t1 and t2 are reducible to the

same ground constructor term. Since the strict equali-
ty can be defined as a binary Boolean function by a set
of orthogonal rewrite rules, we do not consider it in a
special way (see [4, 11, 26] for more details about strict
equality).

Due to the presence of free variables in expressions,
an expression may be reduced to different values by
binding the free variables to different terms. In func-
tional programming, one is interested in the computed
value, whereas logic programming emphasizes the dif-
ferent bindings (answers). Thus, we define for our inte-
grated framework an answer expression as a pair σ e
consisting of a substitution σ (the answer computed so
far) and an expression e. An answer expression σ e
is solved if e is a constructor term. We sometimes omit
the identity substitution in answer expressions, i.e., we
write e instead of id e if it is clear from the context.

Since more than one answer may exist for expres-
sions containing free variables, in general, initial expres-
sions are reduced to disjunctions of answer expressions.
Thus, a disjunctive expression is a (multi-)set of answer
expressions {σ1 e1, . . . , σn en}, sometimes written as
(σ1 e1) ∨ . . . ∨ (σn en). The set of all disjunctive
expressions is denoted by D.

3 A Unified Computation Model

A single computation step performs a reduction in ex-
actly one unsolved expression of a disjunction (e.g., in

1A term is called linear if it does not contain multiple occurrences

of one variable.
2We consider only unconditional rewrite rules in the main part

of this paper. An extension to conditional rules is described in Sec-

tion 7.2.

the leftmost unsolved answer expression in Prolog-like
implementations). If the computation step is determin-
istic, the expression is reduced to a new one. If the
computation step is non-deterministic, the expression is
replaced by a disjunction of new expressions. The pre-
cise behavior depends on the function calls occurring
in the expression. For instance, consider the following
rules defining a simple predicate:

p(a) → true
p(b) → true

The result of evaluating the goal p(a) (goals are Boolean
expressions) is true, whereas the goal p(X) is evaluated
to the disjunctive expression

(X = a true) ∨ (X = b true) .

In order to avoid superfluous computation steps and
to apply programming techniques of modern functional
languages, nested expressions are evaluated lazily, i.e.,
the leftmost outermost function call could be selected
in a computation step. However, there are functions
which should only be evaluated if the arguments are suf-
ficiently instantiated for deterministic reduction (e.g.,
test predicates). Thus, some insufficiently instantiated
outermost function calls must be delayed. To provide
a precise definition of the computational behavior of
different functions, we use definitional trees.3 A defini-
tional tree is a hierarchical structure containing all rules
of a defined function. T is a definitional tree with pat-
tern π iff the depth of T is finite and one of the following
cases holds:

T = rule(l→ r), where l→ r is a variant of a rule such
that l = π.

T = branch(π, o, r, T1, . . . , Tk), where o is an occur-
rence of a variable in π, r ∈ {rigid, flex},
c1, . . . , ck are different constructors of the sort of
π|o, for some k > 0, and, for all i = 1, . . . , k, Ti is
a definitional tree with pattern π[ci(X1, . . . , Xn)]o,
where n is the arity of ci and X1, . . . , Xn are new
variables.

T = or(T1, T2), where T1 and T2 are definitional trees
with pattern π.

T = and(T1, T2), where T1 and T2 are definitional trees
with pattern π.4

A definitional tree of an n-ary function f is a definition-
al tree T with pattern f(X1, . . . , Xn), whereX1, . . . , Xn

3Our notion is influenced by Antoy’s work [3], but here we use an

extended form of definitional trees.
4For the sake of simplicity, we consider only binary or and and

nodes. The extension to such nodes with more than two subtrees is

straightforward.

3

are distinct variables, such that for each rule l→ r with
l = f(t1, . . . , tn) there is a node rule(l′ → r′) in T with
l variant of l′.5 In the following, we write pattern(T)
for the pattern of a definitional tree T , and DT for the
set of all definitional trees.

Intuitively, a definitional tree of a function specifies
the strategy to evaluate a call to this function. If the
tree is a rule node, we apply the rule. If it is a branch
node, it is necessary to evaluate the subterm at the
specified position to head normal form in order to com-
mit to one of the branches. If the actual value at this
position is a logical variable, there are two possibilities.
If the branch node is rigid, we delay the evaluation of
this function call until the variable has been bound and
proceed by evaluating some other function call. This
corresponds to residuation [2, 21, 22]. If the branch
node is of type flex, we instantiate the variable to the
different constructors in the patterns of the subtrees,
i.e., we have a non-deterministic step resulting in a dis-
junction. This corresponds to needed narrowing [4].

An or node in a definitional tree characterizes the
situation where there is no unique argument to per-
form a branch. In this case we have a disjunction with
two possibilities to proceed. An and node in a defini-
tional tree specifies the necessity to evaluate more than
one argument position. The corresponding operational
behavior is an attempt to evaluate one of these argu-
ments. If this is not possible since the function calls
in this argument are delayed, we proceed by trying to
evaluate the other argument. This is the generalization
of concurrent computation models for residuating logic
programs [1, 2, 29] to functional logic programs.

It is always possible to construct a definitional tree
without and nodes for each function (concrete algo-
rithms are described in [3, 23] and in Section 6). The
and nodes are included only if concurrent computations
should be allowed. To clarify the notion of definitional
trees, we provide some examples in the following.

Example 3.1 The predicate “less than or equal to” for
natural numbers can be specified by the following rules:

0 ≤ X → true
s(X) ≤ 0 → false

s(X) ≤ s(Y) → X ≤ Y

The definitional tree

branch(X1 ≤ X2, 1, f lex,
rule(0 ≤ X2 → true),
branch(s(X) ≤ X2, 2, f lex,

rule(s(X) ≤ 0→ false),
rule(s(X) ≤ s(Y)→ X ≤ Y)))

5To ensure completeness, we have to require that the sets of rules

in the different subtrees of an and node are identical. Since we use

and nodes only in conjunction with rigid branches in our examples,

we can omit this requirement to simplify our examples.

specifies needed narrowing [4] as the evaluation strategy
for this function, i.e., to evaluate a call t1 ≤ t2, we
always evaluate t1 to some head normal form since the
first branch is performed on the first argument. If t1
gets the value 0, we can apply the first rule, otherwise
(if the value is s(· · ·)) t2 must also be evaluated in order
to apply some rule. 2

Evaluation with definitional trees has some similarities
to pattern matching in lazy functional languages like
Haskell or Miranda [30]. Note, however, that defini-
tional trees provide more powerful evaluation strategies
than the simpler left-to-right pattern matching in cur-
rent functional languages.

Example 3.2 Consider the rules

f(0, 0) → 0
f(X, s(N)) → 0

and a non-terminating function ⊥. Then the function
call f(⊥, s(0)) is reduced to 0 using the definitional tree

branch(f(X1, X2), 2, f lex,
branch(f(X1, 0), 1, f lex, rule(f(0, 0)→ 0)),
rule(f(X1, s(N))→ 0)) ,

whereas Miranda or Haskell do not terminate. In gen-
eral, evaluation with definitional trees containing only
branch and rule nodes always computes a normal form
if it exists [3]. 2

If there is no unique case distinction on some argument
in the left-hand sides of the rewrite rules, it is necessary
to include or nodes:

Example 3.3 Consider the rules

0 ∗ X → 0
X ∗ 0 → 0

defining multiplication with 0. Then

or(branch(X1 ∗X2, 1, rigid, rule(0 ∗X2 → 0)),
branch(X1 ∗X2, 2, rigid, rule(X1 ∗ 0→ 0)))

is a definitional tree for this function. It specifies that
t1 ∗ t2 is reducible to 0 if one of the arguments is (re-
ducible to) 0. Due to the rigid branches, the evaluation
of the term X ∗ Y suspends. 2

To provide concurrent computations, functions must be
specified by definitional trees containing and nodes. In
functional logic languages based on residuation (e.g.,
Escher [21], Le Fun [2], or LIFE [1]), functions are
always deterministically evaluated or suspended, and
non-determinism is covered by predicates. This be-
havior can easily be specified by rigid declarations for
all non-Boolean functions and flex declarations for
Boolean functions. If all function calls are suspended

4

in the leftmost subgoal, the computation proceeds by
evaluating the next subgoal. This strategy can be sim-
ply specified by defining the conjunction as a Boolean
function with a particular definitional tree:

Example 3.4 The conjunction is defined by

true ∧ X → X
X ∧ true → X

and the definitional tree

and(branch(X1 ∧X2, 1, rigid, rule(true ∧X2 → X2)),
branch(X1 ∧X2, 2, rigid, rule(X1 ∧ true→ X1)))

Due to the and node in this tree, a goal of the form
t1 ∧ t2 is evaluated by an attempt to evaluate t1. If the
evaluation of t1 suspends, an evaluation step is applied
to t2. If a variable responsible to the suspension of t1
was bound during the last step, the left expression will
be evaluated in the subsequent step. A concurrent com-
putation based on this definition of ∧ has been shown
in Example 1.1. 2

After this informal presentation of our computation
model, we provide a precise definition using the func-
tions

cs : T (C ∪ F ,X)→ D ∪ {suspend}

and

cst : T (C ∪ F ,X)×DT → D ∪ {suspend} .

The function cs performs a single computation step on
a term t. It computes a disjunction of answer expres-
sions or the special constant suspend indicating that
no reduction is possible in t. As shown in Figure 1, cs
attempts to apply a reduction step to the leftmost out-
ermost function symbol in t by the use of cst which is
called with the appropriate subterm and the definition-
al tree for the leftmost outermost function symbol. cst
is defined by a case distinction on the definitional tree.
If it is a rule node, we apply this rule. If the definitional
tree is an and node, we try to evaluate the first branch
and, if this is not possible due to the suspension of all
function calls, the second branch.6 An or node pro-
duces a disjunction. To ensure completeness, we have
to suspend the entire disjunction if one disjunct sus-
pends (see Example 3.5 below). For a similar reason,
we cannot commit to a disjunct which does not bind
variables but we have to consider both alternatives (see
[5] for a counter-example). The most interesting case is
a branch node. Here we have to branch on the value
of the top-level symbol at the selected position. If the

6For the sake of simplicity, we choose a simple sequential strategy

for concurrent computations. However, it is also possible to provide

a more sophisticated strategy with a fair selection of threads, e.g., as

in Oz [29].

symbol is a constructor, we proceed with the appropri-
ate definitional subtree, if possible. If it is a function
symbol, we proceed by evaluating this subterm. If it
is a variable, we either suspend (if the branch is rigid)
or instantiate the variable to the different constructors.
The auxiliary function compose composes the result of a
computation step with a substitution, and replace puts
a possibly disjunctive expression into a subterm:

compose(t, T , σ) =

{σ t} if cst(t, T) = suspend
{σ1 ◦ σ t1, . . . , σn ◦ σ tn}

if cst(t, T) = {σ1 t1, . . . , σn tn}

replace(t, o, suspend) = suspend
replace(t, o, {σ1 t1, . . . , σn tn}) =

{σ1 σ1(t)[t1]o, . . . , σn σn(t)[tn]o}

The overall computation strategy is a transformation
RN
−→ on disjunctive expressions. It takes a disjunct
σ e not in solved form and computes cs(e). If
cs(e) = suspend, then the computation of this expres-
sion flounders and we cannot proceed (i.e., this expres-
sion is not solvable). If cs(e) is a disjunctive expression,
we substitute it for σ e composed with the old answer
substitution.

The following example shows that it is necessary to
suspend a computation if one alternative in an or node
suspends.

Example 3.5 Consider the predicate p defined by

p(a,X) → true
p(X, b) → true

Let

Tp = or(T1, T2)

with

T1 =
branch(p(X1, X2), 1, rigid, rule(p(a,X2)→ true))

and

T2 =
branch(p(X1, X2), 2, f lex, rule(p(X1, b)→ true))

be the definitional tree of p. Then cst(p(X,X), Tp) =
suspend since cst(p(X,X), T1) = suspend and
cst(p(X,X), T2) = (X = b true). Now consider the
conjunction p(X,X) ∧ X

.
= a (∧ is defined in Exam-

ple 3.4). Since p(X,X) suspends, the conjunction is
evaluated by reducing the subgoal X

.
= a to the an-

swer expression X = a true. Thus, the conjunction is
solved as follows:

p(X,X) ∧X
.
= a

RN
−→ X = a p(a, a) ∧ true
RN
−→ X = a true ∧ true
RN
−→ X = a true

5

Computation step for a single (unsolved) expression t:

cs(X) = suspend for all variables X

cs(f(t1, . . . , tn)) = cst(f(t1, . . . , tn), T) if T is a definitional tree for f

cs(c(t1, . . . , tn))

=

{

replace(c(t1, . . . , tn), k, cs(tk)) if cs(ti) = suspend, i = 1, . . . , k − 1, and cs(tk) 6= suspend
suspend if cs(ti) = suspend, i = 1, . . . , n

Computation step for an operation-rooted term t:

cst(t, rule(l→ r)) = {id σ(r)} if σ is a substitution with σ(l) = t

cst(t, and(T1, T2)) =

{

cst(t, T1) if cst(t, T1) 6= suspend
cst(t, T2) otherwise

cst(t, or(T1, T2)) =

{

cst(t, T1) ∪ cst(t, T2) if cst(t, T1) 6= suspend 6= cst(t, T2)
suspend otherwise

cst(t, branch(π, o, r, T1, . . . , Tk))

=

cst(t, Ti) if t|o = c(t1, . . . , tn) and pattern(Ti)|o = c(X1, . . . , Xn)
∅ if t|o = c(t1, . . . , tn) and pattern(Ti)|o 6= c(· · ·), i = 1, . . . , k
suspend if t|o = X and r = rigid
⋃k

i=1 compose(σi(t), Ti, σi) if t|o = X, r = flex, and σi = {X 7→ pattern(Ti)|o}
replace(t, o, cs(t|o)) if t|o = f(t1, . . . , tn)

Derivation step for a disjunctive expression:

(σ e) ∨D
RN
−→ (σ1 ◦ σ e1) ∨ . . . ∨ (σn ◦ σ en) ∨D

if σ e is unsolved and cs(e) = {σ1 e1, . . . , σn en}

Figure 1: Operational semantics of concurrent functional logic programming

However, if we ignore a suspension in one alternative
of an or node and commit to the other alternative, we
could evaluate p(X,X) but loose the only answer:

p(X,X) ∧X
.
= a ⇒ X = b true ∧ b

.
= a

RN
−→ X = b b

.
= a

RN
−→ X = b false

This explains our definition of a computation step in
case of or nodes. 2

4 Soundness and Completeness

We relate the results computed by our operational mod-
el to a rewriting semantics w.r.t. functional logic pro-
grams. This is sufficient since the equivalence of rewrit-
ing and (model-theoretic) validity is known for a rather
general class of functional logic programs [12]. →R de-
notes the standard rewrite relation w.r.t. the given func-
tional logic program R (as defined in Section 2). The

next theorem shows the soundness of our computation
model w.r.t. →R (we denote by →∗ the transitive and
reflexive closure of a binary relation →).

Theorem 4.1 (Soundness) If there is a derivation se-

quence

id e
RN
−→

∗

{σ1 e1, . . . , σn en}

then σi(e)→
∗
R ei for i = 1, . . . , n.

For the completeness we cannot expect a result simi-
larly to logic programming (i.e., every correct answer
is subsumed by a computed one) since expressions may
be suspended due to the insufficient instantiation of ar-
guments. Moreover, we cannot prove something like

the inversion of the previous theorem since
RN
−→ evalu-

ates only in a lazy manner so that some rewrite steps

w.r.t.→R do not correspond to steps computed by
RN
−→.

However, we can show that some part of a solution is

6

computed by
RN
−→, where a solution is a substitution

that enables the reduction of an expression e to some
constructor c (to see that this notion of solution covers
the standard notion, take an equation t1

.
= t2 for e and

true for the final constructor c).

Theorem 4.2 (Completeness) Let σ be a substitu-

tion and c a constructor such that σ(e)→∗
R c, and

id e
RN
−→

∗

{σ1 e1, . . . , σn en}

be a derivation sequence. Then there exists a substi-

tution ϕ with σ = ϕ ◦ σi, for some i ∈ {1, . . . , n}, and
ϕ(ei)→

∗
R c.

To show that the suspension of function calls is the
only reason why solutions cannot be fully computed, we
consider the subclass of functional logic programs where
rigid branches do not occur. This result corresponds
to completeness of lazy narrowing and requires a fair
selection of unsolved disjuncts σ e in the computation

steps of
RN
−→ (i.e., every evaluable disjunct is evaluated

at some time).

Theorem 4.3 (Completeness w.r.t. flexible func-
tions) Let R be a functional logic program where all

branch nodes in the definitional trees are flexible, σ a

substitution and c a constructor such that σ(e) →∗
R c.

Then there exists a derivation sequence

id e
RN
−→

∗

{σ1 e1, . . . , σn en}

with ei = c and σ = ϕ ◦ σi, for some i ∈ {1, . . . , n} and
substitution ϕ.

5 Related Operational Models

The operational semantics presented in Section 3 should
combine execution principles from functional program-
ming and (concurrent) logic programming in a coher-
ent way. In this section we show that well-known op-
erational models can be derived from our model using
particular restrictions expressed by definitional trees.

5.1 Narrowing

Narrowing combines reduction of functional expressions
with unification for parameter passing. In order to re-
strict the search space and to avoid unnecessary evalua-
tions, lazy narrowing strategies have been proposed. To
specify the exact evaluation strategy, definitional trees
have been used [4, 5, 18, 20, 23]. An optimal strategy
can be obtained for a particular subclass of function-
al logic programs. A function is inductively sequential
if it has a definitional tree without or and and nodes.

A program is inductively sequential if all defined func-
tions are inductively sequential. Needed narrowing [4]
is an optimal lazy narrowing strategy for inductively
sequential programs.

Proposition 5.1 If the definitional tree for each func-

tion contains only rule and branch nodes and each

branch node is flexible, then the strategy
RN
−→ is equiv-

alent to needed narrowing.7

For instance, the goal X ≤ X +X is reduced as follows
(≤ is defined in Example 3.1):

X ≤ X +X
RN
−→

(X = 0 true) ∨ (X = s(X ′) s(X ′) ≤ s(X ′ + s(X ′)))

Thus,
RN
−→ produces only two alternatives and avoids

unnecessary evaluations in contrast to simpler lazy nar-
rowing strategies [26].

Since needed narrowing is optimal in the length of
derivations and the number of computed solutions [4],
RN
−→ is a conservative extension of an optimal evaluation
strategy for functional logic programs. If the definition-

al trees also contain or nodes,
RN
−→ is not optimal but

similar to weakly needed narrowing strategies [5, 23].
The improvement of the latter strategies by incorporat-
ing deterministic simplification steps [15] or parallel re-
duction steps [5] is outside the scope of this paper. Note,
however, that such improvements can also be specified
and implemented using definitional trees [18].

5.2 Residuation

In functional logic languages based on residuation, func-
tions are always evaluated in a deterministic way and
all non-deterministic evaluations are covered by predi-
cates. If a function call cannot be deterministically re-
duced due to insufficiently instantiated arguments, the
call is suspended. This behavior can easily be speci-
fied by declaring all (non-Boolean) functions with rigid

branches in their definitional trees. By definition of
RN
−→,

this has the effect that a function call is suspended if
the value of a variable argument is needed. Thus, we
obtain the operational semantics of Le Fun [2] or Life
[1] (see also Section 6). Similarly, Escher’s evaluation
strategy [22] is also subsumed. Moreover, definitional
trees provide more flexible reduction strategies than the
flat NONVAR declarations of Escher.

7Since needed narrowing consists of non-deterministic steps in-

stead of generating disjunctions, equivalence means that the disjunc-

tions produced by
RN

−→ steps are identical to all possible needed nar-

rowing steps.

7

5.3 Functional Logic Programming vs.

(Concurrent) Logic Programming

It is well known that functional logic programs can be
mapped into pure logic programs by flattening nest-
ed function calls [8]. Flattening has also been used
to extend (logic) languages with a functional syntax
[27, 29]. Moreover, in residuation-based functional logic
languages, it is necessary to flatten functional expres-
sions if arguments of functions should be instantiated by
unification with rewrite rules. Unfortunately, flattening
has the risk to loose functional dependencies which are
necessary to provide efficient evaluation strategies.

Example 5.2 The following rules define an infinite list
of natural numbers and a function first to select the
first elements of a list:

from(N) → [N |from(s(N))]
first(0, L) → []

first(s(N), [E|L]) → [E|first(N,L)]

In order to solve the goal first(X, from(X))
.
= [],

RN
−→

instantiates X to 0 (we ignore the second alternative
X = s(N) since it fails after two further steps):

first(X, from(X))
.
= []

RN
−→ (X = 0 []

.
= []) ∨ (X = s(N) . . .)

RN
−→

∗

(X = 0 true)

On the other hand, we obtain an infinite derivation se-
quence if we flatten the functions into predicates, since
the predicate definitions

from(N, [N |L])⇐ from(s(N), L)
first(0, L, [])
first(s(N), [E|L], [E|R])⇐ first(N,L,R)

cause the following infinite resolution sequence:

first(X,L, []), from(X,L)
` from(0, L)
` from(s(0), L1)
` from(s(s(0)), L2)
` · · ·

2

This example shows the advantages of functional logic
programming compared to logic programming. Func-
tional languages provide efficient and in some cases op-
timal evaluation strategies. Such strategies can also be
used in a more general framework if functional and logic
languages are integrated.

5.4 Narrowing vs. Residuation

In the field of integrating functional and logic lan-
guages, there is a long debate about the “right” opera-
tional mechanism. Most proposals can be classified as
residuation-based or narrowing-based. Both techniques
have its own advantages and disadvantages. Residua-
tion combines deterministic reduction of functions with
partial data structures, provides concurrent computa-
tions with synchronization on logical variables, and al-
lows a simple connection to external functions. Unfor-
tunately, residuation is unable to compute a solution if
arguments of functions are not sufficiently instantiat-
ed during the computation. Moreover, it is not clear
whether this strategy is better than Prolog’s resolution
strategy since there are examples where residuation has
an infinite search space whereas the equivalent (flat-
tened) Prolog program has a finite search space [17].
On the other hand, narrowing is complete and optimal-
ity results for particular strategies are known.

The existing presentations of narrowing and resid-
uation calculi are very different. Hence, one gets the
impression that it is not possible to combine the ad-
vantages of these two worlds. However, we have shown

by the definition of
RN
−→ that this need not be the case.

In fact, the difference between narrowing and residua-

tion in the definition of
RN
−→ is just one bit: if a branch

node is flexible, narrowing steps are computed, and if a
branch node is rigid, a function call may residuate. This
provides also a technique to avoid the incompleteness of
residuation: if an expression is completely evaluable by
residuation (a sufficient criteria for this property can
be found in [17]), we can evaluate it with rigid decla-
rations, otherwise we apply narrowing to compute all
solutions.

6 Generating Definitional Trees

Our computation model is based on the specification of
a definitional tree for each operation. Although defini-
tional trees are a high-level formalism to specify evalua-
tion strategies, it is tedious to annotate each operation
which its definitional tree in a concrete programming
language. We discuss in this section the automatic gen-
eration of definitional trees from the left-hand sides of
rewrite rules.

We assume that R is a functional logic program, i.e.,
a constructor-based weakly orthogonal term rewriting
system. The generation of definitional trees for each
function defined byR is not straightforward, since there
may exist many non-isomorphic definitional trees for a
single function representing different evaluation strate-
gies. Thus, a concrete programming language where
definitional trees can be omitted demands for a default

8

strategy to generate definitional trees. This is similar
to other programming languages with pattern match-
ing. For instance, lazy functional languages like Haskell
or Miranda perform pattern matching from left to right
[30]. Antoy [3] describes the generation of “bushy” def-
initional trees with a high number of or nodes, whereas
the demand driven computation strategy of the func-
tional logic language SFL [23] is based on generating
or nodes only if it is unavoidable, which may result in
a non-left-to-right pattern matching. In the following,
we describe an algorithm to generate definitional trees
based on the following default strategy:

1. Pattern-matching is performed from left to right.

2. or nodes are generated in case of a conflict between
constructors and variables, i.e., if two rules have a
variable and a constructor at the same position on
the left-hand side.

This default strategy is reasonable since it does not gen-
erate any or node for most typical functional programs
and is also used in current functional languages [30].
However, there are programs where this default does
not generate the best possible results (see below).

To specify the algorithm, we define by

DP (π,R) = { o position of a variable in π |
root(l|o) ∈ C for some l→ r ∈ R}

the set of demanded positions of a pattern π w.r.t. a
set of rules R. For instance, the demanded positions of
the pattern X ≤ Y w.r.t. the rules of Example 3.1 are
{1, 2} referring to the pattern variables X and Y . The
generation of a definitional tree for a pattern π and a
set of rules R (where l is an instance of π for each l →
r ∈ R) is described by the function gt(π,m,R) (m ∈
{flex, rigid} determines the mode annotation in the
generated branch nodes). We distinguish the following
cases for gt:

1. If the position o is leftmost in DP (π,R),
{root(l|o) | l → r ∈ R} = {c1, . . . , ck} where
c1, . . . , ck are different constructors with arities
n1, . . . , nk, and Ri = {l → r ∈ R | root(l|o) = ci},
then

gt(π,m,R) = branch(π, o,m,
gt(π[c1(X11, . . . , X1n1

)]o,m,R1),
. . . ,
gt(π[ck(Xk1, . . . , Xknk

)]o,m,Rk))

where Xij are fresh variables. I.e., if all rules have
a constructor at the leftmost demanded position,
we generate a branch node.

2. If the position o is leftmost in DP (π,R) and R′ =
{l→ r ∈ R | root(l|o) ∈ C} 6= R, then

gt(π,m,R) = or(gt(π,m,R′), gt(π,m,R−R′))

I.e., we generate an or node if the leftmost de-
manded position of the pattern is not demanded
by the left-hand side of all rules.

3. If DP (π,R) = ∅ and l→ r variant of some rule in
R with l = π, then

gt(π,m,R) = rule(l→ r)

Note that all rules in R are variants of each oth-
er if there is no demanded position (this follows
from the weak orthogonality of the rewrite sys-
tem). For non-weakly orthogonal rewrite systems,
which may occur if non-deterministic functions are
allowed [12] or conditional rules are transformed
into unconditional rules (see Section 7.2), the rules
in R may not be variants. In this case we simply
connect the different rules by or nodes.

If R is the set of all rules defining the n-ary function f ,
then a definitional tree for f is generated by computing
gt(f(X1, . . . , Xn),m,R). It is easy to see that this algo-
rithm computes a definitional tree (without and nodes)
for each function since the number of rules is reduced
in each recursive call and it keeps the invariant that
the left-hand sides of the current set of rules are always
instances of the current pattern.

The algorithm gt generates the definitional trees
shown in Examples 3.1, 3.3, and 3.5 (up to the dif-
ferent flex/rigid annotations). It is conform with the
evaluation strategy of functional languages like Haskell
or Miranda, since it generates the definitional tree

or(branch(f(X1, X2), 1, rigid,
branch(f(0, X2), 2, rigid, rule(f(0, 0)→ 0))),

branch(f(X1, X2), 2, rigid,
rule(f(X1, s(N))→ 0)))

for the rules in Example 3.2. This tree is not opti-
mal since it has a non-deterministic or node and al-
ways requires the evaluation of the first argument (in
the first alternative) in contrast to the tree shown in
Example 3.2.

We can avoid the generation of or nodes for induc-
tively sequential functions if we relax the strict left-
to-right evaluation strategy and select in case 1 of the
definition of gt the leftmost position among all those
demanded positions where all rules have a constructor
in the left-hand side at this position. This algorithm,
called gt′ in the following, generates the definitional tree
shown in Example 3.2.

In general, the algorithm gt′ generates more power-
ful evaluation strategies than gt since it is ensured that,
for ground terms, normal forms are always computed (if
they exists) provided that the definitional trees contain
only branch and rule nodes [3]. If the function defin-
itions are uniform in the sense of [30], then gt and gt′

9

generate identical definitional trees. Since non-uniform
definitions might occur in programs, it is reasonable to
stick to a default strategy (like gt, i.e., left-to-right eval-
uation) but allow the programmer to explicitly specify
the definitional tree for a function (in some nice syn-
tactic notation). This approach is taken in Curry [19],
a new declarative language intended to combine differ-
ent computation models in the area of functional logic
programming.

In a concrete programming language, it is also neces-
sary to specify the modes occurring in the branch nodes
(argument m in gt(π,m,R)), i.e., a default how to eval-
uate function calls with free variables as arguments. In
functional logic languages based on narrowing, such ar-
guments are instantiated to the different constructors
occurring in the left-hand sides of rewrite rules, i.e.,
narrowing-based languages like Babel [26] or SFL [23]
requires the default value m = flex. Functional logic
languages based on residuation, like Escher [22], Le Fun
[2], Life [1], or NUE-Prolog [27], do not allow any non-
determinism in function calls but only in predicate calls.
Thus, these languages have a strict distinction between
functions and predicates. We can obtain a similar op-
erational behavior by generating definitional trees with
m = rigid for all functions and m = flex for all predi-
cates and adding the definition of conjunction as shown
in Example 3.4. For instance, the function gt would gen-
erate the following definitional trees for the function +
and the predicate nat defined in Example 1.1:

branch(X + Y, 1, rigid,
rule(0 + Y → Y),
rule(s(X1) + Y → s(X1 + Y)))

branch(nat(X), 1,f lex,
rule(nat(0)→ true),
rule(nat(s(X1))→ nat(X1)))

These trees specify the computational behavior as
shown in Example 1.1.

Although the delay of insufficiently instantiated
function calls seems to be a reasonable evaluation strat-
egy, it does not always lead to the expected results. For
instance, consider the following rules defining the func-
tion append to concatenate two lists:

append([], L) → L
append([E|R], L) → [E|append(R,L)]

If the branch in the corresponding definitional tree is
rigid, we can use this function to concatenate known
lists, e.g., append([a, b], [c, d]) is reduced to [a, b, c, d],
but we cannot use this function to split a list: the goal
append(L, [b])

.
= [a, b] is not reducible and the computa-

tion stops. One solution is to provide an additional de-
finition of a split predicate (as proposed in Escher [22])
which is superfluous from a declarative point of view.

Another solution is the use of a single definition by
defining append as a predicate rather than a function.
However, the necessary flat structure of predicates leads
to a worse operational behavior. For instance, it is easy
to verify that the goal append(append(X,Y), Z)

.
= []

has a finite search space w.r.t.
RN
−→ if the definition-

al tree contains a flexible branch node. On the other
hand, the corresponding flattened relational goal

append(X,Y, L) ∧ append(L,Z, [])

has an infinite search space w.r.t. the standard rela-
tional definition of list concatenation. Thus, it is often
better to define functions rather than predicates even
if the functions are computed in an inverted way using
non-deterministic steps caused by flexible branch nodes.

7 Extensions to the Basic Model

We briefly discuss various extensions to our basic com-
putation model.

7.1 Higher-Order Functions

One of the most important features of functional lan-
guages are higher-order functions. Our language of first-
order rewrite systems can be easily extended to cov-
er the higher-order features of existing functional lan-
guages. For this purpose it is sufficient to provide an
application function apply(F,X) → F (X) where the
first argument is required to be rigid, i.e., a function can
be applied only if it is a known function, otherwise the
application is delayed. Lambda abstractions in right-
hand sides of rewrite rules can be handled in a similar
way [31]. For applications beyond current higher-order
functional languages, one can provide λ-abstractions as
objects (i.e., also in left-hand sides of rules) and higher-
order unification. It has been shown that definitional
trees can also be used to control the evaluation in this
case [20].

7.2 Conditional Rules

Logic programs are based on Horn clauses

p ⇐ q1 ∧ . . . ∧ qn

which can be considered as conditional rewrite rules [6]
of the form

p→ true ⇐ q1 ∧ . . . ∧ qn .

Operationally, a conditional rule is applicable if the con-
dition can be reduced to true (i.e., these conditional
rules belong to the class IIIn in the terminology of [6]).
Although conditional rules rarely occur in functional

10

logic programs (since the flattening of nested function
calls into conjunctions of literals is not necessary in
contrast to pure logic languages), conditional rules are
sometimes useful to support a relational programming
style as in the following example [23]:

loves(john,mary) → true
loves(mary, Y) → true ⇐ likes(Y,wine)

.
= false

loves(X,mary) → true ⇐ loves(mary,X)
.
= true

As in the unconditional case, we have to ensure the
well-definedness of functions specified by conditional
rewrite rules. For this purpose, we require for each con-
ditional rule l → r ⇐ c that l is a linear pattern and
Var(r) ⊆ Var(l) (note that we allow extra variables
occurring in the condition c but not in the left-hand
side l). However, we can relax the weak orthogonality
requirement and replace it by the weaker nonambigui-
ty requirement of Babel [26]. A term rewriting system
R is nonambiguous if, for all rules l1 → r1 ⇐ c2 and
l2 → r2 ⇐ c2 from R and unifier σ for l1 and l2, ei-
ther σ(r1) = σ(r2) (weak orthogonality) or σ(c1 ∧ c2)
is unsatisfiable (incompatibility of guards; see [26] for a
decidable approximation of this condition).

Following the approach taken in Babel [26], we can
easily extend our operational semantics to conditional
rules by considering a conditional rule l → r ⇐ c as
syntactic sugar for the rule l → (c ⇒ r), where the
right-hand side is a guarded expression. The operational
meaning of a guarded expression “c⇒ r” is defined by
the predefined rule

(true⇒ X) → X .

Thus, a guarded expression is evaluated by an attempt
to reduce the condition to true. If the condition c is
evaluable to true, the guarded expression c ⇒ r is re-
placed by r, i.e., by the right-hand side of the condi-
tional rule. If the condition is not evaluable to true and
does not suspend, the disjunct containing this guarded

expression will be deleted by definition of
RN
−→, i.e., the

application of the conditional rule fails and does not
contribute to the final result.

The use of extra variables in conditions requires the
search facilities of logic programming to compute appro-
priate values for the extra variables in order to solve the
condition. For instance, the predicate member(E,L),
which is satisfied if E occurs in the list L, can be de-
fined by the single conditional rule

member(E,L)→ true ⇐ append(L1, [E|L2])
.
= L

if the list concatenation function append is defined as
in Section 6. If the definitional tree for append has a
flexible branch node, a goal like member(X, [a, b, c]) is

evaluated by
RN
−→ to the final disjunctive expression

(X = a true) ∨ (X = b true) ∨ (X = c true) .

Therefore, logic programming can be simply embedded
into our framework. Note, however, that the use of func-
tions instead of predicates may lead to more efficient
evaluation strategies than SLD-resolution (see [14, 18]
and Sections 5.3 and 6 for discussions about these ad-
vantages of functional logic languages).

7.3 Optimizing Disjunctive Computations

Most functions occurring in application programs are
inductively sequential, i.e., they are defined by defin-
itional trees containing only branch and rule nodes.
Such functions have the nice property that ground func-

tion calls are evaluated by
RN
−→ in a fully determin-

istic way, i.e., no disjunction occurs during the com-
putation. The situation is quite different if functions
are defined by rules with overlapping left-hand sides
so that the corresponding definitional trees contain or
nodes (e.g., as in Example 3.3). If such a function is

evaluated,
RN
−→ computes a disjunction whenever the

computation does not suspend. Thus, the computa-
tion is non-deterministic even for ground terms. Al-
though this behavior is conform with logic program-
ming, from a functional programmer’s point of view
non-deterministic computation steps should not occur
during ground term evaluation. However, current func-
tional languages avoid this non-determinism with the
risk of possible non-terminating computations. For in-
stance, consider the rules for ∗ in Example 3.3. Func-
tional languages with left-to-right pattern matching [30]
compute the result 0 for the term 0 ∗ ⊥ (where ⊥ is a
non-terminating function) but do not compute a result
for the symmetric expression ⊥ ∗ 0.

It is possible to improve our evaluation strategy
without loosing completeness even in the presence of
or nodes. For this purpose it is necessary to keep track
of the positions where reduction steps are applied in
the different alternatives of or nodes. Consider a node
or(T1, T2) where σi is the computed substitution and
pi is the position in the term where the rule is applied
w.r.t. Ti (i = 1, 2).8

1. If σ1 = id and p1 is a prefix of p2, i.e., p2 is identical
to or below p1, then we define

cst(t, or(T1, T2)) = cst(t, T1)

(i.e., we ignore the second alternative, which is
called dynamic cut in [24] if p1 is the root position).
This optimization is justified by the weak orthog-
onality property of the rewrite rules and can be
efficiently implemented by checking the bindings

8For the sake of simplicity, we consider only the case that exactly

one disjunct is computed in each alternative.

11

Strategy Restrictions on definitional trees
Needed narrowing [4] only rule and flexible branch nodes; optimal strategy w.r.t. length of deriva-

tions and number of computed solutions

Weakly needed narrowing [5, 23] only rule, flexible branch, and or nodes

Simple lazy narrowing [26, 28]
and resolution

particular definitional trees with flexible branch nodes (one branch/rule tree
for each left-hand side, all rules connected by or nodes)

Lazy functional languages [30] definitional trees with left-to-right pattern matching (generated by algorithm
gt of Section 6); initial expression has no free variable

Residuation [1, 2, 21, 29] rigid branches for non-Boolean functions; flexible branches for predicates (cf.
Section 6)

Figure 2: Specification of different operational models by definitional trees

of the variables in the term after an application of
a rewrite rule (see [24] for more details).

2. If σ1 = σ2 and the positions p1 and p2 are inde-
pendent, we can perform both reduction steps in
parallel in the independent subterms of t (instead
of generating a disjunction for both alternatives).
This optimization is justified by the completeness
results for parallel narrowing [5] where it is shown
that identical substitutions computed by different
alternatives of or nodes can be merged.

Both optimizations together leads to an evaluation
strategy with a purely deterministic behavior on ground
terms (see [5] for more details).

8 Conclusion

We have presented a new computation model for func-
tional logic programs which combines the most impor-
tant execution principles of functional, logic, and func-
tional logic languages. It is based on lazy reduction of
expressions combined with the necessary instantiation
of logical variables. In contrast to previous approaches
for integrating functional and logic programming, our
model is more flexible by combining the ideas of resid-
uation and narrowing into a single coherent framework.
Thus, it is the first approach to integrate a possibly
non-deterministic evaluation of functions (narrowing)
with a concurrent-oriented evaluation style (residua-
tion). Other approaches to combine concurrent com-
putation models and functional programming features,
like Oz [29], often translate functions into predicates
and, thus, loose functional dependencies and nested
term structures which are often useful to provide ef-
ficient (optimal) evaluation strategies. Moreover, it is
the first framework in this direction which provides for
clear soundness and completeness results.

We have shown that the combination of narrowing-
and residuation-based computation models is possible
in a coherent way so that the individual principles can
be obtained by simple restrictions of our semantics. To
specify our computation model, we have used defini-
tional trees, a hierarchical data structure containing the
rules of a defined function. A definitional tree speci-
fies the evaluation behavior for a single function. Al-
though there are similarities to pattern matching in
modern functional languages, definitional trees allow
the specification of more powerful evaluation strategies.
Moreover, we have extended them to describe the pos-
sibly concurrent computation of different arguments of
a function. In a concrete implementation, it is not nec-
essary to explicitly specify the definitional tree for each
function. Since definitional trees without and nodes can
be automatically generated using some default strategy
(e.g., as described in Section 6), it is only necessary to
explicitly specify the trees if one wants to change the de-
fault strategy or to include annotations for concurrent
computations.

In order to emphasize the flexibility of our computa-
tional model, we show in Figure 2 the implementation
of different evaluation strategies by putting particular
restrictions on definitional trees.

Due to the flexibility of our computation model to-
gether with its simplicity (note that Figure 1 contains
the entire specification of the strategy), this model is
a suitable basis for languages which combine features
from functional, logic, and concurrent9 programming.
Thus, this computation model is the basis of Curry [19],
a new declarative language intended to combine recent
developments in the area of functional logic program-
ming.

The implementation of our computation model is

9Note that true concurrency requires an additional choice con-

struct which we have not included since it destroys the completeness

property of our model.

12

outside the scope of this paper. Note, however, that
evaluation strategies based on definitional trees can be
easily implemented in Prolog [18]. Disjunctions can be
treated explicitly as in Escher [21] or Oz [29], or im-
plicitly by backtracking as in Prolog. A first prototype
implementation has been developed in Prolog.

References

[1] H. Aı̈t-Kaci. An Overview of LIFE. In J.W.
Schmidt and A.A. Stogny, editors, Proc. Workshop
on Next Generation Information System Technol-
ogy, pp. 42–58. Springer LNCS 504, 1990.

[2] H. Aı̈t-Kaci, P. Lincoln, and R. Nasr. Le Fun: Log-
ic, equations, and Functions. In Proc. 4th IEEE
Internat. Symposium on Logic Programming, pp.
17–23, San Francisco, 1987.

[3] S. Antoy. Definitional Trees. In Proc. of the 3rd In-
ternational Conference on Algebraic and Logic Pro-
gramming, pp. 143–157. Springer LNCS 632, 1992.

[4] S. Antoy, R. Echahed, and M. Hanus. A Needed
Narrowing Strategy. In Proc. 21st ACM Sympo-
sium on Principles of Programming Languages, pp.
268–279, Portland, 1994.

[5] S. Antoy, R. Echahed, and M. Hanus. A Parallel
Narrowing Strategy. Technical Report TR 96-1,
Portland State University, 1996.

[6] J.A. Bergstra and J.W. Klop. Conditional Rewrite
Rules: Confluence and Termination. Journal of
Computer and System Sciences, Vol. 32, No. 3, pp.
323–362, 1986.

[7] D. Bert and R. Echahed. Design and Implementa-
tion of a Generic, Logic and Functional Program-
ming Language. In Proc. European Symposium on
Programming, pp. 119–132. Springer LNCS 213,
1986.

[8] P.G. Bosco, E. Giovannetti, and C. Moiso. Nar-
rowing vs. SLD-Resolution. Theoretical Computer
Science 59, pp. 3–23, 1988.

[9] N. Dershowitz and J.-P. Jouannaud. Rewrite Sys-
tems. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, Vol. B, pp. 243–320. El-
sevier, 1990.

[10] L. Fribourg. SLOG: A Logic Programming Lan-
guage Interpreter Based on Clausal Superposition
and Rewriting. In Proc. IEEE Internat. Sympo-
sium on Logic Programming, pp. 172–184, Boston,
1985.

[11] E. Giovannetti, G. Levi, C. Moiso, and C. Palami-
dessi. Kernel LEAF: A Logic plus Functional Lan-
guage. Journal of Computer and System Sciences,
Vol. 42, No. 2, pp. 139–185, 1991.

[12] J.C. Gonzáles-Moreno, M.T. Hortalá-Gonzáles,
F.J. López-Fraguas, and M. Rodŕıguez-Artalejo. A
Rewriting Logic for Declarative Programming. In
Proc. ESOP’96, pp. 156–172. Springer LNCS 1058,
1996.

[13] M. Hanus. Compiling Logic Programs with Equal-
ity. In Proc. of the 2nd Int. Workshop on Program-
ming Language Implementation and Logic Pro-
gramming, pp. 387–401. Springer LNCS 456, 1990.

[14] M. Hanus. Improving Control of Logic Programs
by Using Functional Logic Languages. In Proc. of
the 4th International Symposium on Programming
Language Implementation and Logic Programming,
pp. 1–23. Springer LNCS 631, 1992.

[15] M. Hanus. Combining Lazy Narrowing and Sim-
plification. In Proc. of the 6th International Sym-
posium on Programming Language Implementation
and Logic Programming, pp. 370–384. Springer
LNCS 844, 1994.

[16] M. Hanus. The Integration of Functions into Logic
Programming: From Theory to Practice. Journal
of Logic Programming, Vol. 19&20, pp. 583–628,
1994.

[17] M. Hanus. Analysis of Residuating Logic Pro-
grams. Journal of Logic Programming, Vol. 24,
No. 3, pp. 161–199, 1995.

[18] M. Hanus. Efficient Translation of Lazy Function-
al Logic Programs into Prolog. In Proc. Fifth In-
ternational Workshop on Logic Program Synthesis
and Transformation, pp. 252–266. Springer LNCS
1048, 1995.

[19] M. Hanus, H. Kuchen, and J.J. Moreno-Navarro.
Curry: A Truly Functional Logic Language. In
Proc. ILPS’95 Workshop on Visions for the Future
of Logic Programming, 1995.

[20] M. Hanus and C. Prehofer. Higher-Order Nar-
rowing with Definitional Trees. In Proc. Seventh
International Conference on Rewriting Techniques
and Applications (RTA’96), pp. 138–152. Springer
LNCS 1103, 1996.

[21] J.W. Lloyd. Combining Functional and Logic Pro-
gramming Languages. In Proc. of the International
Logic Programming Symposium, pp. 43–57, 1994.

13

[22] J.W. Lloyd. Declarative Programming in Escher.
Technical Report CSTR-95-013, University of Bris-
tol, 1995.

[23] R. Loogen, F. Lopez Fraguas, and M. Ro-
dŕıguez Artalejo. A Demand Driven Computation
Strategy for Lazy Narrowing. In Proc. of the 5th In-
ternational Symposium on Programming Language
Implementation and Logic Programming, pp. 184–
200. Springer LNCS 714, 1993.

[24] R. Loogen and S. Winkler. Dynamic Detection of
Determinism in Functional Logic Languages. The-
oretical Computer Science 142, pp. 59–87, 1995.

[25] J.J. Moreno-Navarro, H. Kuchen, R. Loogen, and
M. Rodŕıguez-Artalejo. Lazy Narrowing in a Graph
Machine. In Proc. Second International Conference
on Algebraic and Logic Programming, pp. 298–317.
Springer LNCS 463, 1990.

[26] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo.
Logic Programming with Functions and Predi-
cates: The Language BABEL. Journal of Logic
Programming, Vol. 12, pp. 191–223, 1992.

[27] L. Naish. Adding equations to NU-Prolog. In Proc.
of the 3rd Int. Symposium on Programming Lan-
guage Implementation and Logic Programming, pp.
15–26. Springer LNCS 528, 1991.

[28] U.S. Reddy. Narrowing as the Operational Seman-
tics of Functional Languages. In Proc. IEEE Inter-
nat. Symposium on Logic Programming, pp. 138–
151, Boston, 1985.

[29] G. Smolka. The Oz Programming Model. In J. van
Leeuwen, editor, Computer Science Today: Recent
Trends and Developments, pp. 324–343. Springer
LNCS 1000, 1995.

[30] P. Wadler. Efficient Compilation of Pattern-
Matching. In S.L. Peyton Jones, editor, The Imple-
mentation of Functional Programming Languages,
pp. 78–103. Prentice Hall, 1987.

[31] D.H.D. Warren. Higher-order extensions to PRO-
LOG: are they needed? In Machine Intelligence
10, pp. 441–454, 1982.

14

