Lehrstuhl für Programmiersprachen und Übersetzerkonstruktion

CAU Kiel, Institut für Informatik Prof. Dr. M. Hanus 24118 Kiel Christan-Albrechts-Platz 4 Tel.: 0431 / 880-7271

4. Übung "Übersetzerbau" Bearbeitung bis zum 13. Mai 2008

Aufgabe 12

Wir erweitern die Programmiersprache Simple um folgende Konstrukte:

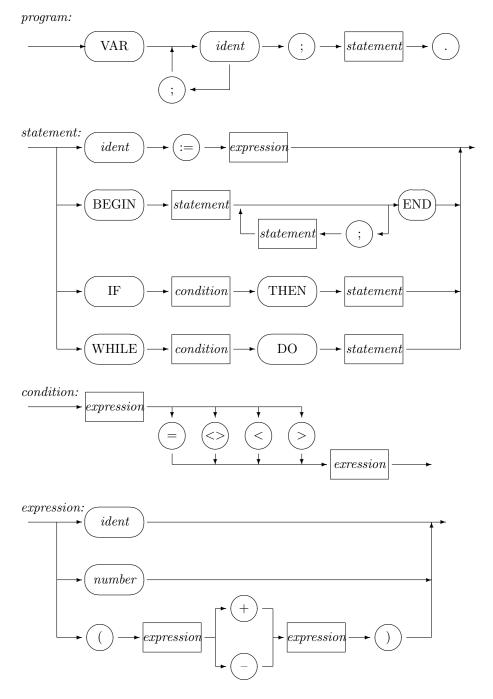
Stm Stm	\longrightarrow \longrightarrow	T	(IfS tm) (WhileStm)
Stm	\longrightarrow	nop	(NopStm)
BExp BExp BExp	$\stackrel{\longrightarrow}{\longrightarrow}$		(CmpBExp) (TTBExp) (FFBExp)
BinCmp BinCmp BinCmp	$\overset{\longrightarrow}{\longrightarrow}$	/=	(BooleExp) (Equal) (NotEqual) (LessEqual)
BinCmp BinBOp BinBOp	\longrightarrow	>= && 	(GreaterEqual) (And) (Or)

- a) Erweitern Sie die zugehörigen algebraischen Haskell-Datenstrukturen.
- b) Erweitern Sie den Interpreter aus Aufgabe 5 um die neuen Konstrukte. Für die Interpretation der while-Schleife reicht ein einfacher rekursiver Abstieg in der Baumstruktur nicht aus. Überlegen Sie, wie Sie die Schleife im Interpreter abwickeln können, so dass Sie die Schleifen iterieren.

Aufgabe 13

In der Vorlesung wurde die LL(k)- und die starke LL(k) (SLL(k))-Eigenschaf t definiert. Zeigen Sie anhand folgender Grammatik, dass $SLL(2) \neq LL(2)$ gilt:

$$S \to aAab \mid bAbb$$
 $A \to a \mid \varepsilon$


Bem.: Für k = 1 stimmen beide Eigenschaften überein.

1

Aufgabe 14

Die Syntax der Mini-Programmiersprache MPS sei durch die unten angegebenen Syntax-diagramme definiert.

- a) Geben Sie die Syntax von MPS durch eine kontextfreie Grammatik G an.
- b) Berechnen Sie zu allen Nichtterminalsymbolen aus G die Mengen FIRST und FOLLOW.
- c) Prüfen Sie, ob es sich bei Ihrer Grammatik um eine LL(1)-Grammatik handelt. Wenn nicht, so geben Sie eine LL(1)-Grammatik G' für MPS an.
- d) Konstruieren Sie die zugehörige Parsing-Tabelle. Sollten Sie Aufgabenteil c) nicht gelöst haben, geben Sie dennoch eine (mehrdeutige) Parsingtabelle an.

0