
An Abstract Machine for Curry

and its Concurrent Implementation in Java∗

Michael Hanus† Ramin Sadre‡

March 30, 1999

Abstract

Curry is a multi-paradigm declarative language aiming to amal-
gamate functional, logic, and concurrent programming paradigms.
Curry combines in a seamless way features from functional program-
ming and (concurrent) logic programming. Curry’s operational se-
mantics is based on the combination of lazy reduction of expressions
together with a possibly non-deterministic binding of free variables
occurring in expressions. Moreover, (equational) constraints can be
executed concurrently which provides for passive constraints and con-
current computation threads that are synchronized on logical vari-
ables. This paper describes in an object-oriented style an abstract
machine for executing Curry programs. The machine is designed to
provide a link for compiling Curry programs into Java but it can also
be a basis for implementations of Curry in other (object-oriented) lan-
guages. The main emphasis of the Java-based implementation is the
exploitation of Java threads to implement the concurrent and non-
deterministic features of Curry.

Keywords: Functional logic programming, lazy evaluation, concur-
rency, implementation

∗This research has been partially supported by the German Research Council (DFG)
under grant Ha 2457/1-1.

†Informatik II, RWTH Aachen, D-52056 Aachen, Germany,
hanus@informatik.rwth-aachen.de.

‡Department of Computer Science—Distributed Systems, RWTH Aachen, D-52056
Aachen, Germany, ramin@lvs.informatik.rwth-aachen.de.

1



1 Introduction

Curry [13, 16] is a multi-paradigm declarative language aiming to integrate
functional, logic, and concurrent programming paradigms. Curry combines
in a seamless way features from functional programming (nested expressions,
lazy evaluation, higher-order functions), logic programming (logical variables,
partial data structures, built-in search), and concurrent programming (con-
current evaluation of expressions with synchronization on logical variables).
Moreover, Curry provides additional features in comparison to the pure
languages (compared to functional programming: search, computing with
partial information; compared to logic programming: more efficient evalu-
ation due to the deterministic and demand-driven evaluation of functions).
Moreover, it also amalgamates the most important operational principles de-
veloped in the area of integrated functional logic languages: “residuation”
and “narrowing” (see [11] for a survey on functional logic programming).

Curry’s operational semantics is based on a single computation model,
firstly described in [13], which combines lazy reduction of expressions with a
possibly non-deterministic binding of free variables occurring in expressions.
Thus, purely functional programming, purely logic programming, and con-
current (logic) programming are obtained as particular restrictions of this
model. Moreover, due to the use of an integrated functional logic language,
one can choose the best of the two worlds in application programs. For in-
stance, input/output (implemented in logic languages by side effects) can be
handled with the monadic I/O concept [28] in a declarative way. Similarly,
many other impure features of Prolog (e.g., arithmetic, cut) can be avoided
by the use of functions.

Beyond this computation model, Curry provides higher-order functions,
a parametrically polymorphic type system, modules, monadic I/O, a connec-
tion to external functions, and primitives to encapsulate non-deterministic
computations (committed choice, encapsulated search). To provide the full
power of logic programming, (equational) constraints can be used in con-
ditions of function definitions. Such basic constraints can be combined to
more complex constraint structures by a concurrent conjunction operator
which evaluates constraints concurrently. The concurrent conjunction of
constraints is useful to reduce the search space with passive constraints or to
model concurrent objects as functions synchronizing on a stream of messages.

Since Curry is an amalgamation of functional and logic programming lan-
guages, it can also serve as a common basis to unify research efforts and to

2



boost declarative programming in general. Actually, Curry has been suc-
cessfully applied to teach functional and logic programming techniques in
a single course without switching between different programming languages
[12].

In order to provide a portable implementation of Curry, we have de-
veloped an abstract machine for executing Curry programs. This abstract
machine can be implemented in various languages but we use it as a link to
compile Curry programs into Java [32].1 The instructions of the abstract ma-
chine implement the pattern matching and control flow of a Curry program
and can be executed by a small emulator.

Due to the use of Java in our implementation, compiled Curry programs
are portable between different hardware architectures and operating systems.
Furthermore, we exploit the concurrent features of Java in two ways in our
implementation. Don’t know non-deterministic computations (corresponding
to search in logic programming) are implemented by starting independent
computation threads (this corresponds to OR-parallel implementations of
logic languages). The concurrent conjunction of constraints is implemented
by starting two threads evaluating these constraints. Such a thread suspends
if it requires the value of a currently unbound variable (consumer of the
variable), or if it tries to bind a variable to different values (non-deterministic
binding to compute potential solutions) while its corresponding twin thread
is already active. The latter case avoids the duplication of active processes for
don’t know non-deterministic computations which is also known as stability
from AKL [20] and the Andorra principle [19]. This scheme implements
coroutining features of current Prolog systems [25] as well as features of
concurrent constraint languages [30].

In the next section, we review the basic computation model of Curry. The
abstract machine to implement this computation model is described in Sec-
tion 3. Section 4 presents some extensions of the basic computation model
and the corresponding extensions of the implementation. The implement-
ation of our abstract machine in Java or related languages is discussed in
Section 5, and Section 6 contains the results of our implementation and the
conclusions.

1A straightforward direct translation of defined functions into Java functions is not
possible in a simple way due to the potential non-deterministic evaluation of Curry ex-
pressions which we want to implement as independent computations (e.g., by Java threads)
rather than sequentially as in Prolog. Thus, standard techniques to translate (sequential)
logic programs into procedures of imperative languages (e.g., [26]) cannot be applied here.

3



2 The Computation Model of Curry

This section provides an informal introduction to the computation model of
Curry. A formal definition can be found in [13, 16].

The basic computational domain of Curry is, similarly to functional or
logic languages, a set of data terms constructed from constants and data
constructors. These are introduced through data type declarations like2

data Bool = True | False

data Nat = Z | S Nat

data List a = [] | a : List a

True and False are the Boolean constants, Z and S are the zero value and
the successor function to construct natural numbers,3 and [] (empty list)
and : (non-empty list) are the constructors for polymorphic lists (a is a type
variable ranging over all types).

A data term is a well-formed expression containing variables, constants
and data constructors, e.g., (S Z) or [x,y] (the latter stands for x:y:[]).
Functions (or predicates in logic programming, but throughout this paper we
consider predicates as Boolean functions for the sake of simplicity) operate
on data terms. Their meaning is specified by rules of the form l = r where l

has the form f t1 . . . tn with f being a function, t1, . . . , tn data terms and each
variable occurs only once (expressions of this form are also called patterns),
and r is a well-formed expression which may also contain function calls. A
conditional rule has the form l | c = r, where the condition c is a constraint.
A constraint is any expression of the built-in type Constraint. Primitive
constraints are equations of the form t1 =:= t2 which can be combined into
more complex constraints by the concurrent conjunction operator & (see be-
low for more details). A conditional rule can be applied if its condition is
satisfiable. A head normal form is a variable, a constant, or an expression of
the form C e1 . . . en where C is a data constructor. A Curry program is a set
of data type declarations and rules.

2Curry has a Haskell-like syntax [17], i.e., (type) variables and function names start
with lowercase letters and the names of type and data constructors start with an uppercase
letter. Moreover, the application of f to e is denoted by juxtaposition (“f e”).

3Curry has also built-in integer values and arithmetic functions (see Section 3.3). We
use here the explicit definition of naturals only to provide some simple and self-contained
examples.

4



Example 1 Assume that the above data type declarations are given. Then
the following rules define the addition and the predicate “less than or equal
to” for natural numbers:

add Z y = y

add (S x) y = S(add x y)

leq Z x = True

leq (S x) Z = False

leq (S x) (S y) = leq x y

The following rules define the concatenation of lists and the last element of
a list:

conc [] ys = ys

conc (x:xs) ys = x : conc xs ys

last xs | conc ys [x] =:= xs = x where x,ys free

If the equation “conc ys [x] =:= xs” is solvable, then x is the last element
of the list xs. The optional part “where x,ys free” in the last rule declares
x and ys as extra-variables that do not occur in the left-hand side.

From a functional point of view, we are interested in computing values of
expressions, where a value does not contain function symbols (i.e., it is a
data term) and should be equivalent (w.r.t. the program rules) to the initial
expression. The value can be computed by applying rules from left to right.
For instance, we compute the value of add (S Z) (S Z) by applying the rules
for addition to this expression:

add (S Z) (S Z) → S(add Z (S Z)) → S(S Z)

The difficulty in computing such values is to find a normalizing strategy
which selects a reducible function call (“redex”) such that a value is always
computed (provided that it exists). Since it is well known that innermost
reduction is not normalizing, Curry is based on a lazy (outermost) strategy.
This also allows the computation with infinite data structures and provides
more modularity by separating control aspects [18].

A subtle point in the definition of a lazy evaluation strategy in com-
bination with pattern matching is the selection of the “right” outermost
redex. For instance, consider the rules of Example 1 together with the rule
f = f. Then the expression “leq (add Z Z) f” has two outermost redexes,
namely (add Z Z) and f. If we select the first one, we compute the value
True after one further outermost reduction step. However, if we select the

5



redex f, we run into an infinite reduction sequence instead of computing
the value. Thus, it is important to know which outermost redex is selected.
Since most lazy functional languages follow a left-to-right pattern-matching
strategy and choose the leftmost outermost redex, Curry follows the same
approach.4 Thus, in order to evaluate the expression “leq (add Z Z) f”,
the first subterm (add Z Z) must be evaluated to head normal form (in this
case: Z) since its value is required by all rules defining leq (we also call such
an argument demanded). If the first subterm evaluates to an expression of
the form (S. . .), then the second subterm needs to be evaluated.

Sometimes there is no single argument in the rules’ left-hand sides deman-
ded by all rules. In particular, functions defined by rules with overlapping
left-hand sides, like the “parallel-or”

True ∨ x = True

x ∨ True = True

False ∨ False = False

have this property. For the expression e1 ∨ e2, it is not clear which subterm
must be evaluated first. Since our computation model must already include
some kind of non-determinism in order to cover logic programming languages,
we non-deterministically evaluate the first or the second argument, i.e., rules
with overlapping left-hand sides cause don’t know non-deterministic compu-
tations similarly to logic programming.5

Up to now, we have only considered functional computations where
ground expressions are reduced to values. In logic languages, the initial
expression (often an expression of Boolean type, called a goal) may contain
free variables. A logic programming system should find values for these vari-
ables such that the goal is reducible to True. Fortunately, it requires only
a slight extension of the reduction strategy to cover non-ground expressions
and variable instantiation: if the value of a free variable is demanded by
the left-hand sides of program rules in order to proceed the computation,
the variable is non-deterministically bound to the different demanded values.
For instance, if the function f is defined by the rules

f 0 = 2

f 1 = 3

4Since the exact evaluation strategy of Curry is specified using definitional trees [2, 13],
Curry also supports more powerful evaluation strategies than current functional languages.

5Alternatively, one could evaluate both arguments in parallel [4], but such a parallel
evaluation strategy requires more implementation effort.

6



(the integer numbers are considered as an infinite set of constants), then
the expression “f x” with the free variable x is evaluated to 2 by bind-
ing x to 0, or it is evaluated to 3 by binding x to 1. In order to reflect
not only the computed value (like in functional programming) but also the
different variable bindings (answers, like in logic programming), the compu-
tational domain of Curry is a disjunction of answer/expression pairs where
the disjunction reflects the (don’t know) non-determinism. For instance, in
the previous example the evaluation of “f x” is reflected by the following
(non-deterministic) computation step:

f x → {x=0} 2 | {x=1} 3

(Here | denotes a disjunction, {x=0} denotes a substitution (binding), and
{x=0}2 represents a answer/expression pair.) A single computation step
performs a reduction in exactly one unsolved expression of a disjunction.
This reduction may yield a single new expression (deterministic step) or
a disjunction of new expressions together with the corresponding bindings
(non-deterministic step). For inductively sequential programs [2] (these are,
roughly speaking, function definitions without overlapping left-hand sides),
this strategy, called needed narrowing [3], computes the shortest possible
successful derivations (if common subterms are shared) and a minimal set of
solutions, and it is fully deterministic if free variables do not occur.6

Note that Curry is not based on a backtracking strategy. Backtracking
is one possible (but unfair) implementation of disjunctions. However, the
concrete evaluation order is not important for the computed results, since
Curry has no side effects. Because there is no need to ensure a sequential
backtracking semantics as in Prolog (e.g., unlike in the ACE parallel Prolog
system [29]), we will implement disjunctive computations by independent
computation threads. However, this implementation issue is less important
than in Prolog since most parts of larger computations are purely determ-
inistic due to the use of a functional coding style in Curry. In fact, there is
an extension of this base language where don’t know non-deterministic com-
putations can be encapsulated and controlled by the programmer [15]. The
abstract machine presented below is also an appropriate basis to implement
such a flexible kind of search control.

In functional logic programs, it is necessary to solve equations between

6These properties also shows some of the advantages of integrating functions into logic
programs, since similar properties for purely logic programs are not known.

7



expressions containing defined functions. For instance, to evaluate the ex-
pression “last [1,2]” w.r.t. the declarations in Example 1, the equation
“conc ys [x] =:= [1,2]” has to be solved. This can be done by evalu-
ating the equation to [x1,x]=:=[1,2] (i.e., ys is bound to [x1] and we
omit the other alternatives in the disjunction) and unifying both sides of the
resulting equation which yields the binding of x to 2. In general, an equa-
tion or equational constraint e1 =:= e2 is satisfied if both sides e1 and e2 are
reducible to the same data term. As a consequence, if both sides are un-
defined (non-terminating), then the equality does not hold.7 Operationally,
an equational constraint e1 =:= e2 is solved by evaluating e1 and e2 to uni-
fiable data terms where the lazy evaluation of the expressions is interleaved
with the binding of variables to constructor terms [23]. Thus, an equational
constraint e1 =:= e2 without occurrences of defined functions has the same
meaning (unification) as in Prolog. The basic kernel of Curry only provides
equations e1 =:= e2 between expressions as constraints. Since it is conceptu-
ally fairly easy to add other constraint structures, future extensions of Curry
will provide richer constraint systems to support constraint logic program-
ming applications. Note that constraints are solved when they appear at the
top level or in conditions of program rules (cf. Section 4) in order to apply
this rule.

The use of functions together with lazy evaluation and demanded instan-
tiation of free variables can reduce the number of non-deterministic choices
compared to purely logic programming. On the other hand, it is also known
that the guessing of free variables should not be applied to all functions, since
some functions (in particular, functions defined on recursive data structures)
may not terminate if demanded arguments are unknown. Moreover, many
logic languages provide flexible selection rules (coroutining, i.e., concurrent
computations based on the synchronization on free variables). To support
such features, Curry provides the suspension of function calls if a demanded
argument is not instantiated. Such functions are called rigid in contrast to
flexible functions which instantiate their arguments if it is necessary to pro-
ceed their evaluation. As a default in Curry (which can be easily changed),
non-constraint functions are marked as rigid and constraints (i.e., functions
with result type Constraint) are marked as flexible. Thus, purely logic
programs (where each predicate is represented as a constraint function) be-

7This notion of equality is also known as strict equality [9, 24] and is the only reasonable
notion of equality in the presence of non-terminating functions.

8



have as in Prolog, and purely functional programs are executed as in lazy
functional languages like Haskell.

If function calls may suspend, we need a mechanism to specify concur-
rent computations. For this purpose, constraints can be combined with the
concurrent conjunction operator &. If c1 and c2 are constraints, then c1 & c2

is a constraint which is evaluated by solving c1 and c2 concurrently. In a
sequential implementation, c1 & c2 can be evaluated by an attempt to solve
c1. If the evaluation of c1 suspends, an evaluation step is applied to c2. If a
variable responsible to the suspension of c1 was bound during the last step,
the left expression will be evaluated in the subsequent step. In this way we
obtain a concurrent behavior with an interleaving semantics. In the concur-
rent implementation presented in this paper, we assign different threads to
the evaluation of c1 and c2. These computation threads synchronize on the
bindings of common variables.

This fairly simple model for concurrent computations is able to cover
applications of Prolog systems with coroutining [25]. For instance, if gen is a
constraint which instantiates its argument with potential solutions (i.e., gen
is flexible) and test checks whether the argument is a correct solution (i.e.,
test is rigid), then a constraint like “test x & gen x” specifies a “test-
and-generate” solution where the test is activated as soon as its argument is
sufficiently instantiated.

It is also interesting to note that this model is able to cover recent de-
velopments in parallel functional computation models like Eden [6] or Goffin
[7]. For instance, a constraint of the form

x =:= f t1 & y =:= g t2 & z =:= h x y

specifies a potentially concurrent computation of the functions f, g and h

where the function h can proceed its computation only if the arguments have
been bound by evaluating the expressions f t1 and g t2 (provided that h is
a rigid function).

The advantage of Curry’s computation model is the clear separation
between sequential and concurrent parts. Sequential computations, which
form the basic units of a program, can be expressed as usual functional (lo-
gic) programs, and they are composed to concurrent computation units via
concurrent conjunctions of constraints. Since constraints can be passed as
arguments or results of functions (like any other data object or function),
it is possible to specify general operators to create flexible communication
architectures similarly to Goffin [7]. Thus, the same abstraction facilities

9



can be used for sequential as well as concurrent programming. On the other
hand, the clear separation between sequential and concurrent computations
supports the use of efficient and optimal evaluation strategies for the sequen-
tial parts, where similar techniques for the concurrent parts are not available.
This is in contrast to other, more fine-grained concurrent computation mod-
els like AKL [20], CCP [30], or Oz [31].

3 An Abstract Machine for the Execution of

Curry Programs

In this section we present an abstract machine for the execution of Curry
programs. We describe the implementation of data terms, defined functions,
and the computational model of Curry (variable bindings, non-determinism,
concurrency). The machine and its data structures are described in an object-
oriented style which supports a typed and more structured specification in
contrast to other presentations of abstract machines (e.g., [36]). We use Java
[32] as a language for the concrete description of the machine. This is due
to the fact that we also sketch an implementation of this machine in Java.
However, the basic structure of the abstract machine can also be used in
implementations of Curry in languages different from Java. This point will
be further discussed in Section 5.

The main motivation for using Java is to provide a portable implement-
ation of Curry and its concurrency features. Java is an object-oriented pro-
gramming language where the compiler transforms source code not into nat-
ive machine code but into code (the bytecode) for the Java Virtual Machine
[21], abbreviated JVM, an abstract machine dedicated to execute Java pro-
grams. The JVM code is independent of a particular hardware. Therefore, a
compiled Java program can run on different hardware architectures provided
that a JVM implementation is available on this hardware. The JVM inter-
prets the compiled bytecode and manages a heap where all objects construc-
ted by the program reside. It is not necessary to call a destructor for unused
objects, since the memory of unused objects is automatically reclaimed by
the garbage collector of the JVM. By compiling Curry programs into Java
programs and further down to JVM code, a compiled Curry application is
executable on any computer with an installed JVM (e.g., a WWW browser).
This is in contrast to the use of other languages like C or C++ where the

10



programs must be recompiled on different architectures. Another advantage
of using Java is its built-in support for automatic memory management and
concurrent (thread-based) programming. This has largely simplified the im-
plementation task for Curry. On the other hand, due to the use of Java, it is
also evident that this implementation cannot compete with highly optimized
implementations of Prolog or Haskell, since the hardware-independence and
security mechanisms of the JVM causes a significant overhead in comparison
to native code.

3.1 Representation of Data Terms and Functions

As mentioned above, we provide an object-oriented description of the struc-
ture of our abstract machine for compiling Curry programs. Therefore, dy-
namically created data terms and expressions are represented as objects of
particular classes. We show the definition of these classes in Java, but they
can be similarly implemented in C++, in which case an additional garbage
collector is necessary.

Expressions or terms can contain constructors, functions as well as free
variables. Therefore, we define an abstract class8 Term which is a superclass
for all possible objects occurring in expressions:

abstract public class Term {
abstract public String toString(); // format this term

}

Hence all terms have a method toString (which must be redefined in the
concrete subclasses) to produce a readable string representation of this term,
e.g., for debugging or to print computed results.

Since the implementation of free variables is described below (Section 3.2),
we show here only the implementation of terms headed by constructors or
function symbols. The common property of such terms is the fact that they
have a distinct number of arguments. Thus, we extract this property in
an abstract class NodeTerm representing terms with arguments. Since the
maximal number of arguments for each constructor and function is known at

8An abstract class is a class for which no instance can be created. Thus, abstract classes
are used to describe common properties of (concrete) object types which are declared as
subtypes of this abstract class. This has the advantage that the common properties need
not be multiply defined in the concrete subclasses.

11



compile time (since Curry is a typed language), we can store all arguments
in a local array:

abstract public class NodeTerm extends Term {
public int nargs=0; // current number of arguments

private Term [] args; // reference to arguments

abstract public int getArity(); // max. number of args

public final Term getArg(int n) { return args[n]; }
public final void setArg(int n, Term t) { args[n]=t; }
public final void addArg(Term t) { setArg(nargs++,t); }
...

}

Similarly to Term, the class NodeTerm is abstract since it is not reasonable
to have any instances of this class. However, it provides the necessary func-
tionality (methods getArg, setArg, addArg) for manipulating the current
arguments of an expression. The method getArity returns the maximal
number of arguments of a constructor or function and will be defined in the
subclasses of NodeTerm. The values of nargs and getArity() are different
in case of a partial application which can occur in higher-order programming
(see Section 4.1).

The subclasses of NodeTerm are the classes Constructor and Function

which represents constructor-headed expressions and function calls, respect-
ively. In order to implement the pattern matching efficiently (see below), we
assign to each constructor a unique index, i.e., for each data type occurring
in a Curry program, all constructors are simply enumerated starting from 0.
Thus, each instance of Constructor has in particular a method getIndex to
access the index of this constructor. Therefore, the class Constructor has
the following structure:

public class Constructor extends NodeTerm {
private ConsDesc cd; // infos about name and type

public int getIndex() {...}
...

}

In contrast to constructors, functions are evaluable. Thus, each function ob-
ject has a component code containing the instruction sequence to be executed
if this function call must be evaluated:

12



abstract public class Function extends NodeTerm {
private FuncDesc fd; // infos about name and type

static Command code[];

Term result;

public Command getCommand(int index) {
return code[index];

}
...

}

Due to the static declaration, the code is represented only once for all
instances. The single commands of a function (see below) can be accessed
by the method getCommand. The purpose of a Curry compiler is to translate
each function definition into a definition of a subclass of Function. For
instance, a function named add is translated into the class Function add

which contains in the component code the corresponding instructions of the
abstract Curry machine, which will be described below.

The component result9 of each function object contains the result of this
call when this function is evaluated. This is necessary to implement laziness
via sharing. A simple example shows why we need this component. Consider
the declaration of the function double

double x = add x x

and the goal double(add Z (S Z)). If we evaluate this goal in a naive
way (i.e., without sharing identical subterms), we evaluate the argument
(add Z (S Z)) twice (marked by underlining in the following derivation):

double(add Z (S Z)) → add (add Z (S Z)) (add Z (S Z))

→ add (S Z) (add Z (S Z))

→ add (S Z) (S Z)

→ S(add Z (S Z))

→ S(S Z)

To avoid such redundant computations, lazy languages use term sharing to
represent identical subterms. Furthermore, a function call is replaced by its
result in order to avoid further evaluations of this function. The replacement

9The definition of this component will later be modified to handle non-deterministic
computations.

13



of a function call by its result corresponds to transforming an instance of the
class Function into an instance of the class Constructor, which is usually
not possible in object-oriented languages. Therefore, we need another mech-
anism to store the result of a function evaluation in the corresponding term
structure and a technique to detect that a function call has been already
evaluated. This is done by an indirection through the result component of
the Function class (as in [34]). A result value of null means that the func-
tion term has not been yet evaluated, otherwise it refers to the corresponding
result term.

In the following, we will show the principles of our abstract machine by
discussing the implementation of the simple function add of Example 1. For
instance, a data term like (S Z) is represented by two instances of the class
Constructor where the instance for the constructor S refers to the instance
representing Z.

The creation of instances of these classes is performed by the Curry run-
time system. As an example, consider that the user enters the expression
“add (S Z) Z” to be evaluated. Then the run-time system performs the
following operations:

1. An instance of the class Function add is created that represents the
initial expression. This instance refers to representations of the actual
arguments (S Z) and Z which are also created as instances of the class
Constructor.

2. The abstract Curry machine is started. Since the entered goal is the
function add, the machine starts the execution of the code stored in
the component code of the class Function add.

Now we discuss the code instructions in more detail. The operational model
of Curry requires that the code of the function add should do something like
this:

if <1st argument is a function>
<evaluate the function (to head normal form)>

if <1st argument is a constructor C>

switch on C:

case ’Z’:

<return argument 2 as result>
case ’S’:

14



T = <first argument of this constructor ’S’>

<return the expression ’S(add T <argument 2>)’ as result>

Note that the lazy evaluation of expressions requires the creation of new, par-
tially evaluated expressions like “S(add T <argument 2>)” in this example.
Thus, the abstract Curry machine must be able to execute instructions

• to test the type of arguments (function or constructor),

• to construct new expressions (the right-hand sides of rules), and

• to change the execution path (e.g., call functions and return results).

To perform these tasks, the machine has the following registers and data
areas:

AReg0, AReg1, . . . : These are the argument registers that hold the actual
arguments when a function is called.

TReg0, TReg1, . . . : These are auxiliary registers for pattern matching, i.e.,
to get access to the arguments of constructor terms (see “T” in the
pseudo code above).

PC: A program counter pointing to the next instruction. This program
counter consists of two components: a reference to an instance of some
Function subclass (the current function to be evaluated) and an index
to a command in the code component of this instance (the next com-
mand to be executed). In a more efficient implementation, one could
store the code for all functions in one memory area (as done in most
implementations of abstract machines) so that the program counter
consists of only one component (an address into this code area) which
speeds up the access to the next instruction. On the other hand, the
distributed storing of code in our approach has the advantage that it
enables a dynamic loading of code. In fact, the Java run-time system
loads only the code of those classes that are actually needed.

TermStack: This stack is mainly used to create new terms as needed by the
right-hand sides of function rules. The instruction set of the machine
contains commands to push references to terms onto this stack and
commands to create new constructor/function terms using the contents
of the stack as arguments for those new terms. Later we will see that
we can avoid the use of the stack in most cases.

15



CallStack: This stack tracks function calls. Every function call creates a
new entry on the top of the stack containing the following information:

1. A reference to the function call to be evaluated.

2. A copy of the relevant argument registers.

3. A reference to the command that will be executed when the ma-
chine returns from the function call. This is often called the return
address in compiler construction [1] or the continuation pointer in
the WAM [36].

4. The index of the argument register where the result of the evalu-
ation of the function call should be stored.

In fact, an entry in the call stack represents the state of the machine
before it called the function. Thus, the machine state can be restored
from the top entry when the machine returns from the function call.

In our object-oriented description, the single commands of the abstract ma-
chine are represented by instances of classes that are derived from the ab-
stract class Command:

abstract public class Command {
abstract void execute(...);

}

Thus, a command is executed by calling its execute method. A machine pro-
gram (i.e., a sequence of commands) is implemented as an array of Command
objects (stored in the component code of functions). The complete code of
the function add looks like this:

public class Function add extends Function {
private static final Command code[]={
// Argument 1 is in AReg0, Argument 2 in AReg1

new CmdSwitchOnType(0,11), // AReg0 function -> line 11

// code for case ’isConstructor’

new CmdSwitchOnCons(0,{2,4}), // AReg0: Z -> line 2

// S -> line 4

// code for rule 1 (this is line 2):

new CmdPushReg(1),

new CmdReturn(), // return AReg1 as result

16



// code for rule 2 (this is line 4):

new CmdLoadArgs(0), // get arg. of constructor:

new CmdLoadReg(0,0), // S x -> x

new CmdPushReg(0),

new CmdPushReg(1),

new CmdPushFunc("add",2),

new CmdPushCons("S",1),

new CmdReturn(), // return S(add x y) as result

// code for case ’isFunction’ (this is line 11):

new CmdCall(0,2,0), // execute function call in AReg0,

// save 2 registers and return to line 0

};
}

The first command CmdSwitchOnType checks whether argument register 0

refers to a function. If this is the case, it jumps to line 11 (all addresses
are indices in the command array) where the function is evaluated by
CmdCall(0,2,0), otherwise it proceeds with the next instruction. The in-
struction CmdSwitchOnCons(0,{2,4}) is a case distinction on the value of
the top constructor symbol in register 0: if it is the constructor Z, we jump
to line 2, if it is the constructor S, we jump to line 4 (remember that we
assign a unique index to each constructor of a data type; these are exactly
the indices used in the jump table {2,4}). If the constructor is Z, the con-
tents of argument register 1 (containing the second argument) is pushed
on the term stack (CmdPushReg(1)) and we return with the top element of
the term stack by the instruction CmdReturn(). The subsequent 7 instruc-
tions create the right-hand side of the second rule (S(add x y)) using the
term stack: CmdLoadArgs(0) loads the arguments of the top constructor
symbol of register 0 into the auxiliary registers. In this case, the single argu-
ment x is loaded into TReg0. This argument is moved into register AReg0 by
CmdLoadReg(0,0). Finally, the new expression is created using push instruc-
tions (e.g., CmdPushFunc("add",2) creates an add-headed term with the two
top elements from the term stack as arguments).

This is only a brief description of the abstract machine but a more pre-
cise definition of the individual commands can be found in the appendix.
This abstract machine is basically a reduction machine for the implementa-
tion of functional languages (like [22]) enhanced with the parameter passing
mechanism and the pattern matching from the WAM [36].

17



Our current implementation additionally performs some optimizations.
One of these optimizations consists in compiling right-hand sides of rules
which do not contain control transfer instructions directly into Java code.
This avoids the stepwise execution of the command sequence and the use of
the term stack for the construction of terms. For instance, two successive
push and pop instructions on the term stack, like “PushReg(1); Return()”
in rule 1 of the function add, are replaced by a direct return with the con-
tents of argument register 1 (“machine.returnWith(machine.getReg(1))”,
see also Appendix A.2.6). This optimization can be implemented by a new
command named CmdCustom which allows the machine to call Java methods
directly. Then we are able to replace the command sequences corresponding
to the right-hand sides of rule 1 and 2 by CmdCustom commands calling the
corresponding Java methods rule1 and rule2:

public class Function add extends Function {

private static final Command code[]={
new CmdSwitchOnType(0,4),

new CmdSwitchOnCons(0,{2,3}),
new CmdCustom(rule1),

new CmdCustom(rule2),

new CmdCall(0,2,0),

};

private static void rule1(Machine machine) {
machine.returnWith(machine.getReg(1));

}

private static void rule2(Machine machine) {
Constructor cons=(Constructor)machine.getReg(0);

Constructor cons0=new CustomConstructor(consDesc0);

Function func0=new Function add();

func0.addArg(cons.getArg(0));

func0.addArg(machine.getReg(1));

cons0.addArg(func0);

machine.returnWith(cons0);

}

private static final ConsDesc consDesc0 =

Run.findConsDesc("S");

...

18



}

The methods rule1 and rule2 can be interpreted as the inline expansion
(together with some simple optimizations) of the corresponding commands in
our first definition of Function add. Note that passing methods as arguments
is allowed only in the Java extension “Pizza” [27] which we used for our
implementation. Pure Java programmers need to simulate this by passing
objects containing these methods. The use of Pizza does not reduce the
portability of our implementation since the Pizza extensions are compiled
into Java and hence to the JVM.

In this section we have described only the implementation of the purely
functional part of Curry. However, Curry also inherits from logic program-
ming free variables and non-determinism. The implementation of these fea-
tures is sketched in the following section.

3.2 Free Variables and Disjunctive Computations

Since Curry subsumes purely logic languages, we have to implement free vari-
ables and their (non-deterministic) bindings. Free variables may be bound
by pattern matching or by unification of an equational constraint. We de-
scribe only the binding by pattern matching, since the unification of data
terms can be similarly implemented (iterative pattern matching). The main
problem to bind a free variable by pattern matching is caused by the fact
that a variable may be bound to different constructors leading to alternative
solutions. We implement such non-deterministic bindings by starting several
abstract Curry machines which evaluate the expressions with the different
bindings of the variable.

Example 2 Consider the rules for add of Example 1 and the evaluation of
the expression “add y Z”. Since y must be bound to Z or (S x) (where x is
a new free variable) to proceed the evaluation, we create two machines for
the further evaluation: one machine works with the binding {y=Z} and the
other with {y=(S x)}.

Thus, the basic idea of our implementation of disjunctions is to have one
machine for each disjunction occurring in a computation. Each machine is
responsible to evaluate an expression as described in the previous section.
Since Curry is not based on a backtracking strategy, there is no fixed order

19



in the execution of these machines. In our current implementation described
in this paper, these machines are executed as independent Java threads in a
fair manner, but this is not essential. Our design is also intended as a basis
for future extensions where the search strategy, i.e., the order to traverse the
search tree representing disjunctive computations, can be specified by the
programmer [15]. In this case, the order of executing the machines can be
arbitrarily interleaved which requires that switching the execution between
different machines and creating new machines should be efficiently performed.

There are different approaches to handle alternative bindings for a vari-
able, like copying the complete environment for each machine, storing the
bindings in tables, called binding arrays, or using hash tables for the efficient
access to the binding of a variable w.r.t. a machine. All these techniques
have different costs w.r.t. the time needed for machine creation or variable
access (see, e.g., [10] for a discussion on different implementation technqiues).
To ensure constant machine creation time and to exploit the object-oriented
design of our implementation, we have decided to move the binding informa-
tion into the variable objects. Thus, we give the variable objects the capab-
ility to determine their bindings rather than collect the variables and their
bindings into a special data structure. For the implementation of alternative
bindings, we assign to each machine a unique natural number (called key).
Furthermore, each variable object contains a structure called binding table
which is in fact a hashtable of type Key → Term, i.e., variables are objects
of the following type:

public class Variable extends Term {
String name; // variable name for debugging

// and printing results

BindingTable bindingtable = new BindingTable();

...

}

The machine can use its key to “ask” the variable object whether the binding
table contains bindings for the asking machine. When the machine wants to
bind the variable, its key is used to insert a new entry in the binding table.

There is still one problem: consider a machine A which binds a variable V ,
then causes a non-deterministic computation which creates a new machine B,
and finally binds a variable W . The machine B may not only access bindings
created by itself but access bindings created by the machine A, too, since A

and B have the same “prehistory”. How can machine B differ between the

20



binding of V which is part of their common prehistory and the binding of W

(which is not)?
To solve this problem, we add timestamps to every machine and to every

entry in a binding table. The timestamps are handled by two rules:

1. Machines have two timestamps, called “current timestamp” and “birth
timestamp”. When a new machine is created, its current timestamp
and its birth timestamp are set to the value of the current timestamp
of the creator machine. Then the current timestamp of the creator is
incremented by one.

2. If a machine creates an entry in a binding table, it stores its key as well
as its current timestamp in the entry.

When a machine B wants to access a variable U , two cases may occur:

1. The binding table of U contains an entry for B: this means that U is
bound in the context of B.

2. The binding table contains no entry for B: we have to restart the lookup
with the key of the creator machine of B (see our example above).

If this extended search did not find an entry, we can stop the search: U

is really not bound (in the context of B). Otherwise, we have to check
for the found entry that

entry.timeStamp ≤ B.birthTimeStamp

This means that B inherits this binding from its creator. In this case,
we can avoid the lookup for the future by creating a new entry for B

now (but with the same timestamp entry.timeStamp).

The described technique guarantees constant machine creation time since
binding tables are not copied. If we initialize the binding table big enough,
we have in most cases also a constant variable access time (except for the
first access).

Due to different variable bindings in the various running machines, a
function call may also be evaluated to different results in these machines.
Therefore, we use the same binding technique also for storing the result of
function calls, i.e., the component result of the Function class refers to a
binding table instead of a simple term.

21



We describe the new commands of our abstract machine to deal with
non-determinism and variable bindings by completing the code of our add

example of the previous section. In order to extend the code in the class
Function add to include the possible bindings of free variables, we replace
the first command (SwitchOnType) by the instruction

SwitchOnType(0,11,12) // AReg0 contains function -> line 11

// AReg0 contains variable -> line 12

Thus, the command SwitchOnType(n,l1,l2) inspects the contents of argu-
ment register n and jumps to line l1 if it is a function call, and to line l2 if
it is a free variable. Otherwise, it proceeds with the next instruction.

Furthermore, we append the following code sequence (case “is a variable”)
at the end of the previous code for add (here we show the generated code
instead of the creation commands “new Cmd...”):

// handling of a free variable as first argument

// (this is line 12):

NewChoice(16,2), // start copy of this machine at line 16

// choice 1:

PushCons("Z",0),

SimpleBind(0), // bind variable in register 0 to ’Z’

Jump(2),

// choice 2 (this is line 16):

PushVar(), // create new variable ’x’

PushCons("S",1),

SimpleBind(0), // bind variable in register 0 to ’S x’

Jump(4)

If the first argument of a call to add is a free variable, the current computation
thread (machine) is duplicated. One machine binds the free variable to the
constructor Z and proceeds with the first rule, while the other machine binds
the variable to (S x) (where x is a newly created variable) and proceeds with
the second rule.

3.3 Concurrent Execution of Constraints

As explained in Section 2, Curry also supports the suspension of function
evaluations that are not sufficiently instantiated. As known from logic pro-

22



gramming with coroutining [25], this feature is quite useful to avoid an unres-
tricted generation of infinite solution sets and also supports a concurrent pro-
gramming style like in concurrent constraint/logic programming languages.
Moreover, the suspension of function calls is essential to connect external
functions in a clean way [5]. For instance, the addition on integers is con-
ceptually defined by an infinite set of rules:

0+0 = 0

0+1 = 1

...

2+3 = 5

...

These rules are not explicitly available in the program but this addition is
implemented by some external operation. Therefore, an addition with un-
known values, like x+3=:=y must be delayed until the arguments are known.
Since Curry supports the concurrent execution of constraints by the concur-
rent conjunction operator &, a goal like “x+3=:=y & x=:=2*3” is executed by
suspending the first constraint, evaluating the second constraint which binds
x to 6, and activating the first constraint which evaluates 6+3 and binds y

to 9.
It is reasonable to implement the concurrent conjunction of constraints

by concurrently working machines, where the machines evaluate different
constraints. The synchronization of these machines is organized through the
binding of common variables. This has the consequence that the run-time
system must create new machines not only for OR-parallel computations but
also for AND-parallel computations.

To implement this feature, our previous concept of a strong connection
between a machine and the expression/goal to be evaluated must be replaced
by a new data structure. This structure (the so-called computation structure)
contains the AND-tree representing the structure of concurrent conjunctions.
This tree organizes the AND-parallel evaluation of a goal:

• The leaves represent working machines evaluating a constraint.

• An evaluation of a concurrent conjunction c1 & c2 replaces the calling
leaf (i.e., the machine which attempts to evaluate this constraint) by
an AND-node with two sons that represent the constraints c1 and c2,
respectively.

23



• If the two sons of an AND-node terminate successfully (i.e., the con-
straints are solved), this AND-node is replaced by a leaf which continues
the evaluation of the expression containing this conjunction.

• A failure of one leaf results in a failure of the entire computation struc-
ture, since the entire constraint is unsolvable.

• The computation structure terminates successfully only if all leaves
have terminated successfully.

Since function calls may suspend if free variables are passed as arguments
(e.g., x+3), an AND-tree may contain two types of leaves:

1. Active leaves represent running machines.

2. Suspended leaves represent machines that are waiting on a variable
binding in order to proceed their computation. Since this binding can
only be done by an active leaf, the lack of any active machine in the
tree will cause a failure of the entire computation structure.

Since the variable objects with their binding tables are shared by all machines
of the computation structure, it is fairly simple to organize the access to a
variable in a synchronized way, which is supported in Java by the monitor
concept. Only one machine at a time can access and bind the value of
a particular variable. A problem occurs if one machine wants to bind a
variable to different values (OR-parallelism). The two extreme solutions to
this problem (among many others, see, e.g., [10]) are the complete copying of
the entire computation structure (which corresponds to full OR-parallelism)
or to forbid the non-deterministic binding inside concurrent computations.
We prefer a middle course and adopt a solution which is related to stability
in AKL [20]:

• Leaves which want to bind a variable deterministically are allowed to
do it immediately.

• Non-deterministic binding will cause the leaf to suspend. This leaf can
only be reactivated

– if there is no other active leaf, or

– if another active leaf has bound the variable.

24



This can avoid unnecessary duplications of active machines and prefers de-
terministic parts of the computation, similarly to the Andorra computation
model [19]. If all leaves in a computation structure are suspended but there
are several leaves waiting to bind a variable non-deterministically, then only
one of them (e.g., the leaf corresponding to the leftmost constraint with a
non-deterministic binding attempt) is reactivated.

A small example helps to see how this works. Our program consists of
one constraint function digit defined by the following rules, where success

is a predefined constraint which is always satisfiable:

digit 0 = success
...

digit 9 = success

This (flexible) function acts in goals like

x+x=:=y & x*x=:=y & digit x

as a generator for values of x. The bindings produced by this generator are
consumed by the (rigid) arithmetic functions + and *:

1. When the goal is started, a computation structure with three leaves for
the constraints x+x=:=y, x*x=:=y and digit x is created.

2. If the machine evaluating “digit x” attempts to bind x in a non-
deterministic way, it suspends as long as there are other active leaves.

3. The evaluations of the functions + and * suspend since all arguments
are uninstantiated.

4. Since all consumers are now suspended, the machine for “digit x” is
reactivated and creates bindings for the variable x.

5. The leaves which represent the consumers receive a message that the
variable has been bound. This cause the reactivation of the machines.

Note that the entire computation structure must be copied before reactivat-
ing the machines in case of a non-deterministic binding.

In order to avoid the creation of too many concurrently working machines,
we can introduce a simple optimization in the processing of the concurrent
conjunction operator. Instead of immediately evaluating both constraints

25



of an AND-node by two machines, the machine for evaluating the second
constraint is only (concurrently) activated if the evaluation of the first con-
straint suspends, otherwise (i.e., if the first constraint can be fully evaluated
without suspension), the second constraint is evaluated after the evaluation of
the first one. This results in a sequential left-to-right execution of constraints
(similarly to Prolog) that will only be broken when a constraint suspends.

3.4 Global Synchronization

The user interface of the run-time system consists of a main thread waiting
for user-input. When an expression or goal has been entered, the main thread
creates a new computation structure for this expression (containing initially
only one leaf) and starts its execution.

A terminating computation structure sends a message to the main thread.
This message may include a solution for the goal or simply signals a failed
computation. In the former case, the main thread writes the solution on
the terminal and re-enters into the message-loop, ready to receive further
messages.

Note that—unlike the backtracking mechanism of Prolog—an infinite
computation can not inhibit the output of other solutions, since the OR-
parallel computation paths are executed as independent threads in our Java-
based implementation.

4 Extensions of the Basic Computation

Model

4.1 Higher-order Functions

Higher-order functions have been shown to be very useful to structure pro-
grams and write reusable software [18]. Although the computation model
described so far includes only first-order functions, higher-order features can
be implemented by providing a (first-order) definition of the application func-
tion (as shown by Warren [35] for logic programming). Curry supports the
higher-order features of current functional languages (partial function ap-
plications, lambda abstractions) by this technique, where the rules for the
application function are implicitly defined. In particular, function applica-
tion is rigid in the first argument, i.e., an application is delayed until the

26



function to be applied is known (this avoids the expensive and operationally
complex synthesis of functions by higher-order unification).

To recognize partially applied expressions, every constructor or function
call (i.e., every instance of a subclass of NodeTerm) stores the arity of the
constructor or function and the number of arguments currently bound to
the constructor/function object (method getArity and field nargs of class
NodeTerm, see Section 3.1). If a partial application (i.e., an object whose
number of arguments is less than its arity) is applied to an argument, the
new argument is simply added to the object and the argument counter is
incremented.10 If a function call has now the same number of arguments as
its arity, it is evaluated.

For instance, consider the function map which applies a function to all
elements of a list:

map f [] = []

map f (x:xs) = f x : map f xs

inc x = x+1

Then the expression “map inc [0,2,1]” evaluates to the list [1,3,2].
In the first step of this evaluation, the expression is reduced to
“inc 0 : map inc [2,1]”. The application of inc to 0 adds the con-
structor 0 as a new argument to the partial function call inc. Since the
arity of inc is 1, this function call has now the maximal number of argu-
ments and is evaluated to 1.

4.2 Conditional Rules

Conditional rules, in particular with extra variables (i.e., variables not oc-
curring in the left-hand side) in conditions, are one of the essential features
to provide the full power of logic programming. Our implementation can
be easily extended to conditional rules following the approach taken in Ba-
bel [24]: consider a conditional rule “l | c = r” as syntactic sugar for the
rule l = (c ⇒ r), where the right-hand side is a guarded expression. The op-
erational meaning of a guarded expression “c ⇒ r” can be defined by the
rule

(success ⇒ x) = x

10Note that the machine has to make a copy of the function object since it may be
shared with other expressions.

27



(for this purpose, success is considered as a constructor). Thus, a guarded
expression is evaluated by an attempt to solve the constraint. If this is
successful (i.e., leads to the satisfiable constraint success), the guarded ex-
pression is replaced by the right-hand side r of the conditional rule.

4.3 Committed Choice

To support the usual concurrent (logic) programming techniques, Curry has
also a committed choice construct to express a don’t care choice between
different alternatives. A committed choice expression like

choice c1 -> e1

...

cn -> en

(where c1, . . . , cn are constraints and e1, . . . , en are expressions of the same
type) instructs the machine to make a don’t care choice between the differ-
ent execution paths e1, . . . , en provided that the corresponding contraint is
satisfiable. To accomplish this task, all guards c1, . . . , cn are evaluated in an
OR-parallel manner and the machine chooses the expression whose corres-
ponding constraint terminates successfully. If more then one constraint is
successful, the machine has to choose non-deterministically one of them. If
all constraints fail, the entire expression fails. If all constraints suspend, the
entire expression suspends. Unlike the (don’t know) non-determinism dis-
cussed in the sections above, this choice is don’t care: there is no alternative
if the choosen expression does not lead to a solution.

Since the machine does not know which constraint will be choosen, it is
important that the constraints must not change their execution environment:
a constraint ci is only allowed to bind variables that are local in ci (and the
corresponding expression ei). Additionally, if a constraint produces non-
determinism, all new copies of this constraint are handled like the other
members of the committed choice (i.e., the constraints in the committed
choice are handled as deep guards).

The correct implementation of this behavior requires the distinction
between local and global variables. To support this, we extend the computa-
tion structures and the variable objects by a natural number called “level”:

• Machines that are part of a committed choice have got the level incre-
mented by one of the machine that has initiated the committed choice.

28



• Machines that are copies of another machine inherit the level of the
creating machine.

• The level of a variable is set to the level of the machine that creates
the variable.

Now we are able to control variable accesses of a machine with level l:

• Variables with a level less than l are global to this machine and read-
only. If the machine tries to bind such a variable, it suspends immedi-
ately.

• If the machine can not find a binding entry for a variable using its
key, it restarts the lookup using the key of the corresponding machine
with level l−1 (i.e., the machine that controls the enclosing committed
choice).

• If a constraint of the committed choice terminates successfully, the con-
trolling machine (evaluating the committed choice) inherits all bindings
made by this constraint and continues with the evaluation of the cor-
responding expression.

4.4 Input/Output

Curry uses the monadic I/O concept from functional programming [33] to
handle input/output in a declarative way. With this concept, an interactive
program is considered as a function computing a sequence of actions which
are applied to the outside world. Each action changes the state of the world
and possibly returns a result (e.g., a character read from the terminal). The
important point is that the world is not directly accessible to the programmer
— she/he can only create and sequentially compose actions on the world.
Due to the sequential composition of actions, only one version of the world
is available at a time and, therefore, it is not necessary to store the current
state of the world during the computation.

A problem might occur if an interactive program produces a disjunction
as a result. Since the state of the world cannot be copied (note that the world
contains at least the complete file system or the complete Internet in web
applications), a disjunction of actions must be avoided.11 Therefore, the pro-
grammer must encapsulate all possible disjunctive computations between I/O

11Actually, it is a run-time error if such a situation occurs.

29



operations, either by the committed choice described in Section 4.3 (where all
disjunctive computations in the guards are encapsulated) or by the explicit
encapsulation of search as described in [15]. As a consequence, one can use in
Curry the same implementation techniques for monadic I/O as in functional
languages.

5 Implementation of the Abstract Machine

We have used Java as the description language for the overall structure of
our abstract machine. Therefore, this description can be directly used for an
implementation of our machine in Java. In this case we have to implement
a compiler which translates each function definition of a Curry program into
a class definition (a subclass of Function, see Section 3.1) that contains the
commands of our abstract machine implementing this function definition.
Each abstract machine (responsible for the evaluation of a single Curry ex-
pression) can be executed as a separate thread in Java, i.e., the structure of
a machine could be defined as

public class Machine extends Thread {
// the function processed by the machine:

private Function pcFunction;

// the next command of the processed function:

private int pcIndex;

... // definitions of further registers, term stack,

// call stack etc.

}

Since the machines are executed concurrently by the Java run-time system,
all changes to common resources, i.e., variables and their bindings, must
be organized in a synchronized way. This is easily possible in Java by the
monitor concept.

If we use another language than Java for the implementation of our ab-
stract machine, more effort for the implementation of the run-time system is
needed, but we have also more possibilities for optimization. For instance, if
we use C++, we have to implement a garbage collector and the concurrent
or interleaved execution of machines. On the other hand, we can optimize
the machine’s implementation at various places:

30



• Since C++ does not support the dynamic loading of code, there is no
advantage of attaching the abstract machine code for each compiled
function to individual classes. Thus, the code for all functions can be
collected in one array so that the program counter is a simple index into
this array (instead of the two component program counter described
above and in Section 3.1).

• By implementing a specific garbage collector, one can obtain a better
memory management compared to the use of a standard garbage col-
lector. For instance, the use of the built-in garbage collector in our
Java implementation requires the explicit setting of unused argument
or temporary registers of a machine to null values, otherwise some
garbage cannot be reclaimed.

• Using C++, we have access to some features of the underlying operating
system. For instance, we may use the memory management unit to
implement copy-on-write data structures (i.e., data structures that are
shared between two processes but which are duplicated if one of the
processes tries to write to it). This would help us to avoid structures
like the binding table in variable objects or the result table in function
objects.

6 Conclusions and Results

We have presented an abstract machine to compile programs of the multi-
paradigm language Curry and sketched its implementation in Java. Thus,
the abstract machine can also be seen as a link to compile Curry into Java
to obtain a portable implementation of Curry programs. Since Curry con-
tains features from functional, logic, and concurrent programming, the im-
plementation also reflects them: functional computations are implemented
by an elementary stack-based machine, and the concurrent features of Java
are exploited to implement the logic (OR-parallelism) and concurrent (AND-
parallelism) elements of Curry.

The fact that Curry does not depend on a backtracking semantics like
Prolog (since Curry has no side effects) has simplified the structure of the im-
plementation. The user does not need to take any precautions when he wants
to use parallelism in his program. The explicit notion of a concurrent con-
junction results in a transparent AND-OR-parallelism that can be controlled

31



with the high-level concept of constraints. For example, the evaluation of a
goal like “generate x & test x” does not show any difference—neither in
result nor in execution time—to the evaluation of “test x & generate x”.
Concerning this, the implementation is comparable with the Andorra model
[19].

Since the run-time system of our implementation is written in Java, its
speed is highly dependent on the efficiency of the JVM. First results of
our implementation indicate that our implementation is much slower than
highly optimized implementations of Prolog or Haskell (similar results have
been reported by other projects to compile declarative languages in Java or
the JVM, e.g., [34]). This is not due to the use of threads to implement
AND/OR-parallelism, but it is caused by the fact that the JVM performs
many run-time checks to ensure a reliable execution of Java programs. For
instance, the (completely deterministic) execution of the classical “naive re-
verse” benchmark (note that it is executed by Curry in a (more costly) lazy
manner in contrast to Prolog) is performed with approximately 14000 LIPS
(“Logical I nferences Per Second”, where a logical inference is here a reduc-
tion step with a rule) on a Linux-PC (Pentium II, 400 Mhz).12 The use of
an intermediate abstract machine in our implementation causes only a lim-
ited overhead: a direct translation of the functions occurring in the naive
reverse example into Java procedures, which is possible due to absence of
non-deterministic choices in this example, yields an efficiency improvement
with a factor around 2.

In order to get some idea about the costs of threads in our Java-based im-
plementation, we have compared a purely functional program with a similar
program that makes extensive use of threads for implementing don’t know
non-deterministic choices:

linear1 n = if (n>0)==True then linear1 (n-1) else 0

linear2 0 = 0

linear2 n | (n>0)=:=True = linear2 (n-1)

12All runtimes are measured in real time, since Java does not support the access to the
cpu time but only to the current time. Similarly, it is even more difficult to get some
figures about the memory consumption since the standard profiling option provides only
numbers about the totally used heap which does not differentiate between system objects
and objects created by the user program. Thus, we cannot provide any numbers on the
memory consumption.

32



The function linear1 decrements its argument to zero in a fully deterministic
way due to the explicit use of if-then-else. The function linear2 simulates
the sequential if-structure of linear1 by two rules with overlapping left-
hand sides which cause the creation of OR-parallelism.13 This means that
the goal “linear2 n” creates n + 2 threads (unlike the goal “linear1 n”
which creates only one).

The execution times (in milliseconds) for different values of n are sum-
marized in the following table:

n: 50 100 200 300 400 500
linear1: 17 35 69 104 137 172
linear2: 34 68 136 204 272 341
Ratio (linear2/linear1): 2.0 1.95 1.97 1.96 1.99 1.98

The result is as expected: The execution times for both functions are linear
in n. Additionally, the function linear1 is only around two times faster than
linear2. This means that the current implementation of the JVM is able to
create and handle Java threads very cheaply.

We have also tested the behavior of generating threads to implement
the non-deterministic search (OR-parallelism) in combination with concur-
rent evaluation of constraints. For this purpose, we executed a highly non-
deterministic program (a map coloring problem with 48 solutions). The
program consists of a generator which may generate 256 different potential
solutions and of a test function which identifies 48 of the possibilities as
solutions. Combining these two functions to a generate-and-test system res-
ults in the creation of 256 threads during an execution time of 0.4 seconds.
A test-and-generate system, where the test function suspends and acts as a
passive constraint which is activated when it receives some input, creates only
124 threads (not all potential solutions are completely generated) but still
consumes 0.25 seconds due to the higher degree of synchronisation between
processes.

Due to use of Java threads for disjunctive and concurrent computations in
our implementation, we have no influence on the scheduling of these threads
since this is done by the Java run-time system. This limitation has also an
advantage: If there is an implementation of the JVM available on multi-

13As explained in Section 2, rules with overlapping left-hand sides (i.e., if the left-hand
sides are unifiable) are implemented as OR-parallel evaluations. In this example, one of
the two generated threads always fails after pattern matching or condition checking.

33



processor architectures, which assigns threads to different processors, we im-
mediately obtain a parallel implementation of our Curry programs without
any change in our implementation.

Since Java is relatively new and Java compilers (in particular Just-in-
Time-compilers) are currently not comparable to highly developed compilers
like GNU-C, we can expect further efficiency improvements in the future.
On the other hand, a good efficiency was not the main motivation to use
Java. The concurrency features of Java together with its automatic memory
management simplified our implementation. Moreover, the use of objects to
represent data structures supports an easy connection of Curry with external
functions directly implemented in Java.

In order to get an idea about the loss of efficiency due to the use of Java
instead of C++, we have implemented the deterministic part of our abstract
machine and its run-time system in C++. In this implementation, we have
translated the classes describing the data structures and commands of our
abstract machine as described in Section 3 into C++ in a straightforward
way but already using some of the optimizations discussed in Section 5 (e.g.,
the code of all functions is stored in one array and the management of the
heap is explicitly programmed). This implementation executes the “naive
reverse” benchmark with approximately 740000 LIPS which is more than 50
times faster(!) than the Java-based implementation. This shows that the
efficiency problem of our Java-based implementation is mainly due to the
current JVM implementation.

The use of Java as an implementation language has—in spite of its
efficiency—also other advantages: the ability of the JVM to load classes
during run time allows the user to hold only those functions in memory that
are actually needed (this feature has also been used by other projects like the
Prolog-to-Java compiler JProlog [8]). For instance, the standard prelude for
Curry programs contains many predefined functions which are available in
all applications programs. In our implementation, the Java run-time system
loads only the code of those functions which are actually evaluated. And last
but not least: since the Java compiler produces bytecode for the JVM, the
entire Curry run-time system is portable to other platforms: any computer
with an installed JVM (e.g., a WWW-browser) is able to run an application
written in Curry without recompilation of the source files.

Since Curry is intended to combine the paradigms of functional and logic
programming, the application areas of Curry are similar to functional and
logic languages (symbolic computations, knowledge-based systems, search

34



problems, etc). Moreover, Curry is a good basis to teach functional and
logic programming in a single course [12]. The Java-based implementation of
Curry described in this paper has also been applied to solve problems where
extensive search is needed (e.g., to implement a musical application where
appropriate chords for the accompaniment of a given melody are generated
[14]). The advantages of Curry for such applications is the smaller (demand-
driven generated) search space due to the lazy operational semantics. For the
future, we plan to integrate constraint solvers into Curry in order to apply
it in applications from constraint logic programming.

Future extensions of this implementation will include methods to restrict
and control the non-determinism by the encapsulation of search [15]. Further-
more, we will investigate program analysis methods to detect deterministic
subcomputations and to transform lazy into eager evaluation. This would
provide a method to translate parts of a Curry program directly into Java
code which avoids the indirect execution by our abstract Curry machine.

Acknowledgements. The authors are grateful to the anonymous referees
for their detailed comments on a previous version of this paper.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, Reading, Mass., 1985.

[2] S. Antoy. Definitional trees. In Proceedings of the 3rd International Con-
ference on Algebraic and Logic Programming, pages 143–157. Springer
Lecture Notes in Computer Science 632, 1992.

[3] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In
Proceedings 21st ACM Symposium on Principles of Programming Lan-
guages, pages 268–279. ACM Press, 1994.

[4] S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation strategies
for functional logic languages. In Proceedings of the Fourteenth Inter-
national Conference on Logic Programming (ICLP’97), pages 138–152.
MIT Press, 1997.

[5] S. Bonnier and J. Maluszynski. Towards a clean amalgamation of logic
programs with external procedures. In Proceedings 5th Conference on

35



Logic Programming & 5th Symposium on Logic Programming (Seattle),
pages 311–326. MIT Press, 1988.

[6] S. Breitinger, R. Loogen, and Y. Ortega-Mallen. Concurrency in func-
tional and logic programming. In Fuji International Workshop on Func-
tional and Logic Programming. World Scientific Publ., 1995.

[7] M.M.T. Chakravarty, Y. Guo, M. Köhler, and H.C.R. Lock. Goffin -
higher-order functions meet concurrent constraints. Science of Computer
Programming, 30(1-2):157–199, 1998.

[8] B. Demoen and P. Tarau. JProlog. Available at
http://www.cs.kuleuven.ac.be/~bmd/PrologInJava/, 1996.

[9] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF:
A logic plus functional language. Journal of Computer and System Sci-
ences, 42(2):139–185, 1991.

[10] G. Gupta. Multiprocessor Execution of Logic Programs. Kluwer Aca-
demic Publishers, 1994.

[11] M. Hanus. The integration of functions into logic programming: From
theory to practice. Journal of Logic Programming, 19&20:583–628, 1994.

[12] M. Hanus. Teaching functional and logic programming with a single
computation model. In Proceedings Ninth International Symposium
on Programming Languages, Implementations, Logics, and Programs
(PLILP’97), pages 335–350. Springer Lecture Notes in Computer Sci-
ence 1292, 1997.

[13] M. Hanus. A unified computation model for functional and logic pro-
gramming. In Proceedings of the 24th ACM Symposium on Principles
of Programming Languages (Paris), pages 80–93. ACM Press, 1997.

[14] M. Hanus and P. Réty. Demand-driven search in functional logic pro-
grams. Research report RR-LIFO-98-08, Univ. Orléans, 1998.

[15] M. Hanus and F. Steiner. Controlling search in declarative programs. In
Principles of Declarative Programming (Proceedings Joint International
Sy mposium PLILP/ALP’98), pages 374–390. Springer Lecture Notes in
Computer Science 1490, 1998.

36



[16] M. Hanus (ed.). Curry: An integrated functional logic language. Avail-
able at http://www-i2.informatik.rwth-aachen.de/~hanus/curry,
1998.

[17] P. Hudak, S. Peyton Jones, and P. Wadler. Report on the programming
language Haskell (Version 1.2). SIGPLAN Notices, 27(5), 1992.

[18] J. Hughes. Why functional programming matters. In D.A. Turner, ed-
itor, Research Topcis in Functional Programming, pages 17–42. Addison
Wesley, 1990.

[19] S. Janson and S. Haridi. Kernal Andorra Prolog and its computation
model. In Proceedings of the 7th International Conference, pages 31–46.
MIT Press, 1990.

[20] S. Janson and S. Haridi. Programming paradigms of the Andorra Ker-
nel Language. In Proceedings 1991 International Logic Programming
Symposium, pages 167–183. MIT Press, 1991.

[21] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1997.

[22] R. Loogen. Relating the implementation techniques of functional and
functional logic languages. New Generation Computing, 11:179–215,
1993.

[23] R. Loogen, F. Lopez Fraguas, and M. Rodŕıguez Artalejo. A demand
driven computation strategy for lazy narrowing. In Proceedings of the
5th International Symposium on Programming Language Implementa-
tion and Logic Programming, pages 184–200. Springer Lecture Notes in
Computer Science 714, 1993.

[24] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic programming
with functions and predicates: The language BABEL. Journal of Logic
Programming, 12:191–223, 1992.

[25] L. Naish. Negation and Control in Prolog. Springer Lecture Notes in
Computer Science 238, 1987.

[26] J.F. Nilsson. On the compilation of a domain-based Prolog. In Proceed-
ings IFIP’83, pages 293–298. Elsevier Science Publishers, 1983.

37



[27] M. Odersky and P. Wadler. Pizza into Java: translating theory into
practice. In Proceedings of the 24th ACM Symposium on Principles of
Programming Languages (Paris), pages 146–159, 1997.

[28] S.L. Peyton Jones and P. Wadler. Imperative functional program-
ming. In Proceedings 20th Symposium on Principles of Programming
Languages (POPL’93), pages 71–84, 1993.

[29] E. Pontelli and G. Gupta. Implementation mechanisms for dependent
and-parallelism. In Proceedings of the Fourteenth International Con-
ference on Logic Programming (ICLP’97), pages 123–137. MIT Press,
1997.

[30] V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[31] G. Smolka. The Oz programming model. In J. van Leeuwen, editor,
Computer Science Today: Recent Trends and Developments, pages 324–
343. Springer Lecture Notes in Computer Science 1000, 1995.

[32] Sun Microsystems. Java documentation. Available at
http://java.sun.com/docs/, 1997.

[33] P. Wadler. How to declare an imperative. In Proceedings of the 1995
International Logic Programming Symposium, pages 18–32. MIT Press,
1995.

[34] D. Wakeling. A Haskell to Java Virtual Machine code compiler. In Pro-
ceedings 9th International Workshop on Implementation of Functional
Languages (IFL’97), pages 39–52. Springer Lecture Notes in Computer
Science 1467, 1997.

[35] D.H.D. Warren. Higher-order extensions to Prolog: are they needed?
In Machine Intelligence 10, pages 441–454, 1982.

[36] D.H.D. Warren. An abstract Prolog instruction set. Technical note 309,
SRI International, Stanford, 1983.

A Description of the Abstract Machine

This appendix contains a more detailed description of the structure and the
commands of our abstract machine.

38



A.1 Registers and Data Structures of Individual Ma-
chines

We recall the registers and data structures as introduced and motivated in
the paper. Each machine contains the following registers and data areas:

AReg0,AReg1,. . . : Argument registers for the actual arguments.

TReg0,TReg1,. . . : Auxiliary registers for pattern matching.

PC: Program counter pointing to the next instruction. PC consists of two
components pcFunction (the function that the machine is executing)
and pcIndex (the next command in the code block of pcFunction).

TermStack: Small stack to construct new terms as needed by the right-hand
sides of function rules.

CallStack: Stack where the state of the machine is stored each time a func-
tion is called. Thus, the state can be restored when the machine returns
from the function evaluation. An entry in this stack consists of:

• a reference to the function call to be evaluated

• a copy of the relevant argument registers

• a return address

• the index of an argument register where the result should be stored

key: The key of this machine for variable bindings (an integer value).

birthTimeStamp: The timestamp when this machine was created (an integer
value).

timeStamp: The current timestamp of this machine (an integer value).

CompStructure: A reference to the enclosing computation structure.

A.2 Commands of the Abstract Machine

This section describes all commands of the abstract machine and explains
their influence on the different registers and data areas. The program counter
pcIndex is implicitly incremented by one before the command is executed
(i.e., it always points to the subsequent instruction if it is not set by this
command).

39



A.2.1 Commands changing the Execution Path

CmdJump(index)

Local jump in the code block of a function:

pcIndex := index

CmdCall(r,NumSave,ContIndex)

Evaluate the function call referred by register ARegr and save the first
NumSave argument registers. After evaluation, jump to ContIndex :

let f(a1, . . . , an) be the function call referred by ARegr

if result table of f(a1, . . . , an) contains an entry result
for the current machine

then ARegr := result
pcIndex := ContIndex

else pcIndex := ContIndex
create entry on CallStack and save into its components:

reference to f(a1, . . . , an)
AReg0,...,ARegNumSave−1

PC

r

AReg0,...,ARegn−1 := a1,...,an

pcFunction := f(a1, . . . , an)
pcIndex := 0

CmdExecute

Evaluate the function call referred by the top element of the term stack. This
command is used for newly created function calls which must be immediately
evaluated since they occur at the top-level in the right-hand side of a rule.

term := pop(TermStack)

let f(a1, . . . , an) be the function call referred by term
AReg0,...,ARegn−1 := a1,...,an

pcFunction := f(a1, . . . , an)
pcIndex := 0

40



CmdReturn

Return from the evaluation of a function call:

result := pop(TermStack)

load the components of top(CallStack) into (and pop it):
reference to f(a1, . . . , an)
PC

AReg0,...,ARegm

r

store result in result table of f(a1, . . . , an)
ARegr := result

A.2.2 Operations on the Term Stack

CmdPushCons(Name,NumArgs)

Create a constructor term and push it on the term stack

CmdPushFunc(Name,NumArgs)

Create a function term and push it on the term stack:

aNumArgs := pop(TermStack)

...

a1 := pop(TermStack)

create new object Name(a1, . . . , aNumArgs) and push reference to this
on the TermStack

CmdPushVar

Create new variable object and push a reference on the term stack:

create new variable object (with an empty binding table)
push reference to this new object on the TermStack

CmdPushReg(r)

Push argument register r on the term stack:

push register ARegr on the TermStack

41



CmdPushPrimInt(N)

Push an integer constant on the term stack (similarly for other primitive
types):

push integer N on the TermStack

A.2.3 Register Operations

CmdCopyReg(s,d)

Copy argument registers:

ARegd := ARegs

CmdNewVar(r)

Create new variable object and store reference in register r:

ARegr := reference to new variable object

CmdLoadReg(r,t)

Copy temporary register t into an argument register r:

ARegr := TRegt

CmdLoadArgs(r)

Load arguments of constructor object into temporary registers:

let c(a1, . . . , an) be the constructor object referred by ARegr

TReg1,...,TRegn := a1,...,an

A.2.4 Implementing Non-Determinism and Pattern Matching

CmdNewChoice(i,NumArgs)

Create a new machine that can follow a different alternative in the compu-
tation:

42



Create a copy of the current computation structure
(i.e., the AND-tree to which the current machine belongs)
Set the initial state of the new machine (representing the copy of
this machine) to:
AReg1,...,ARegNumArgs := AReg1,...,ARegNumArgs of current machine
TermStack := emptyStack

CallStack := CallStack of current machine
pcFunction := pcFunction of current machine
pcIndex := i

CmdOr(i,NumArgs)

Create a new machine (used for overlapping left-hand sides):

This command tests if there are other active machines in the AND-tree. If
not, it works like CmdNewChoice. Otherwise, it forces the current machine
to suspend.

CmdSwitchOnType(r,isFuncIndex,isVarIndex)

Case distinction on the type of the term referred by register r:

if ARegr refers to a variable then

if binding table of ARegr contains an entry for the current machine
then ARegr := binding of ARegr

if ARegr refers to a function
then pcIndex := isFuncIndex
else if ARegr refers to a variable then

if there are other active machines in the current
computation structure

then suspend this machine;
mark this variable so that this machine will be
reactivated when the variable will be bound;
do not increment the program counter (so the
machine will restart executing this command again)

else

pcIndex := isVarIndex

CmdSwitchOnDet(r,isFuncIndex,isVarIndex)

43



This command is used instead of CmdSwitchOnType if the variable case binds
the variable deterministically:

Execution:
Like CmdSwitchOnType but this command does not suspend
if other active machines are present

CmdSwitchOnRigid(r,isFuncIndex)

This command is used to implement rigid functions:

Execution:
Like CmdSwitchOnType but this command always suspends
if the (dereferenced) ARegr is a variable object

CmdSwitchOnCons(r,JumpTable)

Case distinction on constructors:

let ARegr be a reference to constructor object c(a1, . . . , an)
where the constructor c has index i

if JumpTable[i] = -1 then

the computation of the current machine fails
else

pcIndex := JumpTable[i]

A.2.5 Binding Variables

CmdSimpleBind(r)

Bind variable in register r to top element of term stack:

let var be the variable object referred by ARegr

term := pop(TermStack)

add a binding entry for term in binding table of var (with key and
timeStamp of current machine)
activate suspended machines in the current computation structure
that wait on this variable

44



CmdDetBind(r)

Bind variable deterministically (only used in combination with
CmdSwitchOnDet):

Execution:
Like CmdSimpleBind but since it is only used in combination with
CmdSwitchOnDet, it performs some optimizations due to the fact
that nobody else tries to bind the variable

A.2.6 Custom commands

CmdCustom(mname)

This command is used for the optimization explained at the end of Sec-
tion 3.1 to avoid operations on the term stack. It calls the Java method
mname (a method of the current function). This method must have the type
Machine→void. During the execution of the method, parts of the AND-tree
administration are disabled for this machine. Thus, it is important that no
change of the execution path is made inside the method.
The method can use its argument of type Machine to access components of
the executing machine with the following methods:

Term getReg(int r) returns the contents of ARegr

void returnWith(Term result) see CmdReturn

void continueWith(Function func) see CmdExecute

Variable allocNewVariable() see CmdPushVar

Thus, arguments can be directly passed to the machine without using the
TermStack.

45


