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Abstract

Declarative multi-paradigm languages combine the most important features of func-
tional, logic and concurrent programming. The computational model of such inte-
grated languages is usually based on a combination of two different operational
principles: narrowing and residuation. This work is motivated by the fact that a
precise definition of an operational semantics including all aspects of modern multi-
paradigm languages like laziness, sharing, non-determinism, equational constraints,
external functions, concurrency, etc. does not exist. Therefore, in this article, we
present the first rigorous operational description covering all the aforementioned
features in a precise and understandable manner. We develop our operational se-
mantics in several steps. First, we define a natural (big-step) semantics covering
laziness, sharing and non-determinism. We also present an equivalent small-step se-
mantics which additionally includes a number of practical features like equational
constraints and external functions. Then, we introduce a deterministic version of the
small-step semantics which makes the search strategy explicit; this is essential for
profiling, tracing, debugging, etc. Finally, the deterministic semantics is extended
in order to cover the concurrent facilities of modern declarative multi-paradigm
languages. The developed semantics provides an appropriate foundation to model
actual declarative multi-paradigm languages like Curry. The complete operational
semantics has been implemented and used for various programming tools.
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1 Introduction

Declarative multi-paradigm languages combine the most important features
of functional programming (nested expressions, higher-order functions, effi-
cient demand-driven computations, polymorphism), logic programming (logi-
cal variables, partial data structures, built-in search), and concurrent program-
ming (concurrent computations with inter-thread synchronization and com-
munication on logical variables). The computational model of such integrated
languages is usually based on a seamless combination of two different opera-
tional principles: narrowing and residuation (see Hanus (1994) for a survey).
Narrowing (Slagle, 1974) allows the instantiation of variables in expressions
and then applies reduction steps to the function calls of the instantiated ex-
pressions. This instantiation is usually computed by unifying a subterm of the
expression with the left-hand side of some program rule. On the other hand,
residuation (Aı̈t-Kaci et al., 1987) is based on the idea of delaying function
calls until they are ready for a deterministic evaluation. Residuation preserves
the deterministic nature of functions and naturally supports concurrent com-
putations by employing dynamic scheduling.

This work is motivated by the fact that there does not exist a precise defi-
nition of an operational semantics covering all aspects of modern declarative
multi-paradigm languages. For instance, the report on the multi-paradigm lan-
guage Curry (Hanus, 2003) contains a fairly precise operational semantics but
covers sharing only informally. The operational semantics of the functional
logic language Toy (López-Fraguas and Sánchez-Hernández, 1999) is based
on narrowing and sharing but the formal definition is based on a narrowing
calculus (González-Moreno et al., 1999) which does not include a particular
pattern-matching strategy. However, the latter becomes important, e.g., if one
wants to reason about costs of computations (see Antoy (2001) for a discussion
about narrowing strategies and calculi). The definition of a precise operational
semantics for these languages is not an easy task since one must cover many
different notions like sharing, logical variables, search strategies, concurrency,
etc., as well as the interactions among them.
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The definition of a rigorous operational semantics covering all aspects of ac-
tual multi-paradigm languages is a difficult but important task, not only for
reasoning about programs and correctness of implementations but also for
the development of implementation-oriented analyses and tools (like profilers,
tracers, debuggers, partial evaluators, etc). Well-known semantics for func-
tional programs, like the natural semantics of Launchbury (1993) and the
small-step semantics of Sestoft (1997), are not appropriate for our purposes
since they do not cover logical variables and non-determinism, two important
features of multi-paradigm languages. Furthermore, the extension of these se-
mantics is not trivial since logical variables are values in our context and,
thus, several concepts have to be reformulated. Also, non-determinism intro-
duces new challenges in order to model search strategies, a key ingredient of
multi-paradigm languages which does not appear in functional languages.

On the other hand, current semantics for functional logic languages, like the
small-step semantics of Hortalá-González and Ullán (2001), do not consider the
combination of narrowing and residuation (the basis of the language Curry)
and, moreover, do not provide a high-level description (like a natural seman-
tics) which is more suitable for stating a variety of properties. In order to
achieve these goals and overcome existing limitations, we develop our opera-
tional semantics in several steps:

(1) First, we introduce a natural semantics which defines the intended re-
sults by relating expressions to values. This “big-step” semantics accu-
rately models sharing which is important not only to reason about the
space behavior of programs (as in Launchbury, 1993) but also for the
correctness of computed results in the presence of non-confluent function
definitions (see González-Moreno et al., 1999).

(2) Then, we provide a more implementation-oriented semantics based on the
definition of individual computation steps. This “small-step” semantics
is the formal reference to reason about operational aspects of programs.
We formally prove the equivalence between the small-step semantics and
the previous natural semantics.

(3) In order to obtain a complete operational semantics of a practical multi-
paradigm language, like Curry (Hanus, 2003) or Toy (López-Fraguas and
Sánchez-Hernández, 1999), one has to add descriptions for solving equa-
tional constraints, higher-order features, and evaluating external func-
tions. These extensions are orthogonal to the other operational aspects
(sharing, laziness, non-determinism). For this purpose, we properly ex-
tend our small-step operational semantics in order to cover all these fea-
tures in a precise and understandable manner. Therefore, we are able to
deal with practical features like integer and floating point numbers, exter-
nal functions (e.g., arithmetic operators), predefined constraints (unifica-
tion), and higher-order functions. We also discuss how these extensions
can be modeled in the previous natural semantics.
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(4) Then, we provide a deterministic version of the small-step semantics
which makes the search strategy explicit. This deterministic description
constitutes a formal basis to reason about implementation-oriented as-
pects of programs, e.g., to develop appropriate tracing, profiling and de-
bugging tools. For instance, one can instrument this semantics in order to
count the costs (time/space) associated to particular computations (sim-
ilarly to, e.g., Albert et al., 2001; Albert and Vidal, 2002; Sansom and
Peyton-Jones, 1997; Vidal, 2004). This is useful to formally quantify the
improvements achieved by a concrete program optimization and to com-
pare different search strategies. Note that this approach is not possible
by considering a non-deterministic semantics since such a semantics can-
not properly describe the computation paths associated to a particular
search strategy.

(5) Finally, we consider the use of threads to model concurrent computa-
tions and extend the previous semantics accordingly. Thus, we obtain a
complete semantics which supports all aspects of modern multi-paradigm
languages.

To the best of our knowledge, this work is the first attempt to formally define
the complete operational semantics of a realistic multi-paradigm language like
Curry (Hanus, 2003). This semantics has been implemented as an interpreter
that can be used to test language extensions, to check program optimizations,
or to derive programming tools by designing instrumented versions.

This article is organized as follows. In the next section, we introduce some
foundations for understanding the subsequent development. Section 3 intro-
duces a semantics for multi-paradigm functional logic programs in natural
style. This is refined in Section 4 to a small-step semantics describing indi-
vidual execution steps; the equivalence between both semantics is formally
proved. The small-step semantics is then extended in Section 5 to cover the
practical features of declarative multi-paradigm languages. Section 6 presents
a deterministic version of the semantics and Section 7 adds concurrency so
that the final semantics covers all the important features. In Section 8, we
describe an implementation of our semantics. Section 9 includes a comparison
to related work. Finally, Section 10 concludes and points out several directions
for further research.

2 Foundations

In this section, we describe the kernel of a multi-paradigm functional logic lan-
guage whose execution model combines lazy evaluation with non-determinism.
This model has been introduced by Hanus (1997) without formalizing the shar-
ing of common subterms.
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In this paper, all programs are untyped. Although a sophisticated type system
is a well-known feature of modern functional and functional logic languages,
we do not consider types in programs for the following reasons. The main use
of a type system is to detect inconsistencies in a program at compile time. In
this case, they have no influence on the run-time behavior of a program (e.g.,
Damas and Milner, 1982; Wadler and Blott, 1989). Depending on the type
system, it is also reasonable to include types at run time in order to reduce the
search space of non-deterministic computations. This has been mainly studied
for logic programs (e.g., Hanus, 1991; Huber and Varsek, 1987; Smolka, 1988),
but most functional logic languages—like Curry (Hanus, 2003), Escher (Lloyd,
1999) and Toy (López-Fraguas and Sánchez-Hernández, 1999)—use types only
at compile time. Therefore, we ignore types for the sake of simplicity since we
are interested in specifying the run-time behavior of programs. Nevertheless,
our framework can be extended to many-sorted or parametrically polymorphic
programs in a straightforward way. The inclusion of run-time type information
in order to reduce the search space is an orthogonal issue.

In our context, a program is a set of function definitions where each func-
tion is defined by rules describing different cases for input arguments. For
instance, the conjunction on Boolean values (True, False) can be defined by
the following rules:

and True x = x

and False x = False

where data constructors usually start with upper case letters and function
application is denoted by juxtaposition. There are no limitations with respect
to overlapping rules; in particular, one can also have non-confluent rules to
define functions that yield more than one result for a given input (these are
called non-deterministic or set-valued functions). For example, the following
function “choose” non-deterministically returns one of its two arguments:

choose x y = x

choose x y = y

A subtle question is the meaning of nested applications containing such func-
tions, e.g., the set of possible values of “double (choose 1 2)” with respect
to the definition “double x = x + x.” Similarly to González-Moreno et al.
(1999), we follow the “call-time choice” semantics where all descendants of
a subterm are reduced to the same value in a derivation, i.e., the previous
expression reduces non-deterministically to one of the values 2 or 4 (but not
to 3). This choice is consistent with a lazy evaluation strategy where all de-
scendants of a subterm are shared (Launchbury, 1993). A main goal of this
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P ::= D1 . . . Dm

D ::= f(x1, . . . , xn) = e

e ::= x (variable)

| c(e1, . . . , en) (constructor call)

| f(e1, . . . , en) (function call)

| case e of {p1 → e1; . . . ; pn → en} (rigid case)

| fcase e of {p1 → e1; . . . ; pn → en} (flexible case)

| e1 or e2 (disjunction)

| let x1 = e1, . . . , xn = en in e (let binding)

p ::= c(x1, . . . , xn)

where P denotes a program, D a function definition, p a pattern and
e ∈ Exp an arbitrary expression.

Fig. 1. Syntax for flat programs

work is to describe the combination of laziness, sharing, and non-determinism
in a precise and understandable manner.

2.1 The Flat Language

In order to provide a simple operational description, we assume that source
programs are translated into a “flat” form, which is a convenient standard
representation for functional logic programs. The main advantage of the flat
form is the explicit representation of the pattern matching strategy by the
use of case expressions which is important for the operational reading. For
instance, consider the function definition

or False False = False

or x True = True

and a non-terminating function ⊥. From this definition, the evaluation of a
function call like (or ⊥ True) is not obvious. For instance, Haskell (Peyton-
Jones, 2003) does not terminate on this call since its strict left-to-right evalua-
tion strategy causes the non-terminating evaluation of ⊥. On the other hand,
Curry (Hanus, 2003) returns the normal form True since it evaluates inductive
arguments (here: the second argument) first.
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Such different behaviors are made explicit by the use of case expressions in
the flat language. Moreover, source programs can be easily translated into this
flat form (see Hanus and Prehofer, 1999). Different narrowing strategies can
be represented by translations into differently structured case expressions.

The syntax for flat programs is shown in Figure 1. A program P consists of
a sequence of function definitions D such that the left-hand side has pairwise
different variable arguments. The right-hand side is an expression e composed
by variables Var = {x, y, z, . . .}, data constructors (e.g., a, b, c,. . . ), function
calls (e.g., f , g, h,. . . ), case expressions, disjunctions (e.g., to represent set-
valued functions), and let bindings where the local variables x1, . . . , xn are
only visible in e1, . . . , en, e. A case expression has the following form: 1

(f )case e of {c1(xn1)→ e1; . . . ; ck(xnk)→ ek}

where e is an expression, c1, . . . , ck are different constructors, and e1, . . . , ek
are expressions. The pattern variables xni are locally introduced and bind the
corresponding variables of the subexpression ei. The difference between case
and fcase only shows up when the argument e is a free variable: case suspends
whereas fcase non-deterministically binds this variable to the pattern in a
branch of the case expression. Let bindings are in principle not required for
translating source programs but they are convenient to express sharing with-
out the use of complex graph structures (see, e.g., Echahed and Janodet, 1998;
Habel and Plump, 1996). Operationally, let bindings introduce new structures
in memory that are updated after evaluation, which is essential for lazy com-
putations.

As an example of the flat representation, we show the translation of functions
“and” and “choose” into flat form:

and(x, y) = case x of { True→ y; False→ False }

choose(x, y) = x or y

Laziness of computations will show up in the description of the behavior of
function calls and case expressions. In a function call, parameters are not eval-
uated but directly passed to the body of the function. In a case expression,
the outermost symbol of the case argument is required. Therefore, the case
argument should be evaluated to head normal form (Barendregt, 1984), i.e., a
variable or an expression with a constructor at the outermost position. Conse-
quently, our operational semantics will describe the evaluation of expressions
only to head normal form. This is not a restriction since the evaluation to

1 We write on for the sequence of objects o1, . . . , on and (f)case for either fcase or
case.
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normal form or the solving of equations can be reduced to head normal form
computations (see Hanus and Prehofer, 1999). Similarly, the higher-order fea-
tures of current functional languages can be reduced to first-order definitions
(see below). Therefore, we base the definition of our operational semantics on
the flat form described above. This is also consistent with current implemen-
tations which use the same intermediate language (Antoy and Hanus, 2000).
Indeed, the flat representation of programs constitutes the kernel of modern
declarative multi-paradigm languages like Curry (Hanus, 1997, 2003) or Toy
(López-Fraguas and Sánchez-Hernández, 1999).

Extra variables are those variables in a rule which do not occur in the left-
hand side. Such extra variables are intended to be instantiated by constraints
in conditions or by flexible case expressions in right-hand sides. For instance,
in Curry programs, they are usually introduced by a declaration of the form:

let x free in ...

As Antoy (2001) pointed out, the use of extra variables in a functional logic
language causes no conceptual problem if these extra variables are renamed
whenever a rule is applied. We will model this renaming similarly to the re-
naming of local variables in let bindings. For this purpose, we assume that
all extra variables x are explicitly introduced in flat programs by a direct cir-
cular let binding of the form “let x = x in e”. Throughout this paper, we
call such variables which are bound to themselves logical variables. For in-
stance, an expression x + y with logical variables x and y is represented as
“let x = x, y = y in x + y”. Our representation of logical variables does not
exclude the use of other circular data structures, as in “let x = 1 : x in . . .”.
It is interesting to note that circular bindings are also used in implementations
of Prolog to represent logical variables (Warren, 1983).

2.2 Additional Language Features

The multi-paradigm language Curry also includes a number of practical fea-
tures which we describe in this section. In particular, Curry extends the op-
timal evaluation strategy of (Antoy et al., 2000) by concurrent programming
features. These are supported by a concurrent conjunction operator “&” on
constraints, i.e., expressions of the built-in type Success. For instance, a con-
straint of the form “c1 & c2” is evaluated by solving both constraints c1 and
c2 concurrently. Elementary constraints are Success, which is always satis-
fied, and equational constraints e1 =:= e2 between two expressions. The latter
is satisfied if both expressions are reducible to a same ground constructor
term, i.e., we consider the so-called strict equality (Giovannetti et al., 1991;
Moreno-Navarro and Rodŕıguez-Artalejo, 1992). Operationally, an equational
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constraint of the form e1 =:= e2 is solved by evaluating e1 and e2 to unifiable
constructor terms.

Higher-order features in Curry include partial function applications and anony-
mous function definitions by lambda abstractions. In our (first-order) flat rep-
resentation, higher-order functions are translated into applications of an aux-
iliary function apply (Warren, 1982). This distinguished function can easily be
defined by means of ordinary program rules (see the discussion in Section 5.3).
However, the evaluation of higher-order applications containing free variables
as functions is not allowed, i.e., such applications are suspended to avoid the
use of higher-order unification (Hanus and Prehofer, 1999). Moreover, Curry
also allows the use of functions which are not defined in the user’s program
(external functions), like arithmetic operators, basic input/output facilities,
etc.

We illustrate some of the above features with an example. Consider the fol-
lowing rule defining a function to concatenate two lists (where [] denotes the
empty list and z:zs a list with first element z and tail zs):

conc(xs, ys) = fcase xs of { [] → ys;

(z : zs) → z : conc(zs, ys) }

The use of a flexible case implies that conc acts as a flexible function which
can be used to solve equations over functional expressions. For instance, the
equational constraint “conc(p,s) =:= [1,2,3]” is solved by instantiating
variables p and s to lists so that their concatenation yields the list [1,2,3].
Thus, we can define a constraint which is satisfied if p is a prefix of the list xs
as follows:

prefix(p,xs) = let s=s in conc(p,s) =:= xs

In order to show an example for higher-order programming, we define a higher-
order constraint, satisfyAll, which takes a unary constraint c and a list xs

as input; it is satisfied if all elements of xs satisfy the constraint c:

satisfyAll(c,zs) = case zs of { [] → Success;

(x:xs) → apply(c,x)

& satisfyAll(c,xs) }

where we use apply to denote function application. Now, we can combine
this definition with our previous definition of prefix in order to compute a
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common prefix of a list of strings (strings are considered as lists of characters):

commonPrefix(p,xs) = satisfyAll(prefix(p),xs)

For instance, the solutions for the constraint

commonPrefix(p,["abc", "abda", "abab"])

are the instantiations "", "a", or "ab" for the variable p.

3 A Natural Semantics

In this section, we introduce a natural (big-step) semantics for multi-paradigm
functional logic programs which is in the midway between a (simple) denota-
tional semantics and a (complex) operational semantics for a concrete abstract
machine. Our semantics is non-deterministic and models sharing accurately.
This is achieved by using the let construct which can be interpreted as a refer-
ence to subcomputations that are only evaluated when required. We illustrate
the effect of sharing by means of an example.

Example 3.1 Consider the following flat program:

foo(x) = addB(x, x)

bit = 0 or 1

addB(x, y) = case x of {0→ y; 1→ case y of {0→ 1; 1→ BO}}

In a sharing-based implementation, the computation of “foo(e)” must evalu-
ate the expression e only once. Therefore, the evaluation of “foo(bit)” must
return either 0 or BO (binary overflow). Note that, without sharing, the results
would be 0, 1, or BO.

The definition of our semantics mainly follows the natural semantics defined
by Launchbury (1993) for the lazy evaluation of functional programs. In this
(higher-order) functional semantics, the let construct is used for the creation
and sharing of closures (i.e., functional objects created as the value of lambda
expressions). The key idea in Launchbury’s natural semantics is to describe
the semantics in two stages: a “normalization” process—which consists in con-
verting the λ-calculus into a form where the creation and sharing of closures
is made explicit—followed by the definition of a simple semantics at the level
of closures. Similarly, we also describe our (first-order) semantics for func-
tional logic programs in two separate phases. In the first phase, we apply a
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normalization process in order to ensure that the arguments of functions and
constructors are always variables (not necessarily pairwise different). These
variables will be interpreted as references to express sharing.

3.1 Normalization

In this section, we describe the normalization process for flat programs.

Definition 3.2 (normalization) The normalization of an expression e flat-
tens all the arguments of function (or constructor) calls by means of the map-
ping e∗ which is defined inductively as follows:

x∗ = x

ϕ(x1, . . . , xn)∗ = ϕ(x1, . . . , xn)

ϕ(x1, . . . , xi−1, ei, ei+1, . . . , en)∗ = let xi = e∗i in

ϕ(x1, . . . , xi−1, xi, ei+1, . . . , en)∗

where ei is not a variable and xi is fresh

(let {xk = ek} in e)∗ = let {xk = ek∗} in e∗

(e1 or e2)∗ = e1
∗ or e2

∗

((f )case e of {pk → ek})∗ = (f )case e∗ of {pk 7→ ek∗}

Here, ϕ denotes either a constructor or a function symbol. The extension of
this normalization process to programs is straightforward.

Normalization introduces one new let construct for each non-variable argu-
ment. Trivially, this could be modified in order to produce one single let with
the bindings for all non-variable arguments of a function (or constructor) call,
which we assume for the subsequent examples. In contrast to Launchbury
(1993), our normalization process does not need to perform “α-conversion”
(i.e., a renaming of bound variables using completely fresh variables) since
our natural semantics already introduces fresh variable names for all bound
variables, as we will see later.

Example 3.3 Consider the program and goal of Example 3.1 again. Their
normalization yields the program unchanged and the following goal:

let x1 = bit in foo(x1)
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(VarCons) Γ[x 7→ t] : x ⇓ Γ[x 7→ t] : t where t is constructor-rooted

(VarExp)
Γ[x 7→ e] : e ⇓ ∆ : v

Γ[x 7→ e] : x ⇓ ∆[x 7→ v] : v
where e is not constructor-rooted

and e 6= x

(Val) Γ : v ⇓ Γ : v where v is constructor-rooted
or a variable with Γ[v] = v

(Fun)
Γ : ρ(e) ⇓ ∆ : v

Γ : f(xn) ⇓ ∆ : v
where f(yn) = e ∈ P

and ρ = {yn 7→ xn}

(Let)
Γ[yk 7→ ρ(ek)] : ρ(e) ⇓ ∆ : v

Γ : let {xk = ek} in e ⇓ ∆ : v
where ρ = {xk 7→ yk}

and yk are fresh variables

(Or)
Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v
where i ∈ {1, 2}

(Select)
Γ : e ⇓ ∆ : c(yn) ∆ : ρ(ei) ⇓ Θ : v

Γ : (f )case e of {pk → ek} ⇓ Θ : v
where pi = c(xn)

and ρ = {xn 7→ yn}

(Guess)
Γ : e ⇓ ∆ : x ∆[x 7→ ρ(pi), yn 7→ yn] : ρ(ei) ⇓ Θ : v

Γ : fcase e of {pk → ek} ⇓ Θ : v

where pi = c(xn), ρ = {xn 7→ yn}, and yn are fresh variables

Fig. 2. Natural Semantics for Functional Logic Programs

3.2 Semantics of Normalized Programs

In the following, we assume that both the program and the expression to be
evaluated have been normalized as in Definition 3.2.

The state transition semantics is defined in Figure 2. Our rules obey the
following naming conventions:

Γ,∆,Θ ∈ Heap = Var → Exp v ∈ Value ::= x | c(en)

A heap is a partial mapping from variables to expressions (the empty heap is
denoted by [ ]). The value associated to variable x in heap Γ is denoted by
Γ[x]. Γ[x 7→ e] denotes a heap Γ′ with Γ′[x] = e and Γ′[y] = Γ[y] for all x 6= y.
We use this notation either as a condition on a heap Γ or as a modification
of Γ. In a heap Γ, a logical variable x is represented by a circular binding of
the form Γ[x] = x. A value is a constructor-rooted term (i.e., a term whose
outermost function symbol is a constructor symbol) or a logical variable (with
respect to the associated heap).
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We use judgements of the form “Γ : e ⇓ ∆ : v” which are interpreted as “the
expression e in the context of the heap Γ evaluates to the value v with the
(possibly modified) heap ∆”, according to the rules of Figure 2. We briefly
explain the rules of our semantics:

(VarCons) In order to evaluate a variable which is bound to a constructor-
rooted term in the heap, we simply reduce the variable to this term. The
heap remains unchanged.

(VarExp) This rule achieves the effect of sharing. If the variable to be evaluated
is bound to some expression in the heap, then the expression is evaluated
and the heap is updated with the computed value; finally, we return this
value as the result. In contrast to Launchbury (1993), we do not remove the
binding for the variable from the heap; this becomes useful to generate fresh
variable names easily. Sestoft (1997) solves this problem by introducing a
variant of Launchbury’s relation which is labeled with the names of the
already used variables. The only disadvantage of our approach is that black
holes (a detectably self-dependent infinite loop) are not detected at the
semantical level. However, this does not affect the natural semantics since
black holes have no value.

(Val) For evaluating a value, we return it without modifying the heap.
(Fun) This rule corresponds to the unfolding of a function call. The result

is obtained by reducing the right-hand side of the corresponding rule. We
assume that the considered program P is a global parameter of the calculus.

(Let) In order to reduce a let construct, we add the bindings to the heap
and proceed with the evaluation of the main argument of let. Note that we
rename the variables introduced by the let construct with fresh names in
order to avoid variable name clashes.

(Or) This rule non-deterministically evaluates an or expression by either eval-
uating the first argument or the second argument.

(Select) This rule corresponds to the evaluation of a case expression whose
argument reduces to a constructor-rooted term. In this case, we select the
appropriate branch and, then, proceed with the evaluation of the expression
in this branch by applying the corresponding matching substitution.

(Guess) This rule corresponds to the evaluation of a flexible case expression
whose argument reduces to a logical variable. It non-deterministically binds
this variable to one of the patterns and proceeds with the evaluation of
the corresponding branch. Renaming of pattern variables is also necessary
in order to avoid variable name clashes. Additionally, we update the heap
with the (renamed) logical variables of the pattern.

A proof of a judgement corresponds to a derivation sequence using the rules
of Figure 2. Given a normalized program P and a normalized expression e (to
be evaluated), the initial configuration has the form “[ ] : e”. If the judgement
“[ ] : e ⇓ Γ : v” holds, then the computed answer can be extracted from
the final heap Γ by a simple process of dereferencing in order to obtain the
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[x2 7→ bit] : 1 ⇓ [x2 7→ bit] : 1
Val

[x2 7→ bit] : 0 or 1 ⇓ [x2 7→ bit] : 1
Or

[x2 7→ bit] : bit ⇓ [x2 7→ bit] : 1
Fun

[x2 7→ bit] : x2 ⇓ [x2 7→ 1] : 1
VarExp sub-proof

[x2 7→ bit] : case x2 of {0→ x2; 1→ case x2 . . .} ⇓ [x2 7→ 1] : BO
[x2 7→ bit] : addB(x2,x2) ⇓ [x2 7→ 1] : BO
[x2 7→ bit] : foo(x2) ⇓ [x2 7→ 1] : BO

[ ] : let x1 = bit in foo(x1) ⇓ [x2 7→ 1] : BO
Let

Fun
Fun

Select

where sub-proof has the following form:

[x2 7→ 1] : x2 ⇓ [x2 7→ 1] : 1
VarCons

[x2 7→ 1] : BO ⇓ [x2 7→ 1] : BO
Val

[x2 7→ 1] : case x2 of {0→ 1; 1→ BO} ⇓ [x2 7→ 1] : BO
Select

Fig. 3. Big-Step Semantics of Example 3.3

values associated to the logical variables of the initial expression e. If we try
to construct a proof, then this may fail because of two different situations:
there may be no finite proof that a reduction is valid—which corresponds to
an infinite loop—or there may be no rule which applies in a (sub-part) of
the proof. In the latter case, we have two possibilities: either rule Select is
not applicable because there is no matching branch or rule Guess cannot be
applied because a logical variable has been obtained as the argument of a
rigid case expression. The natural semantics of Figure 2 does not distinguish
between all the above failures. However, they will become observable in the
small-step operational semantics.

Figure 3 illustrates the sharing behavior of the semantic description with one
of the possible (non-deterministic) derivations for the program and expression
of Example 3.3. Note that the heap in the final configuration, [x2 7→ 1] : BO,
does not contain bindings for the variable x1 of the initial expression (due to
the renaming of local variables in let expressions). This corresponds to the
fact that the computed answer is the empty substitution.

The following result states that our natural semantics only computes values.

Lemma 3.4 If Γ : e ⇓ ∆ : v, then either v is rooted by a constructor symbol
or it is a logical variable in ∆ (i.e., ∆[v] = v).

Proof. It is an easy consequence of the fact that the non-recursive rules of the
natural semantics (i.e., VarCons and Val) can only return a constructor-rooted
term or a logical variable with respect to the associated heap. 2
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Rule Heap Control Stack

varcons Γ[x 7→ t] x S

=⇒ Γ[x 7→ t] t S

varexp Γ[x 7→ e] x S

=⇒ Γ[x 7→ e] e x : S

val Γ v x : S
=⇒ Γ[x 7→ v] v S

fun Γ f(xn) S

=⇒ Γ ρ(e) S

let Γ let {xk = ek} in e S

=⇒ Γ[yk 7→ ρ(ek)] ρ(e) S

or Γ e1 or e2 S

=⇒ Γ ei S

case Γ (f )case e of {pk → ek} S

=⇒ Γ e (f){pk → ek} : S

select Γ c(yn) (f){pk → ek} : S
=⇒ Γ ρ(ei) S

guess Γ[x 7→ x] x f{pk → ek} : S
=⇒ Γ[x 7→ ρ(pi), yn 7→ yn] ρ(ei) S

where in varcons: t is constructor-rooted
varexp: e is not constructor-rooted and e 6= x

val: v is constructor-rooted or a variable with Γ[v] = v

fun: f(yn) = e ∈ P and ρ = {yn 7→ xn}
let: ρ = {xk 7→ yk} and yk are fresh
or: i ∈ {1, 2}
select: pi = c(xn) and ρ = {xn 7→ yn}
guess: i ∈ {1, . . . k}, pi = c(xn), ρ = {xn 7→ yn}, and yn are fresh

Fig. 4. Small-Step Semantics for Functional Logic Programs

4 A Small-Step Operational Semantics

From an operational point of view, an evaluation in the natural semantics
builds a proof for “[ ] : e0 ⇓ Γ : e1” in a bottom-up manner whereas a com-
putation by using a small-step semantics builds a sequence of states (Sestoft,
1997). In order to transform a natural (big-step) semantics into a small-step
one, we need to represent the context of sub-proofs in the big-step semantics.
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For instance, when applying rule VarExp, a sub-proof for the premise is built.
The context (i.e., the rule) indicates that we must update the heap ∆ at x
with the computed value v for the expression e. This context must be made
explicit in the small-step semantics. Similarly to Sestoft (1997), the context is
extensible (i.e., if Q′ is a sub-proof of Q, then the context of Q′ is an extension
of the context of Q). Thus, the context is represented by a stack.

A configuration “Γ : e” of the big-step semantics consists of a heap Γ and
an expression e to be evaluated. Now, a state (or goal) of the small-step
semantics is a triple (Γ, e, S), where Γ is the current heap, e is the expression
to be evaluated (often called the control of the small-step semantics), and S
is the stack which represents the current context. Goal denotes the domain
Heap × Control × Stack .

The complete small-step semantics is presented in Figure 4 which also shows
the kind of elements stored in the stack. Formally, the stack is a list (the empty
stack is denoted by [ ]) which contains two kinds of elements: variables, which
are pushed on the stack when their values are required, and case expressions
(abbreviated as (f){pk → ek}, where the optional “f” indicates that the case
expression is flexible), which are stored in the stack while their arguments are
being evaluated to head normal form. We briefly describe the transition rules:

• Rule varcons is perfectly analogous to rule VarCons in the natural semantics.
• In rule varexp, the evaluation of a variable x that is bound to an expression
e (which is not a value) proceeds by evaluating e and adding to the stack
the reference to x. If a value v is eventually computed and there is a variable
x on top of the stack, rule val updates the heap with x 7→ v. In the big-step
semantics, this situation corresponds to the application of rule VarExp.
• Rules fun, let and or are quite similar to their counterparts in the natural

semantics.
• Rule case initiates the evaluation of a case expression by evaluating the

case argument and pushing the alternatives (f){pk → ek} on top of the
stack. If we reach a constructor-rooted term, rule select is used to select the
appropriate branch and continue with the evaluation of this branch. If we
reach a logical variable, rule guess is used to non-deterministically choose
one alternative and continue with the evaluation of this branch; moreover,
the heap is updated with the new binding for the logical variable.

In order to evaluate an expression e, we construct an initial goal of the form
([ ], e, [ ]) and apply the rules of Figure 4. We denote by =⇒∗ the reflexive and
transitive closure of =⇒. A derivation ([ ], e, [ ]) =⇒∗ (Γ, e′, S) is successful
if e′ is in head normal form (i.e., the computed value) and S is the empty
stack. Similarly to the big-step semantics, the computed answer can easily
be extracted from Γ by dereferencing the variables of the initial goal. The
equivalence of the small-step semantics and the natural semantics is stated in
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the following theorem.

Theorem 4.1 Let e ∈ Exp be an expression and v a constructor-rooted term
or a logical variable in heap ∆. Then, ([ ], e, [ ]) =⇒∗ (∆, v, [ ]) if and only
if [ ] : e ⇓ ∆ : v.

In order to prove this theorem, we first need some auxiliary results. Our proof
technique is an extension of the proof scheme of Sestoft (1997).

The following lemma shows that our small-step semantics can simulate deriva-
tions by the natural semantics.

Lemma 4.2 (completeness) If Γ : e ⇓ ∆ : v then (Γ, e, S) =⇒∗ (∆, v, S).

Proof. We prove it by induction on the structure of the derivation Γ : e ⇓
∆ : v. We distinguish the following cases:

(VarCons) Then, Γ[x 7→ t] : x ⇓ Γ[x 7→ t] : t. Trivially,

(Γ[x 7→ t], x, S) =⇒ (Γ[x 7→ t], t, S) (by rule varcons)

(VarExp) We have Γ[x 7→ e] : x ⇓ ∆[x 7→ v] : v. Then, the following
derivation holds:

(Γ[x 7→ e], x, S)

=⇒ (Γ[x 7→ e], e, x : S) (by rule varexp)

=⇒∗ (∆, v, x : S) (by premise and ind. hypothesis)

=⇒ (∆[x 7→ v], v, S) (by rule val)

(Val) We have Γ : v ⇓ Γ : v. In this case,

(Γ, v, S) =⇒∗ (Γ, v, S) (by considering an empty sequence)

(Fun) We have Γ : f(xn) ⇓ ∆ : v. Then, the following derivation holds:

(Γ, f(xn), S)

=⇒ (Γ, ρ(e), S) (by rule fun)

=⇒∗ (∆, v, S) (by premise and ind. hypothesis)

with f(yn) = e ∈ P and ρ = {yn 7→ xn}.
(Let) We have Γ : let {xk = ek} in e ⇓ ∆ : v. Now, the following derivation
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holds:

(Γ, let {xk = ek} in e, S)

=⇒ (Γ[yk 7→ ρ(ek)], ρ(e), S) (by rule let)

=⇒∗ (∆, v, S) (by premise and ind. hypothesis)

with ρ = {xk 7→ yk}. Furthermore, we assume that yk are the same fresh
variables used in rule Let which is always possible since both derivations
can use the same variables in corresponding steps.

(Or) We have Γ : e1 or e2 ⇓ ∆ : v. Then, the following derivation holds:

(Γ, e1 or e2, S)

=⇒ (Γ, ei, S) (by rule or, i ∈ {1, 2})

=⇒∗ (∆, v, S) (by premise and ind. hypothesis)

Furthermore, we assume that ei is the same argument selected in the premise
of rule Or.

(Select) We have Γ : (f )case e of {pk → ek} ⇓ Θ : v. Then, the following
derivation holds:

(Γ, (f )case e of {pk → ek}, S)

=⇒ (Γ, e, (f){pk → ek} : S) (by rule case)

=⇒∗ (∆, c(yn), (f){pk → ek} : S) (by left premise and ind. hyp.)

=⇒ (∆, ρ(ei), S) (by rule select)

=⇒∗ (Θ, v, S) (by right premise and ind. hyp.)

where pi = c(xn), and ρ = {xn 7→ yn}.
(Guess) We have Γ : fcase e of {pk → ek} ⇓ Θ : v. Then, the following

derivation holds:

(Γ, fcase e of {pk → ek}, S)

=⇒ (Γ, e, f{pk → ek} : S) (by rule case)

=⇒∗ (∆, x, f{pk → ek} : S) (by left premise and ind. hyp.)

=⇒ (∆[x 7→ ρ(pi), yn 7→yn], ρ(ei), S) (by Lemma 3.4 and rule guess)

=⇒∗ (Θ, v, S) (by right premise and ind. hyp.)

where pi = c(xn), ρ = {xn 7→ yn} and yn are the same fresh variables se-
lected in rule Guess.

2
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In order to show the soundness of the small-step semantics, i.e., that it com-
putes no more results than the natural (big-step) semantics, we introduce the
concept of balanced computations.

Definition 4.3 (balanced computation)
A computation (Γ, e, S) =⇒∗ (∆, e′, S) is balanced if the initial and final
stacks are the same and every intermediate stack extends the initial one.

In particular, every successful computation ([], e, []) =⇒∗ (Γ, v, []) is balanced.

Definition 4.4 (trace, balanced trace) The trace of a computation is the
sequence of transition rules used in the computation. A balanced trace is the
trace of a balanced computation.

There are several possibilities for a trace to be balanced. Clearly, the empty
trace is balanced. Now, consider nonempty traces and an arbitrary initial
stack S. Nonempty balanced traces must start with any of the following rules:
varcons, varexp, fun, let, or, and case. The remaining rules cannot produce
a nonempty balanced trace since they would produce an intermediate stack
which does not extend the initial stack S.

A trace that begins with varcons can only contain this single transition, since
it produces an intermediate stack S and an expression t which should be a
constructor-rooted term. The only rules that could be applied are val and se-
lect, but both rules would remove an element from the stack which contradicts
the balancedness of the trace.

If the trace begins with varexp, producing an intermediate stack of the form
x : S, then rule val must be eventually applied in order to restore the initial
stack to S. In this case, the derived expression is constructor-rooted and,
thus, only rules val and select could be applied. However, since they would
remove an element from the stack, this contradicts the balancedness of the
computation; hence, the trace must have the form (varexp bal val), where bal
stands for arbitrary balanced traces.

A trace that begins with fun is balanced whenever the subtrace after fun is
balanced. Thus, it must have the form (fun bal). Similarly, the traces (let bal)
and (or bal) are balanced.

If the trace begins with case, an intermediate stack of the form (f){pk → ek} :
S is produced. The initial stack must be restored by applying either rule select
or guess. Such balanced traces must have the form (case bal select bal) and (case
bal guess bal), respectively.

In summary, all balanced traces can be derived from the grammar
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bal ::= ε | varcons | varexp bal val

| fun bal | let bal | or bal

| case bal select bal | case bal guess bal

where ε denotes the empty trace. Each balanced trace corresponds to one of
the rules in the big-step semantics. The following lemma formalizes the proof
of this statement.

Lemma 4.5 (soundness) If (Γ0, e0, S) =⇒∗ (Γ1, v, S) is balanced and v is
constructor-rooted or a logical variable, then Γ0 : e0 ⇓ Γ1 : v.

Proof. The proof is done by induction on the structure of balanced traces
following the grammar above.

(ε) Then e0 must be a constructor-rooted term or a logical variable. Thus, the
proof follows by applying rule Val.

(varcons) Then e0 = x and Γ0 = Γ[x 7→ t]. Thus, (Γ1, t, S) is the derived state,
where Γ1 = Γ[x 7→ t]. Now, the proof follows by applying rule VarCons.

(varexp bal val) Then e0 = x and Γ0 = Γ[x 7→ e] (where e is not constructor-
rooted nor a logical variable). The state after applying rule varexp must be
(Γ[x 7→ e], e, x : S), and the state before applying rule val must have the
form (∆, v, y : S ′). Since the trace between these states is balanced, we have
y = x, S ′ = S, and Γ[x 7→ e] : e ⇓ ∆ : v by the inductive hypothesis. The
state after applying rule val must be (∆[x 7→ v], v, S), where Γ1 = ∆[x 7→ v].
Therefore, using rule VarExp, we have Γ[x 7→ e] : x ⇓ ∆[x 7→ v] : v.

(fun bal) Then e0 = f(yn), where f(xn) = e ∈ P and ρ = {xn 7→ yn}. The
state after applying rule fun must be (Γ0, ρ(e), S). Since (Γ0, ρ(e), S) =⇒∗
(Γ1, v, S) is balanced, we have Γ0 : ρ(e) ⇓ Γ1 : v by the inductive hypothesis.
Then, by applying rule Fun, we obtain Γ0 : f(yn) ⇓ Γ1 : v.

(let bal) Then e0 = let {xk = ek} in e, ρ = {xk 7→ yk} and yk are fresh vari-
ables. The state after applying rule let must be (Γ0[yk 7→ ρ(ek)], ρ(e), S).
Since (Γ0[yk 7→ ρ(ek)], ρ(e), S) =⇒∗ (Γ1, v, S) is a balanced trace, we
have Γ0[yk 7→ ρ(ek)] : ρ(e) ⇓ Γ1 : v by the inductive hypothesis. Ap-
plying rule Let to this judgement with the same renaming ρ, we obtain
Γ0 : let {xk = ek} in e ⇓ Γ1 : v.

(or bal) Then e0 = e1 or e2. The state after applying rule or must be (Γ0, ei, S),
with i ∈ {1, 2}. Since (Γ0, ei, S) =⇒∗ (Γ1, v, S) is balanced, we have
Γ0 : ei ⇓ Γ1 : v by the inductive hypothesis. Then, the proof follows by
applying rule Or, Γ0 : e1 or e2 ⇓ Γ1 : v (selecting the same argument as in
the application of rule or).

(case bal select bal) Then e0 = (f )case e of {pk 7→ ek}. The state after ap-
plying rule case must be (Γ0, e, (f){pk → ek} : S), and the state before
applying rule select must have the form (∆, c(yn), (f){pk → ek} : S). Since
the trace between these states is balanced, we have Γ0 : e ⇓ ∆ : c(yn) by
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the inductive hypothesis. Now, the state after applying rule select must be
(∆, ρ(ei), S), where pi = c(xn) and ρ = {xn 7→ yn}. Since the trace from
(∆, ρ(ei), S) to (Γ1, v, S) is also balanced, we have ∆ : ρ(ei) ⇓ Γ1 : v by
the inductive hypothesis. Finally, the proof follows by applying rule Select,
Γ0 : (f )case e of {pk → ek} ⇓ Γ1 : v.

(case bal guess bal) Then e0 = fcase e of {pk 7→ ek}. The state after apply-
ing rule case must be (Γ0, e, f{pk → ek} : S), and the state before applying
rule guess must have the form (∆[x 7→ x], x, f{pk → ek} : S). Since the
trace between these states is balanced, we have Γ0 : e ⇓ ∆[x 7→ x] : x by
the inductive hypothesis. Now, the state after applying rule guess must be
(∆[x 7→ ρ(pi), yn 7→ yn], ρ(ei), S), where pi = c(xn) and ρ = {xn 7→ yn},
and yn are the same fresh variables selected in the application of rule
guess. Since the trace from (∆[x 7→ ρ(pi), yn 7→ yn], ρ(ei), S) to (Γ1, v, S)
is also balanced, we have ∆[x 7→ ρ(pi), yn 7→ yn], ρ(ei) ⇓ Γ1 : v by the
inductive hypothesis. Finally, the proof follows by applying rule Guess,
Γ0 : fcase e of {pk → ek} ⇓ Γ1 : v.

2

Now, we can proceed with the proof of Theorem 4.1.

Proof. The “if” part follows directly from Lemma 4.2. The “only if” part is
a consequence of Lemma 4.5 and the fact that any computation of the form
([ ], e, [ ]) =⇒∗ (∆, v, [ ]) is balanced. 2

5 Language Extensions

So far, we described an operational semantics for the kernel of a multi-paradigm
functional logic language. In this section, we extend the small-step operational
semantics in order to cover typical extensions of modern multi-paradigm lan-
guages like integer and floating point numbers, external functions, predefined
constraints (unification), and higher-order functions. We also show how to
extend the natural semantics to deal with these features.

5.1 Equality

An important feature of logic languages is their ability to perform constraint
solving in an efficient way. For equational constraints between terms, this
is achieved by unification, where equations between variables are solved by
binding these variables (instead of instantiating them to all possible values).
Similarly, functional logic languages offer equational constraints between ex-
pressions containing defined functions. Since such functions can denote infinite
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terms, one has to be careful when defining the meaning of equality. We in-
terpret equational constraints as strict equalities as it is common practice in
functional logic programming (Antoy et al., 2000; Giovannetti et al., 1991;
Hanus, 2003; Moreno-Navarro and Rodŕıguez-Artalejo, 1992): an equational
constraint e1 =:= e2 is satisfiable if both arguments e1 and e2 can be reduced
to unifiable constructor terms (i.e., expressions without occurrences of defined
functions). Usually, this is implemented by a recursive evaluation of e1 and e2

to head normal form followed by the comparison of both arguments with a
possible instantiation of logical variables.

In order to provide a generic definition of the above operational behavior, we
need a way to evaluate arbitrary expressions to head normal form. In the basic
language of Figure 1, the only way to enforce the evaluation of an expression to
head normal form is the use of case expressions. This causes difficulties for large
sets (or even infinite sets of constructors like numbers, see below). Therefore,
we introduce a new predefined function hnf(e1, e2) which first evaluates the
argument e1 to head normal form before it returns e2 as result. 2 In order to
formally specify this behavior in our small-step operational semantics, we first
perform the evaluation of the current expression e1 and push an hnf context
containing e2 on the stack. This element is popped from the stack when the
first element is in head normal form. Thus, the operational semantics of hnf
is formally defined by the following rules:

Rule Heap Control Stack

hnf1 Γ hnf(x1, x2) S

=⇒ Γ x1 hnf(x2) : S

hnf2 Γ v hnf(x) : S

=⇒ Γ x S

where v is a constructor-rooted term or a variable y with Γ[y] = y.

With the use of function hnf, arbitrary expressions can be evaluated to head
normal form. This fact is exploited in the following definition of the strict
equality (note that this definition needs to be normalized as any other program

2 In Haskell (Peyton-Jones, 2003) (and similarly in Curry), there exists a related
predefined function “seq” to force the evaluation of an expression to a value. It
is mainly used to improve performance by avoiding unneeded laziness (e.g., when
defining strict arguments within some data type declarations). However, seq is
different from hnf since seq is not defined on logical variables, i.e., it suspends if
the first argument is a logical variable, whereas hnf does not suspend since a logical
variable is a head normal form in our context.
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Rule Heap Control Stack

constrEq1 Γ prim constrEq(x, y) S

=⇒ Γ[x′ 7→ y′] Success S

constrEq2 Γ prim constrEq(x, y) S

=⇒ Γ[x′ 7→ c(xn), xn 7→ xn] (x1 =:= y1 &> . . . &>xn =:= yn)∗ S

constrEq3 Γ prim constrEq(x, y) S

=⇒ Γ[y′ 7→ c(yn), yn 7→ yn] (x1 =:= y1 &> . . . &>xn =:= yn)∗ S

constrEq4 Γ prim constrEq(x, y) S

=⇒ Γ (x1 =:= y1 &> . . . &>xn =:= yn)∗ S

where in constrEq1: Γ∗(x) = x′ and Γ∗(y) = y′

constrEq2: Γ∗(x) = x′, Γ∗(y) = c(yn), and xn are fresh

constrEq3: Γ∗(x) = c(xn), Γ∗(y) = y′, and yn are fresh

constrEq4: Γ∗(x) = c(xn) and Γ∗(y) = c(yn)

Fig. 5. Small-Step Semantics of prim constrEq

rule to provide sharing):

x1 =:= x2 = hnf(x1, hnf(x2, prim constrEq(x1, x2)))

This definition ensures that x1 and x2 are reduced to head normal form, i.e.,
a constructor-rooted term or a logical variable. Then, the primitive function
prim constrEq recursively descends its two arguments and restarts the small-
step operational semantics for subexpressions by putting new expressions into
the control. In the case of a successful unification, it yields a modified heap
and the result Success, an internal constructor to represent the successful
solving of a constraint.

The precise definition of the behavior of prim constrEq causes a new compli-
cation due to unification. Since logical variables are not always instantiated
to constructor-rooted terms (as in rule guess) but can also be bound to other
logical variables, chains of bindings might occur in the heap. For instance,
if we unify variable x to y and later unify y with constant 0, then x is not
directly bound to 0 and we have a heap Γ with Γ[x] = y and Γ[y] = 0. This
property requires the dereferencing of heap variables before we access them.
We express this by a function Γ∗ which is defined as follows:

Γ∗(x) =

Γ∗(y) if Γ[x] = y and x 6= y

Γ[x] otherwise
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Rule Heap Control Stack

boolEq1 Γ prim boolEq(x, y) S

=⇒ Γ (x1 == y1 && . . . &&xn == yn)∗ S

boolEq2 Γ prim boolEq(x, y) S

=⇒ Γ False S

where in boolEq1: Γ∗(x) = c(xn) and Γ∗(y) = c(yn)

boolEq2: Γ∗(x) = c(. . .),Γ∗(y) = d(. . .), and c 6= d

Fig. 6. Small-Step Semantics of prim boolEq

Note that Γ∗(x) = y implies that y is a logical variable (i.e., Γ[y] = y). In
the following rules, we will apply Γ∗ only to variables x which were already
evaluated to head normal form, i.e., Γ∗(x) is always a value.

Now, we can define the small-step semantics of prim constrEq by the rules of
Figure 5. In these rules, equational constraints are solved in an incremental
way by an interleaved lazy evaluation of expressions and binding of variables
to constructor terms. In particular, when both arguments of the equational
constraint, x and y, are bound in the heap to logical variables, x′ and y′,
rule constrEq1 returns Success and updates the heap by binding x′ to y′.
In rule constrEq2, variable x is bound to a logical variable x′ but variable
y is bound to a constructor application c(yn). In this case, we bind x′ to a
constructor application of the form c(xn), where xn are fresh variable names,
and constraint equality is checked for the constructor arguments. Since the
number of arguments which must be compared recursively depends on the
arity of constructor c, we put a new expression (in normalized form) containing
the sequential conjunction operator “&>” on the control. Here, we consider an
empty conjunction (n = 0) as equivalent to Success. The operator “&>” on
constraints is defined as follows:

x1 &> x2 = case x1 of {Success→ x2}

Rule constrEq3 proceeds in a similar manner. Finally, if both arguments, x and
y, are bound to the same constructor application, rule constrEq4 continues with
the comparison of the constructor arguments (without modifying the heap).

For the sake of simplicity, we have omitted the occur check in rules constrEq2

and constrEq3. For instance, in rule constrEq2, the occur check should ensure
that variable x′ does not occur in the value represented by y (if x′ and y are
different). Here, the value represented by y is the part of the expression refer-
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enced by y (according to the current heap) without considering applications
of defined functions (see Hanus, 2003, Appendix D.4, for more details).

We can also define the Boolean test equality function “==” for testing the strict
equality of two expressions in a similar way. In contrast to “=:=”, function “==”
is only defined on ground constructor terms (i.e., it suspends in the presence
of logical variables) and returns True or False if both terms are identical or
different, respectively. Function “==” can be defined as follows:

x1 == x2 = hnf(x1, hnf(x2, prim boolEq(x1, x2)))

where prim boolEq recursively checks its two arguments for equality, as defined
in Figure 6. In rule boolEq1, the operator && denotes the Boolean conjunction
which is defined as follows:

x1 &&x2 = case x1 of {True→ x2; False→ False}

Furthermore, we consider an empty conjunction (n = 0) as equivalent to True.

5.2 External Functions

Every realistic programming language must support some functions that are
not implemented in the same programming language. For instance, consider
arithmetic operators which are used to perform computations on numbers.
Conceptually, the infinite set of integers or floating point numbers can be
interpreted as an infinite set of constants (0-ary constructors). In the following,
we will call these constants literals. Literals can occur everywhere in programs,
including the patterns of case expressions. For instance, we could also interpret
arithmetic functions computing with integers (e.g., addition on integers) as
defined by an infinite set of program rules. Since case expressions have only
a finite number of branches, we cannot represent such an infinite set in our
kernel language. This requires an extension of the language in order to include
externally defined functions, i.e., functions which are not explicitly defined by
program rules. Such functions are called external functions.

In a naive approach, one could try to extend our operational semantics to
cover external functions with a generic rule like

(Γ, F (en), S) =⇒ (Γ, FA(en), S)

where the semantics of each predefined function F is represented by means
of an interpretation FA. However, this is not sufficient in general since the
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arguments of F are expressions that need to be evaluated to literals before
we interpret them with FA. Similarly to equational constraints, we use the
primitive hnf to solve this problem. For example, we define the addition of
two integers with the use of the external function prim + by the rule

x1 + x2 = hnf(x1, hnf(x2, prim +(x1, x2))

Since the primitive function prim + is always applied to arguments which
are already evaluated to literals (or logical variables, see below), we define its
small-step semantics as follows:

Rule Heap Control Stack

prim + Γ prim +(x, y) S

=⇒ Γ l1 +A l2 S

where Γ∗(x) = l1, Γ∗(y) = l2, l1, l2 are literals, and +A denotes the arithmetic
sum. Note that this definition implies that the evaluation of prim + suspends
(there is no successor in =⇒) if one of the arguments is a logical variable.

Often, one can assume that external functions are executed only if all argu-
ments are evaluated to literals. Since there are a few exceptions to this rule,
we adopt the following general scheme: given an external function f of arity
n, we define it by the rule

f(x1, . . . , xn) = hnf(xj1 , hnf(xj2 , . . . , hnf(xjm , prim f (x1, . . . , xn)) . . .))

where the set {j1, . . . , jm} denotes the positions of the arguments whose eval-
uation is required by the primitive function prim f .

In this way, the definition of the rules for the primitive functions of a realistic
language like Curry can be easily done.

5.3 Higher-Order Features

According to the syntax of Figure 1, flat programs are restricted to first-order.
In principle, this is sufficient since it is well-known (e.g., Warren, 1982) that the
higher-order features of typical functional (logic) languages can be translated
into applications of a distinguished function apply which can be defined by
a set of first-order rules. For instance, an expression like “(f a) b” can be
translated into apply(apply(f, a), b) where the definition of apply contains the
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following rules for the binary function f (this technique is used, e.g., in the
implementation described by Antoy and Hanus, 2000):

apply(f, x) = f(x)

apply(f(x), y) = f(x, y)

In order to avoid the generation of these rules for all functions of the program,
we provide a definition of apply based on a primitive function prim apply
which assumes that the first argument is in head normal form; note that the
second argument of apply does not need to be evaluated to head normal form.
Thus, we define apply by the following rule:

apply(x1, x2) = hnf(x1, prim apply(x1, x2))

The small-step semantics is then extended as follows:

Rule Heap Control Stack

apply Γ prim apply(x, y) S

=⇒ Γ ϕ(xk, y) S

where Γ∗(x) = ϕ(xk) and either ϕ is a constructor symbol or ϕ(yn) = e ∈ P
with k < n. For user-defined functions, the condition k < n is necessary since
“over-applications” are possible in higher-order languages, as the following
example shows (for clarity, the program is not normalized):

f(x) = g(x)

g(x,y) = 42

h = apply(apply(f,1),2)

In the definition of function h, it may seem that f is applied to two arguments.
However, this is an over-application and rule fun must directly unfold function
f once f is applied to one argument. For constructors, a similar condition on
the arity of ϕ is not necessary since the type system of the source language
should avoid over-applications of constructors.

Note that our definition requires a partial application like and(True) to be
considered as a constructor-rooted term. This means that functions with miss-
ing arguments are considered as constructor-rooted terms. However, these con-
structors are “hidden” and only defined for the purpose of the operational
semantics, i.e., they do not appear in patterns.
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5.4 Language Extensions and Natural Semantics

The natural semantics of Figure 2 can also be augmented in order to cope
with the language extensions considered so far. In this section, we show the
counterpart of the previous rules in the context of the big-step semantics.

5.4.1 Equality

To cover equality, we first need to define the semantics of function hnf:

(HNF)
Γ : x1 ⇓ ∆ : v1 ∆ : x2 ⇓ Θ : v2

Γ : hnf(x1, x2) ⇓ Θ : v2

where vi, i ∈ {1, 2}, is a constructor-rooted term or a variable y with ∆[y] = y.

Now, analogously to Section 5.1, we can define the semantics of constraint
equalities (prim constrEq) and Boolean equalities (prim boolEq) as follows.
The semantics of prim constrEq can be given by the following rules:

(ConstrEq1) Γ : prim constrEq(x, y) ⇓ Γ[x′ 7→ y′] : Success

where Γ∗(x) = x′ and Γ∗(y) = y′

(ConstrEq2)
Γ[x′ 7→ c(xn), xn 7→ xn] : (x1 =:= y1 &> . . . &>xn =:= yn)∗ ⇓ ∆ : v

Γ : prim constrEq(x, y) ⇓ ∆ : v

where Γ∗(x) = x′, Γ∗(y) = c(yn), and xn are fresh

(ConstrEq3)
Γ[y′ 7→ c(yn), yn 7→ yn] : (x1 =:= y1 &> . . . &>xn =:= yn)∗ ⇓ ∆ : v

Γ : prim constrEq(x, y) ⇓ ∆ : v

where Γ∗(x) = c(xn), Γ∗(y) = y′, and yn are fresh

(ConstrEq4)
Γ : (x1 =:= y1 &> . . . &>xn =:= yn)∗ ⇓ ∆ : v

Γ : prim constrEq(x, y) ⇓ ∆ : v

where Γ∗(x) = c(xn) and Γ∗(y) = c(yn)

Similarly, we define the semantics of prim boolEq by the following two rules:

(BoolEq1)
Γ : (x1 == y1 && . . . &&xn == yn)∗ ⇓ ∆ : v

Γ : prim boolEq(x, y) ⇓ ∆ : v

where Γ∗(x) = c(xn) and Γ∗(y) = c(yn)
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(BoolEq2) Γ : prim boolEq(x, y) ⇓ Γ : False

where Γ∗(x) = c(. . .),Γ∗(y) = d(. . .), and c 6= d

5.4.2 External Functions

Here, we assume the same considerations of Section 5.2, i.e., each primitive
function is defined in terms of function hnf and an associated external function.
For instance, the big-step semantics of the external function prim + is given
by the following simple rule:

(Prim +) Γ : prim +(x, y) ⇓ Γ : l1 +A l2

where Γ∗(x) = l1, Γ∗(y) = l2, l1, l2 are literals, and +A denotes the arithmetic
sum.

5.4.3 Higher-Order Features

In this case, it suffices to provide the big-step semantics of the distinguished
function apply :

(Apply) Γ : prim apply(x, y) ⇓ Γ : ϕ(xk, y)

where Γ∗(x) = ϕ(xk) and either ϕ is a constructor symbol or ϕ(yn) = e ∈ P
with k < n.

The equivalence between the extended big-step semantics and the correspond-
ing small-step semantics can be proved as an easy extension of the proof of
Theorem 4.1.

6 A Deterministic Operational Semantics

The semantics presented so far is still non-deterministic. In actual declara-
tive multi-paradigm languages, this non-determinism is implemented by some
search strategy. For tracing or profiling, it is necessary to model search strate-
gies as well. For instance, consider the computation of costs associated to a pro-
gram execution. In this case, by considering an instrumented non-deterministic
semantics, we could only compute the cost of each single derivation in the
search tree. However, we could not calculate the cost of a computation path
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Rule Heap Control Stack (Heap × Control × Stack)∗

or Γ e1 or e2 S =⇒ (Γ, e1, S) (Γ, e2, S)

guess Γ[x 7→ x] x f{pk → ek} : S =⇒ (Γ[x 7→ ρ1(p1), yn1 7→yn1 ], ρ1(e1), S)
...

(Γ[x 7→ ρk(pk), ynk 7→ynk ], ρk(ek), S)

where in guess: pi = ci(xni), ρi = {xni 7→ yni}, and yni are fresh variables

Fig. 7. Deterministic Small-Step Semantics

within the search tree, since some computation steps may be shared by more
than one derivation. Thus, it becomes essential to provide a deterministic
version of the semantics which properly models search strategies. For this
purpose, we extend the relation =⇒ as follows: =⇒ ⊆ Goal × Goal∗. The
idea is that a computation step yields a sequence consisting of all possible
successor states instead of non-deterministically selecting one of these states.
Non-determinism occurs only in the rules or and guess of Figure 4. Thus, the
deterministic semantics consists of all the rules presented so far except for the
rules or and guess which are replaced by the deterministic version shown in
Figure 7. The only difference is that, in the deterministic version, all possible
successors are listed in the result of =⇒.

With the use of sequences, a search strategy (denoted by “◦”) can be de-
fined as a function which composes two sequences of goals. The first sequence
represents the new goals resulting from the last evaluation step. The second
sequence represents the old goals which must still be explored. For example, a
(left-to-right) depth-first search strategy (◦d) and a breadth-first search strat-
egy (◦b) can easily be specified as follows:

w ◦d v = wv and w ◦b v = vw

A small-step operational semantics (including search) which computes the first
leaf in the search tree with respect to a search function “◦” can be defined as
the smallest relation −→ ⊆ Goal∗ ×Goal∗ satisfying

(Eval)
g =⇒ G

g G′ −→ G ◦G′
where g ∈ Goal and G,G′ ∈ Goal∗

The computation starts with the initial goal g0 = ([ ], e0, [ ]) where e0 is the
expression to be evaluated. The relation −→ is deterministic and it may reach
four kinds of final states:

Solution. Here, the first goal in the sequence has the form (Γ, v, [ ]), where v
is the computed value. Furthermore, the computed answer can be extracted
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from Γ by dereferencing the variables of the initial expression e0.
Suspension. Then, the expression of the first goal in the sequence is either

a rigid case expression with a logical variable in the argument position or a
primitive function applied to some logical variable (note that not all prim-
itive functions suspend on logical variables, e.g., prim constrEq performs
unification in this case). This situation represents a suspended goal and will
be discussed in more detail in the next section.

Fail. Here, the first goal of the sequence is either a case expression whose ar-
gument does not match any of the patterns or the application of a primitive
function which does not succeed, e.g., prim constrEq applied to values with
different outermost constructors.

No more goals: This situation occurs when all the goals in the sequence
have already been explored.

In order to distinguish the different possibilities, we add a label to the relation
−→ which classifies the leaves of the search tree. The label is computed by
means of the following function type. For expressions e which are not primitive
function applications (i.e., e 6= prim f(xn)), it is defined as follows:

type(Γ, e, S) =



SUCC if e = v and S = [ ]

SUSP if e = x, S = {pk → ek} : S ′, and Γ[x] = x

FAIL if e = c(yn), S = (f){pk → ek} : S ′,
and ∀i = 1, . . . , k. pi 6= c(. . .)

COMP otherwise

For primitive functions, it is defined by using a function primType representing
their behavior:

type(Γ, prim f(xn), S) = primType(Γ, prim f(xn), S)

Function primType represents the behavior of any primitive function. In par-
ticular, primType(Γ, prim f(xn), S) = COMP iff (Γ, prim f(xn), S) =⇒ G
for some G. For instance, for the external function prim +, it is defined as
follows:

primType(Γ, prim +(x, y), S) =

{
SUSP if Γ∗(x) = z or Γ∗(y) = z

COMP otherwise

where z is a logical variable. Similar definitions can be provided for the re-
maining primitive functions. In particular, for constraint equality, suspension
is not a possible behavior. Moreover, constraint equality fails when it is applied
to different constructors:

primType(Γ, prim constrEq(x, y), S)

=

{
FAIL if Γ∗(x) = c(yn), Γ∗(y) = d(zm), and c 6= d

COMP otherwise
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With the use of function type, we can now define the complete evaluation of
an expression as follows:

(Eval)
g =⇒ G

g G′
COMP−→ G ◦G′

(Discard)
g 6=⇒

g G′
type(g)−→ G′

(g ∈ Goal and

G,G′ ∈ Goal∗)

The (decidable) condition g 6=⇒ of rule Discard means that none of the rules
for =⇒ matches. In this case, −→ does not perform a COMP step as the
following lemma states: 3

Lemma 6.1 If g0 −→∗ g G′ and g 6=⇒, then type(g) 6= COMP.

Proof. Case analysis on g = (Γ, e, S):

• e is a value. We distinguish the following cases:
(1) e = c(xn):

If S = x : S ′, then val is applicable and g =⇒ G.
If S = (f){pk −→ ek} : S ′, then either rule select is applicable (if there is
a branch for constructor c) or type(g) = FAIL.
If S = hnf(x) : S ′, then rule hnf2 is applicable and g =⇒ G.
If S = [ ], then no rule is applicable and type(g) = SUCC .

(2) e = x and Γ[x] 6= x:
Then either rule varcons (if Γ[x] is a value) or rule varexp is applicable.

(3) e = x and Γ[x] = x:
If S = x : S ′, then val is applicable and g =⇒ G.
If S = f{pk −→ ek} : S ′, we can apply rule guess.
If S = {pk −→ ek} : S ′, then type(g) = SUSP .
If S = hnf(y) : S ′, then rule hnf2 is applicable and g =⇒ G.
If S = [ ], then no rule is applicable and type(g) = SUCC .

• e = prim f (xn). By our requirement on primType above, primType(Γ, e, S)
yields the type COMP exactly in the same cases where =⇒ has a successor.
• e is any other expression. Then, for all possible expressions, there exists an

applicable rule independently of Γ and S.

2

The relation −→ contains all information of a computation. One can easily
extract the part of interest from the (possibly infinite) derivation. For example,
the set of all solutions can be defined in the following way:

solutions(g0) = {g | g0 −→∗ g G
SUCC−→ G} .

3 We write −→∗ for the reflexive and transitive closure of −→ including all labels.
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7 Adding Concurrency

Hitherto, our semantics only covers narrowing. Additionally, modern declara-
tive multi-paradigm languages like Curry support residuation, a technique for
a seamless integration of rigid—in most cases predefined—functions into non-
deterministic, search-based implementations of functional logic languages. Our
semantics already includes basic support for the integration of residuation: if
a rigid case or a predefined function is applied to a logical variable, then =⇒
provides no successor, i.e., the goal suspends (the function type yields SUSP).
So far, our semantics makes no real difference between FAIL and SUSP . By
means of residuation, though, a computation may suspend until a logical vari-
able is bound by another computation.

For the implementation of residuation, modern declarative multi-paradigm
languages like Curry support concurrency. The combination of concurrency
and residuation makes multi-threading with communication on shared logi-
cal variables possible. For concurrency, the simplest semantics is interleaving
which is usually defined at the level of a small-step operational semantics. A
definition of residuation and concurrency at the level of the big-step semantics
would be possible as well. However, this would result in a mixture of the differ-
ent kinds of non-determinism resulting from narrowing and concurrency. The
first non-determinism has to be determined by some kind of search, while for
the latter some kind of scheduling algorithm is usually chosen. Alternatively,
one could determine one of these non-determinisms explicitly in the big-step
semantics. For concurrency, this could be done by considering all possible re-
sults like in denotational semantics for concurrent languages (e.g., Debbabi
and Bolignano, 1997) which is technically complex. Determining the don’t-
know non-determinism of narrowing at the level of the big-step semantics is
also difficult and we solved it at the level of the deterministic small-step seman-
tics. Hence, an integration of these concepts at the level of the deterministic
small-step semantics seems to be appropriate and comprehensible.

Our deterministic semantics can be naturally extended to model concurrency.
For simplicity, we restrict the considered concurrent programs by requiring
that the initial expression is always a constraint (i.e., main is of type Success).

For the formalization of concurrency (see Figure 8), we extend the expressions
and stacks in the goals to sets of expressions and stacks, i.e., Goal = Heap ×
P(Control × Stack). Each element of P(Control × Stack) represents a thread
and these threads can perform actions non-deterministically (which is the
idea of an interleaving semantics). As an abbreviation for the disjoint union
T ]{(e, S)} we write T ⊕ (e, S). New threads are created with the concurrent
conjunction operator “&” by adding the new thread to the set (Fork). The
heap is a global entity for all threads in a goal. Thus, threads communicate
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(Eval)
(Γ, e, S) =⇒ (Γ1, e1, S1) . . . (Γn, en, Sn)

(Γ, T⊕(e, S)) : G COMP−→ (Γ1, T⊕(e1, S1)) . . . (Γn, T⊕(en, Sn)) ◦G

(Fork)
−

(Γ, T⊕(e1& e2, S)) : G COMP−→ (Γ, T⊕(e1, S)⊕(e2, S)) ◦G

(Succ1)
type(Γ, e, S) = SUCC

(Γ, T⊕(e, S)) : G COMP−→ (Γ, T ) ◦G
(Succ2)

−

(Γ, ∅) : G SUCC−→ G

(Fail)
type(Γ, e, S) = FAIL

(Γ, T⊕(e, S)) : G FAIL−→ G
(Deadlock)

∀(e, S) ∈ T : type(Γ, e, S) = SUSP

(Γ, T ) : G SUSP−→ G

Fig. 8. Concurrent Semantics for Multi-Paradigm Programs

with each other by means of variable bindings in this global heap.

In our concurrent operational semantics, the following possibilities for discard-
ing a goal are distinguished:

FAIL A goal fails if one of its threads fails.

SUCC A goal is a solution if all threads terminate successfully.

SUSP A goal represents a deadlock situation if all threads suspend.

The concurrent semantics is indeterministic: we can non-deterministically se-
lect one thread and ignore the remaining ones. Indeterminism is similar to
don’t-care non-determinism in logic programming (Lloyd, 1987), e.g., literals
in a goal are selected in a don’t-care nondeterministic way; this contrasts with
don’t-know non-determinism which is used in the selection of program clauses,
where all possibilities should be considered. An evaluation represents one trace
of the system. During the evaluation of a goal, several threads may suspend
and later be awoken by variable bindings produced from other threads. Then,
a =⇒-step is again possible for the awoken process. A goal is only discarded
in one of the three cases discussed above. Note that there is only a non-
deterministic choice possible between rules Eval, Fork, Succ1, and Fail. There
is no alternative successor for the application of rules Succ2 and Deadlock.

Rule Eval allows computation steps in an arbitrary thread of the first goal. If
such a step is don’t-know non-deterministic, i.e., it yields more than one goal,
the entire process structure is copied. Although this is necessary to compute
all solutions, it could be more efficient to perform a non-deterministic step
only if a deterministic step in another thread is not possible. This strategy
corresponds to stability in AKL (Janson and Haridi, 1991) and Oz (Schulte
and Smolka, 1994) and could easily be specified in our framework, as well.
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8 Implementation

Our semantic description does not only provide the theoretical foundation
to reason about actual multi-paradigm functional logic programs but it can
also be used as a basis to implement abstract machines, debuggers and opti-
mization tools in a high-level manner. In order to get confidence in the latter
aspect, we have implemented an interpreter for Curry based on the small-step
semantics described in the preceding sections where each derivation rule is
almost literally translated into program code.

The interpreter is written in Haskell. Thus, it can be easily adapted to Curry
in order to obtain a meta-interpreter for Curry. The entire implementation
consists of a front-end to compile Curry programs into the flat form intro-
duced in Section 2 and an evaluator for expressions based on our small-step
semantics. The implementation of the heap uses balanced search trees to en-
sure efficient access and update operations. The implementation also includes
a garbage collector on the heap to be able to execute larger examples. The re-
sults are quite encouraging. Standard functional programs are executed (using
the Glasgow Haskell compiler) with more than 22000 reductions per second
on a 2.0 GHz Linux-PC (AMD Athlon XP 2600 with 256 KB cache). For
logic programs involving search, more than 3200 non-deterministic steps are
executed per second. Although our interpreter is much slower than compilers
based on back-ends implemented in low-level (non-declarative) languages, its
performance is comparable to other meta-interpreters. In particular, it is faster
than previous meta-interpreters for Curry (e.g., Albert et al., 2002c; Hanus
and Koj, 2001) due to an improved handling of variable sharing.

Our implementation can serve as a starting point to develop further tools like
program optimizers based on partial evaluators, tracing tools, etc. Actually,
this interpreter has been used to generate run-time information (redex trails)
to trace computations at an adequate abstraction level (Braßel et al., 2004b).

9 Related Work

In the field of functional programming, Launchbury (1993) defined the first
operational semantics for purely lazy functional languages which provides an
accurate model for sharing. It is separated into two stages: the first stage is a
static conversion of the λ-calculus into a form where the creation and sharing
of closures is explicit; the semantics is then defined at the level of closures. Our
natural semantics is defined in a similar manner, though our language is first-
order and it has logical variables and non-determinism. Later, Sestoft (1997)
developed an abstract machine for the λ-calculus with lazy evaluation starting
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from Launchbury’s natural semantics, where lazy evaluation means non-strict
evaluation with sharing of argument evaluation, i.e., call-by-need. Similarly, we
have defined a small-step semantics for functional logic programs with sharing
from the previous natural semantics. Our small-step semantics can be seen as
an extension of Sestoft’s abstract machine to consider also logical variables
and non-determinism. Starting from Sestoft’s semantics, Sansom and Peyton-
Jones (1997) developed the first source-level profiler for a compiled, non-strict,
higher-order, purely functional language capable of measuring time and space
usage. One can extend our operational semantics with cost information in a
similar way in order to develop a profiler for multi-paradigm functional logic
programs, as done in Braßel et al. (2004a).

As for logic programming, Jones and Mycroft (1984) and Debray and Mishra
(1988) propose operational and denotational descriptions of Prolog with the
main emphasis on covering the backtracking strategy and the “cut” operator.
Although our modeling of search strategies by the use of goal sequences has
some similarities with their description, laziness, sharing, and concurrency are
not covered there. The same holds for Börger’s descriptions of Prolog’s oper-
ational semantics (e.g., Börger, 1990a,b) which consist of various small-step
semantics for the different language constructs. On the other hand, Börger and
Rosenzweig’s description of the operational semantics of full Prolog (Börger
and Rosenzweig, 1995a) is based on the use of evolving algebras (Gurevich,
2000). Intuitively, evolving algebras are abstract machines—hence, also known
as Abstract State Machines (ASM)—used mainly for the formal specification
of semantics in a rigorous mathematical framework. Its application to a func-
tional logic context requires the definition of an abstract model of functional
logic programs from which one can derive stepwise refinements of the model.
The description has been carried out for an innermost narrowing semantics
(Börger et al., 1994) but, as its authors state, the adaption to a lazy semantics
would involve a more difficult kind of control and substantial modifications.
We believe that, for lazy evaluation, this alternative approach could be used
to derive a small-step semantics which is equivalent but lower-level than the
small-step semantics considered in this paper, so that it could be used to
prove the correctness of a Curry compiler. Indeed, this is the approach taken
by Börger and Rosenzweig (1995b) in order to provide a mathematical anal-
ysis of the WAM for executing Prolog and a correctness proof for a general
compilation scheme of Prolog. Finally, Podelski and Smolka (1995) define an
operational semantics for constraint logic programs with coroutining in order
to specify the interaction of backtracking, cut, and coroutining. Their mod-
eling of coroutining via “pools” is related to our model of concurrency, but
demand-driven evaluation and sharing are not contained in their semantics.
The latter aspects are also not covered by other semantic foundations of con-
current logic programming (e.g., Haridi et al., 1992; Saraswat et al., 1991;
Smolka, 1994). Similarly, concurrent extensions of functional languages (e.g.,
Armstrong et al., 1996; Chakravarty et al., 1998; Peyton Jones et al., 1996;

36



Panangaden and Reppy, 1997) do not cover search and constraint solving.

As for functional logic programming, the report on the multi-paradigm lan-
guage Curry (Hanus, 2003) contains a complete operational semantics but
covers sharing only informally. The operational semantics of the functional
logic language Toy (López-Fraguas and Sánchez-Hernández, 1999) is based on
narrowing (with sharing) but the formal definition is based on a narrowing
calculus (González-Moreno et al., 1999) which does not consider a particu-
lar pattern-matching strategy. However, the latter becomes important, e.g.,
if one wants to reason about costs of computations. The approach of Hor-
talá-González and Ullán (2001), the closest to our work, contains an opera-
tional semantics for a lazy narrowing strategy which considers sharing, non-
deterministic functions, and allows partial applications in patterns. However,
they do not consider the distinction between flexible and rigid case expressions,
which is necessary for defining an operational semantics combining narrowing
and residuation (as in Curry). Furthermore, we presented two characteriza-
tions of our operational semantics: a high-level description in natural style and
a more detailed small-step semantics, and formally proved their equivalence.
Finally, Echahed and Janodet (1998) and Habel and Plump (1996) present
graph narrowing relations by extending graph rewriting with some form of
unification. Graph narrowing requires a complex machinery to represent and
manipulate graphs. Nevertheless, for the purpose of modeling sharing, our
approach based on the use of let bindings is sufficient.

10 Conclusions and Future Work

To the best of our knowledge, this is the first attempt of a rigorous operational
description for multi-paradigm functional logic languages including features
like laziness, sharing, non-determinism, higher-order functions, equational con-
straints, external functions, and concurrency. We developed our semantics in a
stepwise manner: starting from a simple natural semantics covering only lazi-
ness, sharing and non-determinism to a detailed operational semantics which is
deterministic and models concurrent computations. The natural semantics, as
well as its small-step version, can be useful to reason about programs, to prove
the correctness of program transformations, to check the appropriateness of
language implementations, etc. The deterministic semantics is especially im-
portant for the development of programming tools related to the operational
aspects of a language, like profilers, debuggers and tracers. The complete se-
mantics provides an appropriate foundation to model realistic multi-paradigm
languages like Curry (Hanus, 2003).

In particular, we are currently working on the definition of the theoretical
foundations for tracing lazy functional logic computations in Curry (Braßel
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et al., 2004b). For this purpose, we have defined a conservative extension
of the small-step semantics defined in this article that outputs not only the
computed value and bindings but also an appropriate data structure—a sort
of redex trail (Wallace et al., 2001)—which can be used to trace computations
at an adequate level of abstraction. This approach shows the usefulness and
practicality of our operational semantics.

Furthermore, we have also enhanced the operational semantics with the com-
putation of cost information (Braßel et al., 2004a). This is useful, e.g., for
profiling (Albert and Vidal, 2002; Sansom and Peyton-Jones, 1997) and for
formally checking the improvement achieved by program optimizations (Al-
bert et al., 2001; Vidal, 2004).

For future work, we want to use this operational semantics for the formal
development of further programming tools. In particular, it could be interest-
ing to use it as a basis to develop optimization tools, e.g., partial evaluators
(Albert et al., 2002c; Albert and Vidal, 2001), and to check or derive new im-
plementations (like Sestoft, 1997) for Curry. From a more theoretical point of
view, it might be interesting to formally prove the confluence of the concurrent
semantics (up to variable renaming) for fair search strategies, like breadth-first
search. Indeed, we conjecture that it is confluent since the heap can only be
extended and logical variables can only be bound to one value. If the variable
bindings of different threads in the shared heap clash, then this will happen
in any scheduling policy due to the absence of a committed choice construct.
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