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Abstract

In this paper we propose a new concept to deal with dynamic predi-
cates in functional logic programs. The definition of a dynamic predicate
can change over time, i.e., one can add or remove facts that define this
predicate. Our approach is easy to use and has a clear semantics that
does not depend on the particular (demand-driven) evaluation strategy
of the underlying implementation. In particular, the concept is not based
on (unsafe) side effects so that the order of evaluation does not influence
the computed results—an essential requirement in non-strict languages.

Dynamic predicates can also be persistent so that their definitions are
saved across invocations of programs. Thus, dynamic predicates are a
lightweight alternative to the explicit use of external database systems.
Moreover, they extend one of the classical application areas of logic pro-
gramming to functional logic programs. We present the concept, its use
and an implementation in a Prolog-based compiler.

1 Motivation and Related Work

Functional logic languages [11] aim to integrate the best features of functional
and logic languages in order to provide a variety of programming concepts to the
programmer. For instance, the concepts of demand-driven evaluation, higher-
order functions, and polymorphic typing from functional programming can be
combined with logic programming features like computing with partial infor-
mation (logical variables), constraint solving, and non-deterministic search for
solutions. This combination leads to optimal evaluation strategies [2] and new
design patterns [4] that can be applied to provide better programming abstrac-
tions, e.g., for implementing graphical user interfaces [13] or programming dy-
namic web pages [14].

However, one of the traditional application areas of logic programming is not
yet sufficiently covered in existing functional logic languages: the combination
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of declarative programs with persistent information, usually stored in relational
databases, that can change over time. Logic programming provides a natural
framework for this combination (e.g., see [8, 10]) since externally stored relations
can be considered as facts defining a predicate of a logic program. Thus, logic
programming is an appropriate approach to deal with deductive databases or
declarative knowledge management.

In this paper, we propose a similar concept for functional logic languages.
Nevertheless, this is not just an adaptation of existing concepts to functional
logic programming. We will show that the addition of advanced functional pro-
gramming concepts, like the clean separation of imperative and declarative com-
putations by the use of monads [27], provides a better handling of the dynamic
behavior of database predicates, i.e., when we change the definition of such
predicates by adding or removing facts. To motivate our approach, we shortly
discuss the problems caused by traditional logic programming approaches to
dynamic predicates.

The logic programming language Prolog allows to change the definition
of predicates1 by adding or deleting clauses using predefined predicates like
asserta (adding a new first clause), assertz (adding a new last clause), or
retract (deleting a matching clause). Problems occur if the use of these pred-
icates is mixed with their update. For instance, if a new clause is added during
the evaluation of a literal, it is not directly clear whether this new clause should
be visible during backtracking, i.e., a new proof attempt for the same literal.
This has been discussed in [21] where the so-called “logical view” of database
updates is proposed. In the logical view, only the clauses that exist at the first
proof attempt to a literal are used. Although this solves the problems related
to backtracking, advanced evaluation strategies cause new problems.

It is well known that advanced control rules, like coroutining, provide a
better control behavior w.r.t. the termination and efficiency of logic programs
[24]. Although the completeness of SLD resolution w.r.t. any selection rule
seems to justify such advanced control rules, it is not the case w.r.t. dynamic
predicates. For instance, consider the Prolog program

ap(X) :- assertz(p(X)).

q :- ap(X), p(Y), X=1.

If there are no clauses for the dynamic predicate p, the proof of the literal q
succeeds due to the left-to-right evaluation of the body of the clause for q. How-
ever, if we add the block declaration (in Sicstus-Prolog) “:- block ap(-).” to
specify that ap should be executed only if its argument is not a free variable,
then the proof of the literal q fails, because the clause for p has not been asserted
when p(Y) should be proved.

This example indicates that care is needed when combining dynamic predi-
cates and advanced control strategies. This is even more important in functional
logic languages that are usually based on demand-driven (and concurrent) eval-

1In many Prolog systems, such predicates must be declared as “dynamic” in order to change
their definitions dynamically.
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uation strategies where the exact order of evaluation is difficult to determine in
advance [2, 12].

Unfortunately, existing approaches to deal with dynamic predicates do not
help here. For instance, Prolog and its extensions to persistent predicates stored
in databases, like the Berkeley DB of Sicstus-Prolog or the persistence module
of Ciao Prolog [7], suffer from the same problems. In the other hand, functional
language bindings to databases do not offer the constraint solving and search
facilities of logic languages. For instance, HaSQL2 supports a simple connection
to relational databases via I/O actions but provides no abstraction for comput-
ing queries (the programmer has to write SQL queries in plain text). This is
improved in Haskell/DB [6, 20] which allows to express queries through the use
of specific operators. More complex information must be deduced by defining
appropriate functions.

Other approaches to integrate functional logic programs with databases con-
centrate only on the semantical model for query languages. For instance, [1] pro-
poses an integration of functional logic programming and relational databases
by an extended data model and relational calculus. However, the problem of
database updates is not considered and an implementation is not provided.
Echahed and Serwe [9] propose a general framework for functional logic pro-
gramming with processes and updates on clauses. Since they allow updates
on arbitrary program clauses (rather than facts), it is unclear how to achieve
an efficient implementation of this general model. Moreover, persistence is not
covered in their approach.

Since real applications require the access and manipulation of persistent
data, we propose a new model to deal with dynamic predicates in functional
logic programs where we choose the declarative multi-paradigm language Curry
[18] for concrete examples.3 Although the basic idea is motivated by exist-
ing approaches (a dynamic predicate is considered as defined by a set of basic
facts that can be externally stored), we propose a clear distinction between the
accesses and updates to a dynamic predicate. In order to abstract from the con-
crete (demand-driven) evaluation strategy, we propose the use of time stamps
to mark the lifetime of individual facts.

Dynamic predicates can also be persistent so that their definitions are saved
across invocations of programs. Thus, our approach to dynamic predicates is
a lightweight alternative to the explicit use of external database systems that
can be easily applied. Nevertheless, one can also store dynamic predicates in an
external database if the size of the dynamic predicate definitions becomes too
large.

The next section provides a basic introduction into Curry. Section 3 contains
a description of our proposal to integrate dynamic predicates into functional
logic languages. Section 4 sketches a concrete implementation of this concept.
Section 5 discusses extensions of the basic concept and Section 6 contains our

2http://members.tripod.com/~sproot/hasql.htm
3Our proposal can be adapted to other modern functional logic languages that are based

on the monadic I/O concept to integrate imperative and declarative computations in a clean
manner, like Escher [22], Mercury [26], or Toy [23].
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conclusions.

2 Curry in a Nutshell

In this section we review those elements of Curry which are necessary to under-
stand the contents of this paper. More details about Curry’s computation model
and a complete description of all language features can be found in [12, 18].

Curry is a modern multi-paradigm declarative language combining in a seam-
less way features from functional, logic, and concurrent programming and sup-
porting programming-in-the-large with specific features (types, modules, encap-
sulated search). From a syntactic point of view, a Curry program is a functional
program extended by the possible inclusion of free (logical) variables in condi-
tions and right-hand sides of defining rules. Curry has a Haskell-like syntax [25],
i.e., (type) variables and function names usually start with lowercase letters and
the names of type and data constructors start with an uppercase letter. The
application of f to e is denoted by juxtaposition (“f e”).

A Curry program consists of the definition of functions and data types on
which the functions operate. Functions are evaluated lazily. To provide the
full power of logic programming, functions can be called with partially instan-
tiated arguments and defined by conditional equations with constraints in the
conditions. The behavior of function calls with free variables depends on the
evaluation mode of functions which can be either flexible or rigid. Calls to flex-
ible functions are evaluated by a possibly non-deterministic instantiation of the
demanded arguments (i.e., arguments whose values are necessary to decide the
applicability of a rule) to the required values in order to apply a rule (“nar-
rowing”). Calls to rigid functions are suspended if a demanded argument is
uninstantiated (“residuation”).

Example 2.1 The following Curry program defines the data types of Boolean
values, “possible” (maybe) values, and polymorphic lists (first three lines) and
functions for computing the concatenation of lists and the last element of a list:

data Bool = True | False
data Maybe a = Nothing | Just a
data List a = [] | a : List a

conc :: [a] -> [a] -> [a]
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys

last :: [a] -> a
last xs | conc ys [x] =:= xs = x where x,ys free

The data type declarations define True and False as the Boolean constants,
Nothing and Just as the constructors for possible values (where Nothing is
considered as no value), and [] (empty list) and : (non-empty list) as the
constructors for polymorphic lists (a is a type variable ranging over all types
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and the type “List a” is usually written as [a] for conformity with Haskell).
The (optional) type declaration (“::”) of the function conc specifies that

conc takes two lists as input and produces an output list, where all list ele-
ments are of the same (unspecified) type.4 Since conc is flexible,5 the equation
“conc ys [x] =:= xs” is solved by instantiating the first argument ys to the
list xs without the last argument, i.e., the only solution to this equation satisfies
that x is the last element of xs.

In general, functions are defined by (conditional) rules of the form

f t1 . . . tn | c = e where vs free

with f being a function, t1, . . . , tn patterns (i.e., expressions without defined
functions) without multiple occurrences of a variable, the condition c is a con-
straint, e is a well-formed expression which may also contain function calls,
lambda abstractions etc, and vs is the list of free variables that occur in c and
e but not in t1, . . . , tn. The condition and the where parts can be omitted if
c and vs are empty, respectively. The where part can also contain further lo-
cal function definitions which are only visible in this rule. A conditional rule
can be applied if its left-hand side matches the current call and its condition is
satisfiable.

A constraint is any expression of the built-in type Success. For instance,
the trivial constraint success is an expression of type Success that denotes
the always satisfiable constraint. “c1 & c2” denotes the concurrent conjunction
of the constraints c1 and c2, i.e., this expression is evaluated by proving both
argument constraints concurrently. Each Curry system provides at least equa-
tional constraints of the form e1 =:= e2 which are satisfiable if both sides e1 and
e2 are reducible to unifiable patterns. However, specific Curry systems can also
support more powerful constraint structures, like arithmetic constraints on real
numbers or finite domain constraints, as in the PAKCS implementation [15].

Predicates in the sense of logic programming can be considered as functions
with result type Success. For instance, a predicate isPrime that is satisfied if
the argument (an integer number) is a prime can be modeled as a function with
type

isPrime :: Int -> Success

The following rules define a few facts for this predicate:

isPrime 2 = success
isPrime 3 = success
isPrime 5 = success
isPrime 7 = success

Apart from syntactic differences (that support, in contrast to pure logic pro-
gramming, the use of predicates and partial applications of predicates as first-

4Curry uses curried function types where α->β denotes the type of all functions mapping
elements of type α into elements of type β.

5As a default, all functions except for I/O actions and external functions are flexible.
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class citizens in higher-order functions), any pure logic program has a direct
correspondence to a Curry program. For instance, a predicate isPrimePair
that is satisfied if the arguments are primes that differ by 2 can be defined as
follows:

isPrimePair :: Int -> Int -> Success
isPrimePair x y = isPrime x & isPrime y & x+2 =:= y

The operational semantics of Curry, precisely described in [12, 18], is based on
an optimal evaluation strategy [2] which is a conservative extension of lazy func-
tional programming and (concurrent) logic programming. Due to its demand-
driven behavior, it provides optimal evaluation (e.g., shortest derivation se-
quences, minimal solution sets) on well-defined classes of programs (see [2] for
details). Curry also offers the standard features of functional languages, like
higher-order functions (e.g., “\x -> e” denotes an anonymous function that as-
signs to each x the value of e) or monadic I/O. Since the latter is important
for the ideas in this paper, we sketch the I/O concept of Curry which is almost
identical to the monadic I/O of Haskell [27].

In the monadic approach to I/O, an interactive program is considered as a
function computing a sequence of actions that are applied to the outside world.
An action changes the state of the world and possibly returns a result (e.g., a
character read from the terminal). Thus, actions are functions of type

World -> (α,World)

(where World denotes the type of all states of the outside world). This func-
tion type is also abbreviated by IOα. If an action of type IOα is applied to a
particular world, it yields a value of type α and a new (changed) world. For
instance, getChar of type IO Char is an action which reads a character from the
standard input whenever it is executed, i.e., applied to a world. The important
point is that values of type World are not accessible to the programmer—
she/he can only create and compose actions on the world. For instance, the
action getChar can be composed with the action putChar (which has type
Char -> IO () and writes a character to the terminal) by the sequential com-
position operator >>= (which has type IO α -> (α -> IO β) -> IO β), i.e.,
“getChar >>= putChar” is a composed action that prints the next character
of the input stream on the screen. The second composition operator >> is like
>>= but ignores the result of the first action. Furthermore, done is the “empty”
action which does nothing (see [27] for more details). For instance, a function
which takes a string (list of characters) and produces an action that prints it to
the terminal followed by a line feed can be defined as follows:

putStrLn [] = putChar ’\n’
putStrLn (c:cs) = putChar c >> putStrLn cs

It should be noted that an action is executed when the program (applied to the
world) is executed. Since the world cannot be copied, non-deterministic actions
as a result of a program are not allowed. Therefore, all possible search must
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be encapsulated between I/O operations using the features for encapsulating
search [5, 17].

3 Dynamic Predicates

In this section we describe our proposal to dynamic predicates in functional
logic programs and show its use by several examples.

3.1 General Concept

Since the definition of dynamic predicates is also intended to be stored persis-
tently in files, we assume that dynamic predicates are defined by ground (i.e.,
variable-free) facts.6 However, in contrast to predicates that are explicitly de-
fined in a program (e.g., isPrime in Section 2), the definition of a dynamic
predicate is not provided in the program code but will be dynamically com-
puted. Thus, dynamic predicates are similar to “external” functions whose
code is not contained in the program but defined elsewhere. Therefore, the pro-
grammer has to specify in a program only the (monomorphic) type signature
of a dynamic predicate (remember that Curry is strongly typed) and mark its
name as “dynamic”.

As a simple example, we want to define a dynamic predicate prime to store
prime numbers whenever we compute them. Thus, we provide the following
definition in our program:

prime :: Int -> Dynamic
prime dynamic

Similarly to Success, the predefined type “Dynamic” is abstract, i.e., there are
no accessible data constructors of this type but a few predefined operations
that act on objects of this type (see below). From a declarative point of view,
Dynamic is similar to Success, i.e., prime can be considered as a predicate.
However, since the definition of dynamic predicates may change over time, the
access to dynamic predicates is restricted in order to avoid the problems men-
tioned in Section 1. Thus, the use of the type Dynamic ensures that the specific
access and update operations (see below) can be applied only to dynamic predi-
cates. Furthermore, the keyword “dynamic” informs the compiler that the code
for prime is not in the program but externally stored (similarly to the definition
of external functions).

In order to avoid the problems related to mixing update and access to dy-
namic predicates, we put the corresponding operations into the I/O monad
since this ensures a sequential evaluation order. Thus, we provide the following
predefined operations:

6If one wants to store non-ground facts or rules, e.g., in applications related to knowl-
edge management, one can also use a ground representation together with appropriate meta-
programming techniques. Thus, our requirement to ground facts is not a real restriction in
practice.
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assert :: Dynamic -> IO ()

retract :: Dynamic -> IO Bool

getKnowledge :: IO (Dynamic -> Success)

assert adds a new fact about a dynamic predicate to the database where the
database is considered as the set of all known facts for dynamic predicates.
Actually, the database can also contain multiple entries (if the same fact is
repeatedly asserted) so that the database is a multi-set of facts. For the sake of
simplicity, we ignore this detail and talk about sets in the following.

Since the facts defining dynamic predicates do not contain unbound variables
(see above), assert is a rigid function, i.e., it suspends when the arguments
(after evaluation to normal form) contain unbound variables. Similarly, retract
is also rigid7 and removes a matching fact, if possible (this is indicated by the
Boolean result value). For instance, the sequence of actions

assert (prime 1) >> assert (prime 2) >> retract (prime 1)

asserts the new fact (prime 2) to the database.
The action getKnowledge is intended to retrieve the set of facts stored

in the database at the time when this action is executed. In order to pro-
vide access to the set of facts, getKnowledge returns a function of type
“Dynamic -> Success” which can be applied to expressions of type “Dynamic”,
i.e., calls to dynamic predicates. For instance, the following sequence of actions
asserts a new fact (prime 2) and retrieves its contents by unifying the logical
variable x with the value 2:8

assert (prime 2) >> getKnowledge >>= \known ->
doSolve (known (prime x))

Since writing monadic sequences of I/O actions is not well readable, we use
Haskell’s “do” notation [25]. Thus, we write the previous action sequence in the
following form:

do assert (prime 2)
known <- getKnowledge
doSolve (known (prime x))

Since there might be several facts that match a call to a dynamic predicate, we
have to encapsulate the possible non-determinism occurring in a logic compu-
tation. This can be done in Curry by the primitive action to encapsulate the
search for all solutions to a goal:

getAllSolutions :: (a -> Success) -> IO [a]

7One could argue that retract could be also called with logical variables which should be
bound to the values of the retracted facts; however, this might cause non-deterministic actions
(if more than one fact matches) which leads to run-time errors.

8The action doSolve is defined as “doSolve c | c = done” and can be used to embed
constraint solving into the I/O monad.
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getAllSolutions takes a constraint abstraction and returns the list of all solu-
tions, i.e., all values for the argument of the abstraction such that the constraint
is satisfiable.9 For instance, the evaluation of

getAllSolutions (\x -> known (prime x))

returns the list of all values for x such that known (prime x) is satisfied. Thus,
we can define a function printKnownPrimes that prints the list of all known
prime numbers as follows:

printKnownPrimes = do
known <- getKnowledge
sols <- getAllSolutions (\x -> known (prime x))
print sols

If we just want to check whether a particular fact of a dynamic predicate is
known, we can define the following function:

isKnown :: Dynamic -> IO Bool
isKnown p = do

known <- getKnowledge
sols <- getAllSolutions (\ _ -> known p)
return (sols /= [])

Here we are not interested in individual solutions. Thus, we write the anony-
mous variable “_” as the argument to the search goal and finally check whether
some solution has been computed.

Note that we can use all logic programming techniques also for dynamic
predicates: we just have to pass the result of getKnowledge (i.e., the variable
known above) into the clauses defining the deductive part of the database pro-
gram and wrap all calls to a dynamic predicate with this result variable. For
instance, we can print all prime pairs by the following definitions:

primePair known (x,y) =
known (prime x) & known (prime y) & x+2 =:= y

printPrimePairs = do
known <- getKnowledge
sols <- getAllSolutions (\p -> primePair known p)
print sols

The constraint primePair specifies the property of being a prime pair w.r.t. the
knowledge known, and the action printPrimePairs prints all currently known
prime pairs.

If one wants to avoid passing the variable known through all predicates that
do inferences on the current knowledge, one can also define these predicates
locally so that known becomes automatically visible to all predicates. In order

9getAllSolutions is an I/O action since the order of the result list might vary from time
to time due to the order of non-deterministic evaluations.
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to write the program code even more in the logic programming style, we define
the composition of known and prime as a single name. The following code,
which defines a constraint for non-empty sequences of ascending primes, shows
an example for this “LP” style (“.” denotes function composition):

primeSequence known l = primes l

where

isPrime = known . prime

primes [p] = isPrime p
primes (p1:p2:ps) = isPrime p1 &

isPrime p2 &
(p1<p2) =:= True &
primes (p2:ps)

Our concept provides a clean separation between database updates and accesses.
Since we get the knowledge at a particular point of time, we can access all
facts independent on the order of evaluation. Actually, the order is difficult to
determine due to the demand-driven evaluation strategy. For instance, consider
the following sequence of actions:

do assert (prime 2)
known1 <- getKnowledge
assert (prime 3)
assert (prime 5)
known2 <- getKnowledge
sols2 <- getAllSolutions (\x -> known2 (prime x))
sols1 <- getAllSolutions (\x -> known1 (prime x))
return (sols1,sols2)

Executing this code with the empty database, the pair of lists ([2],[2,3,5]) is
returned. Although the concrete computation of all solutions is performed later
than they are conceptually accessed (by getKnowledge) in the program text,
we get the right facts (in contrast to Prolog with coroutining, see Section 1).
Therefore, getKnowledge conceptually copies the current database for later ac-
cess. However, since an actual copy of the database can be quite large, this is
implemented by the use of time stamps (see Section 4).

3.2 Persistent Dynamic Predicates

One of the key features of our proposal is the easy handling of persistent data.
The facts about dynamic predicates are usually stored in main memory which
supports fast access. However, in most applications it is necessary to store the
data also persistently so that the actual definitions of dynamic predicates survive
different executions (or crashes) of the program. One approach is to store the
facts in relational databases (which is non-trivial since we allow arbitrary term
structures as arguments). Another alternative is to store them in files (e.g., in
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XML format). In both cases the programmer has to consider the right format
and access routines for each application. Our approach is much simpler (and
often also more efficient if the size of the dynamic data is not extremely large):
it is only necessary to declare the predicate as “persistent”. For instance, if we
want to store our knowledge about primes persistently, we define the predicate
prime as follows:

prime :: Int -> Dynamic
prime persistent "file:prime_infos"

Here, prime_infos is the name of a directory where the run-time system au-
tomatically puts all files containing information about the dynamic predicate
prime.10 Apart from changing the dynamic declaration into a persistent dec-
laration, nothing else needs to be changed in our program. Thus, the same
actions like assert, retract, or getKnowledge can be used to change or ac-
cess the persistent facts of prime. Nevertheless, the persistent declaration has
important consequences:

• All facts and their changes are persistently stored, i.e., after a termination
(or crash) and restart of the program, all facts are automatically recovered.

• Changes to dynamic predicates are immediately written into a log file so
that they can be recovered.

• getKnowledge gets always the current knowledge persistently stored, i.e.,
if other processes also change the facts of the same predicate, it becomes
immediately visible with the next call to getKnowledge.

• In order to avoid conflicts between concurrent processes working on the
same dynamic predicates, there is also a transaction concept (see Sec-
tion 3.3).

Note that the easy and clean addition of persistency was made possible due to
our concept to separate the update and access to dynamic predicates. Since
updates are put into the I/O monad, there are obvious points where changes
must be logged. On the other hand, the getKnowledge action needs only a
(usually short) synchronization with the external data and then the knowledge
can be used with the efficiency of the internal program execution.

3.3 Transactions

The persistent storage of dynamic predicates causes another problem: if several
concurrent processes updates the same data, some synchronization is necessary.
Since we intend to use our proposal also for web applications [14], there is a
clear need to solve the synchronization problem since in such applications one

10The prefix “file:” instructs the compiler to use a file-based implementation of persistent
predicates. For future work, it is planned also to use relational databases to store persistent
facts so that this prefix is used to distinguish the different access methods.
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does not know when the individual programs reacting to client’s requests are
executed. Fortunately, the database community has solved this problem via
transaction models so that we only have to adapt them into our framework of
functional logic programming.

We consider a transaction as a sequence of changes to (possibly several differ-
ent) dynamic predicates that should only be performed together or completely
ignored. Moreover, the changes of a transaction become visible to other concur-
rent processes only if the complete transaction has been successfully executed.
This model can be easily supported by providing two I/O actions:

transaction :: IO a -> IO (Maybe a)

abortTransaction :: IO a

transaction takes an I/O action (usually, a sequence of updates to dynamic
predicates) as argument and tries to execute it. If this was successfully done,
the result r of the argument action is returned as (Just r) and all changes to
the dynamic predicates become visible to other processes. Otherwise, i.e., in
case of a failure, run-time error, or if the action abortTransaction has been
executed, all changes to dynamic predicates performed during this transaction
are undone and Nothing is returned to indicate the failure of the transaction.
For instance, consider the following transaction:

try42 = do assert (prime 42)
abortTransaction
assert (prime 43)

If we execute “transaction try42”, then no change to the definition of the
persistent dynamic predicate prime becomes visible.

4 Implementation

In order to test our concept and to provide a reasonable implementation, we have
implemented it in the PAKCS implementation of Curry [15]. This implementa-
tion is fairly efficient and has been used for many non-trivial applications, e.g.,
a web-based system for e-learning [16]. The system compiles Curry programs
into Prolog by transforming pattern matching into predicates and exploiting
coroutining for the implementation of the concurrency features of Curry [3].
Due to the use of Prolog as the back-end language, the implementation of our
concept is not very difficult. Therefore, we highlight only a few aspects of this
implementation.

First of all, the compiler of PAKCS has to be adapted since the code for
dynamic predicates must be different from other functions. Thus, the compiler
translates a declaration of a dynamic predicate into specific code so that the
run-time evaluation of a call to a dynamic predicate yields a data structure
containing information about the actual arguments and the name of the external
database (in case of persistent predicates). In this implementation, we have not
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used a relational database for storing the facts since this is not necessary for the
size of the dynamic data (in our applications only a few megabytes). Instead,
all facts are stored in main memory and in files in case of persistent predicates.
First, we describe the implementation of non-persistent predicates.

Each assert and retract action is implemented via Prolog’s assert and
retract. However, as additional arguments we use time stamps to store the
lifetime (birth and death) of all facts in order to implement the visibility of
facts for the getKnowledge action (similarly to [21]). Thus, there is a global
clock (“update counter”) in the program that is incremented for each assert
and retract. If a fact is asserted, it gets the actual time as birth time and ∞
as the death time. If a fact is retracted, it is not retracted in memory but only
the death time is set to the actual time since there might be some unevaluated
expression for which this fact is still visible. getKnowledge is implemented by
returning a predefined function that keeps the current time as an argument. If
this function is applied to some dynamic predicate, it unifies the predicate with
all facts and, in case of a successful unification, it checks whether the time of
the getKnowledge call is in the birth/death interval of this fact.

Persistent predicates are similarly implemented, i.e., all known facts are
always kept in main memory. However, each update to a persistent predicate
is written into a log file. Furthermore, all facts of this predicate are stored in
a file in Prolog format. This file is only read and updated in the first call to
getKnowledge or in subsequent calls if another concurrent process has changed
the persistent data. In this case, the following operations are performed:

1. The previous database file with all Prolog facts is read.

2. All changes from the log file are replayed, i.e., executed.

3. A new version of the database file is written.

4. The log file is cleared.

In order to avoid problems in case of program crashes during this critical period,
the initialization phase is made exclusive to one process via operating system
locks and backup files are written.

To reduce the time to load the database, we store it also in an intermediate
format (Prolog object file format of Sicstus-Prolog). With this binary format,
the database for most applications can be loaded very efficiently. For instance,
it needs 120 milliseconds to load a database of 12.5 MB Prolog source code on
a 2.0 GHz Linux-PC (AMD Athlon XP 2600 with 256 KB cache).

In order to implement transactions and the concurrent access to persis-
tent data, operating system locks are used. Moreover, version numbers of the
database are stored in order to inform the running program about changes to
the database by other processes. These changes are taken into account when
getKnowledge is executed. Transactions are implemented by writing marks
into the log files and considering only complete transactions when recovering
the database in the initialization phase described above.
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5 Extending the Basic Interface

The concept to deal with dynamic predicates described in Section 3 is easy to
use and sufficiently expressive as shown by various examples. Nevertheless, we
propose in this section a few combinators that simplify the construction of more
complex queries related to dynamic predicates.

Non-trivial queries often involve more than one dynamic predicate (or table
in relational databases). Thus, it is quite useful to provide a combinator to join
two dynamic predicates:

(<>) :: Dynamic -> Dynamic -> Dynamic

Using this combinator, we can write “prime x <> prime y” to access two prime
numbers x and y. Furthermore, dynamic predicates are usually restricted with
a Boolean condition so that the following combinator is useful:

(|>) :: Dynamic -> Bool -> Dynamic

If the operators are defined so that “<>” binds stronger then “|>”, then the
expression “prime x <> prime y |> x+2 == y” specifies numbers x and y that
are prime pairs.

The implementation of these combinators does not require a real extension
of the basic concept described in Section 3, since it can be implemented on top
of the primitives introduced so far. For this purpose, we introduce the following
data type to specify complex queries on dynamic predicates:

data Dynamic = Pred PrimDynamic
| Prod Dynamic Dynamic
| Cond Dynamic Bool

PrimDynamic denotes the type of dynamic predicates as introduced in Section 3,
i.e., we assume that an expression like “prime x” returns a value wrapped
with the constructor Pred. Then we define “<>” and “|>” as renamings of the
corresponding constructors:

d1 <> d2 = Prod d1 d2

d |> b = Cond d b

Next, we extend the base operations assert, retract, and getKnowledge of
Section 3 on this data type (where we prefix the original operations of Section 3
by “prim_”). For instance, assert adds new facts for all predicates in the
dynamic expression provided that the condition holds in case of conditional
dynamics:

assert :: Dynamic -> IO ()
assert (Pred pred) = prim_assert pred
assert (Prod d1 d2) = assert d1 >> assert d2
assert (Cond d b) = if b then assert d

else done

14



Thus, we can assert several facts using the combinator <>, as in

assert (prime 2 <> prime 3 <> prime 5 <> prime 7 <> prime 11)

Exploiting the higher-order programming features of Curry, we can write the
previous expression also in the form

assert (foldr1 (<>) (map prime [2,3,5,7,11]))

which could be useful for asserting larger data sets.
Similarly, retract deletes all facts and returns True if all retracted facts

exist:

retract :: Dynamic -> IO Bool
retract (Pred pred) = prim_retract pred
retract (Prod d1 d2) = do b1 <- retract d1

b2 <- retract d2
return (b1 && b2)

retract (Cond d b) = if b then retract d
else return True

Analogously, we define the extension of getKnowledge to complex dynamic
expressions:

getKnowledge :: IO (Dynamic -> Success)
getKnowledge = do known <- prim_getKnowledge

return (knownAll known)
where
knownAll k (Pred pred) = k pred
knownAll k (Prod d1 d2) = knownAll k d1 & knownAll k d2
knownAll k (Cond d b) = knownAll k d & b=:=True

Using these definitions, we can use the basic operations on dynamic predicates
identical to Section 3 but support also the processing of complex queries con-
structed with the operators <> and |>.

As we have seen in Section 3, the typical access to dynamic data consists
of retrieving the current contents of the database (getKnowledge) and access-
ing the individual data by computing all solutions to a constraint involving
dynamic predicates wrapped with a call to getAllSolutions. We can define
this standard combination of getKnowledge and getAllSolutions as a single
function:

getDynamicSolutions :: (a -> Dynamic) -> IO [a]
getDynamicSolutions query = do
known <- getKnowledge
getAllSolutions (\x -> known (query x))

Thus, getDynamicSolutions takes an abstraction on a dynamic expression and
returns all solutions to this abstraction. For instance, we can rewrite the action
to print all prime pairs (see Section 3.1) in the following form:
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printPrimePairs = do
sols <- getDynamicSolutions

(\(x,y) -> prime x <> prime y |> x+2==y)
print sols

Note that the argument to getDynamicSolutions has all the elements of a typ-
ical SQL query (which is of the general form SELECT . . . FROM . . . WHERE . . .):
the argument “(x,y)” is the projection on the attributes of interest (SELECT),
“prime x <> prime y” refers to the involved relations (FROM), and the condi-
tion “x+2==y” restricts the number of potential values (WHERE).

Due to the embedding of dynamic predicates in a functional logic program-
ming language, we can also formulate recursive queries. For instance, non-
empty ascending sequences of primes can be printed as follows (compare func-
tion primeSequence in Section 3.1):

printPrimeSequences = do
sols <- getDynamicSolutions primes
print sols
where
primes [p] = prime p
primes (p1:p2:ps) = (prime p1 <> prime p2 |> p1<p2)

<> primes (p2:ps)

In contrast to typical SQL bindings in other languages, the programmer is not
forced to learn the syntax and semantics of another query language (SQL) but
formulates the queries in the same programming language (Curry) in a type-safe
way. Moreover, typical programming errors that occur in application programs
when SQL queries are constructed and passed as strings (a typical error11 de-
stroying the security of web-based systems [19]) are avoided.

6 Conclusions

We have proposed a new approach to deal with dynamic predicates in functional
logic programs. It is based on the idea to separate the update and access to
dynamic predicates. Updates can only be performed on the top-level in the I/O
monad in order to ensure a well-defined sequence of updates. The access to
dynamic predicates is initiated also in the I/O monad in order to get a well-
defined set of visible facts for dynamic predicates. However, the actual access
can be done at any execution time since the visibility of facts is controlled by
time stamps. This is important in the presence of an advanced operational
semantics (demand-driven evaluation) where the actual sequence of evaluation
steps is difficult to determine in advance.

Furthermore, dynamic predicates can be also persistent so that their defi-
nitions are externally stored and recovered when programs are restarted. This
persistence model is also supported by a transaction concept in order to pro-

11CERT Vulnerabilty Note VU#282403, http://www.kb.cert.org/vuls/id/282403
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vide the concurrent execution of processes working on the same data. We have
sketched an implementation of this concept in a Prolog-based compiler which is
freely available with the current release of PAKCS [15].

Although the use of our concept is quite simple (one has to learn only three
basic I/O actions), it is quite powerful at the same time since the applications of
logic programming to declarative knowledge management can be directly imple-
mented with this concept. We have used this concept in practice to implement a
bibliographic database system and obtained quite satisfying results. The load-
ing of the database containing almost 10,000 bibliographic entries needs only a
few milliseconds, and querying all facts is also performed in milliseconds due to
the fact that they are stored in main memory.

For future work, we want to test this concept in larger applications. Further-
more, we intend to implement this concept by the use of a relational database
instead of the current file-based implementation. In this case, the extensions of
Section 5 become useful in order to express larger queries that can be directly
solved by the database system.
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