
Multi-paradigm Declarative Languages⋆

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

c© Springer-Verlag
In Proc. of the International Conference on Logic Programming, ICLP 2007.

Springer LNCS 4670, pp. 45-75, 2007

Abstract. Declarative programming languages advocate a program-
ming style expressing the properties of problems and their solutions
rather than how to compute individual solutions. Depending on the un-
derlying formalism to express such properties, one can distinguish differ-
ent classes of declarative languages, like functional, logic, or constraint
programming languages. This paper surveys approaches to combine these
different classes into a single programming language.

1 Introduction

Compared to traditional imperative languages, declarative programming lan-
guages provide a higher and more abstract level of programming that leads to
reliable and maintainable programs. This is mainly due to the fact that, in con-
trast to imperative programming, one does not describe how to obtain a solution
to a problem by performing a sequence of steps but what are the properties of
the problem and the expected solutions. In order to define a concrete declarative
language, one has to fix a base formalism that has a clear mathematical founda-
tion as well as a reasonable execution model (since we consider a programming
language rather than a specification language). Depending on such formalisms,
the following important classes of declarative languages can be distinguished:

– Functional languages: They are based on the lambda calculus and term
rewriting. Programs consist of functions defined by equations that are used
from left to right to evaluate expressions.

– Logic languages: They are based on a subset of predicate logic to ensure an
effective execution model (linear resolution). Programs consist of predicates
defined by definite clauses. The execution model is goal solving based on the
resolution principle.

– Constraint languages: They are based on constraint structures with spe-
cific methods to solve constraints. Programs consist of specifications of con-
straints of the considered application domain based on a set of primitive
constraints and appropriate combinators. Constraint languages are often
embedded in other languages where logic programming is a natural can-
didate. In this case, constraint logic programming [61] can be considered as
a generalization of logic programming where unification on Herbrand terms
is considered as a specific built-in constraint solver.

⋆ This work was partially supported by the German Research Council (DFG) under
grant Ha 2457/5-2 and the NSF under grant CCR-0218224.

The different declarative programming paradigms offer a variety of programming
concepts to the programmer. For instance, functional programming emphasizes
generic programming using higher-order functions and polymorphic typing, and
efficient and (under particular conditions) optimal evaluation strategies using
demand-driven evaluation, which contributes to modularity in programming [59].
Logic programming supports the computation with partial information (logic
variables) and nondeterministic search for solutions, where constraint program-
ming adds efficient constraint solving capabilities for particular domains. Since
all these features have been shown to be useful in application programming
and declarative languages are based on common grounds, it is a natural idea to
combine these worlds of programming into a single multi-paradigm declarative
language. However, the interactions between the different features are complex
in detail so that the concrete design of a multi-paradigm declarative language
is non-trivial. This is demonstrated by many different proposals and a lot of
research work on the semantics, operational principles, and implementation of
multi-paradigm declarative languages since more than two decades. In the fol-
lowing, we survey some of these proposals.

One can find two basic approaches to amalgamate functional and logic lan-
guages: either extend a functional language with logic programming features or
extend a logic language with features for functional programming. Since func-
tions can be considered as specific relations, there is a straightforward way to
implement the second approach: extend a logic language with syntactic sugar to
allow functional notation (e.g., defining equations, nested functional expressions)
which is translated by some preprocessor into the logic kernel language. A recent
approach of this kind is [25] where functional notation is added to Ciao-Prolog.
The language Mercury [83] is based on a logic programming syntax with func-
tional and higher-order extensions. Since Mercury is designed towards a highly
efficient implementation, typical logic programming features are restricted. In
particular, predicates and functions must have distinct modes so that their ar-
guments are either ground or unbound at call time. This inhibits the application
of typical logic programming techniques, like computation with partially instan-
tiated structures, so that some programming techniques developed for functional
logic programming languages [11, 43, 44] can not be applied. This condition has
been relaxed in the language HAL [33] which adds constraint solving possibilities.
However, Mercury as well as HAL are based on a strict operational semantics
that does not support optimal evaluation as in functional programming. This
is also true for Oz [82]. The computation model of Oz extends the concurrent
constraint programming paradigm [78] with features for distributed program-
ming and stateful computations. It provides functional notation but restricts
their use compared to predicates, i.e., function calls are suspended if the argu-
ments are not instantiated in order to reduce them in a deterministic way. Thus,
nondeterministic computations must be explicitly represented as disjunctions so
that functions used to solve equations require different definitions than func-
tions to rewrite expressions. In some sense, these approaches do not exploit the
semantical information provided by the presence of functions.

2

Extensions of functional languages with logic programming features try to
retain the efficient demand-driven computation strategy for purely functional
computations and add some additional mechanism for the extended features.
For instance, Escher [63] is a functional logic language with a Haskell-like syntax
[75] and a demand-driven reduction strategy. Similarly to Oz, function calls
are suspended if they are not instantiated enough for deterministic reduction,
i.e., nondeterminism must be expressed by explicit disjunctions. The operational
semantics is given by a set of reduction rules to evaluate functions in a demand-
driven manner and to simplify logical expressions. The languages Curry [41, 58]
and TOY [66] try to overcome the restrictions on evaluating function calls so
that there is no need to implement similar concepts as a function and a predicate,
depending on their use. For this purpose, functions can be called, similarly to
predicates, with unknown arguments that are instantiated in order to apply a
rule. This mechanism, called narrowing, amalgamates the functional concept of
reduction with unification and nondeterministic search from logic programming.
Moreover, if unification on terms is generalized to constraint solving, features of
constraint programming are also covered. Based on the narrowing principle, one
can define declarative languages integrating the good features of the individual
paradigms, in particular, with a sound and complete operational semantics that
is optimal for a large class of programs [9].

In the following, we survey important concepts of such multi-paradigm declar-
ative languages. As a concrete example, we consider the language Curry that is
based on these principles and intended to provide a common platform for re-
search, teaching, and application of integrated functional logic languages.

Since this paper is a survey of limited size, not all of the numerous papers
in this area can be mentioned and relevant topics are only sketched. Interested
readers might look into the references for more details. In particular, there exist
other surveys on particular topics related to this paper. [38] is a survey on
the development and the implementation of various evaluation strategies for
functional logic languages that have been explored until a decade ago. [7] contains
a good survey on more recent evaluation strategies and classes of functional logic
programs. [77] is more specialized but reviews the efforts to integrate constraints
into functional logic languages.

The rest of this paper is structured as follows. The next main section intro-
duces and reviews the foundations of functional logic programming that are rele-
vant in current languages. Section 3 discusses practical aspects of multi-paradigm
languages. Section 4 contains references to applications of such languages. Fi-
nally, Section 5 contains our conclusions.

2 Foundations of Functional Logic Programming

2.1 Basic Concepts

In the following, we use functional programming as our starting point, i.e., we de-
velop functional logic languages by extending functional languages with features
for logic programming.

3

A functional program is a set of functions defined by equations or rules. A
functional computation consists of replacing subexpressions by equal (w.r.t. the
function definitions) subexpressions until no more replacements (or reductions)
are possible and a value or normal form is obtained. For instance, consider the
function double defined by1

double x = x + x

The expression “double 1” is replaced by 1+1. The latter can be replaced by
2 if we interpret the operator “+” to be defined by an infinite set of equations,
e.g., 1+1 = 2, 1+2 = 3, etc (we will discuss the handling of such functions later).
In a similar way, one can evaluate nested expressions (where the subexpression
to be replaced is underlined):

double (1+2) → (1+2)+(1+2) → 3+(1+2) → 3+3 → 6

There is also another order of evaluation if we replace the arguments of operators
from right to left:

double (1+2) → (1+2)+(1+2) → (1+2)+3 → 3+3 → 6

In this case, both derivations lead to the same result. This indicates a funda-
mental property of declarative languages, also termed referential transparency:
the value of a computed result does not depend on the order or time of evalua-
tion due to the absence of side effects. This simplifies the reasoning about and
maintenance of declarative programs.

Obviously, these are not all possible evaluation orders since one can also
evaluate the argument of double before applying its defining equation:

double (1+2) → double 3 → 3+3 → 6

In this case, we obtain the same result with less evaluation steps. This leads
to questions about appropriate evaluation strategies, where a strategy can be
considered as a function that determines, given an expression, the next subex-
pression to be replaced: which strategies are able to compute values for which
classes of programs? As we will see, there are important differences in case of re-
cursive programs. If there are several strategies, which strategies are better w.r.t.
the number of evaluation steps, implementation effort, etc? Many works in the
area of functional logic programming have been devoted to find appropriate eval-
uation strategies. A detailed account of the development of such strategies can
be found in [38]. In the following, we will survey only the strategies that are
relevant for current functional logic languages.

Although functional languages are based on the lambda calculus that is
purely based on function definitions and applications, modern functional lan-
guages offer more features for convenient programming. In particular, they sup-

1 For concrete examples in this paper, we use the syntax of Curry which is very similar
to the syntax of Haskell [75], i.e., (type) variables and function names usually start
with lowercase letters and the names of type and data constructors start with an
uppercase letter. The application of a function f to an expression e is denoted by
juxtaposition (“f e”). Moreover, binary operators like “+” are written infix.

4

port the definition of algebraic data types by enumerating their constructors.
For instance, the type of Boolean values consists of the constructors True and
False that are declared as follows:

data Bool = True | False

Functions on Booleans can be defined by pattern matching, i.e., by providing
several equations for different argument values:

not True = False

not False = True

The principle of replacing equals by equals is still valid provided that the actual
arguments have the required form, e.g.:

not (not False) → not True → False

More complex data structures can be obtained by recursive data types. For
instance, a list of elements, where the type of elements is arbitrary (denoted by
the type variable a), is either the empty list “[]” or the non-empty list “e:l”
consisting of a first element e and a list l:

data List a = [] | a : List a

The type “List a” is usually written as [a] and finite lists e1:e2:. . .:en:[]

are written as [e1,e2,. . .,en]. We can define operations on recursive types by
inductive definitions where pattern matching supports the convenient separa-
tion of the different cases. For instance, the concatenation operation “++” on
polymorphic lists can be defined as follows (the optional type declaration in the
first line specifies that “++” takes two lists as input and produces an output list,
where all list elements are of the same unspecified type):

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : xs++ys

Beyond its application for various programming tasks, the operation “++” is
also useful to specify the behavior of other functions on lists. For instance, the
behavior of a function last that yields the last element of a list can be specified as
follows: for all lists l and elements e, last l = e iff ∃xs : xs ++[e] = l.2 Based on
this specification, one can define a function and verify that this definition satisfies
the given specification (e.g., by inductive proofs as shown in [20]). This is one of
the situations where functional logic languages become handy. Similarly to logic
languages, functional logic languages provide search for solutions for existentially
quantified variables. In contrast to pure logic languages, they support equation
solving over nested functional expressions so that an equation like xs ++[e] =
[1,2,3] is solved by instantiating xs to the list [1,2] and e to the value 3. For
instance, in Curry one can define the operation last as follows:

last l | xs++[e]=:= l = e where xs,e free

2 The exact meaning of the equality symbol is omitted here since it will be discussed
later.

5

Here, the symbol “=:=” is used for equational constraints in order to provide
a syntactic distinction from defining equations. Similarly, extra variables (i.e.,
variables not occurring in the left-hand side of the defining equation) are ex-
plicitly declared by “where...free” in order to provide some opportunities to
detect bugs caused by typos. A conditional equation of the form l | c = r is
applicable for reduction if its condition c has been solved. In contrast to purely
functional languages where conditions are only evaluated to a Boolean value,
functional logic languages support the solving of conditions by guessing values
for the unknowns in the condition. As we have seen in the previous example,
this reduces the programming effort by reusing existing functions and allows the
direct translation of specifications into executable program code. The important
question to be answered when designing a functional logic language is: How are
conditions solved and are there constructive methods to avoid a blind guessing
of values for unknowns? This is the purpose of narrowing strategies that are
discussed next.

2.2 Narrowing

Techniques for goal solving are well developed in the area of logic programming.
Since functional languages advocate the equational definition of functions, it is a
natural idea to integrate both paradigms by adding an equality predicate to logic
programs, leading to equational logic programming [73, 74]. On the operational
side, the resolution principle of logic programming must be extended to deal
with replacements of subterms. Narrowing, originally introduced in automated
theorem proving [81], is a constructive method to deal with such replacements.
For this purpose, defining equations are interpreted as rewrite rules that are
only applied from left to right (as in functional programming). In contrast to
functional programming, the left-hand side of a defining equation is unified with
the subterm under evaluation. In order to provide more detailed definitions,
some basic notions of term rewriting [18, 29] are briefly recalled. Although the
theoretical part uses notations from term rewriting, its mapping into the concrete
programming language syntax should be obvious.

Since we ignore polymorphic types in the theoretical part of this survey, we
consider a many-sorted signature Σ partitioned into a set C of constructors and a
set F of (defined) functions or operations. We write c/n ∈ C and f/n ∈ F for n-
ary constructor and operation symbols, respectively. Given a set of variables X ,
the set of terms and constructor terms are denoted by T (C∪F ,X) and T (C,X),
respectively. The set of variables occurring in a term t is denoted by Var(t). A
term t is ground if Var(t) = ∅. A term is linear if it does not contain multiple
occurrences of one variable. A term is operation-rooted (constructor-rooted) if its
root symbol is an operation (constructor). A head normal form is a term that is
not operation-rooted, i.e., a variable or a constructor-rooted term.

A pattern is a term of the form f(d1, . . . , dn) where f/n ∈ F and d1, . . . , dn ∈
T (C,X). A term rewriting system (TRS) is set of rewrite rules, where an (uncon-
ditional) rewrite rule is a pair l → r with a linear pattern l as the left-hand side
(lhs) and a term r as the right-hand side (rhs). Note that this definition reflects

6

the specific properties of functional logic programs. Traditional term rewriting
systems [29] differ from this definition in the following points:

1. We have required that the left-hand sides must be linear patterns. Such
rewrite systems are also called constructor-based and exclude rules like

(xs ++ ys) ++ zs = xs ++ (ys ++zs) (assoc)
last (xs ++ [e]) = e (last)

Although this seems to be a restriction when one is interested in writing
equational specifications, it is not a restriction from a programming language
point of view, since functional as well as logic programming languages en-
forces the same requirement (although logic languages do not require linear-
ity of patterns, this can be easily obtained by introducing new variables and
adding equations for them in the condition; conditional rules are discussed
below). Often, non-constructor-based rules specify properties of functions
rather than providing a constructive definition (compare rule assoc above
that specifies the associativity of “++”), or they can be transformed into
constructor-based rules by moving non-constructor terms in left-hand side
arguments into the condition (e.g., rule last). Although there exist narrowing
strategies for non-constructor-based rewrite rules (see [38, 74, 81] for more de-
tails), they often put requirements on the rewrite system that are too strong
or difficult to check in universal programming languages, like termination
or confluence. An important insight from recent works on functional logic
programming is the restriction to constructor-based programs since this sup-
ports the development of efficient and practically useful evaluation strategies
(see below).

2. Traditional rewrite rules l → r require that Var(r) ⊆ Var(l). A TRS where
all rules satisfy this restriction is also called a TRS without extra variables.
Although this makes sense for rewrite-based languages, it limits the expres-
sive power of functional logic languages (see the definition of last in Sec-
tion 2.1). Therefore, functional logic languages usually do not have this vari-
able requirement, although some theoretical results have only been proved
under this requirement.

In order to formally define computations w.r.t. a TRS, we need a few further
notions. A position p in a term t is represented by a sequence of natural num-
bers. Positions are used to identify particular subterms. Thus, t|p denotes the
subterm of t at position p, and t[s]p denotes the result of replacing the subterm
t|p by the term s (see [29] for details). A substitution is an idempotent mapping
σ : X → T (C ∪ F ,X) where the domain Dom(σ) = {x ∈ X | σ(x) 6= x} is
finite. Substitutions are obviously extended to morphisms on terms. We denote
by {x1 7→ t1, . . . , xn 7→ tn} the substitution σ with σ(xi) = ti (i = 1, . . . , n) and
σ(x) = x for all other variables x. A substitution σ is constructor (ground con-
structor) if σ(x) is a constructor (ground constructor) term for all x ∈ Dom(σ).

A rewrite step t →p,R t′ (in the following, p and R will often be omitted
in the notation of rewrite and narrowing steps) is defined if p is a position in

7

t, R = l → r is a rewrite rule with fresh variables,3 and σ is a substitution
with t|p = σ(l) and t′ = t[σ(r)]p. The instantiated lhs σ(l) is also called a redex
(reducible expression). A term t is called in normal form if there is no term s

with t → s.
∗
→ denotes the reflexive and transitive closure of a relation →.

Rewrite steps formalize functional computation steps with pattern matching
as introduced in Section 2.1. The goal of a sequence of rewrite steps is to compute
a normal form. A rewrite strategy determines for each rewrite step a rule and a
position for applying the next step. A normalizing strategy is one that terminates
a rewrite sequence in a normal form, if it exists. Note, however, that normal
forms are not necessarily the interesting results of functional computations, as
the following example shows.

Example 1. Consider the operation

idNil [] = []

that is the identity on the empty list but undefined for non-empty lists. Then,
a normal form like “idNil [1]” is usually considered as an error rather than a
result. Actually, Haskell reports an error for evaluating the term “idNil [1+2]”
rather than delivering the normal form “idNil [3]”. 2

Therefore, the interesting results of functional computations are constructor
terms that will be also called values. Evaluation strategies used in functional
programming, such as lazy evaluation, are not normalizing, as the previous ex-
ample shows.

Functional logic languages are able to do more than pure rewriting since they
instantiate variables in a term (also called free or logic variables) so that a rewrite
step can be applied. The combination of variable instantiation and rewriting is
called narrowing. Formally, t ;p,R,σ t′ is a narrowing step if p is a non-variable
position in t (i.e., t|p is not a variable) and σ(t) →p,R t′. Since the substitution
σ is intended to instantiate the variables in the term under evaluation, one often
restricts Dom(σ) ⊆ Var(t). We denote by t0 ;

∗
σ tn a sequence of narrowing

steps t0 ;σ1
. . . ;σn

tn with σ = σn ◦ · · · ◦ σ1 (where σ = {} in the case of
n = 0). Since in functional logic languages we are interested in computing values
(constructor terms) as well as answers (substitutions), we say that the narrowing
derivation t ;

∗
σ c computes the value c with answer σ if c is a constructor term.

The above definition of narrowing is too general for a realistic implementation
since it allows arbitrary instantiations of variables in the term under evaluation.
Thus, all possible instantiations must be tried in order to compute all possible
values and answers. Obviously, this does not lead to a practical implementation.
Therefore, older narrowing strategies (see [38] for a detailed account) were in-
fluenced by the resolution principle and required that the substitution used in a
narrowing step must be a most general unifier of t|p and the left-hand side of the

3 In classical traditional term rewriting, fresh variables are not used when a rule is
applied. Since we consider also rules containing extra variables in right-hand sides,
it is important to replace them by fresh variables when the rule is applied.

8

applied rule. As shown in [9], this condition prevents the development of opti-
mal evaluation strategies. Therefore, most recent narrowing strategies relax this
traditional requirement but provide another constructive method to compute a
small set of unifiers in narrowing steps, as we will see below. The next example
shows the non-optimality of narrowing with most general unifiers.

Example 2. Consider the following program containing a declaration of natural
numbers in Peano’s notation and two operations for addition and a “less than
or equal” test (the pattern “_” denotes an unnamed anonymous variable):

data Nat = O | S Nat

add O y = y

add (S x) y = S (add x y)

leq O _ = True (leq1)

leq (S _) O = False (leq2)

leq (S x) (S y) = leq x y (leq3)

Consider the initial term “leq v (add w O)” where v and w are free variables.
By applying rule leq1, v is instantiated to O and the result True is computed:

leq v (add w O) ;{v 7→O} True

Further answers can be obtained by instantiating v to (S...). This requires the
evaluation of the subterm (add w O) in order to allow the application of rule
leq2 or leq3. For instance, the following narrowing derivation computes the value
False with answer {v 7→ S z, w 7→ O}:

leq v (add w O) ;{w 7→O} leq v O ;{v7→S z} False

However, we can also apply rule leq1 in the second step of the previous narrowing
derivation and obtain the following derivation:

leq v (add w O) ;{w 7→O} leq v O ;{v7→O} True

Obviously, the last derivation is not optimal since it computes the same value
as the first derivation with a less general answer and needs one more step. This
derivation can be avoided by instantiating v to S z in the first narrowing step:

leq v (add w O) ;{v 7→S z, w7→O} leq (S z) O

Now, rule leq1 is no longer applicable, as intended. However, this first narrow-
ing step contains a substitution that is not a most general unifier between the
evaluated subterm (add w 0) and the left-hand side of some rule for add. 2

Needed Narrowing. The first narrowing strategy that advocated the use of
non-most general unifiers and for which optimality results have been shown is
needed narrowing [9]. Furthermore, needed narrowing steps can be efficiently
computed. Therefore, it has become the basis of modern functional logic lan-
guages.4

4 Concrete languages and implementations add various extensions in order to deal
with larger classes of programs that will be discussed later.

9

Needed narrowing is based on the idea to perform only narrowing steps that
are in some sense necessary to compute a result (such strategies are also called
lazy or demand-driven). For doing so, it analyzes the left-hand sides of the rewrite
rules of a function under evaluation (starting from an outermost function). If
there is an argument position where all left-hand sides are constructor-rooted,
the corresponding actual argument must be also rooted by one of the constructors
in order to apply a rewrite step. Thus, the actual argument is evaluated to head
normal form if it is operation-rooted and, if it is a variable, nondeterministically
instantiated with some constructor.

Example 3. Consider again the program of Example 2. Since the left-hand sides
of all rules for leq have a constructor-rooted first argument, needed narrowing
instantiates the variable v in “leq v (add w 0)” to either O or S z (where z is a
fresh variable). In the first case, only rule leq1 becomes applicable. In the second
case, only rules leq2 or leq3 become applicable. Since the latter rules have both
a constructor-rooted term as the second argument, the corresponding subterm
(add w 0) is recursively evaluated to a constructor-rooted term before applying
one of these rules. 2

Since there are TRSs with rules that do not allow such a reasoning, needed nar-
rowing is defined on the subclass of inductively sequential TRSs. This class can
be characterized by definitional trees [4] that are also useful to formalize and im-
plement various narrowing strategies. Since only the left-hand sides of rules are
important for the applicability of needed narrowing, the following characteriza-
tion of definitional trees [5] considers patterns partially ordered by subsumption
(the subsumption ordering on terms is defined by t ≤ σ(t) for a term t and
substitution σ).

A definitional tree of an operation f is a non-empty set T of linear patterns
partially ordered by subsumption having the following properties:

Leaves property: The maximal elements of T , called the leaves, are exactly the
(variants of) the left-hand sides of the rules defining f . Non-maximal ele-
ments are also called branches.

Root property: T has a minimum element, called the root, of the form
f(x1, . . . , xn) where x1, . . . , xn are pairwise distinct variables.

Parent property: If π ∈ T is a pattern different from the root, there exists a
unique π′ ∈ T , called the parent of π (and π is called a child of π′), such
that π′ < π and there is no other pattern π′′ ∈ T (C∪F ,X) with π′ < π′′ < π.

Induction property: All the children of a pattern π differ from each other only
at a common position, called the inductive position, which is the position of
a variable in π.5

An operation is called inductively sequential if it has a definitional tree and its
rules do not contain extra variables. A TRS is inductively sequential if all its

5 There might be more than one potential inductive position when constructing a
definitional tree. In this case one can select any of them since the results about
needed narrowing do not depend on the selected definitional tree.

10

leq O x2 = True leq (S x) x2

leq (S x) O = False leq (S x) (S y)
= leq x y

leq x1 x2

�
�

�
�

Q
Q

Q
Q

�
�

��

Q
Q

QQ

add O x2 = x2 add (S x) x2
= S (add x x2)

add x1 x2

�
�

��

Q
Q

QQ

Fig. 1. Definitional trees of the operations add and leq

defined operations are inductively sequential. Intuitively, inductively sequential
functions are defined by structural induction on the argument types. Purely
functional programs and the vast majority of functions in functional logic pro-
grams are inductively sequential. Thus, needed narrowing is applicable to most
functions, although extensions are useful for particular functions (see below).

It is often convenient and simplifies the understanding to provide a graphic
representation of definitional trees, where each inner node is marked with a
pattern, the inductive position in branches is surrounded by a box, and the
leaves contain the corresponding rules. For instance, the definitional trees of the
operations add and leq, defined in Example 2, are illustrated in Figure 1.

The formal definition of needed narrowing is based on definitional trees and
can be found in [9]. A definitional tree can be computed at compile time (see [7,
41] for algorithms to construct definitional trees) and contains all information for
the efficient implementation of the decisions to be made at run time (compare
Example 3). Intuitively, a needed narrowing step is applied to an operation-
rooted term t by considering a definitional tree (with fresh variables) for the
operation at the root. The tree is recursively processed from the root until one
finds a maximal pattern that unifies with t. Thus, to compute a needed narrowing
step, one starts with the root pattern of the definitional tree and performs at
each level with pattern π the following case distinction:

– If π is a leaf, we apply the corresponding rule.

– If π is a branch and p its inductive position, we consider the corresponding
subterm t|p:

1. If t|p is rooted by a constructor c and there is a child π′ of π having c at
the inductive position, we proceed by examining π′. If there is no such
child, we fail, i.e., no needed narrowing step is applicable.

2. If t|p is a variable, we nondeterministically instantiate this variable by
the constructor term at the inductive position of a child π′ of π and
proceed with π′.

3. If t|p is operation-rooted, we recursively apply the computation of a
needed narrowing step to σ(t|p), where σ is the instantiation of the vari-
ables of t performed in the previous case distinctions.

11

As discussed above, the failure to compute a narrowing step in case (1) is not
a weakness but advantageous when we want to compute values. For instance,
consider the term t = idNil [1+2] where the operation idNil is as defined
in Example 1. A normalizing strategy performs a step to compute the normal
form idNil [3] whereas needed narrowing immediately fails since there exists
no value as a result. Thus, the early failure of needed narrowing avoids wasting
resources.

As a consequence of the previous behavior, the properties of needed narrowing
are stated w.r.t. constructor terms as results. In particular, the equality symbol
“=:=” in goals is interpreted as the strict equality on terms, i.e., the equation
t1 =:= t2 is satisfied iff t1 and t2 are reducible to the same ground constructor
term. In contrast to the mathematical notion of equality as a congruence rela-
tion, strict equality is not reflexive. Similarly to the notion of result values, this
is intended in programming languages where an equation between functional ex-
pressions that do not have a value, like “idNil [1] =:= idNil [1]”, is usually
not considered as true. Furthermore, normal forms or values might not exist so
that reflexivity is not a feasible property of equational constraints (see [34] for
a more detailed discussion on this topic).

Strict equality can be defined as a binary function by the following set of
(inductively sequential) rewrite rules. The constant Success denotes a solved
(equational) constraint and is used to represent the result of successful evalua-
tions.

c =:= c = Success ∀c/0 ∈ C
c x1 . . . xn =:= c y1 . . . yn = x1=:=y1 &...& xn=:=yn ∀c/n ∈ C, n > 0
Success & Success = Success

Thus, it is sufficient to consider strict equality as any other function. Concrete
functional logic languages provide more efficient implementations of strict equal-
ity where variables can be bound to other variables instead of instantiating them
to ground terms (see also Section 3.3).

Now we can state the main properties of needed narrowing. A (correct) solu-
tion for an equation t1 =:= t2 is a constructor substitution σ (note that construc-
tor substitutions are desired in practice since a broader class of solutions would
contain unevaluated or undefined expressions) if σ(t1) =:=σ(t2)

∗
→ Success.

Needed narrowing is sound and complete, i.e., all computed solutions are correct
and for each correct solution a possibly more general one is computed, and it
does not compute redundant solutions in different derivations:

Theorem 1 ([9]). Let R be an inductively sequential TRS and e an equation.

1. (Soundness) If e ;
∗
σ Success is a needed narrowing derivation, then σ is a

solution for e.
2. (Completeness) For each solution σ of e, there exists a needed narrowing

derivation e ;
∗
σ′ Success with σ′(x) ≤ σ(x) for all x ∈ Var(e).

3. (Minimality) If e ;
∗
σ Success and e ;

∗
σ′ Success are two distinct needed

narrowing derivations, then σ and σ′ are independent on Var(e), i.e., there
is some x ∈ Var(e) such that σ(x) and σ′(x) are not unifiable.

12

Furthermore, in successful derivations, needed narrowing computes only steps
that are necessary to obtain the result and, consequently, it computes the shortest
of all possible narrowing derivations if derivations on common subterms are
shared (a standard implementation technique in non-strict functional languages)
[9, Corollary 1]. Needed narrowing is currently the only narrowing strategy with
such strong results. Therefore, it is an adequate basis for modern functional
logic languages, although concrete implementations support extensions that are
discussed next.

Weakly Needed Narrowing. Inductively sequential TRS are a proper sub-
class of (constructor-based) TRSs. Although the majority of function definitions
are inductively sequential, there are also functions where it is more convenient
to relax this requirement. An interesting superclass are weakly orthogonal TRSs.
These are rewrite systems where left-hand sides can overlap in a semantically
trivial way. Formally, a TRS without extra variables (recall that we consider only
left-linear constructor-based rules) is weakly orthogonal if σ(r1) = σ(r2) for all
(variants of) rules l1 → r1 and l2 → r2 and substitutions σ with σ(l1) = σ(l2).

Example 4. A typical example of a weakly orthogonal TRS is the parallel-or,
defined by the rules:

or True _ = True (or1)

or _ True = True (or2)

or False False = False (or3)

A term like “or s t” could be reduced to True whenever one of the arguments
s or t evaluates to True. However, it is not clear which of the arguments should
be evaluated first, since any of them could result in a nonterminating derivation.
or has no definitional tree and, thus, needed narrowing can not be applied. 2

In rewriting, several normalizing strategies for weakly orthogonal TRSs have
been proposed, like parallel outermost [72] or weakly needed [80] rewriting that
are based on the idea to replace several redexes in parallel in one step. Since
strategies for functional logic languages already support nondeterministic eval-
uations, one can exploit this feature to extend needed narrowing to a weakly
needed narrowing strategy. The basic idea is to generalize the notion of defi-
nitional trees to include or-branches which conceptually represent a union of
definitional trees [4, 8, 64]. If such an or-branch is encountered during the evalu-
ation of a narrowing step, weakly needed narrowing performs a nondeterministic
guess and proceeds with the subtrees below the or-branches. Weakly needed
narrowing is no longer optimal in the sense of needed narrowing but sound and
complete for weakly orthogonal TRS in the sense of Theorem 1 [8].

Overlapping Inductively Sequential Systems. Inductively sequential and
weakly orthogonal TRSs are confluent, i.e., each term has at most one normal
form. This property is reasonable for functional languages since it ensures that
operations are well defined (partial) functions in the mathematical sense. Since

13

the operational mechanism of functional logic languages is more powerful due
to its built-in search mechanism, in this context it makes sense to consider also
operations defined by non-confluent TRSs. Such operations are also called non-
deterministic. The prototype of such a nondeterministic operation is a binary
operation “?” that returns one of its arguments:

x ? y = x

x ? y = y

Thus, the expression “0 ? 1” has two possible results, namely 0 or 1.

Since functional logic languages already handle nondeterministic computa-
tions, they can deal with such nondeterministic operations. If operations are
interpreted as mappings from values into sets of values (actually, due to the
presence of recursive non-strict functions, algebraic structures with cones of par-
tially ordered sets are used instead of sets, see [36] for details), one can provide
model-theoretic and proof-theoretic semantics with the usual properties (mini-
mal term models, equivalence of model-theoretic and proof-theoretic solutions,
etc). Thus, functional logic programs with nondeterministic operations are still
in the design space of declarative languages. Moreover, nondeterministic oper-
ations have advantages w.r.t. demand-driven evaluation strategies so that they
became a standard feature of recent functional logic languages (whereas older
languages put confluence requirements on their programs). The following exam-
ple discusses this in more detail.

Example 5. Based on the binary operation “?” introduced above, one can define
an operation insert that nondeterministically inserts an element at an arbitrary
position in a list:

insert e [] = [e]

insert e (x:xs) = (e : x : xs) ? (x : insert e xs)

Exploiting this operation, one can define an operation perm that returns an
arbitrary permutation of a list:

perm [] = []

perm (x:xs) = insert x (perm xs)

One can already see an important property when one reasons about nondeter-
ministic operations: the computation of results is arbitrary, i.e., one result is
as good as any other. For instance, if one evaluates perm [1,2,3], any permu-
tation (e.g., [3,2,1] as well as [1,3,2]) is an acceptable result. If one puts
specific conditions on the results, the completeness of the underlying computa-
tional model (e.g., INS, see below) ensures that the appropriate results meeting
these conditions are selected.

For instance, one can use perm to define a sorting function psort based on
a “partial identity” function sorted that returns its input list if it is sorted:

sorted [] = []

sorted [x] = [x]

sorted (x1:x2:xs) | leq x1 x2 =:= True = x1 : sorted (x2:xs)

14

psort xs = sorted (perm xs)

Thus, psort xs returns only those permutations of xs that are sorted. The ad-
vantage of this definition of psort in comparison to traditional “generate-and-
test” solutions becomes apparent when one considers the demand-driven evalu-
ation strategy (note that one can apply the weakly needed narrowing strategy
to such kinds of programs since this strategy is based only on the left-hand
sides of the rules but does not exploit confluence). Since in an expression like
sorted(perm xs) the argument (perm xs) is only evaluated as demanded by
sorted, the permutations are not fully computed at once. If a permutation starts
with a non-ordered prefix, like S 0 : O : perm xs, the application of the third rule
of sorted fails and, thus, the computation of the remaining part of the permu-
tation (which can result in n! different permutations if n is the length of the list
xs) is discarded. The overall effect is a reduction in complexity in comparison
to the traditional generate-and-test solution. 2

This example shows that nondeterministic operations allow the transformation
of “generate-and-test” solutions into “test-of-generate” solutions with a lower
complexity since the demand-driven narrowing strategy results in a demand-
driven construction of the search space (see [5, 36] for further examples). Antoy
[5] shows that desirable properties of needed narrowing can be transferred to pro-
grams with nondeterministic functions if one considers overlapping inductively
sequential systems. These are TRSs with inductively sequential rules where each
rule can have multiple right-hand sides (basically, inductively sequential TRSs
with occurrences of “?” in the top-level of right-hand sides), possibly containing
extra variables. For instance, the rules defining insert form an overlapping in-
ductively sequential TRS if the second rule is interpreted as a single rule with
two right-hand sides (“e:x:xs” and “x : inserte xs”). The corresponding strat-
egy, called INS (inductively sequential narrowing strategy), is defined similarly
to needed narrowing but computes for each narrowing step a set of replacements.
INS is a conservative extension of needed narrowing and optimal modulo non-
deterministic choices of multiple right-hand sides, i.e., if there are no multiple
right-hand sides or there is an oracle for choosing the appropriate element from
multiple right-hand sides, INS has the same optimality properties as needed
narrowing (see [5] for more details).

A subtle aspect of nondeterministic operations is their treatment if they are
passed as arguments. For instance, consider the operation coin defined by

coin = 0 ? 1

and the expression “double coin” (where double is defined as in Section 2.1). If
the argument coin is evaluated (to 0 or 1) before it is passed to double, we obtain
the possible results 0 and 2. However, if the argument coin is passed unevaluated
to double, we obtain after one rewrite step the expression coin+coin which has
four possible rewrite derivations resulting in the values 0, 1, 1, and 2. The former
behavior is referred to as call-time choice semantics [60] since the choice for the
desired value of a nondeterministic operation is made at call time, whereas the
latter is referred to as need-time choice semantics. There are arguments for either

15

of these semantics depending on the programmer’s intention (see [7] for more
examples).

Although call-time choice suggests an eager or call-by-value strategy, it fits
well into the framework of demand-driven evaluation where arguments are shared
to avoid multiple evaluations of the same subterm. For instance, the actual sub-
term (e.g., coin) associated to argument x in the rule “double x = x+x” is not
duplicated in the right-hand side but a reference to it is passed so that, if it
is evaluated by one subcomputation, the same result will be taken in the other
subcomputation. This technique, called sharing, is essential to obtain efficient
(and optimal) evaluation strategies. If sharing is used, the call-time choice se-
mantics can be implemented without any further machinery. Furthermore, in
many situations call-time choice is the semantics with the “least astonishment”.
For instance, consider the reformulation of the operation psort in Example 5 to

psort xs = idOnSorted (perm xs)

idOnSorted xs | sorted xs =:= xs = xs

Then, for the call psortxs, the call-time choice semantics delivers only sorted
permutations of xs, as expected, whereas the need-time choice semantics de-
livers all permutations of xs since the different occurrences of xs in the rule
of idOnSorted are not shared. Due to these reasons, current functional logic
languages usually adopt the call-time choice semantics.

Conditional Rules. The narrowing strategies presented so far are defined for
rewrite rules without conditions, although some of the concrete program ex-
amples indicate that conditional rules are convenient in practice. Formally, a
conditional rewrite rule has the form l → r ⇐ C where l and r are as in
the unconditional case and the condition C consists of finitely many equational
constraints of the form s =:= t. In order to apply weakly needed narrowing to
conditional rules, one can transform a conditional rule of the form

l → r ⇐ s1 =:= t1 . . . sn =:= tn

into an unconditional rule

l → cond(s1 =:= t1 & . . . & sn =:= tn, r)

where the “conditional” is defined by cond(Success, x) → x. Actually, Antoy
[6] has shown a systematic method to translate any conditional constructor-
based TRS into an overlapping inductively sequential TRS performing equivalent
computations.

2.3 Rewriting Logic

As discussed in the previous section on overlapping inductively sequential TRS,
sharing becomes important for the semantics of nondeterministic operations.
This has the immediate consequence that traditional equational reasoning is
no longer applicable. For instance, the expressions double coin and coin+coin

are not equal since the latter can reduce to 1 while this is impossible for the

16

former w.r.t. a call-time choice semantics. In order to provide a semantical ba-
sis for such general functional logic programs, González-Moreno et al. [36] have
proposed the rewriting logic CRWL (Constructor-based conditional ReWriting
Logic) as a logical (execution- and strategy-independent) foundation for declara-
tive programming with non-strict and nondeterministic operations and call-time
choice semantics. This logic has been also used to link a natural model theory
as an extension of the traditional theory of logic programming and to establish
soundness and completeness of narrowing strategies for rather general classes of
TRSs [28].

To deal with non-strict functions, CRWL considers signatures Σ⊥ that are
extended by a special symbol ⊥ to represent undefined values. For instance,
T (C ∪ {⊥},X) denotes the set of partial constructor terms, e.g., 1:2:⊥ denotes
a list starting with elements 1 and 2 and an undefined rest. Such partial terms
are considered as finite approximations of possibly infinite values. CRWL defines
the deduction of two kinds of basic statements: approximation statements e → t
with the intended meaning “the partial constructor term t approximates the
value of e”, and joinability statements e1 =:= e2 with the intended meaning that
e1 and e2 have a common total approximation t ∈ T (C,X) with e1 → t and
e2 → t, thus modeling strict equality with terms containing variables. To model
call-time choice semantics, rewrite rules are only applied to partial values. Hence,
the following notation for partial constructor instances of a set of (conditional)
rules R is useful:

[R]⊥ = {σ(l → r ⇐ C) | l → r ⇐ C ∈ R, σ : X → T (C ∪ {⊥},X)}

Then CRWL is defined by the following set of inference rules (where the program
is represented by a TRS R):

(Bottom) e → ⊥ for any e ∈ T (C ∪ F ∪ {⊥},X)

(Restricted reflexivity) x → x for any variable x ∈ X

(Decomposition)
e1 → t1 · · · en → tn

c(e1, . . . , en) → c(t1, . . . , tn)
for any c/n ∈ C, ti ∈ T (C ∪ {⊥},X)

(Function reduction)
e1 → t1 · · · en → tn C r → t

f(e1, . . . , en) → t
for any f(t1, . . . , tn) → r ⇐ C ∈ [R]⊥ and t 6= ⊥

(Joinability)
e1 → t e2 → t

e1 =:= e2

for any total term t ∈ T (C,X)

The first rule specifies that ⊥ approximates any expression. The condition t 6= ⊥
in rule (Function reduction) avoids unnecessary applications of this rule since
this case is already covered by the first rule. The restriction to partial constructor
instances in this rule formalizes non-strict functions with a call-time choice se-
mantics. Functions might have non-strict arguments that are not evaluated since
the corresponding actual arguments can be derived to ⊥ by the first rule. If the
value of an argument is required to evaluate the right-hand side of a function’s

17

rule, it must be evaluated to a partial constructor term before it is passed to the
right-hand side (since [R]⊥ contains only partial constructor instances), which
corresponds to a call-time choice semantics. Note that this does not prohibit the
use of lazy implementations since this semantical behavior can be enforced by
sharing unevaluated expressions. Actually, [36] defines a lazy narrowing calculus
that reflects this behavior.

CRWL can be used as the logical foundation of functional logic languages
with non-strict nondeterministic operations. It is a basis for the verification of
functional logic programs [27] and has been extended in various directions, e.g.,
higher-order operations [37], algebraic types [17], polymorphic types [35], failure
[68], constraints [67] etc. An account on CRWL and its applications can be found
in [77].

2.4 Residuation

Although narrowing extends soundness and completeness results of logic pro-
gramming to the general framework of functional logic programming, it is not
the only method that has been proposed to integrate functions into logic pro-
grams. An alternative technique, called residuation, is based on the idea to delay
or suspend function calls until they are ready for deterministic evaluation. The
residuation principle is used, for instance, in the languages Escher [63], Le Fun
[2], Life [1], NUE-Prolog [71], and Oz [82]. Since the residuation principle evalu-
ates function calls by deterministic reduction steps, nondeterministic search must
be encoded by predicates [1, 2, 71] or disjunctions [63, 82]. Moreover, if some part
of a computation might suspend, one needs a primitive to execute computations
concurrently. For instance, the conjunction of constraints “&” needs to evaluate
both arguments to Success so that it is reasonable to do it concurrently, i.e., if
the evaluation of one argument suspends, the other one is evaluated.

Example 6. Consider Example 2 together with the operation

nat O = Success

nat (S x) = nat x

If the function add is evaluated by residuation, i.e., suspends if the first argu-
ment is a variable, the expression “add y O =:= S O & nat y” is evaluated as
follows:

add y O =:= S O & nat y →{y 7→S x} add (S x) O =:= S O & nat x

→{} S (add x O) =:= S O & nat x

→{} add x O =:= O & nat x

→{x 7→O} add O O =:= O & Success

→{} O =:= O & Success

→{} Success & Success

→{} Success

Thus, the solution {y 7→ S O} is computed by switching between the residuating
function add and the constraint nat that instantiates its argument to natural
numbers. 2

18

Narrowing and residuation are quite different approaches to integrate functional
and logic programming. Narrowing is sound and complete but requires the non-
deterministic evaluation of function calls if some arguments are unknown. Resid-
uation might not compute some result due to the potential suspension of evalu-
ation but avoids guessing on functions. From an operational point of view, there
is no clear advantage of one of the strategies. One might have the impression
that the deterministic evaluation of functions in the case of residuation is more
efficient, but there are examples where residuation has an infinite computation
space whereas narrowing has a finite one (see [39] for more details). On the
other hand, residuation offers a concurrent evaluation principle with synchro-
nization on logic variables (sometimes also called declarative concurrency [84])
and a conceptually clean method to connect external functions to declarative
programs [21] (note that narrowing requires functions to be explicitly defined by
rewrite rules). Therefore, it is desirable to integrate both principles in a single
framework. This has been proposed in [41] where residuation is combined with
weakly needed narrowing by extending definitional trees with branches deco-
rated with a flexible/rigid tag. Operations with flexible tags are evaluated as
with narrowing whereas operations with rigid tags suspend if the arguments are
not sufficiently instantiated. The overall strategy is similar to weakly needed
narrowing with the exception that a rigid branch with a free variable in the
corresponding inductive position results in the suspension of the function under
evaluation. For instance, if the branch of add in Figure 1 has a rigid tag, then
add is evaluated as shown in Example 6.

3 Aspects of Multi-paradigm Languages

This section discusses some aspects of multi-paradigm languages that are rele-
vant for their use in application programming. As before, we use the language
Curry for concrete examples. Its syntax has been already introduced in an infor-
mal manner. Conceptually, a Curry program is a constructor-based TRS. Thus,
its declarative semantics is given by the rewriting logic CRWL, i.e., operations
and constructors are non-strict with a call-time choice semantics for nondeter-
ministic operations. The operational semantics is based on weakly needed nar-
rowing with sharing and residuation. Thus, for (flexible) inductively sequential
operations, which form the vast majority of operations in application programs,
the evaluation strategy is optimal w.r.t. the length of derivations and number of
computed solutions and always computes a value if it exists (in case of nondeter-
ministic choices only if the underlying implementation is fair w.r.t. such choices,
as [14, 15, 56]). Therefore, the programmer can concentrate on the declarative
meaning of programs and needs less attention to the consequences of the partic-
ular evaluation strategy (see [45] for a more detailed discussion).

3.1 External Operations

Operations that are externally defined, i.e., not implemented by explicit rules,
like basic arithmetic operators or I/O operations, can not be handled by nar-

19

rowing. Therefore, residuation is an appropriate model to connect external op-
erations in a conceptually clean way (see also [21]): their semantics can be con-
sidered as defined by a possibly infinite set of rules (e.g., see the definition of
“+” in Section 2.1) whose behavior is implemented in some other programming
language. Usually, external operations can not deal with unevaluated arguments
possibly containing logic variables. Thus, the arguments of external operations
are reduced to ground values before they are called. If some arguments are not
ground but contain logic variables, the call is suspended until the variables are
bound to ground values, which corresponds to residuation.

3.2 Higher-order Operations

The use of higher-order operations, i.e., operations that take other operations
as arguments or yields them as results, is an important programming technique
in functional languages so that it should be also covered by multi-paradigm
declarative languages. Typical examples are the mapping of a function to all
elements of a list (map) or a generic accumulator for lists (foldr):

map :: (a->b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

foldr :: (a->b->b) -> b -> [a] -> b

foldr _ z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

Logic languages often provide higher-order features through a transformation
into a first-order program [87] by defining a predicate apply that implements
the application of an arbitrary function of the program to an expression. This
technique is also known as “defunctionalization” [76] and enough to support the
higher-order features of current functional languages (e.g., lambda abstractions
can be replaced by new function definitions). An important difference to purely
functional languages shows up when the function to be applied is a logic variable.
In this case, one can instantiate this variable to all possible functions occurring
in the program [37]. Since this might result also in instantiations that are not
intended w.r.t. the given types, one can restrict these instantiations to well-typed
ones which requires to keep type information at run time [16, 35]. Another option
is the instantiation of function variables to (well-typed) lambda terms in order
to cover programs that can reason about bindings and block structure [55]. Since
all these options might result in huge search spaces due to function instantiation
and their feasibility and usefulness for larger application programs is not clear,
one can also choose a more pragmatic solution: function application is rigid, i.e.,
it suspends if the functional argument is a logic variable.

3.3 Constraints

Functional logic languages are able to solve equational constraints. As shown
in Section 2.2, such constraints occur in conditions of conditional rules and are

20

intended to restrict the applicability of the rewrite rule, i.e., a replacement with a
conditional rule is only performed if the condition has been shown to be satisfied
(e.g., compare the definition of last in Section 2.1). Thus, constraints are solved
when conditional rules are applied.

In general, a syntactic extension is not necessary to include constraints. For
instance, the language Curry has no specific constructs for constraints but con-
straints are simply expressions of type Success, i.e., the equational constraint
“=:=” is a function of type “a -> a -> Success”, and the concurrent conjunction
“&” on constraints that evaluates both arguments in a non-specified order (see
Section 2.4) is a function of type “Success-> Success-> Success”.

If constraints are ordinary expressions, they are first-class values that can be
passed in arguments or data structures. For instance, the following “constraint
combinator” takes a list of constraints as input and creates a new constraint
that is satisfied if all constraints in the input list are satisfied:

allValid :: [Success] -> Success

allValid [] = success

allValid (c:cs) = c & allValid cs

Here, success is not a constructor but denotes the trivial constraint that is
always satisfied. Exploiting higher-order functions, one can define it also by

allValid = foldr (&) success

Note that the constructor Success was introduced in Section 2.2 only to provide
a rewrite-based definition of strict equality. However, functional logic languages
like Curry, Escher, or TOY use a more efficient implementation of strict equality.
The main difference shows up when an equational constraint “x =:= y” between
two logic variables x and y is solved. Solving it with the rewrite rules shown in
Section 2.2, x and y are nondeterministically bound to ground constructor terms
which usually results in an infinite search space. This can be avoided by binding
one variable to the other, similar to logic programming.

One can easily integrate the features of constraint programming by adding
basic constraints that deal with other constraint domains, like real arithmetic,
Boolean, or finite domain constraints. Thus, typical applications of constraint
logic programming can be covered and combined with features of lazy higher-
order programming [10, 19, 30, 31, 67, 70, 77]. As an example demonstrating the
compactness obtained by combining constraint programming with higher-order
features, consider a solver for SuDoku puzzles6 with finite domain constraints.
If we represent the SuDoku matrix m as a list of lists of finite domain variables,
the “SuDoku constraints” can be easily specified by

allValid (map allDifferent m) &

allValid (map allDifferent (transpose m)) &

allValid (map allDifferent (squaresOfNine m))

6 A SuDoku puzzle consists of a 9 × 9 matrix of digits between 1 and 9 so that each
row, each column, and each of the nine 3× 3 sub-matrices contain pairwise different
digits. The challenge is to find the missing digits if some digits are given.

21

where allDifferent is the usual constraint stating that all variables in its ar-
gument list must have different values, transpose is the standard matrix trans-
position, and squaresOfNine computes the list of 3 × 3 sub-matrices. Then, a
SuDoku puzzle can be solved with these constraints by adding the usual domain
and labeling constraints (see [49] for more details).

3.4 Function Patterns

We have discussed in Section 2.2 the fundamental requirement of functional
languages for constructor-based rewrite systems. This requirement is the key for
practically useful implementations and excludes rules like

last (xs ++ [e]) = e (last)

The non-constructor pattern (xs ++ [e]) in this rule can be eliminated by mov-
ing it into the condition part (see Section 2.1):

last l | xs++[e]=:= l = e where xs,e free (lastc)

However, the strict equality used in (lastc) has the disadvantage that all list
elements are completely evaluated. Hence, an expression like last [failed,3]

(where failed is an expression that has no value) leads to a failure. This disad-
vantage can be avoided by allowing function patterns, i.e., expressions containing
defined functions, in arguments of a rule’s left-hand side so that (last) becomes
a valid rule. In order to base this extension on the existing foundations of func-
tional logic programming as described so far, a function pattern is interpreted
as an abbreviation of the set of constructor terms that is the result of evaluating
(by narrowing) the function pattern. Thus, rule (last) abbreviates the following
(infinite) set of rules:

last [x] = x

last [x1,x] = x

last [x1,x2,x] = x

...

Hence, the expression last [failed,3] reduces to 3 w.r.t. these rules. In order
to provide a constructive implementation of this concept, [13] proposes a spe-
cific demand-driven unification procedure for function pattern unification that
can be implemented similarly to strict equality. Function patterns are a pow-
erful concept to express transformation problems in a high-level way. Concrete
programming examples and syntactic conditions for the well-definedness of rules
with function patterns can be found in [13].

3.5 Encapsulating Search

An essential difference between functional and logic computations is their de-
terminism behavior. Functional computations are deterministic. This enables a
reasonable treatment of I/O operations by the monadic approach where I/O ac-
tions are considered as transformations on the outside world [86]. The monadic

22

I/O approach is also taken in languages like Curry, Escher, or Mercury. How-
ever, logic computations might cause (don’t know) nondeterministic choices, i.e.,
a computation can be cloned and continued in two different directions. Since one
can not clone the entire outside world, nondeterministic choices during monadic
I/O computations must be avoided. Since this might restrict the applicability
of logic programming techniques in larger applications, there is a clear need to
encapsulate nondeterministic search between I/O actions. For this purpose, one
can introduce a primitive search operator [57, 79] that returns nondeterministic
choices as data so that typical search operators of Prolog, like findall, once,
or negation-as-failure, can be implemented using this primitive. Unfortunately,
the combination with demand-driven evaluation and sharing causes some com-
plications. For instance, in an expression like

let y = coin in findall(...y...)

it is not obvious whether the evaluation of coin (introduced outside but de-
manded inside the search operator) should be encapsulated or not. Furthermore,
the order of the solutions might depend on the evaluation time. These and more
peculiarities are discussed in [22] where another primitive search operator is
proposed:

getSearchTree :: a -> IO (SearchTree a)

Since getSearchTree is an I/O action, its result (in particular, the order of
solutions) depends on the current environment, e.g., time of evaluation. It takes
an expression and delivers a search tree representing the search space when
evaluating the input:

data SearchTree a = Or [SearchTree a] | Val a | Fail

Based on this primitive, one can define various concrete search strategies as tree
traversals. To avoid the complications w.r.t. shared variables, getSearchTree
implements a strong encapsulation view, i.e., conceptually, the argument of
getSearchTree is cloned before the evaluation starts in order to cut any sharing
with the environment. Furthermore, the structure of the search tree is computed
lazily so that an expression with infinitely many values does not cause the non-
termination of the search operator if one is interested in only one solution.

3.6 Implementation

The definition of needed narrowing and its extensions shares many similarities
with pattern matching in functional or unification in logic languages. Thus, it
is reasonable to use similar techniques to implement functional logic languages.
Due to the coverage of logic variables and nondeterministic search, one could try
to translate functional logic programs into Prolog programs in order to exploit
the implementation technology available for Prolog. Actually, there are various
approaches to compile functional logic languages with demand-driven evaluation
strategies into Prolog (e.g., [3, 10, 26, 40, 62, 64]). Narrowing-based strategies can
be compiled into pure Prolog whereas residuation (as necessary for external op-

23

erations, see Section 3.1) demands for coroutining.7 The compilation into Prolog
has many advantages. It is fairly simple to implement, one can use constraint
solvers available in many Prolog implementations in application programs, and
one can exploit the advances made in efficient implementations of Prolog.

Despite these advantages, the transformation into Prolog has the drawback
that one is fixed to Prolog’s backtracking strategy to implement nondeterministic
search. This hampers the implementation of encapsulated search or fair search
strategies. Therefore, there are various approaches to use other target languages
than Prolog. For instance, [15] presents techniques to compile functional logic
programs into Java programs that implement a fair search for solutions, and
[23] proposes a translation of Curry programs into Haskell programs that offers
the primitive search operator getSearchTree introduced in Section 3.5. Virtual
machines to compile functional logic programs are proposed in [14, 56, 69].

4 Applications

Since multi-paradigm declarative languages amalgamate the most important
declarative paradigms, their application areas cover the areas of languages be-
longing to the individual paradigms. Therefore, we discuss in this section only
applications that demonstrate the feasibility and advantages of multi-paradigm
declarative programming.

A summary of design patterns exploiting combined functional and logic fea-
tures for application programming can be found in [11]. These patterns are
unique to functional logic programming and can not be directly applied in other
paradigms. For instance, the constraint constructor pattern exploits the fact
that functional logic languages can deal with failure so that conditions about
the validity of data represented by general structures can be encoded directly
in the data structures rather than in application programs. This frees the appli-
cation programs from dealing with complex conditions on the constructed data.
Another pattern, called locally defined global identifier, has been used to provide
high-level interfaces to libraries dealing with complex data, like programming of
dynamic web pages or graphical user interfaces (GUIs, see below). This pattern
exploits the fact that functional logic data structures can contain logic variables
which are globally unique when they are introduced. This is helpful to create lo-
cal structures with globally unique identifiers and leads to improved abstractions
in application programs. Further design patterns and programming techniques
are discussed in [11, 12].

The combination of functional and logic language features are exploited in
[43] for the high-level programming of GUIs. The hierarchical structure of a GUI
(e.g., rows, columns, or matrices of primitive and combined widgets) is repre-
sented as a data term. This term contains call-back functions as event handlers,
i.e., the use of functions as first-class objects is natural in this application. Since
event handlers defined for one widget should usually influence the appearance

7 Note that external operations in Prolog do not use coroutining since they are imple-
mented in a non-declarative way.

24

Fig. 2. A simple counter GUI

and contents of other widgets (e.g., if a slider is moved, values shown in other
widgets should change), GUIs have also a logical structure that is different from
its hierarchical structure. To specify this logical structure, logic variables in data
structures are handy, since a logic variable can specify relationships between dif-
ferent parts of a data term. As a concrete example, consider the simple counter
GUI shown in Figure 2. Using a library designed with these ideas, one can specify
this GUI by the following data term:

Col [Entry [WRef val, Text "0", Background "yellow"],

Row [Button (updateValue incrText val) [Text "Increment"],

Button (setValue val "0") [Text "Reset"],

Button exitGUI [Text "Stop"]]]

where val free

The hierarchical structure of the GUI (a column with two rows) is directly re-
flected in the tree structure of this term. The first argument of each Button is the
corresponding event handler. For instance, the invocation of exitGUI terminates
the GUI, and the invocation of setValue assigns a new value (second argument)
to the referenced widget (first argument). For this purpose, the logic variable val
is used. Since the attribute WRef of the Entry widget defines its origin and it is
used in various event handlers, it appropriately describes the logical structure of
the GUI, i.e., the dependencies between different widgets. Note that other (more
low level) GUI libraries or languages (e.g., Tcl/Tk) use strings or numbers as
widget references which is potentially more error prone.

Similar ideas are applied in [44] to provide a high-level programming inter-
face for web applications (dynamic web pages). There, HTML terms are repre-
sented as data structures containing event handlers associated to submit but-
tons and logic variables referring to user inputs in web pages that are passed
to event handlers. These high-level APIs have been used in various applica-
tions, e.g., to implement web-based learning systems [52], constructing web-
based interfaces for arbitrary applications [49] (there, the effectiveness of the
multi-paradigm declarative programming style is demonstrated by a SuDoku
solver with a web-based interface where the complete program consists of 20
lines of code), graphical programming environments [48, 54], and documentation
tools [46]. Furthermore, there are proposals to use multi-paradigm languages for
high-level distributed programming [42, 85], programming of embedded systems
[50, 51], object-oriented programming [53, 82], or declarative APIs to databases
[32, 47].

25

5 Conclusions

In this paper we surveyed the main ideas of multi-paradigm declarative lan-
guages, their foundations, and some practical aspects of such languages for ap-
plication programming. As a concrete example, we used the multi-paradigm
declarative language Curry. Curry amalgamates functional, logic, constraint, and
concurrent programming features, it is based on strong foundations (e.g., sound-
ness and completeness and optimal evaluation on inductively sequential pro-
grams) and it has been also used to develop larger applications. For the latter,
Curry also offers useful features, like modules, strong typing, polymorphism, and
declarative I/O, that are not described in this paper since they are not specific
to multi-paradigm declarative programming (see [58] for such features).

We conclude with a summary of the advantages of combining different declar-
ative paradigms in a single language. Although functions can be considered as
predicates (thus, logic programming is sometimes considered as more general
than functional programming), functional notation should not be used only as
syntactic sugar: we have seen that the properties of functions (i.e., functional
dependencies between input and output arguments) can be exploited to con-
struct more efficient evaluation strategies without loosing generality. For in-
stance, needed narrowing ensures soundness and completeness in the sense of
logic programming and it is also optimal, whereas similar results are not available
for pure logic programs. As a consequence, functional logic languages combine
the flexibility of logic programming with the efficiency of functional program-
ming. This leads to a more declarative style of programming without loosing
efficiency. For instance, most functional logic languages do not have a Prolog-like
“cut” operator since functions can be interpreted as a declarative replacement
for it (see also [24, 65]). Moreover, searching for solutions with a demand-driven
evaluation strategy results in a demand-driven search strategy that can consider-
ably reduce the search space. Finally, narrowing can be appropriately combined
with constraint solving and residuation. The latter provides for a declarative
integration of external operations and concurrent programming techniques.

Acknowledgments

I am grateful to thank Sergio Antoy, Bernd Braßel, Sebastian Fischer and
Germán Vidal for their comments related to this survey.

References

1. H. Aı̈t-Kaci. An Overview of LIFE. In J.W. Schmidt and A.A. Stogny, editors,
Proc. Workshop on Next Generation Information System Technology, pp. 42–58.
Springer LNCS 504, 1990.

2. H. Aı̈t-Kaci, P. Lincoln, and R. Nasr. Le Fun: Logic, equations, and Functions.
In Proc. 4th IEEE Internat. Symposium on Logic Programming, pp. 17–23, San
Francisco, 1987.

26

3. S. Antoy. Non-Determinism and Lazy Evaluation in Logic Programming. In Proc.
Int. Workshop on Logic Program Synthesis and Transformation (LOPSTR’91), pp.
318–331. Springer Workshops in Computing, 1991.

4. S. Antoy. Definitional Trees. In Proc. of the 3rd International Conference on
Algebraic and Logic Programming, pp. 143–157. Springer LNCS 632, 1992.

5. S. Antoy. Optimal Non-Deterministic Functional Logic Computations. In Proc.
International Conference on Algebraic and Logic Programming (ALP’97), pp. 16–
30. Springer LNCS 1298, 1997.

6. S. Antoy. Constructor-based Conditional Narrowing. In Proc. of the 3rd Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP 2001), pp. 199–206. ACM Press, 2001.

7. S. Antoy. Evaluation Strategies for Functional Logic Programming. Journal of
Symbolic Computation, Vol. 40, No. 1, pp. 875–903, 2005.

8. S. Antoy, R. Echahed, and M. Hanus. Parallel Evaluation Strategies for Functional
Logic Languages. In Proc. of the Fourteenth International Conference on Logic
Programming (ICLP’97), pp. 138–152. MIT Press, 1997.

9. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

10. S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs into
Prolog. In Proc. International Workshop on Frontiers of Combining Systems (Fro-
CoS’2000), pp. 171–185. Springer LNCS 1794, 2000.

11. S. Antoy and M. Hanus. Functional Logic Design Patterns. In Proc. of the 6th
International Symposium on Functional and Logic Programming (FLOPS 2002),
pp. 67–87. Springer LNCS 2441, 2002.

12. S. Antoy and M. Hanus. Concurrent Distinct Choices. Journal of Functional
Programming, Vol. 14, No. 6, pp. 657–668, 2004.

13. S. Antoy and M. Hanus. Declarative Programming with Function Patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pp. 6–22. Springer LNCS 3901, 2005.

14. S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A Virtual Machine for Functional
Logic Computations. In Proc. of the 16th International Workshop on Implementa-
tion and Application of Functional Languages (IFL 2004), pp. 108–125. Springer
LNCS 3474, 2005.

15. S. Antoy, M. Hanus, B. Massey, and F. Steiner. An Implementation of Narrowing
Strategies. In Proc. of the 3rd International ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming (PPDP 2001), pp. 207–217. ACM
Press, 2001.

16. S. Antoy and A. Tolmach. Typed Higher-Order Narrowing without Higher-Order
Strategies. In Proc. 4th Fuji International Symposium on Functional and Logic
Programming (FLOPS’99), pp. 335–352. Springer LNCS 1722, 1999.

17. P. Arenas-Sánchez and M. Rodŕıguez-Artalejo. A Semantic Framework for Func-
tional Logic Programming with Algebraic Polymorphic Types. In Proc. CAAP’97,
pp. 453–464. Springer LNCS 1214, 1997.

18. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

19. R. Berghammer and S. Fischer. Implementing Relational Specifications in a Con-
straint Functional Logic Language. Electronic Notes in Theoretical Computer Sci-
ence, Vol. 177, pp. 169–183, 2007.

20. R.S. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall,
1988.

27

21. S. Bonnier and J. Maluszynski. Towards a Clean Amalgamation of Logic Programs
with External Procedures. In Proc. 5th Conference on Logic Programming & 5th
Symposium on Logic Programming (Seattle), pp. 311–326. MIT Press, 1988.

22. B. Braßel, M. Hanus, and F. Huch. Encapsulating Non-Determinism in Functional
Logic Computations. Journal of Functional and Logic Programming, Vol. 2004,
No. 6, 2004.

23. B. Braßel and F. Huch. Translating Curry to Haskell. In Proc. of the ACM
SIGPLAN 2005 Workshop on Curry and Functional Logic Programming (WCFLP
2005), pp. 60–65. ACM Press, 2005.

24. R. Caballero and Y. Garćıa-Ruiz. Implementing Dynamic-Cut in TOY. Electronic
Notes in Theoretical Computer Science, Vol. 177, pp. 153–168, 2007.

25. A. Casas, D. Cabeza, and M.V. Hermenegildo. A Syntactic Approach to Combining
Functional Notation, Lazy Evaluation, and Higher-Order in LP Systems. In Proc.
of the 8th International Symposium on Functional and Logic Programming (FLOPS
2006), pp. 146–162. Springer LNCS 3945, 2006.

26. P.H. Cheong and L. Fribourg. Implementation of Narrowing: The Prolog-Based
Approach. In K.R. Apt, J.W. de Bakker, and J.J.M.M. Rutten, editors, Logic
programming languages: constraints, functions, and objects, pp. 1–20. MIT Press,
1993.

27. J.M. Cleva, J. Leach, and F.J. López-Fraguas. A logic programming approach
to the verification of functional-logic programs. In Proceedings of the 6th Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pp. 9–19. ACM Press, 2004.

28. R. del Vado Virseda. A Demand-Driven Narrowing Calculus with Overlapping
Definitional Trees. In Proceedings of the 8th ACM SIGPLAN International Con-
ference on Principles and Practice of Declarative Programming (PPDP’03), pp.
253–263. ACM Press, 2003.

29. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pp. 243–320. Elsevier, 1990.

30. A.J. Fernández, M.T. Hortalá-González, and F. Sáenz-Pérez. Solving Combinato-
rial Problems with a Constraint Functional Logic Language. In Proc. of the 5th
International Symposium on Practical Aspects of Declarative Languages (PADL
2003), pp. 320–338. Springer LNCS 2562, 2003.

31. A.J. Fernández, M.T. Hortalá-González, F. Sáenz-Pérez, and R. del Vado-Vı́rseda.
Constraint Functional Logic Programming over Finite Domains. Theory and Prac-
tice of Logic Programming (to appear), 2007.

32. S. Fischer. A Functional Logic Database Library. In Proc. of the ACM SIGPLAN
2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp.
54–59. ACM Press, 2005.

33. M.J. Garćıa de la Banda, B. Demoen, K. Marriott, and P.J. Stuckey. To the
Gates of HAL: A HAL Tutorial. In Proc. of the 6th International Symposium
on Functional and Logic Programming (FLOPS 2002), pp. 47–66. Springer LNCS
2441, 2002.

34. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus
Functional Language. Journal of Computer and System Sciences, Vol. 42, No. 2,
pp. 139–185, 1991.

35. J.C. Gonzáles-Moreno, M.T. Hortalá-González, and M. Rodŕıguez-Artalejo. Poly-
morphic Types in Functional Logic Programming. Journal of Functional and Logic
Programming, Vol. 2001, No. 1, 2001.

28

36. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming, Vol. 40, pp. 47–87, 1999.

37. J.C. González-Moreno, M.T. Hortalá-González, and M. Rodŕıguez-Artalejo. A
Higher Order Rewriting Logic for Functional Logic Programming. In Proc. of the
Fourteenth International Conference on Logic Programming (ICLP’97), pp. 153–
167. MIT Press, 1997.

38. M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

39. M. Hanus. Analysis of Residuating Logic Programs. Journal of Logic Programming,
Vol. 24, No. 3, pp. 161–199, 1995.

40. M. Hanus. Efficient Translation of Lazy Functional Logic Programs into Prolog.
In Proc. Fifth International Workshop on Logic Program Synthesis and Transfor-
mation, pp. 252–266. Springer LNCS 1048, 1995.

41. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93, 1997.

42. M. Hanus. Distributed Programming in a Multi-Paradigm Declarative Language.
In Proc. of the International Conference on Principles and Practice of Declarative
Programming (PPDP’99), pp. 376–395. Springer LNCS 1702, 1999.

43. M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In International Workshop on Practical Aspects of Declarative Languages
(PADL’00), pp. 47–62. Springer LNCS 1753, 2000.

44. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pp. 76–92. Springer LNCS 1990, 2001.

45. M. Hanus. Reduction Strategies for Declarative Programming. In B. Gramlich and
S. Lucas, editors, Electronic Notes in Theoretical Computer Science, volume 57.
Elsevier Science Publishers, 2001.

46. M. Hanus. CurryDoc: A Documentation Tool for Declarative Programs. In Proc.
11th International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2002), pp. 225–228. Research Report UDMI/18/2002/RR, University of
Udine, 2002.

47. M. Hanus. Dynamic Predicates in Functional Logic Programs. Journal of Func-
tional and Logic Programming, Vol. 2004, No. 5, 2004.

48. M. Hanus. A Generic Analysis Environment for Declarative Programs. In Proc. of
the ACM SIGPLAN 2005 Workshop on Curry and Functional Logic Programming
(WCFLP 2005), pp. 43–48. ACM Press, 2005.

49. M. Hanus. Type-Oriented Construction of Web User Interfaces. In Proceedings of
the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’06), pp. 27–38. ACM Press, 2006.

50. M. Hanus and K. Höppner. Programming Autonomous Robots in Curry. Electronic
Notes in Theoretical Computer Science, Vol. 76, 2002.

51. M. Hanus, K. Höppner, and F. Huch. Towards Translating Embedded Curry to C.
Electronic Notes in Theoretical Computer Science, Vol. 86, No. 3, 2003.

52. M. Hanus and F. Huch. An Open System to Support Web-based Learning. In
Proc. 12th International Workshop on Functional and (Constraint) Logic Program-
ming (WFLP 2003), pp. 269–282. Technical Report DSIC-II/13/03, Universidad
Politécnica de Valencia, 2003.

29

53. M. Hanus, F. Huch, and P. Niederau. An Object-Oriented Extension of the Declar-
ative Multi-Paradigm Language Curry. In Proc. of the 12th International Work-
shop on Implementation of Functional Languages (IFL 2000), pp. 89–106. Springer
LNCS 2011, 2001.

54. M. Hanus and J. Koj. An Integrated Development Environment for Declar-
ative Multi-Paradigm Programming. In Proc. of the International Workshop
on Logic Programming Environments (WLPE’01), pp. 1–14, Paphos (Cyprus),
2001. Also available from the Computing Research Repository (CoRR) at
http://arXiv.org/abs/cs.PL/0111039.

55. M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees. Jour-
nal of Functional Programming, Vol. 9, No. 1, pp. 33–75, 1999.

56. M. Hanus and R. Sadre. An Abstract Machine for Curry and its Concurrent
Implementation in Java. Journal of Functional and Logic Programming, Vol. 1999,
No. 6, 1999.

57. M. Hanus and F. Steiner. Controlling Search in Declarative Programs. In
Principles of Declarative Programming (Proc. Joint International Symposium
PLILP/ALP’98), pp. 374–390. Springer LNCS 1490, 1998.

58. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8.2).
Available at http://www.informatik.uni-kiel.de/~curry, 2006.

59. J. Hughes. Why Functional Programming Matters. In D.A. Turner, editor, Re-
search Topics in Functional Programming, pp. 17–42. Addison Wesley, 1990.

60. H. Hussmann. Nondeterministic Algebraic Specifications and Nonconfluent Term
Rewriting. Journal of Logic Programming, Vol. 12, pp. 237–255, 1992.

61. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. of the 14th
ACM Symposium on Principles of Programming Languages, pp. 111–119, Munich,
1987.

62. J.A. Jiménez-Martin, J. Marino-Carballo, and J.J. Moreno-Navarro. Efficient Com-
pilation of Lazy Narrowing into Prolog. In Proc. Int. Workshop on Logic Program
Synthesis and Transformation (LOPSTR’92), pp. 253–270. Springer Workshops in
Computing Series, 1992.

63. J. Lloyd. Programming in an Integrated Functional and Logic Language. Journal
of Functional and Logic Programming, No. 3, pp. 1–49, 1999.

64. R. Loogen, F. López Fraguas, and M. Rodŕıguez Artalejo. A Demand Driven Com-
putation Strategy for Lazy Narrowing. In Proc. of the 5th International Symposium
on Programming Language Implementation and Logic Programming, pp. 184–200.
Springer LNCS 714, 1993.

65. R. Loogen and S. Winkler. Dynamic Detection of Determinism in Functional Logic
Languages. Theoretical Computer Science 142, pp. 59–87, 1995.

66. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

67. F.J. López-Fraguas, M. Rodŕıguez-Artalejo, and R. del Vado Virseda. A lazy nar-
rowing calculus for declarative constraint programming. In Proceedings of the 6th
International ACM SIGPLAN Conference on Principles and Practice of Declara-
tive Programming, pp. 43–54. ACM Press, 2004.

68. F.J. López-Fraguas and J. Sánchez-Hernández. A Proof Theoretic Approach to
Failure in Functional Logic Programming. Theory and Practice of Logic Program-
ming, Vol. 4, No. 1, pp. 41–74, 2004.

69. W. Lux. Implementing Encapsulated Search for a Lazy Functional Logic Language.
In Proc. 4th Fuji International Symposium on Functional and Logic Programming
(FLOPS’99), pp. 100–113. Springer LNCS 1722, 1999.

30

70. W. Lux. Adding Linear Constraints over Real Numbers to Curry. In Proc. of
the 5th International Symposium on Functional and Logic Programming (FLOPS
2001), pp. 185–200. Springer LNCS 2024, 2001.

71. L. Naish. Adding equations to NU-Prolog. In Proc. of the 3rd Int. Symposium
on Programming Language Implementation and Logic Programming, pp. 15–26.
Springer LNCS 528, 1991.

72. M.J. O’Donnell. Computing in Systems Described by Equations. Springer LNCS
58, 1977.

73. M.J. O’Donnell. Equational Logic as a Programming Language. MIT Press, 1985.
74. P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Mono-

graphs on Theoretical Computer Science. Springer, 1988.
75. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.

Cambridge University Press, 2003.
76. J.C. Reynolds. Definitional Interpreters for Higher-Order Programming Languages.

In Proceedings of the ACM Annual Conference, pp. 717–740. ACM Press, 1972.
77. M. Rodŕıguez-Artalejo. Functional and Constraint Logic Programming. In Con-

straints in Computational Logics: Theory and Applications (CCL’99), pp. 202–270.
Springer LNCS 2002, 2001.

78. V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
79. C. Schulte and G. Smolka. Encapsulated Search for Higher-Order Concurrent

Constraint Programming. In Proc. of the 1994 International Logic Programming
Symposium, pp. 505–520. MIT Press, 1994.

80. R.C. Sekar and I.V. Ramakrishnan. Programming in Equational Logic: Beyond
Strong Sequentiality. Information and Computation, Vol. 104, No. 1, pp. 78–109,
1993.

81. J.R. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Commu-
tativity, and Associativity. Journal of the ACM, Vol. 21, No. 4, pp. 622–642, 1974.

82. G. Smolka. The Oz Programming Model. In J. van Leeuwen, editor, Computer
Science Today: Recent Trends and Developments, pp. 324–343. Springer LNCS
1000, 1995.

83. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, Vol. 29, No. 1-3, pp. 17–64, 1996.

84. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-
gramming. MIT Press, 2004.

85. P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl, and R. Scheidhauer. Mobile
Objects in Distributed Oz. ACM Transactions on Programming Languages and
Systems, Vol. 19, No. 5, pp. 804–851, 1997.

86. P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29,
No. 3, pp. 240–263, 1997.

87. D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Ma-
chine Intelligence 10, pp. 441–454, 1982.

31

