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THE INTEGRATION OF FUNCTIONS INTO

LOGIC PROGRAMMING:

FROM THEORY TO PRACTICE

MICHAEL HANUS

> Functional and logic programming are the most important declarative pro-
gramming paradigms, and interest in combining them has grown over the
last decade. Early research concentrated on the definition and improvement
of execution principles for such integrated languages, while more recently
efficient implementations of these execution principles have been developed
so that these languages became relevant for practical applications. In this
paper we survey the development of the operational semantics as well as
the improvement of the implementation of functional logic languages. <

1. INTRODUCTION

Interest in the amalgamation of functional and logic programming languages has
increased since the beginning of the last decade. Such integrated languages have
advantages from the functional and the logic programming point of view. In com-
parison with pure functional languages, functional logic languages have more ex-
pressive power due to the availability of features like function inversion, partial
data structures, and logical variables [109]. In comparison with pure logic lan-
guages, functional logic languages have a more efficient operational behavior since
functions allow more deterministic evaluations than predicates. Hence the inte-
gration of functions into logic programming can avoid some of the impure control
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features of Prolog like the cut operator. These principal considerations were the
motivation for integrating both language types.

Depending on the initial point of view, the integration of functional and logic
programming languages has been tackled in two ways. From a functional program-
ming point of view, logic programming aspects can be integrated into functional
languages by permitting logical variables in expressions and replacing the match-
ing operation in a reduction step by unification [109].1 From a logic programming
point of view, functions can be integrated into logic languages by combining the
resolution principle with some kind of functional evaluation. Since we are mainly
interested in logic programming, we concentrate this survey on the latter aspect.
However, we want to point out that both views yield similar operational principles
for the amalgamated languages.

The integration of functions into logic programming is very simple from a syn-
tactic point of view. For this purpose, we have to extend the logic language by:

1. A method to define new functions.
2. A possibility to use these functions inside program clauses.

To realize the first point, we could allow the implementation of functions in an
external (functional) language [14]. A more interesting alternative is the direct in-
tegration of function definitions into the logic language. For this purpose one has to
permit program clauses defining the equality predicate. Equality “=” is a predefined
predicate in Prolog systems which is satisfied iff both arguments are syntactically
equal (i.e., syntactic unification of both arguments). Hence this predicate can be
defined by the fact

X = X.

By admitting new clauses for “=”, we are able to express that syntactically different
terms are semantically equal. In particular, a function applied to some argument
terms should be equal to its result. For instance, the following equality clauses
define the semantics of the function append for concatenating lists (we use the
Prolog notation for lists [122]):

append([],L) = L.

append([E|R],L) = [E|append(R,L)].

Using these clauses for equality, we can prove that the term append([1,2],[3])

is equal to [1,2,3]. Note that this method of defining functions is the same
as in modern functional languages like Haskell [67], Miranda [127], or ML [63],
where functions are defined by argument patterns. We can also define functions
by conditional equations, where we may use arbitrary predicates in the conditions.
For instance, the maximum function on naturals can be defined by the following
conditional equations:

max(X,Y) = X :- X >= Y.

max(X,Y) = Y :- X =< Y.

1Other alternatives to integrate logic programming aspects into functional languages are set

abstractions [26, 27, 112, 117, 118] or logical arrays [72].
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Due to the logic part of the integrated language, the proof of the condition
may require a search for the right instantiation of new variables occurring in the
condition. This is shown in the following definition of a function computing the
last element of a list:

last(L) = E :- append( ,[E]) = L.

If such conditional equations should be applied to compute the value of a functional
expression, the validity of the condition must be proved. For instance, in order
to evaluate the term last([1,2]), we have to find a solution to the equation
append( ,[E])=[1,2]. Techniques to compute such solutions will be presented in
Section 2.

After defining functions by equality clauses, the programmer can use these func-
tions in expressions occurring in goals of the logic program. For instance, if the
membership in a list is defined by the clauses

member(E,[E|L]).

member(E,[F|L]) :- member(E,L).

specifying the predicate member, we can use the append function in goals where list
terms are required. In the goal

?- member(E,append([1],[2])).

the second argument is equal to the list [1,2] and therefore the two answers to this
goal are E=1 and E=2. This kind of amalgamated language is known as logic pro-
gramming with equality and has a clearly defined declarative semantics [50, 71, 106].
It is similar to the well-known Horn clause logic [83], but with the difference that
the equality predicate “=” is always interpreted as the identity on the carrier sets
in all interpretations. Therefore, we omit the details of the declarative semantics
in this survey.

The definition of the operational semantics is not so easy. In the last ex-
ample the evaluation of the goal is obvious: first replace the functional term
append([1],[2]) by the equivalent result term [1,2] and then proceed with the
goal member(E,[1,2]) as in logic programming. However, what happens if the
functional term contains free variables so that it cannot be evaluated to an equiv-
alent term without the function call? For instance, consider the goal

?- append(L,[3,4]) = [1,2,3,4].

Clearly, the variable L should be instantiated to [1,2], which is the unique solution
to this equation, but how can we compute such solutions? In general, we have to
compute unifiers w.r.t. the given equational axioms which is known as E-unification
[44]. Replacing standard unification by E-unification in a resolution step yields a
computational mechanism to deal with functions in logic programs [43, 49]. Unfor-
tunately, E-unification can be a very hard problem even for simple equations (see
[116] for a survey). For instance, if we state the associativity of the append function
by the equation

append(append(L,M),N) = append(L,append(M,N)).
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then it is known that the corresponding E-unification problem is decidable, but
there may exist an infinite set of pairwise incomparable E-unifiers. Thus a com-
plete E-unification procedure must enumerate all these unifiers. Moreover, it is also
known that E-unification is undecidable even for simple equational axioms like dis-
tributivity and associativity of functions [115]. Therefore, van Emden and Yukawa
[128] state that “one of the reasons why logic programming succeeded where other
resolution theorem proving had failed . . . was that in logic programming equality
was avoided like the plague.” Fortunately, there are restrictions on the definition
of the equality predicate which are acceptable from a programming point of view
and which ensure the existence of a usable E-unification algorithm.

In the beginning of research on amalgamated functional logic languages, many
proposals were made to restrict the generality of the equality axioms and to develop
appropriate execution principles (see [31] for a good collection of these proposals
and [9] for a short survey). Since these execution principles seemed complicated and
were not implemented as efficiently as pure logic languages, logic programmers were
often doubtful about the integration of functions into logic programming. However,
this has changed since new efficient implementation techniques have been developed
for functional logic languages in recent years. In comparison to implementations
of pure logic languages, these new techniques cause no overhead because of the
presence of functions. Moreover, in many cases functional logic programs are more
efficiently executed than their relational equivalents without using impure control
features like “cut.”

In the following text, we survey the operational principles and the implemen-
tation techniques of functional logic languages. Section 2 discusses the various
operational semantics proposed for functional logic languages. We introduce basic
notions by discussing computational methods for a rather general class of func-
tional logic programs in Section 2.1. Then we consider the important subclass of
constructor-based programs and discuss eager and lazy evaluation strategies in Sec-
tions 2.2 and 2.3. Section 2.4 highlights problems caused by conditional equations,
and Section 2.5 introduces a completely different class of evaluation strategies which
sacrifice completeness for the sake of efficiency. Implementations of these strategies
are discussed in Section 3. Section 3.1 shows straightforward implementations by
compiling into high-level languages, and Section 3.2 outlines the various low-level
abstract machines developed for the execution of functional logic programs during
the last few years.

2. OPERATIONAL PRINCIPLES FOR FUNCTIONAL LOGIC LANGUAGES

In order to give a precise definition of the operational semantics of functional logic
languages and to fix the notation used in the rest of this paper, we recall basic
notions from term rewriting [32] and logic programming [83].

If F is a set of function symbols together with their arity2 and X is a countably
infinite set of variables, then T (F ,X ) denotes the set of terms built from F and
X . If t 6∈ X , then Head(t) is the function symbol heading term t. Var(t) is the set

2For the sake of simplicity, we consider only single-sorted programs in this paper. The extension
to many-sorted signatures is straightforward [106]. We also assume that F contains at least one

constant.
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of variables occurring in a term t (similarly for the other syntactic constructions
defined below, like literal, clause, etc.) A ground term t is a term without variables,
i.e., Var(t) = ∅. A substitution σ is a homomorphism from T (F ,X ) into T (F ,X )
such that its domain Dom(σ) = {x ∈ X | σ(x) 6= x} is finite. We frequently identify
a substitution σ with the set {x7→σ(x) | x ∈ Dom(σ)}. The composition of two
substitutions φ and σ is defined by φ ◦ σ(x) = φ(σ(x)) for all x ∈ X . A unifier of
two terms s and t is a substitution σ with σ(s) = σ(t). A unifier σ is called most
general (mgu) if for every other unifier σ′, there is a substitution φ with σ′ = φ ◦σ.
A position p in a term t is represented by a sequence of natural numbers, t|p denotes
the subterm of t at position p, and t[s]p denotes the result of replacing the subterm
t|p by the term s (see [32] for details). If p and q are positions, we write p ¹ q if p
is a prefix of q. p · q denotes the concatenation of positions p and q.

Let → be a binary relation on a set S. Then →∗ denotes the transitive and
reflexive closure of the relation →, and ↔∗ denotes the transitive, reflexive and
symmetric closure of →. → is called terminating if there are no infinite chains
e1 → e2 → e3 → · · ·. → is called confluent if for all e, e1, e2 ∈ S with e→∗ e1 and
e→∗ e2, there exists an element e3 ∈ S with e1 →

∗ e3 and e2 →
∗ e3.

Let P be a set of predicate symbols including the binary equality predicate =.
A literal p(t1, . . . , tn) consists of an n-ary predicate symbol applied to n argument
terms. An equation is a literal with = as predicate symbol. We use the infix notation
t1 = t2 for equations. A clause has the form

L0 :- L1, . . . , Ln.

(n ≥ 0), where L0, . . . , Ln are literals. It is called (conditional) equation if L0 is
an equation, and unconditional equation if L0 is an equation and n = 0.3 Since
unconditional equations l = r and conditional equations l = r :- C will be used only
from left to right, we call them (rewrite) rules, where l and r are the left- and right-
hand side, respectively. A clause is a variant of another clause if it is obtained by a
bijective replacement of variables by other variables. A functional logic program or
equational logic program is a finite set of clauses. In the following text, we assume
that P is a functional logic program.

2.1. A Sound and Complete E-Unification Method: Narrowing

If we have to evaluate a function applied to ground terms during unification in a
functional logic program, we can simply evaluate this function call as in functional
languages by applying appropriate rules to this call. For instance, the function call
append([],[2]) is evaluated by matching the left-hand side of the first rule for
append against this call (this binds variable L in the equation to [2]) and replacing
this function call by the instantiated right-hand side of the rule (i.e., [2]). This is
called a rewrite step. Generally, t →P s is a rewrite step if there exist a position
p, a rule l = r ∈ P ,4 and a substitution σ with t|p = σ(l) and s = t[σ(r)]p. In this

3The completeness of some particular operational semantics requires more conditions on condi-

tional equations like the absence of extra variables in conditions. We will discuss these restrictions

later.
4At the moment we consider only unconditional rules. The extension to conditional rules is

discussed in Section 2.4.
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case t is called reducible (at position p). The term t is irreducible or in normal
form if there is no term t′ with t →P t′. If the program P is known from the
context, we omit the index P in the rewrite arrow. For instance, the ground term
append([1,2],[3]) is evaluated to its normal form [1,2,3] by the following three
rewrite steps, provided that P contains the above rules defining append:

append([1,2],[3]) → [1|append([2],[3])]

→ [1,2|append([],[3])]

→ [1,2,3]

If there is a function call containing free variables in arguments, then it is generally
necessary to instantiate these variables to appropriate terms in order to apply a
rewrite step. This can be done by using unification instead of matching in the
rewrite step which is called narrowing [119]. Hence, in a narrowing step we unify
a (nonvariable) subterm of the goal with the left-hand side of a rule and then we
replace the instantiated subterm by the instantiated right-hand side of the rule. To
be precise, we say a term t is narrowable into a term t′ if:

1. p is a nonvariable position in t (i.e., t|p 6∈ X ).
2. l = r is a new variant5 of a rule from P .
3. The substitution σ is a mgu of t|p and l.
4. t′ = σ(t[r]p).

In this case, we write t ;[p,l=r,σ] t
′ or simply t ;[l=r,σ] t

′ or t ;σ t
′ if the position

or rule is clear from the context. If there is a narrowing sequence t0 ;σ1
t1 ;σ2

· · · ;σn
tn, we write t0 ;

∗
σ tn with σ = σn ◦ · · · ◦σ2 ◦σ1. Thus in order to solve the

equation append(L,[2])=[1,2], we apply the second append rule (instantiating L

to [E|R]) and then the first append rule (instantiating R to []):

append(L,[2])=[1,2] ;{L7→[E|R]} [E|append(R,[2])]=[1,2]

;{R7→[]} [E,2]=[1,2]

The final equation can be immediately proved by standard unification which in-
stantiates E to 1. Therefore, the computed solution is {L7→[1]}.6

Narrowing is a sound and complete method to solve equations w.r.t. a confluent
and terminating set of rules E. In order to state a precise proposition on soundness
and completeness, we call an equation s = t valid (w.r.t. an equation set E) if s↔∗

E t.
By Birkhoff’s completeness theorem, this is equivalent to the semantic validity of
s = t in all models of E. Therefore, we also write s =E t in this case. Now narrowing
is a sound and complete E-unification method in the sense of the following theorem.7

5Similarly to pure logic programming, rules with fresh variables must be used in a narrowing

step in order to ensure completeness.
6For the sake of readability, we omit the instantiation of clause variables in the substitutions

of concrete narrowing derivations.
7Although we have defined rewrite and narrowing steps only on terms, it is obvious how to

extend these definitions to literals and sequences of literals.
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Theorem 2.1 (Hullot [69]). Let E be a finite set of unconditional equations so that
→E is confluent and terminating.

1. (Soundness) If s = t ;
∗
σ s

′ = t′ and µ is a mgu for s′ and t′, then µ(σ(s)) =E

µ(σ(t)).
2. (Completeness) If σ′(s) =E σ′(t), then there exist a narrowing deriva-

tion s = t ;
∗
σ s′ = t′, a mgu µ for s′ and t′, and a substitution φ with

φ(µ(σ(x))) =E σ′(x) for all x ∈ Var(s) ∪ Var(t).

The first proposition states that each substitution computed by narrowing is a
unifier w.r.t. E, and the second proposition ensures that each unifier w.r.t. E is
covered by a more general computed substitution. This theorem justifies narrowing
as the basis to execute functional logic programs. The confluence requirement can
often be established by applying a Knuth/Bendix completion procedure to trans-
form a set of equations into a corresponding confluent one [77]. As an alternative
there exist syntactic restrictions which ensure confluence (orthogonal rules) [32]
(see also Section 2.3).

It is well known that the termination requirement for the completeness of nar-
rowing can be dropped if the class of substitutions is restricted. A substitution
σ is called normalized if σ(x) is in normal form for all x ∈ Dom(σ). If E is a
finite set of unconditional equations so that →E is confluent (and not necessarily
terminating), then narrowing is complete w.r.t. normalized substitutions (i.e., the
second proposition of Theorem 2.1 holds if σ′ is normalized).

The difficulty in a narrowing derivation is the application of a suitable rule at
an appropriate subterm in a goal. For instance, if we apply the first append rule to
the goal append(L,[2])=[1,2], we would obtain the new goal [2]=[1,2], which is
unsolvable. In general, there is no answer to this problem. In order to be complete
and to find all possible solutions, Theorem 2.1 implies that each rule must be applied
at each nonvariable subterm of the given goal. Hence using this simple narrowing
method to execute functional logic programs yields a huge search space and many
infinite paths even for simple programs. In order to use narrowing as a practical
operational semantics, further restrictions are necessary which will be discussed in
the following text.

An important restriction which has been known for a long time is basic narrowing
[69]. This means that a narrowing step is only performed at a subterm which is not
part of a substitution (introduced by previous unification operations), but belongs
to an original program clause or goal. Basic narrowing can be defined by managing
a set of basic positions. If

t0 ;[p1,l1→r1,σ1] t1 ;[p2,l2→r2,σ2] · · · ;[pn,ln→rn,σn] tn

is a narrowing derivation, then the sets B0, . . . , Bn of basic positions are inductively
defined by

B0 = {p | p position in t0 with t0|p 6∈ X},

Bi = (Bi−1\{p ∈ Bi−1 | pi ¹ p})

∪ {pi · p | p position in ri with ri|p 6∈ X}, i > 0.

The above sequence is a basic narrowing derivation if pi ∈ Bi−1 for i = 1, . . . , n.
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Example 2.1. Consider the following equation specifying a property of the reverse
function:

rev(rev(L)) = L.

Applying this rule to the literal rev(X)=X yields the infinite narrowing derivation

rev(X) = X ;{X7→rev(X1)} X1 = rev(X1)

;{X1 7→rev(X2)} rev(X2) = X2

; · · · .

However, the second narrowing step is not basic since the subterm rev(X1)

belongs to the substitution part introduced in the first step. In a basic narrowing
derivation it is not allowed to reduce this term. Hence the only basic narrowing
derivation of the same initial equation is

rev(X)=X ;{X7→rev(X1)} X1=rev(X1).

Since the last equation is not syntactically unifiable, there exists no solution to
the initial equation. This example shows that the restriction to basic positions
can reduce an infinite search space to a finite one.

Although the number of admissible narrowing positions is reduced and therefore
the search space is smaller compared to simple narrowing, basic narrowing is sound
and complete in the sense of Theorem 2.1. The important aspect of the basic
strategy is that searching for narrowing positions inside substitutions for program
variables is superfluous. All such positions must be present in the program, i.e., in
the initial term or in the right-hand sides of rules. As we will see in Section 3.2.1,
this is the key for an efficient compiler-based implementation of narrowing since
the basic narrowing positions can be computed at compile time.

It is interesting to note that basic narrowing can give a sufficient criterion for
the termination of all narrowing derivations:

Proposition 2.1 (Termination of narrowing [69]). Let E = {li = ri | i = 1, . . . , n} be
a finite set of unconditional equations so that →E is confluent and terminating.
If any basic narrowing derivation starting from any ri terminates, then all basic
narrowing derivations starting from any term are finite.

Therefore basic narrowing is a decision procedure for E-unification if the condi-
tions of the last proposition hold. In particular, this is the case when all right-hand
sides of the rules are variables as in Example 2.1.

The basic narrowing positions can be further restricted by also discarding those
narrowing positions which are strictly left of the position used in a narrowing step.
This strategy is called left-to-right basic narrowing and remains to be complete
(see [64] for details). The set of admissible basic narrowing derivations can also
be restricted by introducing redundancy tests like normalization properties of the
computed substitutions. Using a sophisticated set of such tests one can obtain a
narrowing procedure where each different narrowing derivation leads to different
computed solutions (LSE-narrowing [12]).
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2.2. Narrowing Strategies for Constructor-Based Programs

In order to implement a functional logic language based on basic narrowing we
have to manage the set of basic positions and we try to apply all rules at all basic
positions in each step. That yields a highly nondeterministic execution principle.
On the other hand, pure functional languages deterministically select the position
where rules are applied next (innermost position for eager languages and outermost
position for lazy languages). An approach to achieve a similar strategy for func-
tional logic languages is the partition of the set of function symbols into a set C of
constructors and a set D of defined functions. Constructors are used to build data
types, whereas defined functions operate on these data types. Constructor terms
(terms from T (C,X )) are always irreducible, whereas defined functions are defined
by rules. According to [41], we call a term innermost if it has the form f(t1, . . . , tn),
where f ∈ D and t1, . . . , tn ∈ T (C,X ). A functional logic program is constructor-
based if the left-hand side of each rule is an innermost term. In constructor-based
programs, rules like

append(append(L,M),N) = append(L,append(M,N)).

rev(rev(L)) = L.

are excluded. However, the requirement for constructor-based programs is not a
real restriction if we are interested in application programs rather than formulae
specifying abstract properties of functions. This is also confirmed by the fact that
this restriction on rules is also present in pure functional (and pure logic) program-
ming languages.

In constructor-based functional logic programs, we can solve equations by inner-
most narrowing [41], which means that the narrowing position must be an innermost
term. Innermost narrowing corresponds to eager evaluation (call-by-value) in func-
tional languages. Since innermost narrowing requires the evaluation of inner terms
even if it is not necessary to compute an E-unifier, the computed solutions are
sometimes too specific. Therefore, innermost narrowing is incomplete, in general
(in the sense of Theorem 2.1), as the following example shows.

Example 2.2. Consider the following rules where a is a constructor:

f(X) = a.

g(a) = a.

Since f is a constant function mapping all inputs to a, the identity substitution {}
is a solution of the equation f(g(X))=a. However, the only innermost narrowing
derivation is

f(g(X))=a ;{X7→a} f(a)=a ;{} a=a

i.e., innermost narrowing computes only the more specific solution {X 7→a}.

To formulate a completeness result, Fribourg [41] considered ground substitu-
tions, i.e., substitutions σ with σ(x) ground for all x ∈ Dom(σ). Unfortunately, this
is not sufficient for completeness even if the rules are confluent and terminating, be-
cause innermost narrowing has problems with partially defined functions. Fribourg
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presented various additional conditions to ensure completeness. The most impor-
tant one is: innermost narrowing is complete if all functions are totally defined, i.e.,
the only irreducible ground terms are constructor terms. The next example shows
the incompleteness of innermost narrowing in the presence of partial functions.

Example 2.3. Consider the following rules, where a and b are constructors:

f(a,Z) = a.

g(b) = b.

If we want to solve the equation f(X,g(X))=a, then there is the successful nar-
rowing derivation

f(X,g(X))=a ;{X7→a} a=a

by applying the first rule to the term f(X,g(X)), i.e., {X7→a} is a solution of
the initial equation. However, this derivation is not innermost, and the only
innermost narrowing derivation is not successful:

f(X,g(X))=a ;{X7→b} f(b,b)=a

Therefore, innermost narrowing cannot compute the solution.

If E is a finite set of constructor-based unconditional equations so that →E

is confluent and terminating and all functions are totally defined, then innermost
narrowing is complete w.r.t. ground substitutions (i.e., the second proposition of
Theorem 2.1 holds if σ′ is a ground substitution). The restriction to totally defined
functions is not so serious from a practical point of view. In practice, most functions
are totally defined, and irreducible innermost terms are usually considered as failure
situations. If one wants to deal with partially defined functions, it is also possible
to combine the innermost strategy with basic narrowing [66]. The idea of this
innermost basic narrowing strategy is to skip over calls to partially defined functions
by moving these calls to the substitution part. Due to the basic strategy, these calls
need not be activated in subsequent computation steps. For a precise description
we represent an equational literal in a goal by a skeleton and an environment part
[66, 103]: the skeleton is an equation composed of terms occurring in the original
program, and the environment is a substitution which has to be applied to the
equation in order to obtain the actual literal. The initial equation E is represented
by the pair 〈E; {}〉. If 〈E;σ〉 is a literal (E is the skeleton equation and σ is the
environment), then a derivation step in the innermost basic narrowing calculus is
one of the following two possibilities. Let p be an innermost position, i.e., E|p is
an innermost term:

Narrowing: Let l = r be a new variant of a rule such that σ(E|p) and l are unifiable
with mgu σ′. Then 〈E[r]p;σ

′ ◦σ〉 is the next literal derived by an innermost
basic narrowing step.

Innermost reflection: Let σ′ be the substitution {x7→σ(E|p)}, where x is a new
variable. Then 〈E[x]p;σ

′ ◦ σ〉 is the next literal derived by an innermost
reflection step (this corresponds to the elimination of an innermost redex
[66] and is called “null narrowing step” in [18]).
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Innermost basic narrowing is complete for a confluent and terminating constructor-
based set of rules [66]. For instance, a solution of the equation f(X,g(X))=a w.r.t.
the rules of Example 2.3 will be computed by an innermost reflection step followed
by an innermost basic narrowing step:

〈f(X,g(X))=a;{}〉 ; 〈f(X,Y)=a; {Y 7→g(X)}〉
; 〈a=a; {X 7→a, Y 7→g(a)}〉

In order to get rid of the various innermost positions in a derivation step, it
is possible to select exactly one innermost position for the next narrowing step
similarly to the selection function in SLD-resolution (selection narrowing [18]). For
instance, the operational semantics of the functional logic language ALF [53] is
based on innermost basic narrowing with a leftmost selection strategy. This has
the advantage that the position in the next derivation step is unique and can be
precomputed by the compiler (see Section 3.2.1).

Unfortunately, all these improvements of the simple narrowing method are not
better than SLD-resolution for logic programs since Bosco et al. [18] have shown
that leftmost innermost basic narrowing is equivalent to SLD-resolution with the
leftmost selection rule if we translate functional logic programs into pure logic pro-
grams by a flattening transformation (see also Section 3.1). Therefore, we need
more sophisticated narrowing methods in order to obtain a real advantage of the
integration of functions into logic programming. Fortunately, there are two essential
improvements to eliminate unnecessary narrowing derivations. First of all, inner-
most narrowing strategies have the disadvantage that they continue computations
at inner positions of an equation even if the outermost symbols are not unifiable.
Therefore, they are too weak in practice.

Example 2.4. Consider the following rules that define the addition on natural
numbers which are constructed by 0 and s:

0 + N = N.

s(M) + N = s(M+N).

Then there is the following infinite innermost narrowing derivation of the equa-
tion X+Y=0:

X+Y=0 ;{X7→s(X1)} s(X1+Y)=0 ;{X1 7→s(X2)} s(s(X2+Y))=0 ; · · ·

This derivation can be avoided if we check the outermost constructors of both
sides of the derived equation: after the first narrowing step, the equation has
the outermost symbols s and 0 at the left- and right-hand side, respectively.
Since these symbols are different constructors, the equation can never be solved.
Hence we could stop the derivation at that point.

The rejection rule motivated by this example is generally defined as follows:

Rejection: If the equation s = t should be solved and there is a position p in s

and t such that Head(s|p) 6= Head(t|p) and Head(s|p′),Head(t|p′) ∈ C for
all prefix positions p′ ¹ p, then the equation is rejected, i.e., the narrowing
derivation immediately fails.
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Example 2.4 shows that the application of the rejection rule after each narrowing
step is a useful optimization to reduce the search space of all narrowing derivations.

The rejection rule terminates a superfluous narrowing derivation if there are
different constructors at the same outer position.8 However, if there are defined
function symbols around these constructors, the equation cannot be rejected since
the defined functions may evaluate to the same term. Therefore, it is important
to evaluate functions as soon as possible in order to apply the rejection rule and
to eliminate useless derivations. For instance, consider the rules for addition of
Example 2.4 together with the following rules defining a sum function on naturals:

sum(0) = 0.

sum(s(N)) = s(N) + sum(N).

Then innermost narrowing applied to the equation sum(X)=s(0) has an infinite
search space due to the following infinite narrowing derivation:

sum(X) = s(0) ;X7→s(N1) s(N1)+sum(N1) = s(0)

;N1 7→s(N2) s(s(N2))+(s(N2)+sum(N2)) = s(0)

;N2 7→s(N3) · · ·

The rejection rule cannot be applied since the head symbol of the left-hand side
of the derived equations is always the defined function +. The situation can be
improved if we evaluate the function call to + as soon as possible. That is, if the
first argument to + is a term headed by the constructor 0 or s, we can rewrite this
function call using the corresponding rule for +. Since rewriting does not bind free
variables but replace terms by semantically equal terms, it is a solution preserving
transformation. Moreover, repeated application of rewrite steps terminates due to
the requirement for a terminating set of rewrite rules. Therefore, it is reasonable
to rewrite both sides of the equation to normal form between narrowing steps.
Such a narrowing method is called normalizing narrowing [40]. For instance, if we
rewrite the second derived equation in the previous example to normal form, we
can immediately terminate the narrowing derivation:

s(s(N2))+(s(N2)+sum(N2))=s(0) →∗ s(s(N2+(s(N2+sum(N2)))))=s(0)

The last equation is rejected since the first subterms of the left- and right-hand side
are headed by the different constructors s and 0.

Normalizing narrowing yields more determinism in narrowing derivations. Since
the rules are required to be confluent and terminating, normal forms are unique
and can be computed by any rewriting strategy. Therefore, rewriting can be im-
plemented as a deterministic computation process like reductions in functional lan-
guages, whereas narrowing needs a nondeterministic implementation as in logic
languages, i.e., normalizing narrowing unifies the operational principles of func-
tional and logic programming languages in a natural way [35, 36].

The computation of the normal form before a narrowing step implements a
strategy where we compute in a deterministic way as long as possible. This may

8[37] describes an extension of the rejection rule where the requirement for different constructors

is weakened to incomparable function symbols.
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reduce the search space since there are less and shorter normalizing narrowing
derivations compared to simple narrowing.

Example 2.5. Consider the following rules for multiplication:

X * 0 = 0.

0 * X = 0.

Then there are two narrowing derivations of the equation 0*N=0:

0*N = 0 ;[X*0=0,{X7→0,N7→0}] 0 = 0,

0*N = 0 ;[0*X=0,{X7→N}] 0 = 0,

but there is only one normalizing narrowing derivation since the left-hand side
can immediately be rewritten to 0 using the second rule:

0*N = 0 → 0 = 0

Thus the preference of deterministic computations can save a lot of time and
space (see [55, 78] for benchmarks). If t is a large term, then normalizing narrowing
immediately deletes t in the term 0*t by rewriting with the first rule, whereas
an innermost narrowing strategy would evaluate this term by costly narrowing
steps. The deletion of complete subterms has no correspondence in the equivalent
logic programs. Hence normalizing narrowing is superior to SLD-resolution. This
is due to the fact that rewriting operates on the term structure which is lost if
functional logic programs are transformed into pure logic programs by flattening (cf.
Section 3.1). The following example [41] shows the difference between normalizing
narrowing and SLD-resolution.

Example 2.6. Consider the standard rules for the function append (cf. Section 1).
Then the equation

append(append([0|V],W),Y) = [1|Z]

is rewritten to its normal form

[0|append(append(V,W),Y)] = [1|Z]

using the rules for append. This equation is immediately rejected since 0 and 1

are different constructors. The equivalent Prolog program

append([],L,L).

append([E|R],L,[E|RL]) :- append(R,L,RL).

?- append([0|V],W,L), append(L,Y,[1|Z])

causes an infinite loop for any order of literals and clauses [101].

The idea of normalizing narrowing can also be combined with the previously
discussed improvements of simple narrowing. Fribourg has shown that normalizing
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innermost narrowing is complete under the same requirements of innermost narrow-
ing [41]. Normalizing basic narrowing is discussed in [103, 110], and Hölldobler has
shown completeness of innermost basic narrowing with normalization [66]. Normal-
ization can be integrated into innermost basic narrowing derivations by applying,
first of all, the following rule as long as possible to the literal 〈E;σ〉 consisting
of the skeleton equation and the current substitution (note that the nondetermin-
ism in this rule is don’t care, i.e., it is sufficient to select nondeterministically one
alternative and disregard all other possibilities):

Rewriting: Select a nonvariable position p in E and a new variant l = r of a rule
such that σ′ is a substitution with σ(E|p) = σ′(l). Then 〈E[σ′(r)]p ; σ〉 is
the next goal derived by rewriting.

Innermost basic narrowing with normalization is superior to SLD-resolution since
SLD-resolution is equivalent to innermost basic narrowing [18], but the normaliza-
tion process may reduce the search space. In fact, it can be shown that any logic
program can be transformed into a functional logic program so that the transformed
program has at least the same efficiency as the original logic program but is more
efficient in many cases [56]. Hence, one of the main motivations of integrating func-
tions into logic programming has been achieved by the innermost basic narrowing
strategy with normalization.

The normalization process between narrowing steps reduces the search space
and prefers deterministic computations, but it also has one disadvantage. Since
the whole goal must be reduced to normal form after each narrowing step, the
normalization process may be costly. However, a careful analysis of this process
shows that rewrite steps are only applicable at a few positions after a narrowing
step: since the goal is in normal form before the narrowing step is applied and the
narrowing step changes only small parts of the goal, rewrite steps can be restricted
to a small number of positions in the narrowed goal in order to compute a new
normal form. In particular, rewrite steps could only be applied to the replaced
subterm (instantiated right-hand side of the applied equation) and to function calls
in the goal where an argument variable has been instantiated by the narrowing step.
Thus it is sufficient to start the normalization process at these positions, proceed
from innermost to outermost positions, and immediately stop if no rewrite step can
be performed at a position (since the outer part of the goal is already in normal
form). A more detailed description of this incremental rewrite algorithm can be
found in [57]. A further possibility to avoid rewrite attempts is the restriction of the
set of rewrite rules. For instance, SLOG [41] does not use conditional equations (cf.
Section 2.4) for normalization in order to avoid a recursive normalization process in
conditions. Such a restriction does not influence the soundness and completeness
of the operational semantics, but may increase the number of nondeterministic
computations steps.

2.3. Lazy Narrowing Strategies

The narrowing strategies discussed so far correspond to eager evaluation strate-
gies in functional programming. However, many modern functional languages like
Haskell [67] or Miranda [127] are based on lazy evaluation principles (see [68] for a
discussion on the advantages of lazy evaluation). A lazy strategy delays the eval-
uation of function arguments until their values are definitely needed to compute
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the result of the function call. Hence, lazy evaluation avoids unnecessary compu-
tations and allows us to deal with infinite data structures. For instance, consider
the function first(N,L), which computes the first N elements of a given list L:

first(0,L) = [].

first(s(N),[E|L]) = [E|first(N,L)].

If we want to evaluate the function call first(0,t), a lazy strategy does not eval-
uate t since it is not necessary in order to compute the result []. This may avoid
a lot of superfluous computations if the evaluation of t is expensive. Now consider
the function from(N), which computes the infinite list of naturals starting from N:

from(N) = [N|from(s(N))].

Then lazy evaluation of the function call first(s(s(0)),from(0)) yields the re-
sult [0,s(0)], whereas an eager evaluation of the same function call would not
terminate.

In order to apply the idea of lazy evaluation to functional logic languages, there
is another class of narrowing strategies that are motivated by this lazy functional
programming point of view. A corresponding lazy strategy for narrowing is out-
ermost narrowing, where the next narrowing position must be an outermost one.
Unfortunately, this strategy is incomplete as the following example shows [38].

Example 2.7. Consider the following rules defining a function f:

f(0,0) = 0.

f(s(X),0) = 1.

f(X,s(Y)) = 2.

We want to compute solutions of the equation f(f(I,J),K)=0. There is the
following innermost narrowing derivation:

f(f(I,J),K)=0 ;{I7→0,J7→0} f(0,K)=0 ;{K7→0} 0=0

Therefore, {I7→0, J 7→0, K 7→0} is a solution of the initial equation. Although
the rewrite rules are confluent and terminating, there is only one outermost
narrowing derivation using the last rule:

f(f(I,J),K)=0 ;{K7→s(Y)} 2=0

Thus outermost narrowing cannot compute the above solution.

Echahed [38, 39] and Padawitz [105] have formulated strong restrictions to en-
sure the completeness of such outermost strategies.9 In addition to confluence and
termination of the rules, complete narrowing strategies must satisfy a uniformity
condition. Uniformity means that the position selected by the narrowing strategy
is a valid narrowing position for all substitutions in normal form applied to it. The
outermost strategy is, in general, not uniform since in the last example the top

9To be more precise, they have investigated conditions for the completeness of any narrowing

strategy. However, their most interesting applications are outermost strategies.
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position of the term f(f(I,J),K) is not a valid narrowing position if we apply
the substitution {K7→0} to this term. Echahed [38] has proposed a more construc-
tive condition for the completeness of narrowing strategies: all functions must be
totally defined and the left-hand sides of all rules must be pairwise not strictly
subunifiable. The latter condition means that two subterms at the same position
of two left-hand sides are not unifiable by a nontrivial mgu (see [38] for details).
For instance, f(0,0) and f(s(X),0) are not strictly subunifiable (the mgu of the
second arguments 0 and 0 is trivial), but f(0,0) and f(X,s(Y)) are strictly sub-
unifiable since the mgu of the first arguments is the nontrivial substitution {X 7→0}.
Since the requirement for not strictly subunifiable left-hand sides is not satisfied by
many functional logic programs, [38] also contains a method to transform a pro-
gram where all functions are totally defined over the constructors into a program
satisfying Echahed’s conditions.

As mentioned above, lazy evaluation strategies should also support the use of
infinite data structures. Since the presence of infinite data structures violates the
termination requirement on the rewrite relation, narrowing strategies for terminat-
ing programs like outermost narrowing are not sufficient. Hence there are various
proposals for lazy narrowing strategies which do not require the termination of the
rewrite relation [27, 47, 95, 109]. Lazy narrowing differs from outermost narrow-
ing in the fact that lazy narrowing permits narrowing steps at inner positions if
the value at this position is needed in order to apply a narrowing rule at an outer
position. For instance, if we want to solve the equation f(f(I,J),K)=0 w.r.t. the
rules of Example 2.7, we cannot apply the first rule f(0,0)=0 at the root position
of the left-hand side unless the first argument f(I,J) is evaluated to 0. Since the
value of the subterm f(I,J) is needed in order to decide the applicability of the
first rule, lazy narrowing permits a narrowing step at the inner position. Hence a
possible lazy narrowing derivation is

f(f(I,J),K)=0 ;{I7→0,J7→0} f(0,K)=0 ;{K7→0} 0=0 ,

which is also an innermost narrowing derivation. However, in general, an inner
narrowing step is allowed only if it is demanded and contributes to some later nar-
rowing step at an outer position (see [97] for an exact definition of a lazy narrowing
redex).

In narrowing derivations, rules are always applied only in one direction. Hence
the confluence of the associated rewrite relation is essential in order to ensure com-
pleteness. Since confluence is undecidable and cannot be achieved by completion
techniques [77] if the rewrite relation is not terminating, functional logic languages
with a lazy operational semantics have the following strong restrictions on the rules
in order to ensure completeness [27, 47, 97]:

1. Constructor-based: The functional logic program is constructor-based.
2. Left-linearity: The functional logic program is left-linear, i.e., no variable

appears more than once in the left-hand side of any rule.
3. Free variables: If l = r is a rule, then Var(r) ⊆ Var(l).
4. Nonambiguity: If l1 = r1 and l2 = r2 are two different rules, then l1 and l2 are

not unifiable. Sometimes [97] this condition is relaxed to the requirement: if
l1 and l2 are unifiable with mgu σ, then σ(r1) and σ(r2) are identical (weak
nonambiguity).
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The nonambiguity condition ensures that normal forms are unique if they exist,
i.e., functions are uniquely defined. The strong nonambiguity condition excludes
rules like in Example 2.5, whereas the weak nonambiguity condition excludes rules
like

0 + N = N.

s(0) + N = s(N).

s(M) + N = s(M+N).

Due to the presence of nonterminating functions, completeness results for lazy
narrowing are stated w.r.t. a domain-based declarative semantics of functional logic
programs. For instance, consider the function defined by the single rule

f(X) = f(X).

A lazy narrowing derivation of the equation f(0)=f(0) does not terminate, and
hence lazy narrowing would be incomplete w.r.t. the standard interpretation of
equality. Therefore, some authors exclude defined functions in the right-hand side
of goal equations [104] or include a decomposition rule [66], but most completeness
results are established w.r.t. strict equality, i.e., the equality holds only if both
sides are reducible to the same ground constructor term. As a consequence, strict
equality does not have the reflexivity property t = t for all terms t. In order to
assign a denotation to terms like f(0), the Herbrand universe is augmented with
the constant ⊥ representing undefined values, and then completed into a complete
partial order (see [47, 97] for more details).

Since a lazy narrowing derivation requires a narrowing step at an inner position if
the value is demanded at that position, it may be the case that values are demanded
at different inner positions by different rules. For instance, consider again the
rules of Example 2.7 and the given equation f(f(I,J),K)=0. If we try to apply
the rule f(0,0)=0 to solve this literal, then the value of the subterm f(I,J) is
demanded, but it is not demanded if the rule f(X,s(Y))=2 is applied. Hence
a sequential implementation of lazy narrowing has to manage choice points for
different narrowing positions as well as choice points for different rules. In order
to simplify such an implementation and to avoid backtracking due to different
narrowing positions, it is desirable to transform functional logic programs into
a corresponding uniform program [95] which has the property that all rules are
flat (i.e., each argument term of the left-hand side is a variable or a constructor
applied to some variables) and pairwise not strictly subunifiable (cf. outermost
narrowing). The implementation of the functional logic language BABEL proposed
in [95] transforms the rules of Example 2.7 into the uniform program

f(X,0) = g(X).

f(X,s(Y)) = 2.

g(0) = 0.

g(s(X)) = 1.

where g is a new function symbol. Now it is clear that the evaluation of a function
call of the form f(t1,t2) always demands the value of the second argument t2.

In a sequential implementation of lazy narrowing using backtracking, problems
may arise if the evaluation of a demanded argument yields infinitely many solutions.
For instance, consider the rules [52]
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one(0) = s(0).

one(s(N)) = one(N).

that define the constant function one. Then there are infinitely many narrow-
ing derivations of one(X) to the constructor term s(0) with the bindings {X 7→0},
{X 7→s(0)}, {X 7→s(s(0))}, and so on. As a consequence, a sequential lazy narrow-
ing derivation of the equation one(one(X))=s(0) does not yield any result since the
application of the first rule one(0)=s(0) requires the evaluation of the argument
term one(X) to 0. Since there are infinitely many evaluations of one(X) with result
s(0), the second rule is never tried. On the other hand, a sequential innermost
narrowing implementation would compute the bindings enumerated above. This
problem of a sequential implementation of lazy narrowing could be solved by a
mixed evaluation strategy which combines lazy narrowing with innermost narrow-
ing for demanded arguments. The value of the argument one(X) is demanded in
the function call one(one(X)) for all rules. Therefore, it is evaluated before any
rule is selected. After this evaluation, the second rule is applied due to the result
s(0) (see [52] for more details).

The previous examples show that a lazy narrowing strategy is more difficult to
define than a lazy reduction strategy for the evaluation of pure functional pro-
grams. This is due to the fact that we have to choose the position as well as
the applied equation in a lazy narrowing step. In contrast to reduction, applying
different equations at a particular position may yield different solutions. Further-
more, the attempt to apply different equations may require different arguments to
be evaluated. As a consequence, a simple lazy narrowing strategy runs the risk of
performing unnecessary computations. The following example should explain this
subtle point.

Example 2.8. Consider the following rules for comparing and adding natural num-
bers:

0 ≤ N = true. 0 + N = N.

s(M) ≤ 0 = false. s(M) + N = s(M+N).

s(M) ≤ s(N) = M ≤ N.

We want to solve the equation X≤X+Y = B by lazy narrowing. A first solution could
be computed by applying the first rule for ≤ without evaluating the subterm X+Y:

X≤X+Y = B ;{X7→0} true = B

Thus {X 7→0, B 7→true} is a solution of the initial equation. To compute a further
solution, we attempt to apply the second or third rule for ≤, but in both cases
it is necessary to evaluate the subterm X+Y. If we choose the rule 0+N=N for the
latter evaluation, we obtain the lazy narrowing derivation

X≤X+Y = B ;{X7→0} 0≤Y = B ;{} true = B .

In the second narrowing step, only the first rule for ≤ is applicable. The com-
puted solution {X 7→0, B 7→true} is identical to the previous one, but the latter
derivation contains a superfluous step: to compute this solution, it is not neces-
sary to evaluate the subterm X+Y.
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To avoid such unnecessary narrowing steps, it is possible to change the order
of instantiating variables and applying rules: to evaluate a term of the form X≤t
w.r.t. the previous example, at first we instantiate the variable X either to 0 or to
s( ), and then we decide whether it is necessary to evaluate the subterm t. The
right instantiations of the variables and the choice of the appropriate rules can be
determined by the patterns of the left-hand sides of the rules (see [7, 87] for more
details). This strategy is called needed narrowing and is defined for so-called induc-
tively sequential programs [7]. The optimality of needed narrowing w.r.t. the length
of the narrowing derivations and the independence of computed solutions is shown
in [7]. Another approach to avoid unnecessary computations in lazy narrowing
derivations by using a sophisticated analysis of demanded arguments is presented
in [96].

There are also other lazy evaluation strategies for functional logic programs
which are slightly different from lazy narrowing presented so far. You [132] defined
outer narrowing derivations which have the property that no later narrowing step
at an outer position can be performed earlier in the derivation. Some lazy nar-
rowing strategies generate outer narrowing derivations, but not vice versa, since
outer narrowing is able to deal with partial functions which are not reducible to
constructor terms. However, outer narrowing has the disadvantage that its defi-
nition refers to entire narrowing derivation, whereas lazy narrowing steps have a
locally oriented definition. Therefore, outer narrowing requires a more complicated
implementation.

The implementation of the functional logic language K-LEAF [47] is based on
a translation into pure logic programs by flattening nested expressions (cf. Sec-
tion 3.1). However, the flattened programs are not executed by Prolog’s left-to-right
resolution strategy, but by the outermost resolution strategy. This strategy selects
a literal f(t) =x for resolution only if the value of the result variable x is needed.
It is related to lazy narrowing in the sense of the correspondence of narrowing
derivations and resolution derivations [18].

One motivation for the integration of functions into logic programs is the op-
portunity to avoid nondeterministic computation steps during program execution
in order to reduce the search space. In Section 2.2, we saw that this is possible
w.r.t. eager narrowing strategies by the inclusion of a deterministic normalization
process between narrowing steps. It is also possible to exploit the deterministic
nature of functions in lazy narrowing derivations [88]: If a narrowing step in a lazy
derivation is applied to a literal L and no variables from L are bound in this step,
then all alternative rules can be discarded for this step due to the nonambiguity
requirement of the rules. That is, in a sequential implementation the choice point
for the alternative rules can be deleted. This determinism optimization may save
space and time since some redundant narrowing steps are omitted. It should be
noted that this optimization is a safe replacement of the Prolog “cut” operator
because alternative clauses are discarded only if no solutions are lost. Since this is
decided at run time, it is also called dynamic cut [88].

Since lazy narrowing avoids many unnecessary computations due to its outer-
most behavior, one could have the impression that the inclusion of a normalization
process as in innermost narrowing has no essential influence on the search space,
especially if the determinism optimization is carried out. However, normalization
can avoid the creation of useless choice points in sequential implementations and
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reduce the search space for particular classes of programs as the following example
shows.

Example 2.9. Consider the rules for the Boolean functions even and or (0, s,
false, and true are constructors):

false or B = B.

B or false = B. even(0) = true.

true or B = true. even(s(s(N))) = even(N).

B or true = true.

If we want to apply a lazy narrowing step to solve the equation

even(X) or true = true

we have to evaluate the subterm even(X) in order to decide the applicability of
the first or rule. Unfortunately, there are infinitely many narrowing derivations
of even(X) to the constructor true with the bindings {X 7→0}, {X7→s(s(0))},. . . .
Therefore, the search space of all possible lazy narrowing derivations is infinite.
Moreover, a sequential implementation does not yield any result since the sub-
sequent or rules are never tried. However, if we normalize the equation be-
fore applying any narrowing step, we would transform the initial equation into
true=true, which is trivially satisfied. Thus the infinite search space would be
reduced to a finite one.

Normalization between lazy narrowing steps is even more useful if inductive
consequences are used. An inductive consequence is an equation which is valid in
the least model of the program. For instance, the equation N+0=N is an inductive
consequence w.r.t. Example 2.4, but it is not a logical consequence of the rules for
addition. It has been shown that the application of inductive consequences is useful
in normalizing innermost [41] and normalizing basic [103] narrowing derivations.
If inductive consequences are applied, computed solutions are valid in the least
model of the program (which is usually the intended model). Proposals to include
normalization with inductive consequences into lazy evaluation strategies can be
found in [33, 59]. The following example demonstrates the search space reduction
using normalization with inductive consequences even for strongly nonambiguous
rules:

Example 2.10. Consider the following rules for addition and multiplication on
natural numbers:

0 + N = N. 0 * N = 0.

s(M) + N = s(M+N). s(M) * N = N+(M*N).

Then there is the following lazy narrowing derivation of the equation X*Y=s(0):

X*Y=s(0) ;[s(M)*N=N+(M*N),{X7→s(M)}] Y+(M*Y)=s(0)

;[0+N=N,{Y7→0}] M*0=s(0)
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The normalization of the last equation M*0=s(0) with the inductive consequence
X*0=0 yields the simplified equation 0=s(0), which is immediately rejected.10

Due to the termination of this lazy narrowing derivation, the entire search space
for this equation is finite. On the other hand, lazy narrowing without normaliza-
tion or normalizing innermost narrowing with the same inductive consequence
have infinite search spaces.

The last example shows the advantage of lazy narrowing with normalization.
However, such strategies have been studied only for terminating rewrite rules [33,
59].

2.4. Conditional Equations

In the previous section, we discussed narrowing strategies to solve equations pro-
vided that functions are defined by unconditional equations. However, in many
cases it is necessary or useful to define functions by conditional equations as the
following definition of the maximum function shows:

max(X,Y) = X :- X >= Y.

max(X,Y) = Y :- X =< Y.

The declarative meaning of such conditional equations is inherited from standard
logic programming: the equation must hold for each assignment that satisfies the
conditions. To use conditional equations for term rewriting, various rewrite rela-
tions have been proposed. The most popular relation is based on the requirement
that a conditional equation can be applied only if all equations in the condition
part have a rewrite proof [75]. Hence, the rewrite relation in the presence of condi-
tional equations is defined as follows. Let l = r :- t1 = t

′
1, . . . , tn = t

′
n be a conditional

equation,11 t a term, and p a position in t. If there are a substitution σ with
t|p = σ(l) and terms u1, . . . , un with ti →

∗ ui and t′i →
∗ ui for i = 1, . . . , n, then

t→ t[σ(r)]p. Note that this definition of conditional rewriting is recursive. Hence,
the rewrite relation is undecidable for arbitrary conditional equations [75]. In order
to obtain a decidable rewrite relation, it is often required that for all substitutions
σ the terms σ(ti), σ(t

′
i) in the condition must be smaller than the left-hand side

σ(l) w.r.t. a termination ordering [76] (see [32] for more references). If this is the
case for all conditional equations, the program is called decreasing (other notions
are fair or simplifying [76]).

If conditional equations are applied in narrowing derivations, it is also necessary
to prove the conditions by narrowing rather than rewriting. Kaplan [76] and Huss-
mann [70] proposed narrowing calculi for conditional equations which have been
adopted by many other researchers. The idea is to extend narrowing derivations to
lists or multisets of equations and to add the equations in the condition part to the
current equation list if the conditional equation is applied in a narrowing step:

10The addition of the inductive consequence X*0=0 to the program rules is not reasonable since

this would increase the search space, in general.
11For the sake of simplicity we consider only equations in the condition part; the extension to

predicates in conditions is straightforward by representing predicates as Boolean functions.
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Conditional narrowing: Let G be a given goal (list of equations), p be a position
in G with G|p 6∈ X , and l = r :- C be a new variant of a conditional equation
such that σ(G|p) and l are unifiable with mgu σ. Then σ(C,G[r]p) is the
next goal derived by conditional narrowing, i.e.,

G ;[p,l=r:-C,σ] σ(C,G[r]p)

is a conditional narrowing step (C,G denotes the concatenation of the equa-
tion lists C and G).

A derivation in the conditional narrowing calculus successfully stops if there exists
a mgu for all equations in the derived goal. Consider the standard rules for the
function append (cf. Section 1) and the following conditional equation defining the
function last:

last(L) = E :- append(R,[E]) = L.

A solution to the equation last(L)=2 can be computed by the following derivation
in the conditional narrowing calculus:

last(L)=2 ;{} append(R,[E])=L, E=2 ;{R7→[]} [E]=L, E=2

The final equation list is unifiable with mgu {E7→2, L 7→[2]}, which is a solution of
the initial equation. Instead of computing the mgu for all equations in one step,
we could successively eliminate each equation by a reflection step which is more
appropriate in efficient implementations of functional logic languages. In this case,
a narrowing derivation successfully stops if the list of equations is empty.

Reflection: If E1, . . . , En is a given list of equations, E1 = s=t, and there is a
mgu σ for s and t, then σ(E2, . . . , En) is the next goal derived by reflection,
i.e.,

E1, . . . , En ;σ σ(E2, . . . , En)

is a step in the conditional narrowing calculus.

Similarly to the unconditional case, Hussmann [70] claimed soundness and com-
pleteness of the conditional narrowing calculus w.r.t. normalized substitutions if
the associated term rewrite relation is confluent. However, conditional narrowing is
much more complicated than unconditional narrowing since the proof of the equa-
tions in the condition part of a conditional equation requires a recursive narrowing
process. Actually, subsequent work has shown that the use of conditional equations
is more subtle, even if the term rewriting relation is confluent and terminating. One
difficult problem is extra variables in conditions, i.e., variables in a condition which
do not occur in the left-hand side of the conditional equation. Solving conditions
with extra variables requires, in some cases, the computation of nonnormalized
substitutions. Therefore, Hussmann’s results do not hold in full generality.

Example 2.11. Consider the following set of clauses [48]:

a = b.

a = c.

b = c :- g(X,c) = g(b,X).
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It is easy to check that the associated rewrite relation is confluent and terminat-
ing. The equation b=c is valid w.r.t. these clauses (there exists a rewrite proof
using the last clause and instantiating the extra variable X to a), but the only
derivation in the conditional narrowing calculus is not successful:

b=c ;{} g(X,c)=g(b,X), c=c

;{} g(Y,c)=g(b,Y), g(X,c)=g(c,X), c=c

;{} · · ·

The condition g(X,c)=g(b,X) could be proved if the variable X were instanti-
ated to the reducible term a, but the narrowing calculus does not support such
instantiations.

The conditional narrowing calculus is complete if it is unnecessary to instantiate
extra variables to reducible terms. A simple requirement to achieve this property
is to forbid extra variables in conditions [66]. Hence, conditional narrowing is com-
plete w.r.t. normalized substitutions if the set of conditional equations is confluent
and does not contain extra variables. Conditional narrowing is complete for arbi-
trary substitutions if the set of conditional equations is confluent and terminating
and does not contain extra variables [76].12 If one wants to use extra variables in
conditions, there are stronger criteria to ensure completeness (e.g., level-confluence
[48], decreasing rules [34], or restricting the instantiation of extra variables to irre-
ducible terms [107]), or it may be possible to transform the program into an equiv-
alent one for which conditional narrowing is complete (e.g., Bertling and Ganzinger
[11] proposed such a method).

Hölldobler [66] adapted the eager narrowing strategies for constructor-based pro-
grams (cf. Section 2.2) to conditional equations without extra variables. In particu-
lar, he showed completeness of conditional innermost basic narrowing with normal-
ization in the presence of confluence and termination. However, he missed another
problem of conditional equations which has been pointed out by Middeldorp and
Hamoen [94]: the termination of the rewrite relation does not imply the termina-
tion of the entire rewrite process due to the recursive structure of rewrite proofs in
the conditional case.

Example 2.12. Consider the following conditional equations:

even(X) = true :- odd(X) = false.

odd(X) = false :- even(X) = true.

The associated rewrite relation is terminating since at most one rewrite step
can be performed to evaluate a term headed by even or odd. However, the
conditional rewrite process, which has to check the validity of conditions, would
loop due to the recursion in the conditions.

The difference between termination of the rewrite relation and termination of the
conditional rewrite process raises no problems for simple narrowing, but it makes
basic conditional narrowing incomplete as the next example shows.

12Kaplan was the first to prove this result for decreasing rules, but it holds also for nonde-

creasing conditional equations.
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Example 2.13. Consider the following conditional equations [94]:

f(X) = a :- X = b, X = c.

d = b.

d = c.

b = c :- f(d) = a.

The associated rewrite relation is confluent and terminating. The equation
f(d)=a is provable in the simple conditional narrowing calculus:

f(d)=a ;{} a=a, d=b, d=c

;{} a=a, b=b, d=c

;{} a=a, b=b, c=c

However, this derivation is not basic since the term d, which belongs to the
substitution part after the first narrowing step, is reduced in the second and
third narrowing step. In fact, it can be easily shown that there is no successful
basic conditional narrowing derivation starting from the initial equation, i.e.,
basic conditional narrowing is incomplete even in the presence of confluence and
termination.

In order to ensure completeness for the important basic restriction of condi-
tional narrowing, the additional requirement for decreasing conditional equations
(see above) is sufficient, i.e., in each conditional equation the condition terms must
be smaller than the left-hand side w.r.t. some termination ordering. This require-
ment excludes extra variables in conditions, but it is also used in tools for checking
confluence of conditional equations to ensure the decidability of the rewrite relation
[45] (although the confluence of decreasing conditional equations is only semide-
cidable [32]). Nevertheless, extra variables can often be included in decreasing
conditional equations by generalizing the latter notion to quasi-reductive equations
[11] or by restricting the instantiation of extra variables to irreducible terms in the
definition of decreasing rules [107]. A good survey on the completeness results of
(basic) conditional narrowing w.r.t. different classes of equational logic programs
can be found in [94].

The discussion on the completeness problems w.r.t. conditional equations may
give the impression that functional logic languages are less powerful than logic lan-
guages due to the restrictions on extra variables in conditions and decreasing equa-
tions. However, these restrictions are necessary only if one wants to use the full
power of functional logic languages by specifying functions by overlapping equa-
tions. On the other hand, this case rarely occurs, since functional programmers
often write programs with (weakly) nonambiguous equations. This is also required
in functional logic languages with a lazy operational semantics (cf. Section 2.3).
For instance, the functional logic language BABEL [97] allows extra variables in
conditions, i.e., each rule l = r :- C must satisfy only the weak variable condition
Var(r) ⊆ Var(l) in addition to the usual constructor-based and left-linearity con-
ditions (cf. Section 2.3). Moreover, weak nonambiguity is ensured by one of the
following requirements on each pair of equations l1 = r1 :- C1 and l2 = r2 :- C2:

1. l1 and l2 do not unify.
2. σ is a most general unifier of l1 and l2 and σ(r1) = σ(r2).
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3. σ is a most general unifier of l1 and l2, and σ(C1) and σ(C2) are together
unsatisfiable (see [97] for a computable approximation of the latter condi-
tion).

Note that there are no further restrictions like decreasing equations. Therefore, it
is obvious that pure logic programming is a subset of BABEL since each relational
clause L :- L1, . . . , Lk can be translated into the rule

L = true :- L1 = true, . . . , Lk = true

by representing predicates as Boolean functions. The latter conditional equations
always satisfy condition 2 of BABEL’s nonambiguity conditions. In this case, BA-
BEL’s operational semantics (lazy narrowing) corresponds to SLD-resolution, but
with the additional feature of exploiting determinism by the dynamic cut [88] (cf.
Section 2.3).

2.5. Incomplete Evaluation Principles

Although the narrowing principle is a sound and complete execution principle for
functional logic programs which is more efficient than resolution for pure logic
programs (provided that an appropriate narrowing strategy is chosen), it has one
disadvantage in comparison to functional programming: if some argument value of
a function call to be evaluated is not known, then a value must be guessed in a
nondeterministic way. In order to avoid this nondeterminism in functional compu-
tations, several researchers have proposed reduction of functional expressions only
if the arguments are sufficiently instantiated [3, 14, 102, 123]. They propose the
evaluation of functions only if it is possible in a deterministic way, and all nonde-
terminism should be represented by predicates. In this case the basic operational
semantics is SLD-resolution for predicates [83] with an extended unification pro-
cedure such that a function call in a term is evaluated before unifying this term
with another term. For instance, consider the following definition of the predicate
square which relates a number with its square value:

square(X, X*X).

If a solution of the literal square(3,Z) is computed, this literal must be unified with
the literal of the square definition. Hence, 3 is unified with X in the first step. Thus
X is bound to 3. Then Z is unified with 3*3 (the instantiated second argument).
Since the second term is a function call, it is evaluated to 9 and, therefore, Z is
bound to 9, which is the solution to this goal.

The important restriction in this modified unification process is that a function
call is evaluated only if it does not contain a variable, i.e., if the function call is
evaluable to a unique ground value.13 Therefore, the precise definition of functions
is irrelevant. Functions may be defined by rewrite rules [1, 102] or in a completely
different language [14, 82]. The only requirement is that a function call must be
evaluable if it does not contain variables and the result of the evaluation is a ground
constructor term (or perhaps an error message).

13Some other languages based on this principle also allow evaluations with variables, but then

it must be ensured that at most one possible alternative is applicable.
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This evaluation principle seems to be preferable to the narrowing approaches
since it preserves the deterministic nature of functions, but it is also obvious that
it is an incomplete method. For instance, the goal

?- V=3, square(V,9)

can be successfully proved w.r.t. the above definition of square, but the logically
equivalent goal

?- square(V,9), V=3

leads to a failure: the first literal cannot be proved, since 9 and the unevaluable
function call V*V are not unifiable (as in Prolog we assume a left-to-right evaluation
strategy for goals). In order to avoid these kinds of failures, the evaluation and
unification of functions is delayed until the arguments will be instantiated to ground
terms. This mechanism is called residuation in Le Fun [3] and is also used in
a similar form in LIFE [1], NUE-Prolog [102], and Funlog [123]. It has also been
used to connect a logic language with an existing functional language (S-unification
[13, 14], P-unification [82]).

The residuation principle solves the first literal in the last goal by generating
the residuation 9=V*V, which will be proved or disproved as soon as the variable V

becomes ground. After solving the second literal V=3, V will be bound to 3 and,
therefore, the residuation 9=3*3 can be proved to be true. Hence the entire goal is
true.

The delay principle for function evaluation is satisfactory in many cases, but
it is still incomplete if functions are used in a logic programming manner as the
following example shows.

Example 2.14. [58] Consider the function append of Section 1. Following the
point of view of logic programming, the last element E of a given list L can be
computed by solving the equation append( ,[E])=L. Since the first argument of
the left-hand side of this equation will never be instantiated, residuation fails to
compute the last element with this equation, whereas narrowing computes the
unique value for E. Similarly, we specify by the equation append(LE,[ ])=L a
list LE which is the result of deleting the last element in the list L. Combining
these two specifications, we define the reversing of a list by the following clauses:

rev([],[]).

rev(L, [E|LR]) :- append(LE,[E])=L, rev(LE,LR).

Now consider the literal rev([a,b,c],R). Since the arguments of the calls to the
function append are never instantiated to ground terms, the residuation principle
cannot compute the valid answer R=[c,b,a]. In particular, there is an infinite
derivation path using the residuation principle and applying the second clause
infinitely many times (see Figure 1). The reason for this infinite derivation is
the generation of more and more residuations for append by a repeated use of
the second clause. At a particular point in the derivation these residuations are
together unsolvable, but this is not detected by the residuation principle since the
equations are simply delayed (hence they are sometimes called passive constraints
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Current goal: Current residuation:

rev([a,b,c],R) ∅

Apply second rule for rev:
append(LE1,[E1])=[a,b,c], rev(LE1,LR1) ∅

Residuate function call:
rev(LE1,LR1) append(LE1,[E1])=[a,b,c]

Apply second rule for rev:
append(LE2,[E2])=LE1, rev(LE2,LR2) append(LE1,[E1]) = [a,b,c]

Residuate function call:
rev(LE2,LR2) append(LE1,[E1])=[a,b,c],

append(LE2,[E2])=LE1

Apply second rule for rev:
append(LE3,[E3])=LE2, rev(LE3,LR3) append(LE1,[E1])=[a,b,c],

append(LE2,[E2])=LE1

· · ·

FIGURE 1. Infinite derivation with the residuation principle

[4]). On the other hand, a functional logic language based on narrowing can solve
this goal and has a finite search space [55]. Therefore, it is not true that avoiding
nondeterministic functional computations by the residuation principle yields a
better operational behavior in any case.

The last example raises the important question for a decidable class of programs
for which the residuation principle is able to compute all answers. Since residuation
depends on the instantiation of variables in function calls, an accurate characteriza-
tion of such programs must analyze the possible run-time bindings of the variables.
Program analysis methods tailored to such completeness questions can be found in
[19, 21, 58].

2.6. Summary

In Table 1, we summarize the different execution principles for functional logic pro-
grams. Although the table enumerates an impressive number of different strategies,
it is still incomplete, but it contains, from our point of view, the milestones and
most relevant strategies to execute functional logic programs. In the table, we use
the following abbreviations for the completeness requirements on the equational
clauses:
C: confluence
T: termination
CB: constructor-based
TD: totally defined functions
LFN: left-linearity, free variables, and nonambiguity (cf. Section 2.3)

Similarly to pure logic programming, the execution principles are complete if the
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TABLE 1. Execution Principles for Functional Logic Languages

Operational Principle Requirements
Simple narrowing [69, 119] C, T

Basic narrowing [69] C, T

Left-to-right basic narrowing [64] C, T

LSE-narrowing [12] C, T

Innermost narrowing [41] C, T, CB, TD;
complete w.r.t. ground substitutions

Innermost basic narrowing [66] C, T, CB

Selection narrowing [18] C, T, CB

Normalizing narrowing [40] C, T, CB

Normalizing innermost
narrowing [41]

C, T, CB, TD;
complete w.r.t. ground substitutions

Normalizing basic narrowing
[103, 110]

C, T

Normalizing innermost basic
narrowing [66]

C, T, CB

Outermost narrowing [38] C, T, CB, TD, not strictly subunifiable;
complete w.r.t. ground substitutions

Outer narrowing [132] CB, LFN

Lazy narrowing [27, 95, 109] CB, LFN; complete w.r.t. strict equality

Needed narrowing [7] CB, LFN, inductively sequential rules;
complete w.r.t. strict equality

Outermost resolution [47] CB, LFN; complete w.r.t. strict equality

Lazy unification
with normalization [33, 59]

(Ground) C, T

Simple conditional narrowing
[70, 76]

C, T; see [34, 48, 107] for extra variables

Basic conditional narrowing
[66, 94]

C, T, decreasing rules

Innermost conditional
narrowing [41]

C, T, CB, TD;
complete w.r.t. ground substitutions

Innermost basic conditional
narrowing [66]

C, T, decreasing rules

Residuation [3] Incomplete in general,
complete for particular programs [19, 58]
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specified requirements are satisfied and a fair search strategy like breadth-first is
used. If we use an unfair search strategy like depth-first implemented by backtrack-
ing (as done in most implementations of functional logic languages), nontermination
may occur instead of computable answers.

3. IMPLEMENTING FUNCTIONAL LOGIC LANGUAGES

In this section we review methods used to implement functional logic languages.
We restrict this overview to implementations on sequential architectures. Simi-
larly to logic programming, functional logic languages can also be implemented on
distributed architectures using concepts like AND- and OR-parallelism (see, for
instance, [16, 81, 113]).

The first implementations of functional logic languages were based on interpreters
written in high-level languages and thus could not compete with Prolog implemen-
tations based on the compilation of Prolog programs into low-level (abstract) ma-
chine code. For instance, early implementations of narrowing like the RAP system
[46] or NARROWER [111], functional logic languages like LPG [10] or SLOG [41],
which are based on normalizing innermost narrowing, and the RITE system [73],
a system implementing normalizing narrowing by sharing common parts of differ-
ent solutions, were implemented in high-level languages like Ada, Pascal, or LISP.
However, during recent years more advanced implementations have been developed
which achieve the same efficiency as implementations of functional or logic lan-
guages. In principal, there are two approaches for the efficient implementation of a
functional logic language14:

1. Compilation into another high-level language for which efficient implemen-
tations exist [128].

2. Compilation into a low-level machine which is efficiently executable on con-
ventional hardware.

In the following, we will discuss both alternatives in more detail.

3.1. Compilation into High-Level Languages

To implement a functional logic language, we need techniques to:

• Deal with logical variables and unification.
• Organize the search for successful derivations (backtracking in the sequential

case).
• Apply rules at arbitrary subterms (in the presence of nested expressions).

Prolog offers built-in solutions for the first two requirements. Therefore, it is rea-
sonable to use Prolog as a target language for compiling functional logic programs.
Since Prolog applies rules only at the top level (to predicates) and not to subterms
of a literal, we have to avoid nested expressions in the target programs. This can
be done by flattening the program. A conditional equation l = r :- L1, . . . , Ln is
flattened as follows:

14We do not consider the possibility of constructing special hardware, since this alternative

seems unreasonable.
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1. If r contains the term f(t1, . . . , tn), where f is a defined function, replace this
term in r by a new variable Z and add the new condition f(t1, . . . , tn) =Z.
Flatten the new clause.

2. If some Li contains the subterm f(t1, . . . , tn), where f is a defined function
and this subterm is not the left-hand side in case of an equation, replace this
subterm by a new variable Z and add the new condition f(t1, . . . , tn) =Z.
Flatten the new clause.

In a similar way, any other goal and relational clause containing defined function
symbols is flattened. Such a flattening procedure has been used in this or a slightly
modified form in [8, 18, 92, 124, 128] to implement functional logic languages via
SLD-resolution.

Example 3.1. The flattened form of the rules for append and member (cf. Section 1)
and the goal literal member(E,append([1],[2])) is

append([],L) = L.

append([E|R],L) = [E|Z] :- append(R,L) = Z.

member(E,[E|L]).

member(E,[F|L]) :- member(E,L).

?- append([1],[2]) = L, member(E,L).

This program can be executed by SLD-resolution if we add the clause

X = X.

for unifying both sides of an equation after the evaluation of functions.15

If the left-to-right order of the new equations generated during flattening equals
the innermost-to-outermost positions of the corresponding subterms, then it can
be shown [18] that applying left-to-right SLD-resolution to the flattened program
corresponds to leftmost innermost basic narrowing w.r.t. the original functional
logic program. Hence, resolution combined with flattening has the same soundness
and completeness properties as narrowing.

The idea of flattening functional logic programs can also be applied to implement
the residuation principle (cf. Section 2.5). Since residuation delays the evaluation
of functions until the arguments are sufficiently instantiated, a Prolog system with
coroutining [101] is necessary. In this case, clauses are flattened as described above,
and for each function a delay declaration is added which forces the delay of function
calls until arguments are instantiated such that at most one clause is applicable to
the function call. An implementation with NU-Prolog as the target language is
described in [102], and an implementation using delay predicates to connect an
existing functional language to a Prolog system with coroutining is described in
[74]. It is also possible to implement lazy evaluation strategies by flattening if
Prolog’s evaluation strategy is slightly modified [15, 23].

The advantage of implementing narrowing by flattening is its simplicity: func-
tional logic programs can be flattened by a simple preprocessor and then executed

15If the symbol “=” is predefined to denote syntactic equality as in most Prolog systems, we

have to use another operator symbol for equality.
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by a Prolog system. Due to the existing sophisticated Prolog implementations, we
obtain an efficient implementation of a functional logic language with relatively
little effort. However, this method also has an important disadvantage. While
functional languages compute values in a deterministic way, our implementation is
always nondeterministic since functions are mapped into predicates. For instance,
if the rules for multiplication of Example 2.5 are given, then a functional language
would deterministically evaluate the term 0*0 to 0 using one of the rules. On the
other hand, a Prolog system would apply both rules, i.e., it computes in a non-
deterministic way. Inserting cuts or delay declarations in a Prolog program may
improve the efficiency, but it reduces the applicability of the logic program, in gen-
eral. Moreover, cuts or delay declarations cannot avoid simple infinite loops as the
following example demonstrates.

Example 3.2. Consider the rules for the function append (cf. Section 1) and the
literal

append(append(X,Y),Z) = []

The solution {X 7→[], Y 7→[], Z 7→[]} is computed in two narrowing steps using
the first rule for append. However, if the second append rule is applied to the
inner subterm, X is instantiated to [E|R] and

append([E|append(R,Y)],Z) = []

is the derived equation. A normalizing narrowing strategy transforms the last
equation into its normal form [E|append(append(R,Y),Z)]=[], which is im-
mediately rejected. Hence, an infinite derivation does not occur. On the other
hand, the execution of the flattened goal

?- append(X,Y) = T, append(T,Z) = [].

w.r.t. the flattened program (cf. Example 3.1) generates the new goal

?- append(R,Y) = T1, append([E|T1],Z) = [].

if the second clause for append is applied to the first literal. Hence, Prolog runs
into an infinite loop, which could be avoided only if the second literal is proved
before the first one.

Hence, a logic language with an operational semantics that prefers the evalu-
ation of deterministic literals (i.e., literals having at most one matching clause)
would avoid the infinite loop in the last example. The Andorra computation model
[62] or Prolog with Simplification [42] have this property. Therefore, the flattening
technique yields better results if the target of the transformation is a logic program-
ming system with an extended computation model. If an efficient implementation
of such an extended computation model is not available, it is also possible to sim-
ulate it with a standard Prolog system by a simple meta-interpreter. Cheong and
Fribourg [24] developed a method to reduce the overhead of the meta-interpreter
by using partial evaluation techniques.

Nevertheless, flattening of functional logic programs into the Andorra computa-
tion model or into Prolog with Simplification is less powerful than normalization
due to the following reasons:
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1. Normalization can delete subterms if there are rules with variables in the
left-hand side that do not occur in the right-hand side (e.g., 0*X=0). The
application of such rules during normalization would correspond to the dele-
tion of literals in the flattened program.

2. Normalization evaluates terms even if more than one rule is applicable. For
instance, the term 0*0 is normalized to 0 w.r.t. the multiplication rules of
Example 2.5, which are not deterministic in the sense of [42, 62].

Example 3.3. Consider the following program for computing the maximum of two
natural numbers:

max(X,Y) = Y :- le(X,Y).

max(X,Y) = X :- le(Y,X).

le(0,N).

le(s(M),s(N)) :- le(M,N).

If we compute the maximum of two identical numbers, e.g., we want to solve the
equation max(s(s(0)),s(s(0)))=Z, then the solution {Z 7→s(s(0))} would be
computed in a unique way in a functional language or by normalizing narrowing.
However, applying SLD-resolution, Prolog with Simplification, or the Andorra
computation model to this program (it is already in flat form) yields the same
solution twice because both max rules are applicable to this equation.

The last examples have shown the limitations of the flattening approach: it is not
ensured that functional expressions are reduced in a purely deterministic way if all
arguments of a function are ground values. This important property of functional
languages is not preserved since the information about functional dependencies is
lost by flattening. Moreover, flattening restricts the chance to detect deterministic
computations by the dynamic cut (cf. Section 2.3) which is relevant especially in
the presence of conditional equations [88]. Therefore, several new implementation
techniques have been developed for functional logic languages. The characteristic of
these new approaches is the use of low-level abstract machines and the compilation
of functional logic programs into the code of these machines. In the next section
we sketch the basic ideas of these abstract machines.

3.2. Compilation into Abstract Machines

The use of “abstract machines” is a well-known technique for the efficient imple-
mentation of functional and logic languages on standard hardware. On the one
hand, abstract machines have a low-level architecture so that they can be sim-
ply compiled or efficiently emulated on standard hardware. On the other hand,
the architecture of abstract machines is tailored to the execution of a particular
high-level language, and this simplifies the compilation process in comparison to a
direct compilation into real machine code. There are a lot of proposals for abstract
machines to execute pure functional or logic languages. Since functional logic lan-
guages are extensions of pure functional or logic languages, it is a natural idea to
extend one of the existing abstract machines to execute functional logic programs.
In the following, we will see that this has been successfully translated into action.
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3.2.1. Extending Abstract Machines for Logic Languages. Most Prolog imple-
mentations are based on the “Warren Abstract Machine” (WAM) [2, 130] or on a
refinement of it. The WAM supports logical variables, unification, application of
clauses, and backtracking. This is also necessary in any implementation of a func-
tional logic language and thus there are several proposals to extend the WAM in
order to deal with narrowing and functional computations. As discussed in the pre-
vious section, one possible implementation of narrowing is flattening and applying
SLD-resolution. If a lazy evaluation principle as in K-LEAF [47] is implemented,
it is necessary to apply a modified resolution strategy where a literal is activated
only if it is needed.

Example 3.4. [15] Consider the following functional logic program which is already
in flat form:

p(1,2) :- q(0).

q(0).

f(1) = 1.

f(2) = 1.

In order to prove the literal p(f(X),X), it is transformed into the flat form:

?- p(V,X), f(X) = V.

The new variable V, which is introduced during flattening, is also called produced
variable. The outermost resolution strategy selects an equational literal only
if the value of its produced variable is required. Hence, the literal p(V,X) is
selected in the first resolution step. Applying the first clause yields the bindings
σ = {V7→1, X 7→2} and the derived goal

?- q(0), f(2) = 1.

Since the produced variable V has been instantiated, the literal σ(f(X)=V) is
selected in the next step (instead of q(0)). The application of the fourth clause
to this literal generates the new goal q(0), which is immediately proved by the
second clause.

To implement this selection strategy, it is necessary to link a produced variable
v with the corresponding equational literal f(t) = v. This is implemented in the
K-WAM [15], an extension of the WAM to implement the outermost resolution
strategy of K-LEAF. In the K-WAM each produced variable v contains a pointer
to its equational literal f(t) = v. If v is instantiated to a nonvariable term during
unification, the corresponding literal f(t) = v is added to a global list (force list).
The literals in the force list are proved immediately after the unification of the
head literal. Therefore, the only changes to the WAM are a new representation
for produced variables, a modification in the unification procedure to deal with
produced variables, and a switch to the force list after the head unification. All
other aspects are fully inherited from the WAM.

It is interesting to note that Cheong [23] showed that the outermost strategy
can also be implemented in Prolog without any modification of the WAM. For
this purpose, it is necessary to compile K-LEAF programs into Prolog programs by
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changing the representation of terms (in particular, produced variables) and adding
clauses for the evaluation of these new terms (see [23] for details).

We have seen in Section 3.1 that the flattening approach is problematic if a
deterministic computation principle like normalization is included. Fortunately,
it is relatively easy to extend the WAM to a direct inclusion of narrowing and
normalization. To describe the necessary extensions, we recall the main data areas
of the WAM:

Code area: Contains the WAM code of the compiled program.
Local stack: Contains environments (for clause invocations) and choice points.
Heap: Contains term structures.
Trail: Contains references to variables that have been bound during unification.

These variables must be unbound in case of backtracking.

The WAM has primitive instructions for unification, clause invocation, and back-
tracking. Each clause is translated into a sequence of unification instructions for
the clause head, followed by a sequence of calls to the predicates in the clause
body. Thus goals are represented by instruction sequences and not by proper data
structures. On the other hand, narrowing and normalization manipulates the term
structure: subterms are replaced by right-hand sides of rules. Hence, a WAM-based
implementation of narrowing must support such term manipulations. One possible
approach is implemented in the A-WAM [53, 55], an extension of the WAM to
implement the functional logic language ALF. The operational semantics of ALF is
based on SLD-resolution for predicates combined with normalizing innermost basic
narrowing for functions which can be specified by conditional equations [53]. To
support term manipulation, the A-WAM has instructions to replace terms in the
heap by new terms. These replacements are also stored on the trail in order to
undo them in case of backtracking. Using these new instructions, function rules
can be compiled similarly to clauses for predicates.

The main problem for the efficient implementation of an innermost narrowing
strategy is the access to the current leftmost innermost subterm in the next narrow-
ing step. A simple solution would be a dynamic search through the term. Obviously,
this is too slow. Fortunately, the compiler can determine this position since we use
a basic narrowing strategy. Recall that in basic narrowing, all narrowing positions
must belong to the initial goal or to the right-hand side of some rule, but not to
the substitution part. Consequently, the compiler can compute the basic positions
in leftmost innermost order. For instance, if f(g(X),h(Y)) is the right-hand side
of some rule, then the basic positions are the ones belonging to the subterms g(X),
h(Y), f(g(X),h(Y)) (in leftmost innermost order). In addition to the WAM, the
A-WAM has an occurrence stack, where the basic positions of the current literal
are stored in leftmost innermost order, i.e., the top element of this stack is always
the leftmost innermost position of the current literal. The compiler generates in-
structions for the manipulation of the occurrence stack. For instance, if a rule with
no defined function symbol on the right-hand side is applied, like 0+X=X, then the
compiler generates a pop instruction for the occurrence stack in the translated code
of this rule. Similarly, push instructions are generated for right-hand sides contain-
ing defined function symbols.16 The push and pop instructions are generated along

16Note that only occurrences of defined function symbols are stored on the occurrence stack

since the program is constructor-based and there are no rules for constructors.
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with the usual term building instructions of the WAM and cause no real overhead.
The advantage of this approach is the access of the next narrowing position in con-
stant time.

Altogether, a rule l = r is translated into the following scheme of A-WAM instruc-
tions:

〈unify the left-hand side l with the current subterm〉
〈replace the current subterm by the right-hand side r〉
〈update the occurrence stack (delete or add occurrences)〉
〈proceed with normalization/narrowing at new innermost occurrence〉

The rules used for normalization are translated in a similar way, but the unifica-
tion of the left-hand side is replaced by matching (unification without instantiating
goal variables). Moreover, choice points are not generated during normalization
due to its deterministic nature.

The normalization process before each narrowing step causes a problem since it
tries to simplify the current term by applying normalization rules from innermost
to outermost positions in the term. If no normalization rule can be applied to a
subterm, the next innermost position is tried, i.e., an element is popped from the
occurrence stack. This is necessary as the following example shows: If the only
rules for the functions f and g are

f(Z) = 0.

g(0) = 0.

then the term g(X) cannot be rewritten (only narrowing could be applied), but
the term f(c(g(X))) can be simplified to 0.

Hence the normalization process pops all elements from the occurrence stack
and, therefore, the stack is empty when normalization is finished and a narrowing
rule should be applied. Now, in order to avoid a dynamic search for the appropriate
innermost occurrence, the A-WAM has a second stack (copy occurrence stack) for
storing the deleted occurrences. This stack contains all occurrences if normalization
is finished and the original occurrence stack is empty. Thus the occurrence stack
can be reinstalled by a simple block-copy operation.

The advantage of the A-WAM is its efficiency in comparison to the original
WAM: a dynamic search inside the term structure can be avoided and the code
of the compiled functional logic programs is very similar to the WAM code of the
corresponding logic programs obtained by flattening (see [55] for examples). The
overhead of the occurrence stack manipulation is small (around 5%), and the execu-
tion of pure functional programs is comparable with implementations of functional
languages due to the deterministic normalization process (see [55] for benchmarks).
In Sections 2.2 and 3.1 we saw that a normalizing narrowing strategy is more ef-
ficient than SLD-resolution for the flattened programs since the deterministic nor-
malization process can reduce the search space. These theoretical considerations
can be proved, in practice, if an efficient implementation of normalizing narrowing
like the A-WAM is available. For instance, in the “permutation sort” program, a
list is sorted by enumerating all permutations and checking whether they are sorted.
The relational version of the program ([122], p. 55) enumerates all permutations,
whereas in the functional version not all permutations are enumerated since the
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TABLE 2. Normalizing Narrowing vs. SLD-Resolution: Permutation Sort

Program: n = 6 n = 8 n = 10
Pure logic program ([122], p. 55) 0.65 37.92 3569.50
Functional logic program ([41], p. 182) 0.27 1.43 7.43

generation of a permutation is stopped (by normalizing the goal to “fail”) if two
consecutive elements X and Y have the wrong ordering Y<X ([41], p. 182). As a
consequence, the A-WAM yields the execution times in seconds on a Sun4 to sort
the list [n,...,2,1] for different values of n as shown in Table 2 [55]. In such
typical “generate-and-test” programs, the normalization process performs the test
part and the narrowing steps perform the generate part of the program. Due to the
strategy of normalizing narrowing, the test part is merged into the generate part,
which yields a more efficient control strategy than SLD-resolution for equivalent
logic programs. This is achieved in a purely clean and declarative way without any
user annotations to control the proof strategy. More details on this control aspect
can be found in [56].

Although the permutation sort example is only a toy program, larger applica-
tions have been implemented in ALF in order to test the suitability of normalizing
narrowing as an operational semantics for functional logic languages. It turns out
that the normalization process between narrowing steps is not an overhead even
if it does not reduce the search space: most computations are performed by nor-
malization, and narrowing steps are applied only at some few positions. Hence,
rewrite steps are the rule and narrowing steps are the exception, in practice. This
is similar to the experience that in practical logic programming most computations
are functional. Therefore, functional logic languages can help to implement these
functional subcomputations in a more efficient way.

Mück [98] has also developed a technique to compile narrowing into a WAM-
like architecture. Although he has not included normalization and an efficient
management of occurrences in his framework, the proposed method can be used to
derive some of the instructions of an abstract narrowing machine in a systematic
way: he has shown how functional logic programs can be translated into low-level
instructions using partial evaluation techniques.

3.2.2. Extending Abstract Machines for Functional Languages. Another alterna-
tive to implement functional logic languages is the extension of abstract machines
used for the implementation of pure functional languages. If the functional logic
language is based on some kind of narrowing, the necessary extensions are the
implementation of logical variables, unification, and backtracking.

Loogen [86] has extended a reduction machine to implement a subset of the
functional logic language BABEL [97]. Reduction machines are designed to compile
functional languages. Their main components are a stack of environments (local
variables and actual arguments) for function calls and a heap or graph structure to
store data terms. The evaluation process is controlled by the stack, i.e., the stack
contains the environments for function calls in innermost order if an eager evaluation
strategy is implemented. In order to implement an innermost narrowing strategy,
Loogen has extended such a reduction machine by variable nodes in the graph to
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represent logical variables and by choice points in the environment stack and a
trail to organize backtracking. The overall structure of this narrowing machine
is similar to the WAM, but with an explicit data stack to pass arguments and
results of function calls. This data stack allows a better management of choice
points. Since normalization is not included, defined function symbols need not be
represented in the heap. They are directly translated into call instructions of the
reduction machine. For instance, an expression like f(g(X)) is translated into the
instructions

load X % load contents of X on the data stack
call g/1 % call code of function g with one argument
call f/1 % call code of function f with one argument

(see [86] for a formal specification of the machine and the compilation process). The
resulting code is very similar to the WAM code obtained by flattening the functional
logic program (as described in Section 3.1) and translating the logic program as
usual. However, the proposed narrowing machine has an important optimization
in comparison to the WAM: if the application of a rule does not bind any goal
variables, then the choice point corresponding to this rule is discarded so that
alternative rules are not tried (dynamic cut, cf. Section 2.3). This is implemented by
a pop instruction which checks the variable bindings after the unification of the left-
hand side of the rule [88]. Due to this optimization pure functional computations
without logical variables are performed with the same deterministic behavior as in
pure functional languages. However, there remains a small overhead since choice
points are generated and then immediately deleted. As discussed in Section 2.2,
pure innermost narrowing is too weak for many applications due to nonterminating
derivations. Therefore, [86] also outlines an implementation of lazy narrowing by
introducing suspension nodes in the heap representing unevaluated function calls.

Chakravarty and Lock [22] have proposed an abstract machine for lazy narrow-
ing which is an extension of a stack-based reduction machine used to implement
functional languages with a lazy evaluation principle. The instruction code of their
JUMP machine is a block-structured intermediate language so that classical code
generation techniques can be applied. The main data areas of their machine are a
stack for activations records of functions and choice points, a heap to store envi-
ronments and closures representing logical variables and unevaluated function calls,
and a trail to store bindings which must be reset in case of backtracking. Construc-
tor terms, logical variables, and suspended function calls are treated in a similar
way: their current value is obtained by jumping to their code address, which elimi-
nates overhead of tag testing as in the WAM. Another difference is the choice point
organization. While the WAM creates a choice point if there is more than one rule
applicable to a predicate, the JUMP machine creates a choice point for each logical
variable during unification of a function call with the left-hand side of a rule. This
requires a transformation of the given rules into a set of nonsubunifiable rules (cf.
Section 2.3). The advantage of this choice point organization is that ground func-
tion calls are automatically computed in a deterministic way. On the other hand,
several choice points are created for a function call with several unbound variables.
The JUMP machine can also be used to implement innermost narrowing by us-
ing another compilation scheme. Lock [85] has proposed a mixed implementation
scheme where argument evaluation is implemented by lazy narrowing or innermost
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narrowing depending on some kind of strictness information for the arguments of
a function.

The main component of the narrowing machines described so far is a stack which
contains local data for each function call and choice points. The structure of this
stack controls the execution order. The global nature of this stack makes it dif-
ficult to base a parallel implementation on it. In functional programming it has
been shown that a decentralized graph structure is more appropriate for parallel
implementations. Hence Kuchen et al. [79] have proposed a graph-based abstract
machine for an innermost narrowing implementation of the language BABEL [97].
The main component of their BAM machine is a graph containing task nodes for
each evaluation of a function call. Each task node contains local management in-
formation like local code address, return address etc., the list of arguments and
local variables of the function call, and a local trail to organize backtracking. The
intention of this machine is to support AND-parallelism [81]; hence, backtracking
is included. Further elements of the graph are special nodes to represent logical
variables, constructors (data terms), and partial function applications (BABEL
supports curried functions where some arguments are omitted in a function call).
The instruction set of this machine consists of local instructions like loading local
registers, unifying variables or constructors, creating new graph nodes, etc., and
process instructions to activate and terminate tasks. In a sequential implementa-
tion of this machine there is always one active task identified by a global pointer. A
parallel extension of this machine to support AND-parallelism on a shared memory
multiprocessor is described in [81]. [95] describes an extension of the sequential
BAM to support a lazy narrowing strategy.

Wolz [131] proposed another graph-based abstract machine for the implemen-
tation of lazy narrowing. The machine LANAM is an extension of an abstract
machine for lazy term rewriting and has also many similarities to the WAM. The
main motivation for the graph-based architecture is the sharing of data structures
and unevaluated expressions in order to avoid multiple evaluations. The imple-
mented lazy narrowing strategy requires neither constructor-based programs nor
nonambiguous rules as other lazy narrowing strategies (cf. Section 2.3). All rules
for a function symbol are compiled into a decision tree representing the applicable
rules. Initially, all function symbols with defining rules are potentially evaluable.
If a function cannot be evaluated since no rule is applicable, it is marked as a con-
structor that cannot be further evaluated. To apply a rule to an expression, the
arguments of the expression corresponding to the nonvariable arguments of the rule
are evaluated to their head normal form (a term with a constructor at the top).
This process continues on subterms of the arguments as long as the rule has nested
argument patterns. Due to this evaluation strategy, a transformation of the source
program into a uniform program by flattening the left-hand sides of the rules (cf.
Section 2.3) is not necessary. An early detection of nonapplicable rules is supported
by a particular strategy to select arguments for evaluation. However, completeness
results for the overall lazy narrowing strategy are not provided.

Most of the various abstract narrowing machines discussed above are highly
optimized to obtain an efficient implementation of the chosen narrowing strategy.
As a result, the correctness of these implementations is hard to prove. To achieve
a verifiable implementation of a functional logic language, Mück [99] has proposed
the CAMEL narrowing machine which is based on the categorical abstract machine
(CAM) [25], a relatively simple but efficient abstract machine for the execution
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of functional languages. The CAM has three data areas (code area, value stack,
value area) and a small set of plain instructions. Mück has slightly extended the
CAM by a heap to store logical variables, choice points in the value stack to handle
backtracking, and some new instructions for unification and backtracking. These
extensions enable a simple scheme to compile functional logic programs based on
innermost narrowing into CAMEL instructions. In order to achieve the efficiency of
sophisticated narrowing implementations, it is necessary to optimize the CAMEL
by several refinement steps. Although this approach is not yet implemented, it may
be useful to verify and simplify existing narrowing implementations.

3.3. Summary

The most important techniques proposed for the efficient implementation of func-
tional logic languages are summarized in Table 3. These implementations have
shown that it is possible to implement functional logic languages in an efficient way
provided that:

• An appropriate operational semantics is chosen.
• Implementation principles known from pure functional and logic program-

ming languages are adapted.

If these two items are carefully selected, functional logic languages have the same
efficiency as pure functional or pure logic languages. This is due to the fact that
the implementations are similar to the pure languages if the additional features of
the amalgamated language are not used. For instance, the A-WAM extends the
WAM by several new instructions and a new data structure (occurrence stack).
These new instructions and the data structure are used only if defined functions
are present in the program. Thus the compiled code is identical to the WAM code
as described in [2, 130] for pure logic programs without defined functions. As an
example from the other extreme, consider the JUMP machine which is an extension
of an abstract machine used for the efficient implementation of functional languages
(spineless tagless G-machine). If logical variables do not occur during run time, no
choice point will be generated and the behavior is the same as for a pure functional
program. However, if features from both programming paradigms are used in the
proposed implementations of functional logic languages, the advantage of the amal-
gamated approach shows up. The knowledge about functional dependencies is used
in the implementation to reduce the nondeterminism, e.g., by the inclusion of a
deterministic normalization process or by the inclusion of a dynamic cut.

Although there are many differences between the various abstract machines due
to the implemented narrowing strategies and the different starting points, it is
interesting to see that there is a common kernel in the proposed abstract machines
which is also present in the WAM: the code area for the program, the heap to store
logical variables and evaluated expressions, a (local) stack to store environments
and choice points, and a trail to store variable bindings and other changes in the
term structure that must be reset in case of backtracking. Due to the similarity
to the WAM and other “classical” abstract machines, there are many possibilities
to improve the current implementations of functional logic languages by applying
optimization techniques for Prolog implementations (e.g., [29, 65, 126]). However,
more advanced compilation techniques which depend on a global analysis of the
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TABLE 3. Efficient Implementations of Functional Logic Languages

Implementation Implementation principle Operational semantics

[18, 128] Flattening and resolution Innermost basic narrowing

Flang [91, 92] Flattening and resolution Innermost narrowing

NUE-Prolog [102] Flattening and resolution
with coroutining

Residuation

GAPLog [74] Flattening and resolution
with coroutining

Residuation (S-unification)

Prolog with
Simplification [24]

Partial evaluation and
resolution

Resolution and simplification

K-WAM [15] WAM-extension Outermost resolution

A-WAM [53, 55] WAM-extension Innermost basic narrowing
with normalization

SBAM [52, 86] Extended stack-based
reduction machine

Innermost narrowing and
lazy narrowing

JUMP [22, 85] Extended stack-based
reduction machine

Lazy narrowing and
innermost narrowing

BAM [79] Extended graph-based
reduction machine

Innermost narrowing

LBAM [95] Extended graph-based
reduction machine

Lazy narrowing

PBAM [81] Extended graph-based
reduction machine

AND-parallel innermost
narrowing

LANAM [131] Extension of a lazy term
rewriting machine

Lazy narrowing

CAMEL [99] CAM-extension Innermost narrowing
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program [93, 125, 129] require the development of new program analysis methods
for functional logic programs [60].

4. CONCLUSIONS

The research on functional logic languages during the last decade has shown that
functional and logic languages can be amalgamated without loosing the efficiency
of current implementations of functional or logic languages. The amalgamated
languages have more expressive power in comparison to functional languages and
a better operational behavior in comparison to logic languages. Therefore, the
original motivation for the research in this area has been satisfied. This goal has
been achieved in two basic steps:

1. The execution principles for functional logic languages have been refined.
The most important operational principle is narrowing, a combination of
resolution from logic programming and term reduction from functional pro-
gramming. Since narrowing is highly inefficient in its simplest form, much
work has been carried out to restrict the admissible narrowing derivations
without loosing completeness. The development of these refined strategies
was the precondition for the efficient implementation of functional logic lan-
guages.

2. Implementation techniques known from functional and logic languages have
been extended to implement functional logic languages. Due to the refined
operational principles, only slight extensions are necessary. The overhead
introduced by these extensions is small or disappears if the new features
(functions in case of logic programs and logical variables in case of functional
programs) are not used. Moreover, the use of functions yields a more efficient
behavior in comparison to pure logic programs.

In this survey we have tried to sketch and to relate the various developments of
the last decade. Nevertheless, we could not cover all aspects on the integration
of functional and logic languages. There are many further topics which have been
partly addressed in the past and which are interesting for future work. These
include:

• Better implementation by using program analysis techniques [5, 6, 20, 30,
58, 60].

• Distributed implementations [16, 81, 113].
• Development of programming environments like debugging tools [61].
• Integration of other features like types [1, 54, 114, 121], constraints [1, 28,

80, 84, 89, 90, 92], or higher-order functions [17, 51, 54, 100, 108, 120].
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