
A Practical Partial Evaluation Scheme for

Multi-Paradigm Declarative Languages∗†

Elvira Albert§ Michael Hanus¶ Germán Vidal§

c©EAPLS
Final version in Journal of Functional and Logic Programming,

Volume 2002, No. 1, EAPLS, 2002

Abstract

We present a practical partial evaluation scheme for multi-paradigm
declarative languages combining features from functional, logic, and con-
current programming. In contrast to previous approaches, we consider
an intermediate representation for programs into which source programs
can be automatically translated. The use of this simplified representation,
together with the appropriate control issues, make our partial evaluation
scheme practically applicable to modern multi-paradigm declarative lan-
guages like Curry. An implementation of a partial evaluator for Curry
programs has been undertaken. The partial evaluator allows the special-
ization of programs containing higher-order functions, calls to external
functions, concurrent constraints, etc. Our partial evaluation tool is inte-
grated in the PAKCS programming environment for the language Curry
as a source-to-source transformation on intermediate programs. The par-
tial evaluator is written in Curry itself. To the best of our knowledge,
this is the first purely declarative partial evaluator for a multi-paradigm
functional logic language.

1 Introduction

A partial evaluator is a program transformer which takes a program and part
of its input data—the so-called static data—and tries to perform as many com-
putations as possible with the given data. A partial evaluator returns a new,
residual program—a specialized version of the original one—which hopefully
runs more efficiently than the original program since those computations that
depend only on the static data have been performed once and for all at partial
evaluation time. Two main approaches exist when designing a partial evaluation
∗A preliminary version of this work appeared in the Proceedings of FLOPS 2001 [7].
†This work has been partially supported by CICYT TIC 2001-2705-C03-01, by Acción

Integrada Hispano-Alemana HA2001-0059, by Acción Integrada Hispano-Austriaca HU2001-
0019, by Acción Integrada Hispano-Italiana HI2000-0161, and by the DFG under grant Ha
2457/1-2.
§DSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain.

Email: {ealbert,gvidal}@dsic.upv.es
¶Institut für Informatik, CAU Kiel, Olshausenstr. 40, D-24098 Kiel, Germany. Email:

mh@informatik.uni-kiel.de

1

tool: online, monolithic partial evaluators and offline, staged partial evaluators.
Online transformers are essentially non-standard interpreters; they specialize
programs by evaluating expressions while sufficient information is available and
by generating residual code otherwise. The transformation is viewed as a one-
phase process in which specialize/residualize decisions are taken on the fly. In
contrast, offline partial evaluators have two separate phases: a static analysis—
usually a binding-time analysis [36]—to detect which constructs of the source
program can be evaluated with the known input data, followed by the proper
specialization phase which is guided by the information gathered by the anal-
ysis. While partial evaluation of functional programs has mainly stressed the
offline approach [35], partial evaluators for logic programs are usually online
(e.g., [37, 39, 47]).

This work is concerned with the design and development of a practical on-
line partial evaluation scheme which is applicable to realistic multi-paradigm
declarative languages. The most recent proposal for multi-paradigm declara-
tive programming advocates the integration of features from functional, logic,
and concurrent programming [29, 31]. The resulting language includes the most
important features of the distinct paradigms, e.g., lazy evaluation, higher-order
functions, non-deterministic computations, concurrent evaluation of constraints
with synchronization on logical variables, and a unified computation model
which integrates narrowing and residuation [29]. Our partial evaluator takes
a multi-paradigm declarative program and a set of partially instantiated calls
and returns a new program optimized for all the instances of these calls. Op-
timization is mainly achieved by performing those computations that depend
only on the known input data and by removing redundant computations. Apart
from its ability to specialize programs, a powerful optimization achieved by our
partial evaluator is the transformation of higher-order functions into first-order
functions. This reduces the execution time and space requirements w.r.t. exist-
ing (e.g., [32]) implementations (see the example in the following section).

We propose a partial evaluation scheme which is based on a simple interme-
diate language into which programs written in a higher-level source language can
be automatically translated. Our scheme relies on a non-standard semantics,
the RLNT calculus [1, 6], which does not propagate bindings backwards but
represents them within the evaluated expression by residual case expressions
with a variable argument. For example, the expression

fcase x of { 0 7→ 0 + 1 }
denotes the term 0+ 1 with the associated binding {x 7→ 0}. We will show that
both ingredients mixed together make our approach suitable to design practical
partial evaluators for modern multi-paradigm functional logic languages like
Curry [31] and Toy [34]. With this in mind, our main contributions are:

(1) We properly extend the RLNT calculus to cover all the facilities provided
by multi-paradigm declarative languages. The original RLNT calculus was
defined for a simple intermediate language, containing only function calls,
constructors and case expressions [6]. The extension to cover the ad-
ditional language features (e.g., higher-order functions, calls to external

2

functions, concurrent constraints, guarded rules, etc.) is far from being
trivial, since the RLNT calculus does not compute bindings but repre-
sents them by residual case expressions. We will show how, under certain
conditions, it is possible to float out case expressions so that bindings are
correctly propagated, which is crucial to achieve a good level of special-
ization.

(2) We define appropriate control strategies which take into account the par-
ticularities of the considered language and (non-standard) semantics. The
main novelty of our partial evaluation algorithm is the use of the extended
RLNT calculus mentioned above to perform computations during partial
evaluation. Within this calculus, we use the symbols “[[” and “]]” to en-
close those parts of an expression which need further evaluation. These
symbols turn out to be very helpful to guide the whole partial evaluation
process, thus permitting a smooth transition between the different control
levels of the algorithm.

(3) We provide a complete implementation of the partial evaluator for the
language Curry. The practicality of our approach is witnessed by imple-
menting a partial evaluator for Curry [31] written in Curry itself. Our
partial evaluator is able to transform Curry programs including higher-
order functions, calls to external functions, concurrent constraints, etc.,
in contrast to other existing partial evaluators (e.g., Indy [3]). The de-
veloped tool has been integrated into the PAKCS [32] programming en-
vironment for Curry as a fully automatic source-to-source transformation
on intermediate programs.

The structure of this paper is as follows. In Section 2 we present an overview of
the partial evaluation scheme. Section 3 presents the intermediate representa-
tion for programs and Section 4 introduces a non-standard semantics for such
programs which is specially well-suited to perform computations at partial eval-
uation time. Control issues are dealt with in Section 5, while Section 6 presents
an experimental evaluation of a partial evaluator for Curry programs. Some
related works are discussed in Section 7 before we conclude in Section 8.

2 Overview of the Partial Evaluator

We start with an overview of the partial evaluator. Our partial evaluation tool
constructs optimized, residual versions for some “parts” of an input program.
Those “parts” to be partially evaluated are annotated in the program by means
of the function PEVAL. For example, assume that we have a program (see below)
including the following function definition:

main xs ys = (map (iter (+1) 2) xs) ++ ys

Then, we can annotate the expression “map (iter (+1) 2) xs” as follows:

main xs ys = (PEVAL (map (iter (+1) 2) xs)) ++ ys

3

�
�
�
�

FlatCurry
program
without

annotations ((RRRRRR�
�
�
�

annotated
Curry

program
prog.curry

//

�
�
�

annotated
FlatCurry
program

55lllllll

))RRRRRRR

{{xxxxxxxxx

�

�
	residual

definitions

��

�

�
	annotated

expressions

66llllll

�
�
�

final
program

prog pe.flc

�
�
�

compressed
and renamed

definitions

oo
�

�
	renamed

definitions
oo

Figure 1: Overview of the Partial Evaluation Process

From a semantic point of view, PEVAL is the identity function. In other words, it
is a technical device for the user to indicate which expressions of the source pro-
gram should be optimized by partial evaluation. After annotating the program,
the partial evaluation process is fully automatic (i.e., there is no need for user
interaction) and always terminating. The definition of appropriate heuristics to
annotate program calls is outside the scope of partial evaluation techniques and
an interesting topic for future research (see also Section 8).

An implementation of the partial evaluator has been incorporated into the
latest distribution of the PAKCS [32] programming environment for Curry. The
process consists of the following phases (depicted in Figure 1):

• The process starts with a Curry program, prog.curry, where the expres-
sions to be partially evaluated are annotated with PEVAL, as shown above.
The function PEVAL is defined in the standard prelude as “PEVAL x = x.”

• The source program is then translated into the FlatCurry format, a stan-
dard intermediate representation which is used during the compilation of
Curry programs [16, 32, 43] (this representation is described in detail in
Section 3).

• The process continues by extracting the set of annotated expressions and
by creating a copy of the FlatCurry program without the PEVAL annota-
tions. Both the program and the set of expressions are the input for the
proper partial evaluation process. We do not further describe this process
here since this is the subject of Section 5.

• The output of the partial evaluation process is a set of new, residual func-
tion definitions which are semantically equivalent and (potentially) more
efficient than the original functions to execute the annotated expressions
of the source program. These new definitions do not generally fulfill the
syntax of FlatCurry and, therefore, a post-processing of renaming is ap-

4

plied. This is also useful to remove some redundant symbols from the
residual definitions.

• Frequently, residual definitions contain a number of “useless” functions
which are only used to pass control between two program points. There-
fore, we finish the transformation process by applying a compression phase
which is useful to produce more compact and legible definitions.

• The final program is obtained from the original one as follows: first, resid-
ual definitions are added to the original program; then, each marked ex-
pression (PEVAL t) of the original program is replaced by t′, where t′

is the renaming of the expression t according to the post-processing re-
naming mentioned above. The optimized program is saved in a new file
prog pe.flc and loaded into the environment.

The partially evaluated program will be stored in FlatCurry format, in contrast
to the original program which was written in Curry. This is not a restriction
since FlatCurry programs are directly executable by the compiler of PAKCS
and can be inspected by a standard display utility in the PAKCS environment.

Let us show a typical session with the partial evaluator. Here we consider
the optimization of a program containing several calls to higher-order functions
(since it is common to use higher-order combinators such as map, foldr, etc. in
functional logic programs). Although the use of such functions makes programs
concise, some overhead is introduced at run time. Hence, we apply our partial
evaluator to optimize calls to these functions. As a concrete example, consider
the following (annotated) Curry program:

main xs ys = (PEVAL (map (iter (+1) 2) xs)) ++ ys

iter f n = if n==0 then f else iter (comp f f) (n-1)
comp f g x = f (g x)

bench = let l,r free in
l =:= [1..20000] &> r =:= evalTime (main l [])

stored in the file prog.curry. Here, function comp is a higher-order func-
tion to compose two input functions, while iter composes a given function
2n times. Thus, given two input lists, xs and ys, function main adds 4 to
each element of xs—the annotated expression—and then concatenates the re-
sult with the second list ys. For the remaining built-in functions of the language,
e.g., if then else, let, ++ (concatenation), &> (sequential conjunction of con-
straints), etc., we refer the reader to the Curry report [31]. In order to measure
the improvement achieved by the process, we have also included function bench,
where evalTime is a system utility to measure the execution time of a function
call. First, we load the program into PAKCS and execute function bench:

prelude> :l prog
Parsing prog.curry...
...

5

{compiled /tmp/prog.pl in module user, 1300 msec 832 bytes}
prog> bench
Runtime: 930 msec.
Elapsed time: 1174 msec.
Number of garbage collections: 14

Now, we run the partial evaluation tool and show the result of the process:

prog> :peval
Writing specialized program into "prog_pe.flc"...
Loading partially evaluated program "prog_pe"...
prog_pe> :show
No source program file available, generating source from
FlatCurry...

main xs ys = (map_pe0 xs) ++ ys

iter f n = if n==0 then f else iter (comp f f) (n-1)
comp f g x = f (g x)

bench = let l,r free in
l =:= [1..20000] &> r =:= evalTime (main l [])

map_pe0 [] = []
map_pe0 (x : xs) = ((((x + 1) + 1) + 1) + 1) : map_pe0 xs

Only two modifications have been performed over the original program: the
annotated expression has been replaced by a call to the new function map pe0
and the residual (first-order) definition of map pe0 has been added. In order to
check the improvement achieved, we execute function bench again:

prog_pe> bench
EVALTIME: Runtime: 130 msec.
EVALTIME: Elapsed time: 177 msec.
EVALTIME: Number of garbage collections: 2

Thus, the new program runs approximately 7 times faster than the original one.
The reason is that it has a first-order definition and is completely “deforested”
[54] in contrast to the original definition. More experimental results can be
found in Section 6.

3 The Flat Representation

This section begins by informally describing the considered source language.
Then, we formally define an intermediate representation for source programs.

We consider multi-paradigm languages which integrate the most important
features of functional and logic programming. To make things concrete, we

6

mainly follow the syntax of the language Curry [31]. In our source language,
functions are defined by a sequence of rules (or equations) of the form

f t1...tn = e

where t1, . . . , tn are constructor terms and the right-hand side e is an expression.
Constructor terms may contain variables and constructor symbols, i.e., symbols
which are not defined by the program rules. Functions can be also defined by
conditional equations which have the form

f t1...tn | c = e

where the condition (or guard) c can be either a Boolean function or a con-
straint. Elementary constraints are success, which is always satisfied, and
equational constraints e1 =:= e2 between two expressions. The latter is satis-
fied if both expressions are reducible to a same ground constructor term (i.e.,
we consider the so-called strict equality [27, 45]). Operationally, an equational
constraint e1 =:= e2 is solved by evaluating e1 and e2 to unifiable constructor
terms. Higher-order features include partial function applications and lambda
abstractions. Function application is denoted by juxtaposition of the function
and its argument. The evaluation of higher-order calls containing free variables
as functions is not allowed (i.e., such calls are suspended to avoid the use of
higher-order unification [33]). Finally, we also consider the use of functions
which are not defined in the user’s program (external functions), like arithmetic
operators, usual higher-order functions (map, foldr, etc.), basic input/output
facilities, etc.

Example 3.1 Consider the following rules defining a function to concatenate
two lists (where [] denotes the empty list and x:xs a list with first element x
and tail xs):

conc eval flex
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys

The evaluation annotation “eval flex” declares conc as a flexible function
which can be also used to solve equations over functional expressions (see below).
For instance, the equation “conc p s =:= [1,2,3]” is solved by instantiating
the variables p and s to lists so that their concatenation yields the list [1,2,3].
Thus, we can define a constraint which is satisfied if p is a prefix of the list
xs as follows (“let s free in” denotes the declaration of a local variable and
corresponds to existential quantification):

prefix p xs = let s free in conc p s =:= xs

In order to show an example for higher-order programming, we define a higher-
order constraint satisfyAll which takes a unary constraint c and a list xs as
input and is satisfied if all elements of xs satisfy the constraint c (the infix
operator & denotes the conjunction of constraints):

satisfyAll _ [] = success
satisfyAll c (x:xs) = c x & satisfyAll c xs

7

Now we can combine this definition with our previous definition of a prefix to
compute a common prefix of a list of strings (strings are considered as lists of
characters):

commonPrefix p xs = satisfyAll (prefix p) xs

For instance, the solutions for the constraint

commonPrefix p ["abc", "abda", "abab"]

are the instantiations "", "a", or "ab" for the variable p.

The basic operational semantics of our source language is based on a combina-
tion of (needed) narrowing and residuation [29]. The residuation principle is
based on the idea of delaying function calls until they are ready for a determin-
istic evaluation. Residuation preserves the deterministic nature of functions and
naturally supports concurrent computations. On the other hand, the narrowing
mechanism allows the instantiation of free variables in input expressions and
then applies reduction steps to the function calls of the instantiated expression.
This instantiation is usually computed by unifying a subterm of the entire ex-
pression with the left-hand side of some program rule. To avoid unnecessary
computations and to deal with infinite data structures, demand-driven genera-
tion of the search space has recently been advocated by a flurry of outside-in,
lazy narrowing strategies (see, e.g., [15, 27, 41, 45]). Due to its optimality
properties w.r.t. the length of derivations and the number of computed solu-
tions, needed narrowing [15] is currently the best lazy narrowing strategy for
functional logic programs.

The precise mechanism—narrowing or residuation—for each function is spec-
ified by evaluation annotations. The annotation of a function as rigid forces
the delayed evaluation by rewriting, while functions annotated as flexible can
be evaluated in a non-deterministic manner by applying narrowing steps. To
provide concurrent computation threads, expressions can be combined by the
concurrent conjunction operator “&,” i.e., the expression e1 & e2 can be reduced
by reducing either e1 or e2. The basic semantics can be properly extended to
cover all the above features (see, e.g., [31, Appendix D] where the operational
semantics of the language Curry is provided).

Example 3.2 Residuation and concurrent computations are useful to model
so-called passive constraints which can reduce the search space whenever their
arguments are sufficiently known. For instance, consider the following defini-
tion:

digit eval flex
digit 0 = success
...
digit 9 = success

arith x y = x+x=:=y & x*x=:=y & digit x

Here, digit is a flexible function (constraint), i.e., a goal like digit x can be
satisfied by instantiating x to one of the values 0,. . . ,9. On the other hand,

8

the standard arithmetic functions like + or * are rigid to avoid an unrestricted
instantiation of their arguments. A goal like “arith x y” is evaluated by a
reduction step to

x+x=:=y & x*x=:=y & digit x

In this goal the constraints x+x=:=y and x*x=:=y cannot be further evaluated
since both functions + and * are rigid and their arguments are not yet known.
The only evaluable part is digit x which can be non-deterministically reduced to
success. For instance, consider the choice {x 7→ 2} which leads to the following
goal:

2+2=:=y & 2*2=:=y & success

Now we can evaluate the subexpressions 2+2 and 2*2 followed by solving both
equational constraints which instantiates y to 4. Thus, one computed solution
is {x 7→ 2, y 7→ 4}. Another choice for digit x yields the second solution
{x 7→ 0, y 7→ 0}, and all further choices fail.

As we mentioned before, online partial evaluators normally include a (non-
standard) interpreter [21]. Hence, as the operational semantics gets more elab-
orated, the associated partial evaluation methods get also more complex. A
promising approach successfully applied in other contexts (e.g., [18, 28, 46]) is
to consider programs written in an intermediate programming language with
a simple operational semantics and to automatically translate source-level pro-
grams into this intermediate language. Recently, Hanus and Prehofer [33] in-
troduced such a simplified representation of functional logic programs based on
the idea to “compile” definitional trees [14] (these are hierarchical structures
used to guide the needed narrowing strategy) into specific rewrite rules. This
provides more explicit control and leads to a calculus simpler than standard
needed narrowing. This representation has been also extended to include infor-
mation about the evaluation type of functions (flexible or rigid) in [1, 6]. In the
following, we extend it in order to cover all the facilities we mentioned above.
The syntax of the resulting representation is depicted in Figure 2. Following the
terminology of [33], we refer to this representation as “the flat representation
for programs.”

Within this (first-order) representation, a flat program R consists of a se-
quence of function definitions D such that each function is defined by one rule
whose left-hand side contains only different variables as parameters. The right-
hand side is an expression e composed by variables (e.g., x, y, z,. . .), construc-
tors (e.g., a, b, c,. . .), function calls (e.g., f , g,. . .), and case expressions for
pattern matching. Additionally, we also allow external functions, higher-order
features like partial application and an application of a functional expression
to an argument, constraints (possibly containing existentially quantified vari-
ables), guarded expressions (to represent conditional rules, where the list of
variables are the local variables which are visible in the guard and the right-
hand side), and disjunctions (to represent functions with overlapping left-hand
sides). Source-level programs (e.g., Curry programs) can be automatically trans-
lated to our flat representation; indeed, it essentially coincides with the standard

9

R ::= D1 . . . Dm

D ::= f(x1, . . . , xn) = e
e ::= x (variable)
| c(e1, . . . , en) (constructor)
| f(e1, . . . , en) (function call)
| case e0 of {p1 → e1; . . . ; pn → en} (rigid case)
| fcase e0 of {p1 → e1; . . . ; pn → en} (flexible case)
| external(e) (external function call)
| partcall(f, e1, . . . , ek) (partial application)
| apply(e1, e2) (application)
| constr([x1, . . . , xn], e) (constraint)
| guarded([x1, . . . , xn], e1, e2) (guarded expression)
| or(e1, e2) (disjunction)

p ::= c(x1, . . . , xn)

Figure 2: The Flat Representation for Programs

intermediate representation, FlatCurry, used during the compilation of Curry
programs [16, 32, 43].

We distinguish two kinds of case expressions in order to cope with both
flexible and rigid functions. The form of a case expression is the following:1

(f)case e of {c1(xn1)→ e1; . . . ; ck(xnk)→ ek}

where e is an expression, c1, . . . , ck are different constructors of the type of
e, and e1, . . . , ek are expressions, possibly containing (f)case’s. The variables
xni are local variables which occur only in the corresponding subexpression ei.
The difference between case and fcase only shows up when the argument e is a
free variable: case suspends (which corresponds to residuation) whereas fcase
non-deterministically binds this variable to a pattern in a branch of the case
expression (which corresponds to narrowing). Functions defined only by fcase
or case expressions are called flexible or rigid, respectively.

Example 3.3 Consider the functions defined in Example 3.1. The function
conc can be translated into the following flat representation:2

conc xs ys = fcase xs of {[] → ys ;
z:zs → z : conc zs ys }

Intuitively, the translation process is guided by the patterns in the left-hand
sides of the rewrite rules. A precise definition can be found in [33]. As a further
example, we show the translation of constraints and higher-order functions by the
flat representation of the functions prefix, satisfyAll, and commonPrefix:

prefix p xs = constr [s] (conc p s =:= xs)
1We write on for the sequence of objects o1, . . . , on.
2Although we consider a first-order representation for flat programs, we use a curried

notation in concrete examples.

10

satisfyAll c zs = case zs of
{[] → success ;
x:xs → (apply c x) & (satisfyAll c xs) }

commonPrefix p xs = satisfyAll (partcall prefix p) xs

The standard operational semantics of flat programs is based on the LNT cal-
culus [33] (Lazy Narrowing with definitional Trees). It was originally defined
for flat programs whose right-hand sides contain only variables, constructors,
function calls, and flexible case expressions. The extension of the LNT calculus
to cope with flexible/rigid case expressions can be found in [1, 6].

4 The Residualizing Semantics

Following previous partial evaluation methods for functional logic programs
[12, 13], residual rules are constructed from partial computations w.r.t. source
programs as follows. Given an expression e and a (possibly incomplete) stan-
dard evaluation e ⇒∗σ e′ computing the substitution σ, we derive a residual
rule—a resultant—of the form: σ(e) = e′. However, the backpropagation of
bindings to the left-hand sides of residual rules (e.g., the instantiation of e by
σ), introduces several problems:

• In general, the left-hand sides of resultants may become instantiated,
which is not allowed by the syntax of Figure 2 (where only variable argu-
ments are accepted in the left-hand sides of the rules). Therefore, some
kind of post-processing is mandatory in order to recover a legal program.

• Evaluation annotations are complex to determine for residual functions or
may even not exist (e.g., when bindings coming from the evaluation of both
flexible and rigid functions have been computed, see [4]). Furthermore,
the unrestricted propagation of bindings may destroy the floundering be-
haviour of the original program (i.e., it may introduce new suspensions
which were not present in the original program and vice versa).

• As pointed out in [11, 13], the completeness of the transformation is only
ensured if terms in head normal form (e.g., rooted by a constructor sym-
bol) are not evaluated during partial evaluation, which may restrict the
power of the method.

In order to overcome the above drawbacks, we propose the use of a non-standard,
residualizing semantics on flat programs to perform partial computations. The
main particularity of the new semantics, the RLNT calculus (which stands for
Residualizing LNT calculus), is that bindings are not propagated backwards
but represented by case expressions with a variable argument. Firstly, we will
recall the basic RLNT calculus [6] to deal with expressions containing only
variables, constructors, defined functions and case expressions. Later, we will
introduce the appropriate extensions to cover all the remaining features of the
flat representation.

11

HNF
[[e]] ⇒ e if e ∈ X or e = c() with c ∈ C

[[c(e1, . . . , en)]] ⇒ c([[e1]], . . . , [[en]])

Case Eval

[[(f)case e of {pk → ek}]] ⇒

{
[[(f)case e′ of {pk → ek}]] if [[e]]⇒ [[e′]]

(f)case e of {pk → ek} otherwise

if e 6= case x of {. . .}, e 6∈ X and root(e) 6∈ C
Case Select

[[(f)case c(en) of {pk → e′k}]] ⇒ [[σ(e′i)]] if pi = c(xn), c ∈ C, σ = {xn 7→ en}

Function Eval

[[g(en)]] ⇒ [[σ(r)]] if g(xn) = r ∈ R is a function definition
with fresh variables and σ = {xn 7→ en}

Case Guess

[[(f)case x of {pk → ek}]] ⇒ (f)case x of {pk → [[σk(ek)]]}
if σi = {x 7→ pi}, i = 1, . . . , k

Case-of-Case

[[(f)case ((f)case x of {pk → ek}) of {p′j → e′j}]]
⇒ [[(f)case x of {pk → (f)case ek of {p′j → e′j}}]]

Figure 3: Basic RLNT Calculus

The basic inference rules of the RLNT calculus are depicted in Figure 3.
Here, we denote by X the set of variables, by C the set of constructors, and by
F the set of defined functions or operations. Given an expression e, function root
returns the outermost function symbol of e (or it is undefined if e is a variable).
The symbols “[[” and “]]” in an expression like [[e]] do not denote a semantic
function but are only used to identify which part of an expression should be
still evaluated. Indeed, the introduction of these symbols allows the RLNT
calculus to ignore those parts of an expression which are definitely residual
(outside square brackets). Furthermore, as we will see in Section 5, they are
also helpful to achieve a smooth transition between the local and global levels
of the partial evaluation algorithm. We briefly describe the six rules of the basic
RLNT calculus.

HNF. These rules can be applied when the considered term is in head normal
form, i.e., it is a variable or a constructor-rooted term. They simply
return the same term (if it is a value) or continue with the evaluation
of all the arguments in parallel. This is safe in our context since the
RLNT calculus does not compute bindings and, thus, there is no need to
propagate bindings between arguments.

Case Eval. This rule initiates the evaluation of the case argument by creating a
call for this subterm. If there is some progress towards the evaluation of the

12

case argument, i.e., the expression is not suspended (which is denoted by
the fact that square brackets are removed), then we proceed to evaluate the
resulting case expression; otherwise, the complete expression is suspended
and we return the original case expression (without square brackets). Note
that this rule excludes the evaluation of a case expression whose argument
is either a variable, a constructor-rooted term, or another case expression
with a variable argument, since it is dealt with in other rules (namely, in
Case Guess, Case Select and Case-of-Case, respectively).

Case Select. It selects the appropriate branch of the current case expression and
continues with the evaluation of this branch (here we assume for the sake
of simplicity that the branches of a case expression are complete, i.e., there
is always a matching branch; this can always be achieved by completing
case expressions with “failure” branches of the form pk → fail).

Function Eval. This rule simply performs the unfolding of a function call. It is
a purely functional unfolding since all arguments in the left-hand sides of
the rules are variables.

Case Guess. This rule represents the main difference w.r.t. the standard seman-
tics (i.e., the LNT calculus of [33]). In the standard semantics, these
expressions are evaluated by means of the following rule:

[[fcase x of {pk → ek}]]⇒σ [[σ(ei)]] if σ = {x 7→ pi}, i = 1, . . . , k

Since we want to avoid the backpropagation of bindings, in the RLNT cal-
culus we residualize the case structure and continue with the evaluation of
the different branches (by applying the corresponding substitution in order
to propagate bindings forward in the computation). In other words, the
new rule imitates the instantiation of variables in the standard evaluation
of a flexible case but keeps the case structure. Due to this modification,
no distinction between flexible and rigid case expressions is needed in the
RLNT calculus. Moreover, the resulting calculus does not compute an-
swers. Rather, they are represented in the derived expressions by means
of case expressions with variable arguments. As a consequence, the cal-
culus becomes deterministic, i.e., there is no don’t-know non-determinism
involved in the computations. This means that only one derivation can
be issued from a given expression and, thus, there is no need to introduce
a notion of RLNT “tree.”

Case-of-Case. An undesirable effect of the residualizing Case Guess rule is that
nested case expressions may suspend unnecessarily. Take, for instance,
the expression:

[[case (case x of { 0→ True;
(Succ y)→ False}) of {True→ C x}]]

13

The evaluation of this expression suspends since the outer case can be
only evaluated if the argument is a variable (Case Guess), a function call
(Case Eval) or a constructor-rooted term (Case Select). To avoid such pre-
mature suspensions, the Case-of-Case rule moves the outer case inside the
branches of the inner one and, thus, the evaluation of some branches can
now proceed (similar rules can be found in the Glasgow Haskell Compiler
as well as in Wadler’s deforestation [54]). By using the Case-of-Case rule,
the above expression can be reduced to:

[[case x of {0→ case True of {True→ C x}
(Succ y)→ case False of {True→ C x}]]

which can be further simplified with the Case Guess and Case Select rules.3

Rigorously speaking, this rule can be expanded into four rules (with the
different combinations for case and fcase), but we keep the above (less
formal) presentation for simplicity. Observe that the outer case expres-
sion may be duplicated several times, but each copy is now (possibly)
scrutinizing a known value, and so the Case Select rule can be applied to
eliminate some case constructs.

Now, we present the extension of the basic RLNT rules in order to deal with all
the remaining features of flat programs.

In principle, this extension could be done in a simple way. The naive idea is
to treat all the additional features of the language as constructor symbols during
partial evaluation. This is safe since these features are dealt with by the language
environment and, thus, there is no special need to include associated residual
definitions in partially evaluated programs. However, in realistic programs,
the presence of these additional features is perfectly common, hence it is an
unacceptable restriction just to residualize them. Moreover, our experimental
tests have shown that no specialization is obtained in most cases if we follow
this simple approach.

On the other hand, in order to allow the evaluation of the additional features
at partial evaluation time—instead of residualizing them—, the RLNT calculus
should be properly extended. Unfortunately, the extension of the basic RLNT
calculus depicted in Figure 3 with the standard semantics (e.g., along the lines
of [31, Appendix D]) is not a good solution either. The problem stems from the
fact that the RLNT calculus only propagates bindings forward into the branches
of a case expression. However, there are a number of functions, like equalities,
(concurrent) conjunctions, some arithmetic functions, etc., in which the propa-
gation of bindings between their arguments is crucial to achieve a good level of
specialization. In order to propagate bindings4 between different arguments, we
permit to lift some flexible case expressions from argument positions to the top

3For the sake of simplicity, we have not included a failure rule for non-matching case
expressions like “case False of {True → C x}” since such situations can be simply handled
by replacing the corresponding expressions by “fail.”

4Recall that bindings are represented by case expressions with a variable argument.

14

level while propagating the corresponding bindings to the remaining arguments.
For example, the expression

[[(x =:= 1) & (fcase x of {1→ success})]]

can be transformed into

[[fcase x of {1→ (x =:= 1 & success)}]]

The transformed expression can be now evaluated by the Case Guess rule, thus
propagating the binding {x 7→ 1} to the first conjunct:

fcase x of {1→ [[1 =:= 1 & success]]}

This transformation cannot be applied over arbitrary expressions since the in-
tended semantics is only preserved when the involved functions fulfill some con-
ditions. For instance, consider the following expression:

case x of {0 7→ 0} =:= fcase x of {0 7→ 0}

By assuming a fixed left-to-right evaluation of the equality arguments, the com-
putation of this expression must suspend according to the standard semantics.
However, by floating out the rightmost case expression, we obtain the derived
expression:

fcase x of {0 7→ (0 =:= case 0 of {0 7→ 0})}

which no longer suspends. On the other hand, consider the following concurrent
conjunction:

case x of {0 7→ success} & fcase x of {0 7→ success}

which can be solved to success according to the standard semantics: first, we
evaluate the second conjunct and propagate the corresponding binding to the
first conjunct, and then we evaluate the (instantiated) first conjunct. In this
case, by floating out the leftmost case expression, we obtain:

case x of {0 7→ (success & fcase x of {0 7→ success})}

which gives rise to a suspension (with the standard semantics). To summarize,
we need to distinguish two different kinds of functions:

1. functions in which the evaluation order of the arguments is fixed, and

2. functions in which the evaluation order of the arguments is dynamic and
should be decided at run time.

Examples of the first kind of functions are: equalities, sequential conjunctions,
constructor-rooted terms, calls to external functions (like arithmetic operators),
etc. In many implementations, the evaluation of such functions proceeds by a
fixed left-to-right evaluation of the arguments. Thus, we assume in the following
a fixed left-to-right evaluation for these functions. As for the second kind of
functions, we only find the concurrent conjunction operator. The evaluation of
each kind of functions is performed as follows:

15

1. Fixed left-to-right evaluation: we can proceed with the evaluation of any
argument, but only bindings coming from the evaluation of the leftmost
one (which is not a constructor term) can be floated out.

2. Dynamic evaluation: we can proceed with the evaluation of any argument,
but only flexible bindings (fcase) can be floated out.

The following sections present the appropriate treatment for each feature of the
flat language according to the above restrictions.

4.1 Non User-Defined Functions

Flat programs may contain calls to functions which are not defined in the user’s
program code. Examples of these functions are those which are defined in the
prelude of the language (i.e., a set of standard datatype and function definitions
which are added to each program) or those which are implemented in another
language.

Regarding the first kind of functions, we find some utility functions like
length, head, and tail, the Boolean operators && (sequential conjunction)
and || (disjunction), the higher-order functions map, foldr, etc. An explicit
treatment of these functions is not necessary since we have their definitions
available at partial evaluation time (i.e., by loading them from the prelude file).
Hence, we adopt a standard treatment by considering such functions as any
other user-defined function.

Regarding the second kind of functions (which are denoted with the external
construct), there are a number of arithmetic operators (e.g., +, −, ∗), the basic
I/O facilities (e.g., putChar, readChar), etc. Such functions are executed only if
all arguments are evaluated to ground constructor terms.5 The same restriction
seems reasonable when computing the partial evaluation of an external function.
Therefore, their evaluation is formalized by the following rules:6

[[external(f(en))]] ⇒ ext call(f(en))
if e1, . . . , en are ground constructor terms;

[[external(f(en))]] ⇒ [[(f)case x of {pk → external(f(ei−1, e′k, ei+1, . . . , en))}]]
if ei = (f)case x of {pk → e′k} and it is the leftmost argument which is
not ground constructor;

[[external(f(en))]] ⇒ [[external(f(e1, . . . , ei−1, e
′
i, ei+1, . . . , en))]]

if ∃i ∈ {1, . . . , n} such that [[ei]] ⇒ e′′i , e′i = delsq(e′′i), and ei 6= e′i;

[[external(f(en))]] ⇒ external(f(en)) otherwise.
5There are few exceptions to this general rule but typical external functions (like arithmetic

operators) fulfill this condition. We assume it for the sake of simplicity.
6Since these rules are non-deterministic, we always require that the different cases are tried

in their textual order and the arguments are evaluated from left to right.

16

Function ext call(e) evaluates e according to its predefined semantics. Also, we
denote by delsq(e) the expression which results from deleting all occurrences of
“[[” and “]]” from e. We use it to test syntactic equality between expressions
without taking into account the relative positions of “[[” and “]]”. Let us infor-
mally explain the rules above. Firstly, we try to execute the external function.
If this is not possible because some argument is not a ground constructor term,
we try to continue with the evaluation of some argument. This can be done
by either floating out the leftmost argument which is not a constructor term
(if it has a “binding” at the outermost position) or by applying the calculus
recursively to some argument. Finally, if none of these rules is applicable, the
computation suspends.

The only exception to the above rules are I/O actions. Current functional
(logic) languages consider the monadic approach to I/O. Thus, these functions
act on the current “state of the outside world.” They are residualized since this
state is not known at partial evaluation time.

4.2 Constraints

The treatment for constraints heavily depends on the associated constraint
solver. As we mentioned in Section 3, we only consider equational constraints of
the form e1 =:= e2 (which are solvable when both sides are reducible to unifi-
able constructor terms). This notion of equality is incorporated in our calculus
by the following rules:

[[e1 =:= e2]] ⇒ caseσ(success)
if e1 and e2 are unifiable constructor terms and σ = mgu(e1, e2);

[[(f)case x of {pk → e′k} =:= e2]] ⇒ [[(f)case x of {pk → e′k =:= e2}]]

[[e1 =:= (f)case x of {pk → e′k}]] ⇒ [[(f)case x of {pk → e1 =:= e′k}]]
if e1 is a constructor term;

[[e1 =:= e2]] ⇒ [[e′1 =:= e2]] if [[e1]] ⇒ e′′1 , e′1 = delsq(e′′1), and e1 6= e′1;

[[e1 =:= e2]] ⇒ [[e1 =:= e′2]] if [[e2]] ⇒ e′′2 , e′2 = delsq(e′′2), and e2 6= e′2;

[[e1 =:= e2]] ⇒ e1 =:= e′2 otherwise.

Here, we use caseσ(success) as a shorthand for denoting the encoding of σ
by nested (flexible) case expressions with success at the final branch. For ex-
ample, the expression [[C x 2 =:= C 1 y]], whose mgu (most general unifier) is
{x 7→ 1, y 7→ 2}, is evaluated to: fcase x of {1→ fcase y of {2→ success}}.
This simple treatment of constraints is not sufficient in practical programs since
they are often used in concurrent conjunctions, written as c1 & . . .& cn using the
concurrent conjunction operator “&.” In this case, constraints may instantiate
variables and the corresponding bindings should be propagated to the remain-
ing conjuncts. This is the only case of dynamic evaluation (according to the
standard semantics) and, thus, we can only float out flexible bindings:

17

[[c1 & . . . & cn]] ⇒ success
if ci = success for all i ∈ {1, . . . , n};

[[c1 & . . . & cn]] ⇒ [[fcase x of {pk → (c1& . . .&ci−1 & ek & ci+1& . . .&cn)}]]
if ci = fcase x of {pk → ek} for some i ∈ {1, . . . , n};

[[c1 & . . . & cn]] ⇒ [[c1 & . . . & ci−1 & c′i & ci+1 & . . . & cn]]
if ∃i ∈ {1, . . . , n} such that [[ci]]⇒ c′′i , c′i = delsq(c′′i), and ci 6= c′i;

[[c1 & . . . & cn]] ⇒ c1 & . . . & cn otherwise.

Equational constraints can also contain local existentially quantified variables.
In this case, they take the form constr(vars, c), where vars are the existentially
quantified variables in the constraint c. We treat these constraints as follows:

[[constr(vars, c)]] ⇒ success if c = success;

[[constr(vars, c)]] ⇒ [[(f)case x of {pk → constr(vars, ek)}]]
if c = (f)case x of {pk → ek};

[[constr(vars, c)]] ⇒ [[constr(vars, c′)]]
if [[c]] ⇒ c′′, c′ = delsq(c′′), and c 6= c′;

[[constr(vars, c)]] ⇒ constr(vars, c) otherwise.

Note that the second rule above moves all bindings to the top level, even those for
the local variables in vars. One might think that it is better to remove those case
expressions denoting bindings for the variables in var. However, case expressions
with a variable argument are also useful to encode nondeterministic branches
and, thus, they cannot be simply discarded. Alternatively, we could include the
condition x 6∈ vars in the second rule above. Unfortunately, this condition also
prevents us from floating out bindings for the free variables of the constraint
when they are inside a case expression whose variable argument belongs to vars.
Therefore, we adopt the simpler solution of permitting the lifting of all bindings.
Trivially, when the name of a local variable appears outside the scope of the
constraint, it may become bound incorrectly. Nevertheless, this situation can
be easily solved in practical implementations by renaming local variables with
fresh names so that they do not appear elsewhere in the considered expression.

4.3 Guarded Expressions

Functions in the source language can be defined by conditional rules of the form

f t1 . . . tn | c = e

where c is a constraint. Conditional rules are represented in the flat representa-
tion by the guarded construct. At partial evaluation time, we are interested in
inspecting not only the guard but also the right-hand side of the guard. How-
ever, only bindings produced from the evaluation of the guard can be floated
out (since, according to the standard evaluation order, we never evaluate the

18

right-hand side until the guard has been satisfied). The corresponding rules are
the following:

[[guarded(vars, gc, e)]] ⇒ [[e]] if gc = success;

[[guarded(vars, gc, e)]] ⇒ [[(f)case x of {pk → guarded(vars, ek, e)}]]
if gc = (f)case x of {pk → ek};

[[guarded(vars, gc, e)]] ⇒ [[guarded(vars, gc′, e)]]
if [[gc]] ⇒ gc′′, gc′ = delsq(gc′′), and gc 6= gc′;

[[guarded(vars, gc, e)]] ⇒ [[guarded(vars, gc, e′)]]
if [[e]] ⇒ e′′, e′ = delsq(e′′), and e 6= e′;

[[guarded(vars, gc, e)]] ⇒ guarded(vars, gc, e) otherwise.

Observe that, in the first rule above, we can safely remove the guarded construct
(and forget the names of local variables) when gc is success since, in this
case, all local variables in e must be bound. On the other hand, the same
considerations as in the end of the previous section about the lifting of local
variables (in the second rule) apply.

4.4 Higher-Order Functions

Since we do not consider higher-order unification, the standard semantics covers
the usual higher-order features of functional languages by adding the following
axiom [31]:

[[apply(f(e1, . . . , em), e)]]⇒ [[f(e1, . . . , em, e)]]

if f has arity n > m. Thus, an application is evaluated by simply adding the
argument to the partial call. In the flat representation, we distinguish partial
applications from total functions; namely, partial applications are represented
by means of the partcall symbol. We treat higher-order features as follows:

[[apply(e1, e2)]] ⇒ [[f(ck, e2)]] if e1 = partcall(f, ck), k + 1 = ar(f);

[[apply(e1, e2)]] ⇒ [[partcall(f, ck, e2)]] if e1 = partcall(f, ck), k+ 1 < ar(f);

[[apply(e1, e2)]] ⇒ [[(f)case x of {pk → apply(e′k, e2)}]]
if e1 = (f)case x of {pk → e′k};

[[apply(e1, e2)]] ⇒ [[apply(e′1, e2)]] if [[e1]] ⇒ e′′1 , e′1 = delsq(e′′1), and e1 6= e′1;

[[apply(e1, e2)]] ⇒ [[apply(e1, e
′
2)]] if [[e2]] ⇒ e′′2 , e′2 = delsq(e′′2), and e2 6= e′2;

[[apply(e1, e2)]] ⇒ apply(e1, e2) otherwise.

19

Here, we denote by ar(f) the arity of the function f . Roughly speaking, we
allow a partial function to become a total function by adding the missing argu-
ment, if possible. If the function does not have the right number of arguments
yet, we maintain it as a partial function. In the remaining cases, we evaluate
the apply arguments in hopes of achieving a partial call after evaluation. In
principle, partial calls cannot be evaluated. Nevertheless, we can proceed with
the evaluation of their arguments as follows:

[[partcall(f, e1, . . . , en)]] ⇒ partcall(f, [[e1]], . . . , [[en]])

4.5 Overlapping Left-Hand Sides

Overlapping left-hand sides in source programs produce a disjunction where the
different alternatives have to be considered. Similarly, we treat or expressions
in the flat representation as follows:

[[or(e1, e2)]] ⇒ or([[e1]], [[e2]])

The correctness of the partial evaluation scheme based on the rules of Figure 3
relies on the proof of equivalence between the RLNT calculus and the original
LNT calculus (as formally shown in [8]). The extension of the correctness result
to consider the additional features of multi-paradigm declarative languages is
similarly based on the equivalence between the treatment of each particular
feature during partial evaluation (as defined throughout this section) and its
standard evaluation (as described in [31]). Due to the lack of a formal semantics
for these features, we do not include here such a formal proof. However, note
that we mainly follow the directions described in [31] except from the lifting of
case expressions (which is properly justified at the beginning of this section).

5 Control Issues

In this section we present the basic partial evaluation algorithm. It essentially
follows the procedure of [12], which is parametric w.r.t. an unfolding rule used to
determine when and how to terminate the construction of partial computations
and an abstraction operator used to guarantee that the number of partially
evaluated terms is kept finite. The basic algorithm proceeds as follows (see
Figure 4, where we denote by Rcalls the set of terms in the right-hand sides of
the rules ofR). Given an input program and a set of terms, the first step consists
in applying an unfolding rule to compute a finite RLNT derivation for each term
of the set; then, it returns the set of residual rules or resultants (i.e., a program)
associated to these RLNT derivations (namely, for each RLNT derivation of the
form e ⇒∗ e′, we compute a resultant e = e′). Then, an abstraction operator
is applied to properly add the terms in the right-hand sides of resultants to the
set of terms already partially evaluated; the abstraction phase yields a new set
of terms which may need further evaluation and, thus, the process is iteratively
repeated while new terms are introduced. Observe that the algorithm does not

20

Input: a program R and a set of terms T
Output: a set of terms S
Initialization: i := 0; T0 := T
Repeat
R′ := unfold(Ti,R);
Ti+1 := abstract(Ti,R′calls);
i := i+ 1;

Until Ti = Ti−1 (modulo renaming)
Return: S := Ti

Figure 4: Basic Algorithm for Partial Evaluation

return a partially evaluated program but a set of terms which unambiguously
determines the associated partial evaluation. In particular, by applying once the
same unfolding rule, we generate the corresponding resultants which form the
residual program. Additionally, a standard renaming transformation is applied
over the residual program (see, e.g., [11]). Finally, we perform a novel post-
unfolding transformation to remove redundant code from the partially evaluated
program (see below).

The procedure follows the style of Gallagher’s partial deduction method
[25] and two control levels are clearly distinguished: the local level—which is
managed by an unfolding rule—and the global level—which is controlled by
an abstraction operator. Trivially, in order to ensure the termination of the
algorithm, we must ensure both local and global termination, i.e., partial RLNT
derivations must be finite and the iterative construction of RLNT derivations
must eventually terminate. The remaining of this section provides some insights
on both control levels as well as on their termination.

5.1 Local Control

As for local control, the main novelty w.r.t. previous partial evaluators for func-
tional logic programs is the use of a non-standard semantics, the RNLT calculus,
to perform computations during partial evaluation. In particular, for each ex-
pression e, the unfolding rule performs a finite RLNT computation of the form
e⇒∗ e′ and, then, returns the residual rule e = e′.

In order to ensure the local termination of the algorithm, the unfolding rule
must incorporate some mechanism to stop the construction of RLNT deriva-
tions. For this purpose, there exist several well-known techniques in the litera-
ture, e.g., depth-bounds, loop-checks [17], well-founded orderings [19], well-quasi
orderings [50], etc. In our partial evaluator, we have experimented with three
(terminating) unfolding rules:

One-step unfolding. This is a “cheap” unfolding rule in which only the unfolding
of one function call is allowed (the positive supercompiler of [35] employs
a similar strategy).

Unfolding based on a well-founded ordering. We define a simple well-founded

21

order, >S , on expressions. Basically, an expression e is greater than e′,
in symbols e >S e′, if they have the same outermost function symbol and
the size (i.e., the number of symbols) in e is greater than the number
of symbols in e′. Thus, this unfolding rule allows us to expand a RLNT
derivation as long as the derived expression is not greater (according to
>S) than the previous expression in the computation.

Unfolding based on an embedding ordering. In previous approaches (e.g., [2, 12]),
unfolding rules have been defined by using a particular type of well-quasi
ordering: homeomorphic embedding (see [40] for a detailed description).
Informally, term t1 embeds term t2 if t2 can be obtained from t1 by delet-
ing some operators, e.g., Succ (Succ ((u + w)×(u+(Succ v)))) embeds
Succ (u × (u + v)). Unfolding rules based on the embedding ordering
allow the expansion of derivations until reaching a term which embeds
some of the previous terms in the same derivation. However, in the pres-
ence of an infinite signature (e.g., integers), this unfolding rule can lead to
non-terminating computations. For example, consider the following source
program which generates a list of natural numbers within two given limits:

enum a b = if a > b then [] else (a : enum (a + 1) b)

During its specialization w.r.t. the call enum 1 n, the following calls are
produced: enum 1 n, enum 2 n, enum 3 n, . . . , and no call embeds some
previous call. We overcome this problem by considering integers as lists
of characters (between “0” and “9”) when testing for embedding. In this
way, the number of different symbols becomes finite.

Let us say that, in combination with our global control (cf. Section 5.2), the
best results were achieved by using the one-step unfolding rule. In practice, it
generates optimal recursive functions in many cases.7 As a counterpart, many
redundant functions may appear in the residual program. This does not mean
that we incur in a “code explosion” problem since this kind of redundant rules
can be easily removed with a simple post-unfolding compression phase. The
notion of redundancy that we detect and remove is similar to the one identified
by [49] in the field of supercompilation. In particular, we care about intermediate
functions (i.e., functions which are called from a single program point), which
are only used to pass control from one program point to another. Roughly
speaking, our post-unfolding transformation allows the additional unfolding of
function calls provided that the unfolded function is not recursive—to ensure
termination—and that it appears only once in the program—hence it is actually
an intermediate function.

5.2 Global Control

Global control cannot be managed with the same flexibility as the local con-
trol if we want to preserve the correctness of the method. At the local level,

7In fact, the experiments in Section 6 have been performed with the one-step unfolding
rule.

22

this flexibility allows us to safely stop the construction of RLNT derivations
at any point. In contrast, we cannot stop the iterative construction of partial
derivations until all the function calls in the generated resultants are “closed”
w.r.t. the corresponding set of partially evaluated terms. Roughly speaking,
a term is closed w.r.t. a set of terms if it is an instance of some term in the
set and the terms in the matching substitution are recursively closed (see [12]
for more details). This condition is necessary to ensure the correctness of the
partial evaluation process [12]. On the other hand, it may also happen that this
condition is never reached and, in this case, the iterative process runs forever.
Therefore, global control usually includes some kind of generalization to enforce
the termination of the process. The most popular generalization operator is the
msg (most specific generalization) between terms.

In our partial evaluator, the abstraction operator may also make use of the
same orderings explained in Section 5.1 to decide when to generalize and when to
continue with the iterative construction of RLNT derivations.8 Following [12],
our abstraction operator abstract takes two sets of terms (the terms already
partially evaluated Ti and the terms to be added to this set, R′calls , as shown
in Figure 4) and returns a safe approximation of Ti ∪ R′calls . By safe we mean
that each term in Ti ∪ R′calls is closed w.r.t. the set of terms resulting from
abstract(Ti,R′calls). To be precise, in order to add a new term, t, to the current
set of partially evaluated terms, Ti, the abstraction operator essentially proceeds
as follows:

• variables are disregarded;

• if t = c(t1, . . . , tn) is not enclosed within square brackets and c is not a
defined function symbol, then it tries to add t1, . . . , tn to the set;

• if t is rooted by a defined function symbol or it is enclosed within square
brackets, then one of the following actions is performed:

1. add t to the current set Ti,

2. discard the term t, or

3. compute the msg between t and some term t′ ∈ Ti, say t′′, and then
try to add both t′′ as well as the terms in the matching substitutions
(i.e., terms in σ and in σ′, with σ(t′′) = t and σ′(t′′) = t′).

As in the unfolding rule, the concrete action may depend on the use of some
ordering between terms. In particular, we have implemented three different
abstraction operators. Our first experiments used a (non-terminating) abstrac-
tion operator which simply adds the new terms to the current set of partially
evaluated terms, i.e., it always takes action (1) above. Then, we implemented
an abstraction operator which uses a well-founded ordering on terms to decide
what action to take: if the new term is smaller than the last term added to the

8For simplicity, in Figure 4, we considered that the current collection of partially evaluated
terms is represented by means of a set. A more precise treatment can be easily given by using
sequences of terms [12] or global trees [44] instead of sets.

23

set (with the same outermost symbol), then it is also added; otherwise, they are
generalized by using the msg operator, as shown in action (3). However, the
best results—while still guaranteeing termination in all cases—were obtained
with an abstraction operator based on an embedding ordering.9 It proceeds in
a similar way as the previous abstraction operator but replacing the use of a
well-founded order by the use of an embedding ordering.

The main novelty of our abstraction operator w.r.t. previous operators (e.g.,
[2, 12]) is that it is guided by the RLNT calculus. The key idea is to take
into account the position of the square brackets in expressions. This simple
extension turns out to be crucial to achieve a good level of specialization in many
cases. In particular, the position of square brackets in an expression allows the
abstraction operator to know which parts of the expression have been definitely
residualized—hence they can be safely ignored—and which parts need further
evaluation—and should be added to the current set of partially evaluated terms,
if possible. Thanks to the use of this “RLNT-based” abstraction operator, there
is no loss of information when passing control from the local level to the global
one (in contrast to previous abstraction operators which were “blind” at this
respect). The combination of the abstraction operator based on an embedding
ordering with the one-step unfolding rule gives rise to efficient residual programs
in many cases, while still guaranteeing termination.

6 Experimental Results

In order to assess the practicality of the ideas presented in this work, the im-
plementation of a partial evaluator for the multi-paradigm declarative language
Curry has been undertaken. Curry [31] integrates features from logic (logic
variables, partial data structures, built-in search), functional (higher-order func-
tions, demand-driven evaluation), and concurrent programming (concurrent
evaluation of constraints with synchronization on logical variables). Further-
more, Curry is a complete programming language which is able to implement
distributed applications (e.g., Internet servers [30]) or graphical user interfaces
at a high-level. The sources of the partial evaluator are publicly available
from http://www.dsic.upv.es/users/elp/peval/. This tool has been also
integrated into the latest distribution of the PAKCS compiler [32] for Curry
(see http://www.informatik.uni-kiel.de/~pakcs/). As opposed to previous
partial evaluators for Curry (e.g., Indy [3]), our partial evaluator is completely
written in Curry and fully integrated into a compiler system. To the best of our
knowledge, this is the first purely declarative partial evaluator for a functional
logic language.

Let us show some results from an experimental evaluation of the imple-
mented partial evaluator. We have only considered the partial evaluation of
“small” functions, i.e., functions which are not computationally expensive. In
practice, this suffices to obtain good improvements in many programs, e.g.,
by removing unnecessary data structures, by composing nested functions into

9Experiments in Section 6 use this latter abstraction operator.

24

a comprehensive new function, or by transforming higher-order calls into first-
order ones. In order to allow an effective partial evaluation of complex programs
(e.g., a meta-interpreter), some improvements are still necessary.

Firstly, we have benchmarked several examples which are typical from par-
tial deduction (see, e.g., [38, 40]) and from the literature of functional program
transformations, such as positive supercompilation [51], fold/unfold transforma-
tions [20, 22], and deforestation [54]. These are simple functions which do not
exploit advanced features of practical programming languages. For instance, the
benchmark allones, which transforms all elements of a list into 1, is defined in
Curry as follows:

data Nat = Z | S Nat

allones Z = []
allones (S x) = 1 : allones x

len [] = Z
len (x:xs) = S (len xs)

main xs = PEVAL (allones (len xs))

Table 1 shows the results obtained from the following selected benchmarks:10

allones; double app, the well-known concatenation of three lists; double flip,
which flips a tree structure twice, then returning the original tree back; kmp,
a string pattern matcher; length app, which computes the length of the list
resulting from concatenating two lists.

For each benchmark, we show the execution time and heap usage for the
original and specialized calls as well as the speedups achieved. Times are
expressed in milliseconds and are the average of 10 executions on a 1.3 GHz
Linux-PC (AMD Athlon with 256 KB cache). Runtime input goals were chosen
to give a reasonably long overall time. The programs were executed with the
Curry→Prolog compiler [16] of PAKCS. We do not show the exact times for
performing the partial evaluation since this also includes the parsing of input
files, writing of output files, etc. Nevertheless, we want to emphasize that the
implementation of the partial evaluator in a high-level declarative programming
language has no serious consequences w.r.t. its execution time, since all exam-
ples are partially evaluated in less than a second including loading the partial
evaluator, reading and writing of the intermediate program files. The only ex-
ception is the pattern matcher kmp which needs an overall time of 1.5 seconds.
In all the benchmarks, the calls to be partially evaluated contained no static
data, except for the kmp example (what explains the larger speedup produced).
We did not include the speedup achieved by the previous partial evaluator Indy

[3], since the generated residual programs are identical on these benchmarks.
This indicates that our new partial evaluation scheme is a conservative extension
of previous approaches on comparable examples. Note, though, that our par-

10The sources can be found at http://www.dsic.upv.es/users/elp/peval/.

25

Benchmark original specialized speedup
time heap time heap

allones 500 8000244 370 4800228 1.35
double app 570 9603852 440 6403828 1.30
double flip 710 13631652 550 8388788 1.29
kmp 700 9839908 50 320196 14.0
length app 400 8824248 280 5624228 1.43

Table 1: Benchmark Results (I)

tial evaluator is applicable to a wider class of programs (including higher-order
functions, constraints, several built-in’s, etc), while these practical features were
not treated in previous approaches to the partial evaluation of functional logic
languages.

One of the most useful features of functional languages are higher-order func-
tions since they improve code reuse and modularity in programming. Thus, such
features are often used in practical Curry programs (much more than in Prolog
programs, which are based on first-order logic and offer only weak features for
higher-order programming). Furthermore, almost every practical program uses
built-in arithmetic functions which are available in Curry as external functions
(but, for instance, not in purely narrowing-based functional logic languages).

The following functions map (for applying a function to each element of a
list) and foldr (for accumulating all list elements) are often used in functional
(logic) programs:

map _ [] = []
map f (x:xs) = f x : map f xs

foldr _ z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

For instance, the expression “foldr (+) 0 [1,2,3]” is the sum of all ele-
ments of the list [1,2,3]. Due to the special handling of higher-order features
(apply and partcall) and built-in functions (external), our partial evaluator
is able to reduce occurrences of this expression to the value 6. However, in-
stead of such constant expressions, programs may often contain calls to higher-
order functions which are partially instantiated. For instance, the expression
“foldr (+) 0 xs” is transformed by our partial evaluator into “f xs,” where
f is a first-order function defined by the rules:

f [] = 0
f (x:xs) = x + f xs

Calls to this residual function run three times faster (in the Curry→Prolog
compiler [16] of PAKCS [32]) than calls to the original definitions; also, mem-
ory usage has been reduced significantly (see Table 2, first row). Similarly,
the expression “foldr (+) 0 (map (+1) xs)” is successfully transformed into
“foo xs,” where the (efficient) first-order function foo is defined by the rules:

26

Benchmark original specialized speedup
time heap time heap

foldr (+) 0 xs 120 2219196 40 619180 3.00
foldr (+) 0 (map (+1) xs) 220 4059208 60 859180 3.67
foldr (+) 0 (map square xs) 265 4970732 100 1770704 2.65
foldr (++) [] xs (concat) 160 2560244 70 560228 2.29
filter (>100) (map (*3) xs) 430 6639932 270 3599896 1.59
any (>10000) xs 100 1920432 20 120228 5.00
map (iter (+1) 2) xs 920 17120280 100 1440228 9.20

Table 2: Benchmark Results (II)

foo [] = 0
foo (x:xs) = (x+1) + foo xs

Similar results are also obtained for functions defined by a chain of other higher-
order functions, like in the expression “any (>10000) xs” where the function
any is defined by “any p xs = or (map p xs)” and the function or is defined
by “or xs = foldr (||) False xs” (“||” denotes the Boolean disjunction).
This expression is replaced by “any’ xs” where the following first-order defini-
tion for any’ is generated:

any’ [] = False
any’ (x:xs) = if x>10000 then True else any’ xs

Note that our partial evaluator neither requires function definitions in a specific
format (like “foldr/build” in short cut deforestation [26]) nor it is restricted
to “higher-order macros” (as in [54]), but can handle arbitrary higher-order
functions. For instance, the higher-order function

iter f n = if n==0 then f else iter (f . f) (n-1)

which modifies its higher-order argument in each recursive call (f . f denotes
function composition) can be successfully handled by our partial evaluator (com-
pare example in Section 2).

Table 2 shows the results of specializing some calls to higher-order (like
foldr or map) and built-in functions (like the addition “+” or the comparison
operator “>”) with our partial evaluator. For each benchmark, we show the
execution time and heap usage for the original and specialized calls and the
speedups measured in the same computer environment of Table 1. The input
list xs contains 20,000 elements in each call.

As shown in Example 3.2, an important feature of Curry is the use of (con-
current) constraints. Due to the extension of our partial evaluator to cover
constraints and concurrent conjunctions, constraints might be completely eval-
uated at partial evaluation time. Actually, our partial evaluator returns for
the call “arith x y” w.r.t. the program of Example 3.2 the following residual
function arith’:

arith’ eval flex
arith’ 0 0 = success

27

arith’ 2 4 = success

This example shows that our partial evaluator is also able to transform a con-
current program into a purely sequential one.

Before concluding this section, let us mention that our experimental tests
have been performed on a concrete language and compiler by selecting a partic-
ular set of benchmark programs. Clearly, there is no guarantee of improvement
in general. A first step towards a machine-independent way of assessing the
effectiveness of partial evaluators has been taken by [5, 53].

7 Related Work

There exists an active line of research on partial evaluation techniques for
narrowing-based, multi-paradigm declarative languages (see [10] for a survey).
The original framework [12] is defined for languages whose operational se-
mantics is based solely on narrowing—also known as narrowing-driven partial
evaluation—although it has been extended to deal with residuation in [4]. The
Indy partial evaluator [3] is a prototype implementation based on the narrowing-
driven methodology. The system is written in Prolog and only accepts uncon-
ditional term rewriting systems as programs.

In principle, the narrowing-driven approach to partial evaluation has the
same potential for specialization as positive supercompilation [51] of functional
programs and conjunctive partial deduction [23] of logic programs (the inter-
ested reader is referred to [10, 12] for a more detailed comparison with these
approaches). Unfortunately, the use of Indy within a realistic functional logic
language (e.g., Curry [31] or Toy [42]) becomes impractical since there are many
features of these languages (like higher-order functions, constraints, built-in’s,
etc.) which are not covered neither by Indy nor by the underlying partial evalu-
ation framework. Our new partial evaluation scheme overcomes the limitations
of previous approaches by including a safe treatment for the aforementioned
language features. Additionally, the treatment of flexible/rigid functions is sim-
plified in comparison to [4]. This makes the new approach more practically
applicable.

Part of this success can be attributed to the use of an intermediate simplified
language. This idea, though, is not new in the literature. For instance, the
(self-applicable) partial evaluator developed by Bondorf [18] is based on such an
approach. His intermediate representation, called Tree, shares many similarities
with the flat representation introduced in Section 3. Basically, both languages
rely on programs in the form of term rewriting systems where pattern matching
is expressed by means of case expressions. However, Tree is a first-order language
which uses innermost deterministic reduction. As claimed by Bondorf, the use
of a lazy evaluation strategy would require a complete revision of his partial
evaluator.

In the field of supercompilation [52], there is also interesting research on
the use of intermediate representations. Supercompilation is a program trans-
formation technique based on driving—a unification-based function evaluation

28

mechanism closely related to narrowing—which can perform a deep transfor-
mation on programs by using a principle similar to partial evaluation. Appli-
cations of supercompilation include program specialization, program inversion
and theorem proving. From its inception, supercompilation was tied to a spe-
cific programming language, called Refal. [46] proposes the use of “flat Refal”
as an intermediate language in which the transformation is performed. Flat Re-
fal is a subset of Refal, formed by rules whose right-hand sides do not contain
nested function calls (information exchange takes place only through variables).
The simplification of the underlying operational mechanism is also the the mo-
tivation for using the “minimized S-Graph language” [28] to present driving.
In essence, we share with these works the intention behind using a simplified
representation for programs as well as the similarities between narrowing and
driving. However, the considered languages belong to different paradigms and
the resulting partial evaluation algorithms are still different.

8 Conclusions and Future Work

We have introduced a practical partial evaluation scheme for multi-paradigm
declarative languages combining features from functional, logic and concurrent
programming. A significant difference with previous approaches is that it con-
siders an intermediate representation for programs into which higher level pro-
grams can be automatically translated. A version of our partial evaluator has
been distributed with the Portland Aachen Kiel Curry System [32] since April
2001. The most successful experiences were achieved by specializing calls involv-
ing higher-order functions, obtaining speedups up to a factor of 9, and generic
functions with some static data, like a string pattern matcher where a speedup
of 14 is obtained.

The experience gained using the partial evaluator to specialize Curry pro-
grams provided invaluable feedback. It guided us to define an appropriate exten-
sion of the RLNT calculus for the particular features of practical multi-paradigm
declarative languages. It also prompted to develop suitable control strategies
which take into account the particularities of the considered language and (non-
standard) semantics.

There are several ways in which the research reported here could be contin-
ued. Let us mention some possibilities for future work. Technically, the partial
evaluator is already able to tackle the specialization of complex programs. In-
deed, it is able to partially evaluate a meta-interpreter for Curry written in
Curry w.r.t. a given program (which should return a “compiled” version of the
source program [24]). However, the partially evaluated program is less efficient
and much larger than the original one. Traditionally, this specialization tasks
are satisfactorily managed by offline partial evaluators which rely on a pre-
processing phase of analysis (usually, a binding-time analysis [36]). We think
that our online partial evaluator could also benefit from the information gath-
ered by a binding-time analysis. In particular, this will help us to greatly reduce
the work done by the partial evaluator, since many decisions will be taken offline

29

during the analysis phase, thus improving the specialization process.
Another interesting line of research is the definition of appropriate means to

help the user to decide which are the best candidates in a program to be partially
evaluated. We suppose that the use of profiling tools could be helpful for this
task. For instance, the profiling scheme of [48] allows the user to associate a cost
center—to which execution costs are attributed—with each expression of the
source program. In this way, the user can detect which are the most expensive
cost centers and, thus, the best candidates to be optimized by partial evaluation.
Recently, a symbolic profiler for functional logic languages has been defined [9]
by using the idea of cost center. Currently, our main concern is to investigate
the combination of this symbolic profiler with the partial evaluation technique
presented in this paper in order to “guide” the specialization process.

Acknowledgements

We gratefully acknowledge the anonymous referees as well as the participants
of FLOPS 2001 for their comments on a preliminary version of this work.

References

[1] E. Albert. Partial Evaluation of Multi-Paradigm Declarative Languages:
Foundations, Control, Algorithms and Efficiency. PhD thesis, DSIC, Uni-
versidad Politécnica de Valencia, 2001. Available at http://www.dsic.
upv.es/users/elp/papers.html.

[2] E. Albert, M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Improving
Control in Functional Logic Program Specialization. In Proc. of the 5th
Int’l Static Analysis Symposium (SAS’98), pages 262–277. Springer LNCS
1503, 1998.

[3] E. Albert, M. Alpuente, M. Falaschi, and G. Vidal. Indy User’s Manual.
Technical Report DSIC-II/12/98, UPV, 1998. Available at http://www.
dsic.upv.es/users/elp/papers.html.

[4] E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A Partial Evalua-
tion Framework for Curry Programs. In Proc. of the 6th Int’l Conf. on
Logic Programming and Automated Reasoning (LPAR’99), pages 376–395.
Springer LNAI 1705, 1999.

[5] E. Albert, S. Antoy, and G. Vidal. Measuring the Effectiveness of Par-
tial Evaluation in Functional Logic Languages. In Proc. of the 10th Int’l
Workshop on Logic-Based Program Synthesis and Transformation (LOP-
STR 2000), pages 103–124. Springer LNCS 2042, 2001.

[6] E. Albert, M. Hanus, and G. Vidal. Using an Abstract Representation
to Specialize Functional Logic Programs. In Proc. of the 7th Int’l Conf.

30

on Logic for Programming and Automated Reasoning (LPAR 2000), pages
381–398. Springer LNAI 1955, 2000.

[7] E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluator for
a Multi-Paradigm Declarative Language. In Proc. of the 4th Fuji Int’l
Symp. on Functional and Logic Programming (FLOPS 2001), pages 326–
342. Springer LNCS 2024, 2001.

[8] E. Albert, M. Hanus, and G. Vidal. A Residualizing Semantics for the
Partial Evaluation of Functional Logic Programs. Technical report, UPV,
2002. Available at http://www.dsic.upv.es/users/elp/papers.html.

[9] E. Albert and G. Vidal. Source-Level Abstract Profiling of Multi-Paradigm
Declarative Languages. In Proc. of Int’l Workshop on Logic-based Program
Synthesis and Transformation (LOPSTR’01), 2001. Available at http:
//www.dsic.upv.es/users/elp/papers.html.

[10] E. Albert and G. Vidal. The Narrowing-Driven Approach to Functional
Logic Program Specialization. New Generation Computing, 20(1):3–26,
2002.

[11] M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Specialization of Lazy
Functional Logic Programs. In Proc. of the ACM SIGPLAN Symp. on Par-
tial Evaluation and Semantics-Based Program Manipulation (PEPM’97),
volume 32, 12 of Sigplan Notices, pages 151–162, New York, 1997. ACM
Press.

[12] M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional
Logic Programs. ACM Transactions on Programming Languages and Sys-
tems, 20(4):768–844, 1998.

[13] M. Alpuente, M. Hanus, S. Lucas, and G. Vidal. Specialization of Func-
tional Logic Programs Based on Needed Narrowing. In P. Lee, editor, Proc.
of ICFP’99, pages 273–283. ACM, New York, 1999.

[14] S. Antoy. Definitional trees. In Proc. of the 3rd Int’l Conference on Al-
gebraic and Logic Programming (ALP’92), pages 143–157. Springer LNCS
632, 1992.

[15] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Jour-
nal of the ACM, 47(4):776–822, 2000.

[16] S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs
into Prolog. In Proc. of the 3rd Int’l Workshop on Frontiers of Combining
Systems (FroCoS 2000), pages 171–185. Springer LNCS 1794, 2000.

[17] R. Bol. Loop Checking in Partial Deduction. Journal of Logic Program-
ming, 16(1&2):25–46, 1993.

31

[18] A. Bondorf. A Self-Applicable Partial Evaluator for Term Rewriting Sys-
tems. In Proc. of Int’l Conf. on Theory and Practice of Software Develop-
ment, Barcelona, Spain, pages 81–95. Springer LNCS 352, 1989.

[19] M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion
for Avoiding Infinite Unfolding. New Generation Computing, 11(1):47–79,
1992.

[20] R.M. Burstall and J. Darlington. A Transformation System for Developing
Recursive Programs. Journal of the ACM, 24(1):44–67, 1977.

[21] C. Consel and O. Danvy. Tutorial notes on Partial Evaluation. In Proc.
of the 20th Annual ACM SIGPLAN-SIGACT Symp. on Principles of Pro-
gramming Languages (POPL’93), pages 493–501. ACM, New York, 1993.

[22] J. Darlington. Program transformation. In J. Darlington, P. Henderson,
and D. A. Turner, editors, Functional Programming and its Applications,
pages 193–215. Cambridge University Press, 1982.

[23] D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M.H.
Sørensen. Conjunctive Partial Deduction: Foundations, Control, Algori-
htms, and Experiments. Journal of Logic Programming, 41(2&3):231–277,
1999.

[24] Yoshihiko Futamura. Partial Evaluation of Computation Process—An Ap-
proach to a Compiler-Compiler. Higher-Order and Symbolic Computation,
12(4):381–391, 1999. Reprint of article in Systems, Computers, Controls
1971.

[25] J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of
the ACM SIGPLAN Symp. on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM’93), pages 88–98. ACM, New York, 1993.

[26] A.J. Gill, J. Launchbury, and S.L. Peyton Jones. A Short Cut to Defor-
estation. In Proc. of the Conf. on Functional Programming Languages and
Computer Architecture (FPCA’93), pages 223–232, New York, NY, USA,
1993. ACM Press.

[27] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel Leaf: A
Logic plus Functional Language. Journal of Computer and System Sci-
ences, 42:363–377, 1991.

[28] R. Glück and A.V. Klimov. Occam’s Razor in Metacomputation: the No-
tion of a Perfect Process Tree. In Proc. of 3rd Int’l Workshop on Static
Analysis (WSA’93), pages 112–123. Springer LNCS 724, 1993.

[29] M. Hanus. A unified computation model for functional and logic program-
ming. In Proc. of 24th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL’97), pages 80–93. ACM, New York, 1997.

32

[30] M. Hanus. Distributed Programming in a Multi-Paradigm Declarative Lan-
guage. In Proc. of the 1st Int’l Conf. on Principles and Practice of Declar-
ative Programming (PPDP’99), pages 376–395. Springer LNCS 1702, 1999.

[31] M. Hanus. Curry: An Integrated Functional Logic Language. Available at
http://www.informatik.uni-kiel.de/~curry/, 2000.

[32] M. Hanus, S. Antoy, J. Koj, R. Sadre, and F. Steiner. PAKCS 1.2: The
Portland Aachen Kiel Curry System User Manual. Technical report, Uni-
versity of Kiel, Germany, 2000.

[33] M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional
Trees. Journal of Functional Programming, 9(1):33–75, 1999.

[34] T. Hortalá-González and E. Ullán. An Abstract Machine Based System for
a Lazy Narrowing Calculus. In Proc. of the 4th Fuji Int’l Symp. on Func-
tional and Logic Programming (FLOPS 2001), pages 216–232. Springer
LNCS 2024, 2001.

[35] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Auto-
matic Program Generation. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[36] N.D. Jones, P. Sestoft, and H. Søndergaard. Mix: A Self-Applicable Partial
Evaluator for Experiments in Compiler Generation. Lisp and Symbolic
Computation, 2(1):9–50, 1989.

[37] A. Lakhotia and L. Sterling. ProMiX: A Prolog Partial Evaluation System.
In L. Sterling, editor, The Practice of Prolog, chapter 5, pages 137–179. The
MIT Press, Cambridge, MA, 1991.

[38] J. Lam and A. Kusalik. A Comparative Analysis of Partial Deductors
for Pure Prolog. Technical report, Department of Computational Science,
University of Saskatchewan, Canada, May 1991. Revised April 1991.

[39] M. Leuschel. The ecce Partial Deduction System. In Proc. of the ILPS’97
Workshop on Tools and Environments for (Constraint) Logic Programming,
U.P. Madrid, Tech. Rep. CLIP7/97.1, 1997.

[40] M. Leuschel. On the Power of Homeomorphic Embedding for Online Ter-
mination. In Proc. of the 5th Int’l Static Analysis Symposium (SAS’98),
pages 230–245. Springer LNCS 1503, 1998.

[41] R. Loogen, F. López-Fraguas, and M. Rodŕıguez-Artalejo. A Demand
Driven Computation Strategy for Lazy Narrowing. In Proc. of the 5th Int’l
Symp. on Programming Language Implementation and Logic Programming
(PLILP’93), pages 184–200. Springer LNCS 714, 1993.

[42] F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm
Declarative System. In Proc. of the 10th Int’l Conf. on Rewriting Tech-
niques and Applications (RTA’99), pages 244–247. Springer LNCS 1631,
1999.

33

[43] W. Lux and H. Kuchen. An Efficient Abstract Machine for Curry. In
Proc. of the 8th Int’l Workshop on Functional and Logic Programming
(WFLP’99), pages 171–181, 1999.

[44] B. Martens and J. Gallagher. Ensuring Global Termination of Partial
Deduction while Allowing Flexible Polyvariance. In Proc. of the 12th Int’l
Conf. on Logic Programming (ICLP’95), pages 597–611. MIT Press, 1995.

[45] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with
Functions and Predicates: The language Babel. Journal of Logic Program-
ming, 12(3):191–224, 1992.

[46] A.P. Nemytykh, V.A. Pinchuk, and V.F. Turchin. A Self-Applicable Su-
percompiler. In Partial Evaluation. Proceedings, pages 322–337. Springer
LNCS 1110, 1996.

[47] D. Sahlin. The Mixtus Approach to Automatic Partial Evaluation of Full
Prolog. In Proc. of the 1990 North American Conf. on Logic Programming,
pages 377–398. The MIT Press, Cambridge, MA, 1990.

[48] P.M. Sansom and S.L. Peyton-Jones. Formally Based Profiling for Higher-
Order Functional Languages. ACM Transactions on Programming Lan-
guages and Systems, 19(2):334–385, 1997.

[49] M.H. Sørensen. Turchin’s Supercompiler Revisited: An Operational The-
ory of Positive Information Propagation. Technical Report 94/7, Master’s
Thesis, DIKU, University of Copenhagen, Denmark, 1994.

[50] M.H. Sørensen and R. Glück. An Algorithm of Generalization in Positive
Supercompilation. In Proc. of the 1995 Int’l Logic Programming Symposium
(ILPS’95), pages 465–479. The MIT Press, Cambridge, MA, 1995.

[51] M.H. Sørensen, R. Glück, and N.D. Jones. A Positive Supercompiler. Jour-
nal of Functional Programming, 6(6):811–838, 1996.

[52] V.F. Turchin. Program Transformation by Supercompilation. In Proc.
of the Int’l Workshop on Programs as Data Objects 1985, pages 257–281.
Springer LNCS 217, 1986.

[53] Germán Vidal. Cost-Augmented Narrowing-Driven Specialization. In Proc.
of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM’02), pages 52–62, New York, 2002.
ACM Press.

[54] P.L. Wadler. Deforestation: Transforming Programs to Eliminate Trees.
Theoretical Computer Science, 73:231–248, 1990.

34

