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1. Introduction

When presented with a choice, we usually get to experience only one outcome of it.
Whether the decision is about what to eat for lunch, where to live or what career to
pursue, we have to decide and can only wonder what would have happened if we picked
differently. Would not it be nice if we could collect all outcomes of a decision and pick
the most appealing one?
While it is hard to imagine that we someday might be able to pick our lunch based

on the recommendation of alternate reality versions of ourselves, the concept is far more
tangible in the context of functional logic programming languages. A nondeterministic
calculation like 0?1 can yield several values, 0 and 1 in this case. Maybe we would like to
count the results or check if a specific outcome is possible? A nondeterministic expression
in Curry does not "look" different than a deterministic one, at least in regard to their
types. Based on this, checking if 0?1 can be evaluated to a certain result yields a naive
implementation.

isOne :: Int -> Bool
isOne x = x == 1

check :: Bool
check = isOne (0?1)

The intention behind this code is that we would like to know if a value of 0?1 equals one.
Unfortunately this is not what the program does. Instead, the function check becomes
nondeterministic too and yields True and False because isOne is evaluated for every
possible value of 0?1. To express what we originally intended, we need to encapsulate
the nondeterminism that might occur in the argument of isOne. This is the purpose of
set functions. A set function returns all values of a nondeterministic expression as a set
that can be manipulated like a normal data structure.

evalOne :: Int -> Bool
evalOne x = valueOf 1 (set0 x)

Curry systems like KiCS2 or PAKCS implement set functions in the respective target
language, that is, tree-like structures in Haskell and findall in Prolog. This entails
slight differences when it comes to handling failures and nonterminating evaluations.
Ideally, set functions would be implemented on a higher level, that is, directly in Curry.
A recent publication by Antoy et al. [2018] tackles this problem and presents a technique
to synthesize the set function fS of a given f . Based on this, the process of building a
working prototype is documented in this report. We begin with the general approach
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1. Introduction

and a rough overview of the development process, followed by a more detailed look at
the design choices and the implementation. The report ist concluded by a final chapter
about the limitations, results and future improvements.
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2. Approach

The research project is divided into two major parts: Familiarizing with the general topic
of set functions by means of a prototype version of "KiCS2.5" and the implementation
of a prototype based on Synthesizing Set Functions.

2.1. Time line

The project lasted from April to October 2018. Below is a short overview of what
happened in each month.

• April marked the start of the project and began with articles by Antoy and Hanus
[2009] as well as Christiansen et al. [2013]. The former describes the semantics
of set functions by means of a graph rewriting system while the latter defines
an operational semantics. The papers represented a rather abstract introduction
of the topic and were supplemented by a first look at the KiCS2 set function
implementation.

• May started with a discussion about an issue1 of KiCS2’s set function implemen-
tation. The idea of finding and fixing this problem was abandoned due to the
complexity of the existing implementation. Instead, working on a minimal im-
plemtation2 of KiCS2 seemed like a good way to gain a deeper understanding of
set functions. The addition of set functions was based upon the implementation
presented by Brassel [2010].

• June was the first month with some code output3. Along the way of adapting
Braßel’s implementation, functions to pull up choices to the root of an expression
and a normal form transformation were needed. To test the new implementation,
the existing examples4 would have been a good choice but it became apparent that
due to the minimalism of the prototype, this would have been a difficult task for
the more complex examples. Mid-month the exam preparation period started and
the project was paused.

• In July nothing noteworthy – in regard to the project – happened.

1https://git.ps.informatik.uni-kiel.de/curry/kics2/issues/15
2https://git.informatik.uni-kiel.de/fte/proto_kics
3https://git.informatik.uni-kiel.de/stu114713/proto_kics/
4https://git.ps.informatik.uni-kiel.de/curry/kics2/blob/master/testsuite/LibraryTests/testSetFunctions.curry
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2. Approach

• August marked the end of the first part of the project. The KiCS2.5 set function
implementation worked for a simple example but had problems with the duplication
of cover information which is used in Braßel’s implementation to distinguish dif-
ferent levels of encapsulation. Since the final version of Synthesizing Set Functions
was published, the second half of the project began. The goal was to implement a
tool that transforms a function within a FlatCurry program into an AbstractCurry
program that contains the synthesized set function based on the top-level sharing
library. The month ended with the implementation of the plural function transfor-
mation.

• September yielded the implementation of totalizing partial functions and the gener-
ation of normal form instances. Due to a misunderstanding, the instance generation
generated FlatCurry expressions, which unnecessarily complicated the code due to
the lack of type classes. Ultimately, the experience proved to be helpful in the
implementation of multi-parameter type class instances. To make the code more
readable, the transformation was adapted to run within the StateT monad. It
was discovered that KiCS2 cannot handle the monad instance required to define
StateT. Therefore, PAKCS was used for the remainder of the project.

• October represented the last part of the project. After implementing the multi-
parameter class instances for toValST and FromValST as well as toST and FromST,
some issues regarding generated function names and the selection of appropriate
instance arguments for polymorphic instances were fixed. Finally, all parts of the
puzzle were pieced together and resulted in the first prototype of the set function
synthesizer. As a last step, call-time choice was implemented.

The first part of the project was meant as preparation for the second part. Therefore, we
will not look into the details of the KiCS2.5 implementation and focus on synthesizing
set functions. In the next chapter, we explore the design decisions and implementation
of the tool.
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3. Implementation

The set function synthesizing tool is supplied the name of the module and function
name that the set function should be synthesized for. As a result, the necessary plural
functions, instances and the set function are returned as pretty-printed AbstractCurry
code. Internally, the source code file is transformed into a FlatCurry program and then
further processed. In conclusion, the transformation’s input is FlatCurry and its output
is AbstractCurry code. This low-to-high approach, in terms of language complexity,
has two advantages. One, FlatCurry has a multitude of useful program transformation
libraries and functions have only one rule by design, which is an assumption made in the
paper, too. Two, AbstractCurry supports type classes, which saves us some of the effort
to generate type class instances manually. Unfortunately, multi-parameter type classes
are not yet implemented in Curry, so some manual instance handling is inevitable.
Over the course of the development process it became apparent that a state is necessary

to create unique variable names and to keep the program readable.

3.1. State

The state has a FlatCurry and AbstractCurry program. The former is the initial program
while the latter holds the generated code. There are five different maps: two type maps
that map type names to generated ST type names and vice versa, as well as one map
that maps constructor names to constructors of the ST type and a function map that
maps function names to their plural representations. The variable supplyVarMap is used
in the implementation of call-time choice and stores variables that need to be assigned an
ID or IDSupply value. More on that can be found in subsection 3.2.4. The last elements
of the state are a list of type pairs, more precisely the types of a function and its plural
function, and a variable that represents the biggest variable index used so far.

data State = State
{

currentProg :: Prog,
currentCProg :: CurryProg,
currentModule :: String,
currentFunction :: QName,
typeMap :: QMap,
typeSTMap :: QMap,
consMap :: QMap,
funcMap :: QMap,
supplyVarMap :: SMap,
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3. Implementation

funcTypes :: TList,
maxVar :: VarIndex

}

type QMap = FM QName QName

type SMap = FM QName [(VarKind, CTVarIName)]

type TList = [(CTypeExpr, CTypeExpr)]

In combination with the Haskell state transformer monad, the resulting code is much
more readable than manually folding a state argument through the whole transformation
and allows for a demand-driven definition of the operations because demanded functions,
types or instances can be looked up and generated if necessary.

3.2. Synthesizing phases

The synthesizing process is divided into multiple phases, which we will explore in this
chapter. To make the process easier to follow, the function anyOf is used as an example
of the different phases.

anyOf :: [Int] -> Int
anyOf (x:xs) = x ? anyOf xs

3.2.1. CompactFlatCurry

The first step of the transformation is to collect all functions and data types that are used
within the transformation target by means of the function compactFlatCurry defined in
FlatCurry.Compact. Since the transformation is mostly demand-driven, this step could
be omitted in the future if handling imported modules is implemented.

anyOf :: [Int] -> Int
anyOf (x:xs) = x ? anyOf xs

(?) :: a -> a -> a
x ? _ = x
_ ? x = x

data List a = Nil | Cons a (List a)

The choice operator appears in the rule of anyOf and the list data type in the func-
tion type. Therefore, both are added to the program. Since Int does not need to be
transformed, it is omitted here.
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3. Implementation

3.2.2. Totalizing partial functions

The definition of anyOf is partial because no rule covers the empty list. Since the trans-
formation assumes total functions, the function is totalized in this step. This works by
creating a list of constructor name and type declaration pairs for the program. Then, the
transformation recursively descends down the function declaration until a case expression
is found. Here, the names of covered constructors are collected and the constructors’ type
is looked up. If a constructor from the type declaration is not covered, a new branch
with the expression failed is added.

anyOf :: [Int] -> Int
anyOf xs = case xs of

(y:ys) -> x ? anyOf xs
[] -> failed

3.2.3. Lifting case expressions

The transformation requires uniform functions, so nested case expressions can be prob-
lematic. Fortunately, the module LiftCases already implements lifting nested case ex-
pressions, that is, creating new function declarations for nested case expressions. Un-
fortunately, the module only works with type-annotated FlatCurry because the lifted
function’s type is generated from the type annotations. To annotate a FlatCurry program
with types, the function inferProg from the module FlatCurry.Annotated.TypeInference
is useful. Considering that the type inference does not work well with type classes and
that the inferred information is discarded in the next step, it is desirable to implement
this step without the usage of annotated FlatCurry.

3.2.4. Plural function transformation

The plural function transformation unifies multiple steps. In general, a FlatCurry func-
tion declaration is transformed into an AbstractCurry plural function. To do this, the
function name of the transformation target is looked up. A new name for the plural
function is generated and an entry in the function map is added to replace recursive
calls to the function. Then, the function’s type is transformed into an ST type. This is
done by adding an ST constructor to every top-level argument and then transforming the
argument. The interesting part happens when a type constructor is found: If the type
lookup yields an ST type, it replaces the previous type. If this is not the case, the type
declaration is looked up in the program and the type declaration is transformed.
The type transformation distinguishes two cases. Basic types like Int, where all con-

structors are nullary, and complex types. The basic case is simply dealt with because no
transformation is necessary, only an entry like Int ←→ Int is added to the type maps.
Complex types get a new ST name that is added to the type maps. Then, the construc-
tors are transformed by adding their ST names to the constructor map and transforming
their types.
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3. Implementation

Finally, the rule of the function needs to be transformed. This is where we need to
think about call-time choice for the first time1. The plural function has an IDSupply
argument that we need to distribute between all occurrences of plural function calls and
Choice constructors that require an ID. The approach chosen here is to insert a variable
wherever an IDSupply or ID is needed, combined with an entry in the supplyVarMap.
The map differentiates both kinds of variables and is used when the function’s expression
has been transformed. Then, the list of variables in the map are transformed into a list of
local declarations where, beginning with the function’s IDSupply argument, the supply
is split into two new supplies where one part is assigned to a variable and the other part
is used to create new supplies.
The expression transformation works like described in the paper. Literals are wrapped

in a Val constructor and variables remain untouched. The failed constructor is replaced
with the ST constructor Fail. Other constructors are replaced with the ST type equiva-
lent if necessary. When a function is found, its name is looked up in the respective map
and, if not already done, the function’s plural function is generated. The transformation
of the other expressions consists mostly of recursive calls of the expression transformation
and the adaptation of differences between FlatCurry and AbstractCurry.

anyOfP :: IDSupply -> ST (STList Int) -> ST Int
anyOfP v6 v_1 = applyST

(\v0 -> case v0 of
STCons v_2 v_3 -> choiceP v5 v_2 (anyOfP v4 v_3)
STNil -> Fail

)
v_1

where
v5 = rightSupply v6
v7 = leftSupply v6
v4 = rightSupply v7

choiceP :: IDSupply -> ST t0 -> ST t0 -> ST t0
choiceP v2 v_1 v_2 = Choice v1 v_1 v_2

where v1 = uniqueID v2

data STList t0 = STNil | STCons (ST t0) (ST (STList t0))

3.2.5. Normal form instances

The generation of normal form instances is centered around the function nfSTCase, which
yields an expression and takes a constructor name, a list of variables that occur in
the constructor’s pattern and a list of variables that have been bound by case variable
patterns. The top-level case expression of nf distinguishes the constructors of the ST
type. If the constructor does not have arguments, the result is the same constructor

1The transformed type has an additional IDSupply argument that was not mentioned above.
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3. Implementation

wrapped in Val. Otherwise nfSTCase is used to create the nested case expressions. The
recursive call of nf is applied to the first variable in the constructor variable list and the
result is distinguished between Choice, Fail and the other constructors. The last case
is the most interesting one because the result is matched by a variable that the next call
of nfSTCase receives. The constructor variable that was used in the nf expression before
is removed from the list and the next nested case expression is created. This procedure
is done until the list of constructor variables is empty. Then, the constructor is applied
to the list of bound variables that were collected in the calls to nfSTCase and wrapped
with a Val.

instance NF t0 => NF (STList t0) where
nf v9 =

case v9 of
STNil -> Val STNil
STCons v10 v11 ->

case nfST v10 of
Choice v12 v13 v14 -> Choice v12 (nf (STCons v13 v11))

(nf (STCons v14 v11))
Fail -> Fail
v15 ->

case nfST v11 of
Choice v16 v17 v18 -> Choice v16 (nf (STCons v15 v17))

(nf (STCons v15 v18))
Fail -> Fail
v19 -> Val (STCons v15 v19)

3.2.6. ConvertST instances

Generating the ConvertST requires that we know which types need to be converted.
When plural functions are generated, their type is added to the state together with the
original function’s state. From this information, the necessary instances can be inferred.
For example, anyOf :: [Int] -> Int and anyOfP :: ST (STList Int) -> ST Int2

are added when transforming anyOf. Then, both types are compared by removing the
ST constructors and comparing the remaining type constructors. In this case, the re-
sult without duplicates is [([], STList), (Int, Int)]. Now we know that we need
instances for both type pairs. The (Int, Int) instance is just a specialized version of
id.

toValST_Int_Int :: Int -> Int
toValST_Int_Int = id

fromValST_Int_Int :: Int -> Int
fromValST_Int_Int = id

2The IDSupply argument is omitted because it does not add any information.
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3. Implementation

Complex instances like ([], STList) are generated by iterating over the matching con-
structor pairs of the types. Since multi-parameter type classes are not supported in Curry
yet, type variables result in additional instance function arguments. The rules of the in-
stances are generated according to the pattern shown in the paper. The only difference
is that whenever a recursive instance call is necessary, we need to inspect the pattern
variable of the constructor for its type. If it is the same type we are currently generation
the instance for, a simple recursive call suffices. If it is polymorphic, the appropriate
instance function argument (the order of arguments needs to match the order of first
occurrence in the type) is chosen. If it is a type that is neither the current instance
type nor a polymorphic type, we need to look up the instance in a local map. Since
currently only one set function is generated at once, the local map is sufficient because
all instances that we generate based on the type comparison are required. When multiple
set functions are generated at once, duplicate instances could appear and a global map
to look up instances would be more efficient.

toValST_List_STList :: (t0 -> ST t1) -> [t0] -> STList t1
toValST_List_STList v20 [] = STNil
toValST_List_STList v21 (v22 : v23) =

STCons (v21 v22) (toST_List_STList v21 v23)

fromValST_List_STList :: (t0 -> t1) -> STList t0 -> [t1]
fromValST_List_STList v24 STNil = []
fromValST_List_STList v25 (STCons (Val v26) (Val v27)) =

v25 v26 : fromValST_List_STList v25 v27

The remaining toST and fromSt functions are generated very similarly to the other
instances and differ only between basic and complex types in the number of instance
function arguments that need to be supplied to the respective toValST or fromValST
function.

toST_Int_Int :: Int -> ST Int
toST_Int_Int = Uneval . toValST_Int_Int

fromST_Int_Int :: ST Int -> Values Int
fromST_Int_Int = map fromValST_Int_Int . stValues

toST_List_STList :: (t0 -> ST t1) -> [t0] -> ST (STList t1)
toST_List_STList v28 = Uneval . toValST_List_STList v28

fromST_List_STList :: NF t0 => (t0 -> t1) -> ST (STList t0) -> Values [t1]
fromST_List_STList v29 = map (fromValST_List_STList v29) . stValues

3.2.7. Synthesizing set functions

Now that we have created all parts of the puzzle, the only remaining step is to piece
them together. The type of the set function is created by wrapping the return type of the
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3. Implementation

original function in a Values constructor. Then, the type is converted to an expression
by looking up the correct fromST and toST instances. Since up to now, polymorphic data
type instances have preserved polymorphism, we need to add concrete instance functions
based on the set function’s type. Polymorphic set functions are not supported. More on
the limitations of this implementation can be found in the next chapter.

anyOfS :: [Int] -> Values Int
anyOfS v30 =

fromST_Int_Int (anyOfP initSupply (toST_List_STList toST_Int_Int v30))
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4. Limitations, Conclusion and Outlook

Due to the prototype nature of the tool, some limitations exist. The current implemen-
tation does not support:

• Nested set functions

• Polymorphic set functions

• Higher-order functions

• External functions

• Free variables

• Record types and type synonyms

Nested set functions would require the addition of depth levels to plural functions to
distinguish failures as well as the ability to generate plural functions of set functions.
While polymorphic set functions could have a theoretical application, they are rare in
practice. In contrast, higher-order functions, external functions and type synonyms def-
initely need to be implemented to have a viable alternative to the current set function
implementation.
In conclusion, the prototype shows that the approach presented in the paper can be

implemented in a limited setting. When the tool reaches a sufficient degree of language
construct coverage and the reliability has been thoroughly tested, integrating it into the
Curry preprocessor would require a way to identify set functions in the source code.
While the transformation should work for functions of arbitrary arity, it might be useful
to keep an adapted version of the current set function interface to allow, for example,
better type errors.
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A. Repository

The project repository can be found at the following link.

https://git.ps.informatik.uni-kiel.de/stu114713/2018-setfunctions/tree/master/
CODE/setfunctions

Installing the tool requires a recent Curry installation with the Curry Package Man-
ager. Due to a bug in KiCS2, only PAKCS is supported at the moment. Executing
cypm install in the project directory installs the executable synsf. To use the tool,
the name of a Curry module and a function name need to be supplied, for example,
synsf Examples -f anyOf for the following program.

module Examples where

anyOf :: [Int] -> Int
anyOf (x:xs) = x ? anyOf xs

The output contains all necessary instances and the generated plural function as well
as the synthesized set function. Adding this code to the original file and importing the
appropriate ST module (TopLevelSharing for the current version of the tool) allows
testing the synthesized set function.
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