
Christian-Albrechts-Universität zu Kiel

Diploma Thesis

Design-Aid for Graphical User Interfaces in Declarative
Programming Languages

Ramon Gudschun

February 2011

Faculty of Engineering

Department of Computer Science

Programming Languages and Compiler Construction

Supervised by:

Prof. Dr. Michael Hanus

2

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel, den _______________________

3

Table of Contents
 1 Introduction..8
 2 Basics..9

 2.1 Glossary..9
 2.2 Curry Basics..11

 2.2.1 Modules...11
 2.2.2 Functions...11
 2.2.3 Types...13
 2.2.4 Lists and Tuples..14
 2.2.5 Higher-Order Functions..14
 2.2.6 Logic Variables..15
 2.2.7 Input/Output..15
 2.2.8 GUI..17
 2.2.9 UI..18

 2.3 Tcl/Tk Basics..20
 2.3.1 Widgets..20
 2.3.2 Layout...21
 2.3.3 Event Handling...21

 3 Analyzing GUI-Builders...22
 3.1 Criteria..22

 3.1.1 Layout...22
 3.1.2 Core Features..22
 3.1.3 Advanced Features..23
 3.1.4 Conclusion..23

 3.2 NetBeans...23
 3.2.1 Layout...24
 3.2.2 Core Features..24
 3.2.3 Advanced Features..25
 3.2.4 Conclusion..26

 3.3 Visual Studio...27
 3.3.1 Layout...28
 3.3.2 Core Features..29
 3.3.3 Advanced Features..30
 3.3.4 Conclusion..30

 3.4 GUI Builder..31
 3.4.1 Layout...31
 3.4.2 Core Features..32
 3.4.3 Advanced Features..33
 3.4.4 Conclusion..33

 4 Requirements and Restrictions...34
 4.1 Requirements..34

 4.1.1 Non-functional Requirements...34
 4.1.2 Functional Requirements..34

 4.2 Restrictions...36
 5 Extensions...37

 5.1 GUI...37
 5.1.1 Rowspan and Columnspan..37
 5.1.2 Empty Cells...38
 5.1.3 Images...39

4

 5.1.4 MatrixC...40
 5.1.5 Insert, Delete, Move and Configure..41

 5.2 UI2HTML...48
 5.2.1 Images...48
 5.2.2 Rowspan and Columnspan..49

 5.3 UI..50
 5.4 UI2GUI...52
 5.5 GUI2UI...53
 5.6 DynUI2GUI..54

 6 Design and Implementation..58
 6.1 Architecture...58
 6.2 Overview...59
 6.3 Core Features..60

 6.3.1 Palette..61
 6.3.2 Design View..62
 6.3.3 Properties..64
 6.3.4 Example..67

 6.4 XML-Files (Persistent Designs)...70
 6.4.1 FLUID2XML..70
 6.4.2 XML2FLUID..71

 6.5 Optimizations..71
 6.6 Advanced Features..73

 6.6.1 General Changes...73
 6.6.2 Moving Multiple Widgets...73
 6.6.3 Nested Layouts and the Hierarchy..74
 6.6.4 Custom Widgets..75
 6.6.5 Copy, Cut and Paste..76
 6.6.6 Undo and Redo..77

 7 Parsing..79
 7.1 XML2Curry..79
 7.2 Curry2XML..82

 8 Conclusion..83
Bibliography...84
 A Format of the XML-Files…...85
 B Contents of the CD-ROM..87
 C Installation of the Software..88
 D Manual for the Software..89

5

Illustration Index
Illustration 1: A simple counter GUI..18
Illustration 2: The structure of the UI-library...19
Illustration 3: The counter UI as a WUI...20
Illustration 4: An example GUI..22
Illustration 5: Designing a main window in NetBeans (we cut out irrelevant parts of the IDE).......23
Illustration 6: The example GUI designed with the Free Design...24
Illustration 7: The example GUI designed with the GridBagLayout...24
Illustration 8: The GridBagLayout Customizer..26
Illustration 9: Designing a menu..26
Illustration 10: Designing a main window in Visual Studio...27
Illustration 11: Customizing the TableLayoutPanel...29
Illustration 12: The example GUI designed with the TableLayoutPanel...29
Illustration 13: Designing a main window in the GUI Builder..31
Illustration 14: Customizing Rows and Columns...32
Illustration 15: Designing a menu and the final example GUI-design...32
Illustration 16: The final example GUI..33
Illustration 17: ColSpan and RowSpan..37
Illustration 18: Overlapping of a spanning widget...38
Illustration 19: RowSpan and ColSpan with an additional NULL widget...39
Illustration 20: Widgets with images. From left to right: button, check button and label..................40
Illustration 21: Inserting into a RowC..46
Illustration 22: Inserting into a ColC..46
Illustration 23: Inserting into a MatrixC and into an existing row...46
Illustration 24: Inserting into a MatrixC and into a new row...47
Illustration 25: Button with image in a WUI (left) and a GUI (right)..49
Illustration 26: RowSpan and ColSpan in a WUI...50
Illustration 27: The GUI-builder's layered model...59
Illustration 28: FLUID - overview...59
Illustration 29: Palette: shown and hidden...61
Illustration 30: Palette: second page...62
Illustration 31: The initial Design View...62
Illustration 32: Basic properties..64
Illustration 33: Special properties for a CommonListBox (left) and a MenuBar (right)....................65
Illustration 34: General properties..66
Illustration 35: Configuring a MenuItem's event handler...67
Illustration 36: Example: step 1..67
Illustration 37: Example: step 2..68
Illustration 38: Example: step 3..68
Illustration 39: Example: step 4..68
Illustration 40: Example: step 5..69
Illustration 41: Example: step 6..69
Illustration 42: The example designed for a WUI (left) and the resulting WUI (right).....................70
Illustration 43: XML example..71
Illustration 44: A naive depth-first-search strategy (searching .c.b)...72
Illustration 45: An improved search strategy (searching .c.b)..72
Illustration 46: Properties with sections instead of pages..73
Illustration 47: Moving multiple widgets (left: original design, right: design after moving)............74
Illustration 48: The hierarchy...75

6

Illustration 49: Custom widgets in the palette..75
Illustration 50: UI generator dialog..81

7

 1 Introduction
Modern applications often require a graphical user interface (GUI) to comfortably handle them.
The developer of an application has to design and implement this interface. Most programming
languages provide libraries for this purpose, but it is usually hard to imagine what the result of the
corresponding source code will look like and if everything fits well together. Furthermore, the
variety of options and graphical components, the so called widgets, such a library offers,
complicates the development of GUIs. It can be aided by tools, the GUI-builders, which are
available for some languages and GUI-libraries. It is possible to graphically design the interface and
thus immediately get an impression of the final result, as well as an overview of the available
widgets, with these tools. The output is generated source code, which corresponds to the design.

Applications can be divided into desktop applications and web applications. While desktop
applications run on the local machine, web applications are distributed to multiple ones, where the
access to clients is provided by a web browser. As the so called look and feel, defining the
appearance and behavior of widgets, is related to that of the operating system for the former kind of
applications and the browser's for the latter, user interfaces (UIs) should also be divided. In the
following the term GUI is used for UIs of desktop applications and web user interface (WUI) for
those of web applications.

Hanus introduced a GUI-library for the functional-logic programming language Curry in [Hanus
2000]. This approach has been extended and brought to a more abstract level by Hanus and Kluß in
[Hanus, Kluß 2009], where the so called UI-library is described. Its advantage is that it is not related
to a concrete type of user interfaces, but can be employed to define any type with a single
definition.

The goal of this diploma thesis is to develop a GUI-builder for the UI-library in Curry (actually the
term UI-builder is more appropriate, as GUIs and WUIs shall be supported). It shall realize the
current standards for this kind of applications, although, in contrast to our implementation, just one
kind of UIs is usually supported. Therefore, our process model prescribes an analysis of similar
tools, where these standards can be derived and defined as requirements. This phase is followed by
several extensions of the library, which are necessary to realize some of the requirements. The
actual design and implementation covers the definition of an architecture and the concrete features
related to the requirements and runs on an iterative and incremental basis. This procedure allows to
implement features step by step and test each; hence, the system is consistent at any time. Due to
the architecture, the generation of source code can be decoupled from the rest of the system. The
final chapter deals with this subject.

8

 2 Basics
In the following we provide short definitions for terms and abbreviations we employ in the later
chapters. Furthermore, we introduce the basics of the programming language Curry, as well as
some of its libraries. Finally, we examine the basic aspects of the scripting language Tcl and its
framework Tk for graphical user interfaces.

 2.1 Glossary

User Interface (UI): In computer science, a user interface is a system to control a program with
input methods, like the keyboard or the mouse. The UI represents information graphical, textual or
auditory [Wikipedia].

Graphical User Interface (GUI): A graphical user interface is a special type of UI, where
information is graphically represented by widgets, in contrast to a pure textual representation. A
GUI can usually be controlled by direct manipulation of widgets [Wikipedia].

Web User Interface (WUI): As a web user interface usually consists of graphical components, too,
it actually is a subtype of a GUI, but is mainly used in web applications [Wikipedia]. We
differentiate between a GUI for a desktop application and a WUI for a web application in this
context.

Widget: A component in a GUI, like a button or a window, is called widget. A widget represents the
program's data and provides an interaction point to directly manipulate it [Wikipedia].

Live Widget: There are two approaches to define a widget in a GUI-builder: either as a live widget,
using the concrete widget from the GUI-library or as a simulation resp. a proxy of it, using other
widgets [Molin et al. 1996]. The latter approach is sometimes taken if operations to configure the
concrete widget and thus the GUI-design are not applicable. An example for such a proxy is a
widget displaying just an image of the concrete widget.

Layout Manager: A layout or geometry manager is a system in a GUI-library to lay widgets out. In
contrast to an absolute layout, where widgets are laid out pixel-wise, i.e., the user has to directly
define positions and sizes, it provides a more abstract view, where positions and sizes are defined
relative to each other [Wikipedia].

Look and Feel: The look and feel is a property of a GUI. Shapes, colors and layout define the look
and the behavior of widgets defines the feel [Wikipedia]. If a GUI's look and feel corresponds to the
operating system's, it is called native.

Tcl/Tk: Tcl is a scripting language. The Tk GUI toolkit is an extension package for Tcl. As Tcl is
frequently used together with this extension, it is often referred to as Tcl/Tk [Wikipedia].

Curry: Curry is a programming language, which combines two declarative paradigms: logic and
functional programming. Its features are, for example, search, computing with partial information
and efficient evaluation [Curry].

Integrated Development Environment (IDE): An integrated development environment is an
application to aid software development. Part of an IDE usually is an editor for source code, a
compiler and/or interpreter, as well as build tools and a debugger [Wikipedia].

UI-Builder and GUI-Builder: A GUI-builder is an application to graphically design a GUI by
arranging widgets; hence, it is a GUI itself. The output is the GUI's source code. An advantage over
the direct definition of a GUI in code is that a user can immediately see the consequences of his
design decisions, due to the WYSIWYG principle [Wikipedia]. In the following the term UI-builder

9

is sometimes used to express that it may produce different kinds of UIs, not just GUIs.

What you see is what you get (WYSIWYG): What you see is what you get means that a system's
content, which is graphically represented, corresponds to the final output [Wikipedia]. This
principle is an important property of GUI-builders, where a user-defined design should look like the
resulting GUI, which is generated by the builder.

Hypertext Markup Language (HTML): The Hypertext Markup Language is a markup language
for web pages, which can be read by web browsers. An HTML-document's content is described by
elements, the so called tags. A tag is enclosed in angle brackets (“<>”) and usually corresponds to a
closing tag, which contains an additional leading slash. There can be text between an opening and a
closing tag. A heading can, for example, be defined with the tag

<h1>This is a heading.</h1>

and the interpreter, usually a browser, displays the text with a big and bold font. A tag may also
have attributes, to further define its properties, e.g.,

<h1 align=”center”>This is a centered heading.</h1>

to define a centered heading [Wikipedia].

Cascading Style Sheets (CSS): Cascading Style Sheets is a language to describe the presentation of
a document defined in a markup language, especially HTML. Its main purpose is to separate a
document's presentation from its content. Hence, while using the same document, the presentation
may be changed by replacing just the style sheet. One or more styles can also be defined as a tag's
attribute, resulting in a tag like

<h1 style=”text-align:center”>This is a centered heading.</h1>

for a centered heading again [Wikipedia].

JavaScript: JavaScript is an object-oriented scripting language. It is primarily used on the client-
side of web applications in order to implement a WUI [Wikipedia].

Common Gateway Interface (CGI): The Common Gateway Interface allows to create interactive
web pages by any programming language. A user's request to the web server is delegated to an
application program, which returns a new web page in terms of an HTML-string [Wikipedia].

Extensible Markup Language (XML): The Extensible Markup Language is a markup language
for documents. Like HTML, it employs tags and attributes to hierarchically describe a document. In
contrast to HTML, it can be used for any kind of document, not just web pages, although a common
use case is to describe a message, which is sent over the Internet. The tags and their attributes are
defined by a developer [Wikipedia].

Command Pattern: The command pattern is a design pattern, where a command, i.e., a function or
method, is encapsulated into an object. Implementing this pattern allows to set up a queue for
commands, as well as logging and undoing them. The client creates the command object with the
required parameters, especially the receiver to execute the command on. The object offers an
interface to execute and undo itself and the caller does not have to know any details, except for this
interface, to execute or undo a command. In order to realize undo, it is often necessary to save the
receiver's state in the command object before it is executed [Freeman et al. 2008].

Model View Controller (MVC): Model View Controller is a composite pattern. It consists of three
components: the model, the view and the controller. The model contains the data and the application
logic. It offers an interface to access and manipulate its state. The view represents the model to the
user, e.g., in a GUI. The controller reacts on user interactions, i.e., handles events, with the view and
accordingly changes the model and/or the view. Hence, the goal of MVC is to separate concerns
from each other and thus it simplifies the implementation of and changes to each of its components.

10

A component may implement several patterns and the communication between components is often
modeled with patterns, too. Therefore, the model is independent from view and controller and there
may, for example, be different views for the same model. There can also be different controllers for
one view, which can be replaced one another, e.g., one for an administrator and another for a normal
user.

 2.2 Curry Basics

The UI-builder we are developing in this work is implemented in the functional logic programming
language Curry. In the following we would like to introduce the language's basic aspects, based on
the [Curry tutorial], as well as the libraries for user interfaces. The most important features of
declarative languages, namely nested expressions, lazy evaluation, higher-order functions, logic
variables, partial data structures and search are covered by Curry. We cannot provide a complete
definition of the language here; therefore, we focus on the features which are required below.

The language's implementation is distributed with a command line interpreter. There are different
ones, but we stick to the most advanced, called PAKCS (Portland Aachen Kiel Curry System).

 2.2.1 Modules

Although PAKCS provides an interactive environment, where simple commands can be directly
evaluated, more complex programs have to be concluded in a module. A module is defined in a file
with the extension “.curry”. It can import other modules, in order to make their contents available to
the current one. Furthermore, a module contains a set of function definitions. The predefined
module Prelude, which defines the most frequently used functions, like *, +, -, / and ==, >, <,
>=, <=, /=, is always implicitly imported.

 2.2.2 Functions

A function is defined by one or more rules, which have a left-hand side and a right-hand side,
separated by an equals sign. The following example, with a single rule, computes the square of the
given value:

square x = x * x

The left-hand side, square x, is a pattern, where a concrete call of the function square, e.g.,
“square 3”, is tried to match to. If the argument of the call matches, its value is bound to the pattern
variable x; thus, it can be employed on the right-hand side. After that, the expression on the right-
hand side, x * x, is evaluated. A function f is usually evaluated by applying f on an expression e
(e.g., a variable or another function call), i.e., “f e”. In Curry a function can also be declared for
infix application, in order to fit the usual notation. This is the case for the multiplication *, which is
part of the Prelude.

A function can also be anonymously defined. The construct

\e1 -> e2

creates an anonymous function with arguments defined by e1 and the right-hand side defined by
e2. See below for an example.

The right-hand side of a rule can also contain a conditional expression. It has the form

if p then e1 else e2

where p denotes a predicate yielding either True, to evaluate e1 or False, to evaluate e2. E.g.,

square x = if x == 1 then x else x * x

11

Another kind of conditional is the case expression. It has the basic form

case e of
 p1 -> e1
 p2 -> e2
 ...

where e is an expression, which may match to one of the patterns pi. If it matches, the
corresponding expression ei is evaluated.

The right-hand side of a function may also contain a recursive call, i.e., a call of the function itself.
The following example attempts to realize an iterative version of a function, which computes the
power of the value x to n. The parameter p accumulates the current value and initially contains the
radix x, too:

power x n p = if n > 1 then power x (n - 1) (p * x) else p

As Curry does not provide any control structures for loops, recursion is one of its core aspects.

The above definition of power is mathematically incorrect, as, for example, the call “power 3 0 3”,
which should compute three to the power of zero, returns three and not one and the current
definition does not take this case, where the exponent is zero, into account. We could just add
another conditional expression, but let's try to solve this by using multiple rules, which cover the
different cases:

power _ 0 _ = 1
power _ 1 p = p
power x n p = power x (n - 1) (p * x)

The left-hand side of a rule or a pattern of a case expression may not just contain variables, but also
an expression for each argument, like the constants 0 and 1 in this case. An underscore denotes that
any expression matches the pattern for this argument. It is called anonymous variable.
Programming with multiple rules and concrete patterns is often easier than with, e.g., nested
conditional expressions, because the desired cases can directly be written down. However, calling
“power 3 0 3” again, might lead to a surprising result: There are different solutions. This is due to
another feature, namely non-determinism. “power 3 0 3” matches to the patterns of the first and the
third rule; hence, the interpreter can choose which one is evaluated. In general, by the order a
function's rules have been evaluated in, its results can differ, if more than one pattern matches the
expression. If this behavior is undesirable, the rules have to be defined non-overlapping, i.e., with
mutual exclusive expressions on their left-hand sides.

The left-hand side of a rule may contain a so called guard. This is a predicate, which further defines
a pattern. If the pattern matches and the guard yields true, the right-hand side is evaluated. A guard
is lead in by a pipe. We can add it to the example to distinguish the third rule from the others:

power _ 0 _ = 1
power _ 1 p = p
power x n p | n > 1 = power x (n - 1) (p * x)

A rule may contain several guards with corresponding right-hand sides. We can add another one to
the third rule to catch the case that the exponent is less than zero and print an error message (the
function error from the Prelude stops execution and prints the given string):

power x n p | n > 1 = power x (n - 1) (p * x)
 | n < 0 = error "Invalid exponent!"

The definition of power is still a bit impractical, as the radix has to be passed in twice. We would
like to hide this argument by using local definitions. There are two ways to locally define a
function:

12

let e1 = e2 in e3

defines the expression e2 as e1 in the scope of e3 and

where e1 = e2

defines e2 as e1 in the current scope. There can be multiple definitions in one let clause or where
clause and clauses may be nested. Thus, the redefined example has the following form:

powerL x n =
 let power _ 0 _ = 1
 power _ 1 p = p
 power x n p | n > 1 = power x (n - 1) (p * x)
 | n < 0 = error "Invalid exponent!"
 in power x n x

or

powerW x n = power x n x
 where power _ 0 _ = 1
 power _ 1 p = p
 power x n p | n > 1 = power x (n - 1) (p * x)
 | n < 0 = error "Invalid exponent!"

 2.2.3 Types

So far, it may seem as if Curry was an untyped language. In fact, it is strongly typed, i.e., functions
and arguments with the wrong type are detected by the compiler, but with the possibility to infer
types. If a function's definition does not provide a type declaration, the compiler's type inference
algorithm computes a correct one, if possible. Nevertheless, it is better programming style to
manually declare a type, at least for complex functions, as it contains information regarding the
function's usage.

A data type is a set of values. It is defined by

data t = v1 | v2 | …

where t is the name of the type and the vi are the different values it can take, i.e., the constructors,
which are separated by a pipe. The Prelude predefines the most frequently used types, like Bool
for booleans, Int for integers and Char for characters. If, e.g., Bool was not predefined, it could
be as follows:

data Bool = True | False

Furthermore, a data type may be parameterized by adding one or more type variables. This is often
useful in order to define an abstract data structure, which can hold different types of values, like a
binary tree:

data BinTree a = Leaf | Node a (BinTree a) (BinTree a)

Hence, such a tree has a polymorphic type and can be parameterized with, e.g., Int or Char for a,
to declare the type of its content.

A function's type may now be declared by its name and a sequence of types for its arguments, as
well as its return value, for example:

square :: Int -> Int
square x = x * x

setNodeValue :: BinTree a -> a -> BinTree a
setNodeValue Leaf _ = Leaf
setNodeValue (Node _ left right) new = Node new left right

13

The type declaration is started by :: followed by the argument types and the type of the return
value, separated by ->.

Finally, frequently used data types can be abbreviated by declaring a type synonym, for example

type IntBinTree = BinTree Int

 2.2.4 Lists and Tuples

A very important data structure in Curry is a list. Lists are built-in and can be created using a special
syntax. A list either is nil, i.e., empty or cons and contains at least one element and a rest list, which
may be nil. The constructor for nil is [] and for cons it is the infix operator :. A list's type is the
type of its elements enclosed in brackets, e.g., [Char]. The following function creates a list of
ascending integers from zero to a given value:

nums :: Int -> Int -> [Int]
nums n max | n >= max = []
 | otherwise = n : nums (n + 1) max

The function nums recursively appends a list of numbers to the preceding one until the current one
is greater or equal than the given maximum. Hence, the call “nums 1 5” creates the list 1 : (2 :
(3 : (4 : []))). The constant function otherwise from the Prelude always yields
True and is often used for the last one in a sequence of guards.

Functions on lists usually define one rule for nil, i.e., a pattern with the expression [] and another
one for a non-empty list, i.e., an expression (x : xs), where x is the list's first element and xs
the rest-list.

A list may alternatively be created by enclosing one or more elements, separated by commas, in
brackets, e.g., [1, 2, 3, 4]. Furthermore, a list can be appended to another one by the
operator ++. Note that in Curry a string is just a list of characters; hence, “Hello” is equal to the
list ['H', 'e', 'l', 'l', 'o'].

A second important data structure is a tuple. In contrast to a list it has a constant length, but may
contain values of different types. It is created by enclosing expressions in parenthesis, separated by
commas, e.g.,

(“Test”, 123, 'a')

defines a triple of the type (String, Int, Char).

 2.2.5 Higher-Order Functions

In Curry a function's argument may be a function itself, where arguments have not or just partially
been applied to the latter. A function of the former kind is called higher-order function. This concept
supports the implementation of flexible algorithms. The following (naive) sorting algorithm for a
list takes an ordering criterion as an argument:

sort _ [] = []
sort f (x : xs) = insert f x (sort f xs)

insert _ x [] = [x]
insert f x (y : ys) | f x y = x : y : ys
 | otherwise = y : insert f x ys

Hence, one can, for example, call “sort (<=) [3, 4, 2, 1]” for an ascending ordering or “sort (>=) [3,
4, 2, 1]” for a descending ordering, without redefining sort.

14

Higher-order functions are very common for the predefined functions, especially for the ones
defined on lists, like map and filter:

inc :: [Int] -> [Int]
inc l = map (1 +) l

removeSpaces :: String -> String
removeSpaces s = filter (\c -> c /= ' ') s

map applies the given function on any element of the given list and filter retrieves a list from
another one, with elements satisfying a given predicate.

 2.2.6 Logic Variables

In contrast to a pattern variable, a logic variable occurs in the guard and/or the right-hand side of a
rule, but not in the left-hand side. Therefore, it cannot be bound to a value by matching a function
call, but its value is computed by the interpreter at runtime. A logic variable is locally declared by
the keyword free, e.g.,

… where var free

It is evaluated either by residuation or narrowing. On the one hand, if v is a logic variable in the
expression e, which cannot be evaluated, residuation suspends the evaluation of e until another
expression has bound a value to v or the evaluation fails, if such an expression does not exist. For
example, a call of the following function would suspend:

doubleR x | y == x + x = y
 where y free

On the other hand, narrowing guesses a value, which would allow evaluation to continue and binds
it to v. The so called constrained equality =:= differs in two ways from the common boolean
equality ==: Firstly, its return type is not Bool, but Success, with the related predefined
operations success and failed, to denote whether guessing was successful or not. Secondly, it
narrows instead of residuating. Hence, the following function would correctly double the given
value:

doubleN x | y =:= x + x = y
 where y free

 2.2.7 Input/Output

So far, we defined functions with a number of arguments, which yield the result of an application of
expressions on these arguments. In contrast to imperative languages, such a function cannot have
side effects, like changing the value of a global variable, i.e., it has no influence on its environment.
But, if, e.g., input is read from the command line or the content of a file is changed, the
environment, called world in this context, is changed, too. Therefore, if a function effects the world,
it returns the new state. Such a function is called (I/O-) action and this concept monadic I/O. The
changes take effect by implicitly applying a sequence of actions on the world and returning the type
IO t, which is an abbreviation for

World -> (t, World)

and t is the actual result of the function, e.g., a file's content or (), if it is just the new world. Any
function has implicit access to the world, without requiring an argument. For example, the
predefined action getChar, which reads a single character from the standard input, has the type

getChar :: IO Char

and putChar, which prints a character to the standard output, has the type

15

putChar :: Char -> IO ()

Two actions can be combined to a sequence by the function

(>>) :: IO a -> IO b -> IO b

where the result of the first one is ignored, for example to print a string followed by a newline:

putStrLn [] = putChar '\n'
putStrLn (c : cs) = putChar c >> putStrLn cs

When the result of the first action is required in the second, the function

(>>=) :: IO a -> (a -> IO b) -> IO b

can be applied instead. Furthermore, the built-in action

return :: a -> IO a

just returns the argument, without changing the world and the abbreviation

done :: a -> IO ()

returns nothing.

More than two actions can be combined by repeatedly applying >> or >>=, but a more convenient
way is the do notation. If do is applied on a number of vertically aligned actions, they are
combined to a sequence, e.g.:

do putStrLn “Hello”
 putStrLn “World”
 putChar '!'

In a sequence of actions in the do notation, input can be stored in a variable by the operator <-, for
example

do c <- getChar
 putChar c

which is just an abbreviation of

getChar >>= \c -> putChar c

The following example reads the file with the given name, appends the given string, writes the file
back and returns its original content:

appendToFile :: String -> String -> IO String
appendToFile str file = do
 content <- readFile file
 writeFile file (content ++ str)
 return content

Sometimes it is necessary that actions share a variable holding a state, which is manipulated by a
controlled side effect. This can be achieved with IO-references, defined in the module IOExts.
They are used similar to files, but are not persistent and can hold any type of value and even a
function.

newIORef :: a -> IO (IORef a)

creates a new IO-reference with an initial state,

readIORef :: IORef a -> IO a

retrieves the state of an IO-reference and

writeIORef :: IORef a -> a -> IO ()

updates the state.

16

 2.2.8 GUI

In the following section we would like to introduce Curry's library for graphical user interfaces
[Hanus 2000], which is defined in the module GUI. In this library, a GUI consists of one or more
widgets. These are organized in a hierarchical tree-like structure. The root of this hierarchy is a
container or layout widget:

data Widget =
 Row [ConfCollection] [Widget]
 | Col [ConfCollection] [Widget]
 | Matrix [ConfCollection] [[Widget]]
 | ...

Such a widget can contain further widgets. The layout of these sub-widgets or children is based on a
flexible grid: The available display space for the parent is distributed to cells and one cell is
assigned to each child. A Row provides a single row of cells for a horizontal layout, a Col a column
for a vertical layout and a Matrix a list of rows, which results in a table-like structure.
Furthermore, a layout widget determines a list of configurations for any of its children, in order to
align them, if a cell's size is greater than the widget's:

data ConfCollection = CenterAlign | LeftAlign | TopAlign | ...

In contrast to a layout widget, a “primitive” widget cannot have children, but a list of ConfItems:

data Widget =
 PlainButton [ConfItem]
 | Entry [ConfItem]
 | Label [ConfItem]
 | ...

A ConfItem corresponds to a specific configuration option, e.g., simple ones, as a text label,
width or reference, as well as an event handler, which is slightly more complex:

data ConfItem =
 Text String
 | Width Int
 | WRef WidgetRef
 | Handler Event (GuiPort -> IO [ReconfigureItem])
 | ...

References are based on logic variables, which are bound by narrowing; hence, in order to declare a
widget's reference, one just has to name it and declare it free.

An event handler is a function or command, which is called when an event, like pushing a button,
occurs. The most common kinds of events are

data Event = DefaultEvent | MouseButton1 | MouseButton3 | ...

where a DefaultEvent is the standard event of a widget, as the button-push mentioned above.
The handler's argument, the GuiPort, is automatically passed to the handler when it is called by
the scheduler. It provides an interface to the communication stream with Tcl/Tk, on which the
library is based. Because an event handler impacts the world, its return type is IO, together with a
list of ReconfigureItems. An event handler may write something to a file or a database, but a
common use case also is to apply changes on widgets. This is what the ReconfigureItems are
used for. There are different constructors for this type, but usually just the following is required:

data ReconfigureItem = WidgetConf WidgetRef ConfItem

Thus, a reconfiguration of a widget is performed by creating one or more ReconfigureItems
with the widget's reference and the new property and returning these in an event handler.

Furthermore, the function

17

getValue :: WidgetRef -> GuiPort -> IO String

retrieves a widget's current value, which is related to the kind of the widget and

setValue :: WidgetRef -> String -> GuiPort -> IO ()

sets it. For a PlainButton this is its text label and for an Entry the current text.

Finally,

runGUI :: String -> Widget -> IO ()

runs the given widget in a new window with the given string as its title.

The following example shows a simple counter GUI:

import GUI
import Read

widget = Col [] [
 Entry [WRef counter, Text "0"],
 Row [] [
 PlainButton [Text "Count", Handler DefaultEvent count],
 PlainButton [Text "Reset", Handler DefaultEvent reset]
]
]
 where counter free
 count gp = do
 val <- getValue counter gp
 setValue counter (show ((readInt val) + 1)) gp
 return []
 reset _ = return [WidgetConf counter (Text "0")]

main = runGUI "Counter GUI" widget

The Entry with the reference counter is controlled by two PlainButtons. For this purpose
each one has an event handler assigned to it. In the first command, the current text of the Entry is
retrieved by getValue. The text is casted to an integer by the function readInt from the
module Read, incremented, casted back to a string by show and then assigned to the Entry by
calling setValue. As there are no ReconfigureItems, an empty list is returned. In the second
command a ReconfigureItem with the new text is created and returned, instead of calling
setValue.

 2.2.9 UI

Besides the GUI-library, a more abstract approach for UIs has been proposed by [Hanus, Kluß
2009]. Its main purpose is to provide a general definition to describe any kind of UI. The structure,
defined by the module UI, is similar to that of the module GUI. There are different kinds of widgets,
like buttons and text fields, organized in a grid-based layout and corresponding layout widgets, but
instead of a concrete constructor for each widget, a generic one is used:

18

Illustration 1: A simple
counter GUI

data Widget r act1 act2 =
 Widget
 (WidgetKind r act1 act2)
 (Maybe String) (Maybe (Ref r)) [Handler act1 act2]
 [StyleClass]
 [Widget r act1 act2]

Hence, any widget basically has the same structure. The constructor's parameters are:

1. The kind of the widget, for example Button or Row.

2. A text label (the type Maybe from the Prelude either is created by Just v, if the value
v shall be defined or Nothing).

3. A reference. There is no special constructor required to create one, except for Just.

4. A list of event handlers. Defining a handler is slightly different than in the GUI-library, as
the command is created by the additional constructor Cmd.

5. A list of style classes. A StyleClass is a list of Styles and a Style configures a
widget regarding its appearance and layout, e.g., Fill X to horizontally stretch it to the
size of its cell or Bg Blue to set its background to blue.

6. A list of children.

The types of the type variables r, act1 and act2 are determined by the modules providing the
concrete implementation (see below), e.g., the type of a reference or the type of an event handler.

For the most common widgets and use cases abbreviations of this constructor exist, for example

col :: [Widget r a1 a2] -> Widget r a1 a2

to create a Col from a list of children or

label :: String -> Widget r a1 a2

to create a Label with the given text. However, as, for example, references and handlers are not
taken into account by every function, we will usually stick to the generic constructor in the context
of this work.

Furthermore, functions to run the UI and dynamically change a widget's configuration have been
abstractly implemented, like runUI (replaces runGUI), getValue (as before), setHandler
(sets a new event handler) and changeStyles (applies style classes).

In order to define and finally run a UI, a concrete implementation of these abstract definitions has to
be provided. So far, there are implementations for a WUI in the module UI2HTML, which is based
on HTML and JavaScript and a GUI in the module UI2GUI, which is again based on the module
GUI. Illustration 2 shows the structure.

19

Illustration 2: The structure of the UI-
library

UI

UI2HTMLUI2GUI

GUI HTML SpicyWeb

The advantage of the abstract approach is revealed when a concrete UI is implemented. The
following example redefines the counter GUI from above as a UI:

import UI2HTML --UI2GUI
import Read

widget = col [
 entry counter "0",
 row [
 button count "Count",
 button reset "Reset"
]
]
 where counter free
 count env = do
 val <- getValue counter env
 setValue counter (show ((readInt val) + 1)) env
 reset env = setValue counter "0" env

main = runUI "Counter UI" widget

The abbreviations have been employed instead of the generic constructor here. Using the latter, the
first button, for example, would be implemented as follows:

Widget Button (Just "Count") Nothing [Handler DefaultEvent (Cmd count)]
 [] []

In order to define the UI either as a GUI or a WUI, the corresponding module has to be imported,
like UI2HTML for a WUI, in this case. The rest of the source code stays untouched. To finish a WUI
definition, the command line tool makecurrycgi then creates a CGI-script from the *.curry-file,
which can be run by a web server and accessed by a web browser.

Illustration 3 shows the result as a WUI. The GUI-version exactly looks as in Illustration 1.

 2.3 Tcl/Tk Basics

Because the module GUI is based on Tcl/Tk, we would like to give a short introduction to the latter,
based on the [Tk tutorial]. There are three important concepts in Tk: widgets, layout management
and event handling.

 2.3.1 Widgets

Tk offers classes for many different kinds of widgets, like buttons, labels, entries and frames. Most
of them have also been implemented in GUI and UI. In Tk they are also organized in a hierarchy.
The root window is always at the top and may contain several widgets and content frames. Each
content frame may again contain a number of widgets, as well as further content frames.

In order to create a widget, one has to declare its class and label. The label also represents the
hierarchical structure, where a parent-child relationship is denoted by a dot. The root window
always has the label “.”. Hence, for example a button as a child of the root window can be created
by

button .b

If we would add it to a frame before, this would be declared as

frame .f
button .f.b

20

Illustration 3: The counter UI as a WUI

The outcome of such a declaration is a so called object command, where methods to communicate
with the widget can be called on.

Related to its class, a widget can be configured by a sequence of configuration options, e.g., a
button's text, width or color. This can either directly be done when the widget is created or by
calling configure on the object command:

button .b -text “Ping”
.b configure -text “Pong”

 2.3.2 Layout

By declaring and configuring a widget, it will not yet be displayed. To achieve this, its size and
position on the screen has to be determined by a layout manager. Each content frame has its own;
thus, layouts can be nested. There are several kinds of layout managers in Tk, but we stick to one
called grid. This is a method, which can be called on object commands, together with options for
the specific layout, e.g.,

grid .b -row 1 -column 1

The layout manager arranges the available space in a grid, where each widget is placed in one or
more cells. It is common to use “grid” as a verb, i.e., saying “to grid”. Important options for grid
are:

• row determines the row position in the grid.

• column determines the column position in the grid.

• rowspan determines the number of rows a widget spans in the grid.

• columnspan determines the number of columns a widget spans in the grid.

• If a widget is smaller than its cell(s), sticky defines what to do with the remaining space.
A combination of directions, i.e., w(est), n(orth), e(ast) and s(outh), is assigned to the option
to define an orientation. Two opposite directions can be combined, in order to make the
widget fill the available space horizontally or vertically. A combination of all directions
makes the widget fill all the available space.

 2.3.3 Event Handling

In order to define how a widget reacts on certain events, an event handler or callback has to be
assigned. For the usual default event, which can occur on a widget, e.g., pushing a button, this is
possible via the command option. For example

button .b -text “Ping” -command {.b configure -text “Pong”}

changes the button's text from “Ping” to “Pong”, when it is pushed (we anonymously define the
callback in braces (“{}”) here, but it is, of course, also possible to define a procedure and assign its
name, but we do not go into details regarding procedures here). For other events than the default,
the bind command is used:

bind .b <3> {.b configure -text “Ping”}

This example binds the event <3>, which corresponds to a right mouse button click, to an event
handler, which sets the button's text to “Ping” again.

21

 3 Analyzing GUI-Builders
In this chapter we analyze and evaluate existing GUI-builders. With the results we will be able to
emerge requirements for an own builder. These are common features, we think a GUI-builder must
have and a user expects to find in such an application, as well as some special nice-to-have features.

We have chosen two popular IDEs with GUI-builders and one standalone application for the
analysis. These are:

• The NetBeans IDE [NetBeans], which has especially been designed for Java and its GUI-
framework Swing, but also supports languages like C and C++.

• Visual Studio 2010 Express [Visual Studio] for C++. The regular versions support multiple
languages, the express editions a single one each. We have chosen the C++-version.

• GUI Builder [GUI Builder] is a standalone builder for Tcl and the Tk-framework. There is
support for other languages as well. It is related to the SpecTcl project.

The latter fits our purposes well, as Curry's GUI-library and GUI Builder both are based on Tcl/Tk
and thus have similar requirements regarding layout, widget types and their properties.

We had also planned to examine SharpDevelop [#develop], an IDE that has been designed for C#
and Basic. But it turned out to be too similar to Visual Studio and therefore would not provide any
further knowledge.

We employ a set of criteria for the evaluation, see next section. With each GUI-builder we also
design a simple GUI, in order to check how well standard use cases can be realized. As an example,
we create a calculator, which should look similar to the following sketch:

 3.1 Criteria

We are now defining a simple set of criteria or categories for the different aspects of a GUI-builder,
inspired by [Molin et al. 1996]. Based on these, we evaluate the builders introduced before.

 3.1.1 Layout

We examine which kinds of layouts the builder supports and give a rough description. As this
strongly depends on the underlying GUI-library, we put more weight on the usability of these
layouts, like the possibility to nest them and access widgets in these, as well as their general
configuration.

 3.1.2 Core Features

These are basic features, like the placement of widgets and accessing and changing their properties.

22

Illustration 4: An example GUI

5 6
1 2 3
4
7 8 9

-

+
*
/

=

 21+21

File

The goal is to examine features which are absolutely necessary to design a GUI. Also, as menus are
likely to be different from common widgets, we are especially interested in how the builders handle
these. Another important aspect is how event handling can be managed.

 3.1.3 Advanced Features

We examine whether there are uncommon, but useful features, as well as features not really
required to design a GUI, but nice to have or probably expected by users. These cover direct
manipulation of widgets, drag and drop and the design and import of custom widgets.

 3.1.4 Conclusion

In the conclusion we sum up the overall structure and usability of the application. A typical question
could be, if there is a chance a user gets lost in the amount of possibilities or if the program guides
him through the steps of designing the GUI. We also want to know if the resulting GUI is identical
to the one designed, i.e., if the WYSIWYG principle applies. We furthermore describe what we like
and what we dislike about the application, in terms of usability and usefulness. This is however
quite subjective.

 3.2 NetBeans

When starting NetBeans the first time, we can, after creating a new Java project, choose whether we
want to design a JFrame (a main window) or a JPanel (a standard container). Both options lead to
the following view:

On the left is the Workspace with the tool bar, where widgets can be placed and arranged. On the top
right is a list of widgets with symbolic icons, the Palette and below the Properties view for the
current widget. The Properties view contains four tabs; we focus on the Properties and the Events
tab here. Below these tabs, at the bottom of our screenshot, is a field which is providing some
additional information about the current selection, like a widget's or property's name and type and in
case of the latter, a short description.

23

Illustration 5: Designing a main window in NetBeans (we cut out irrelevant parts of the IDE)

There is also a view with a tree-like structure, called Inspector, not covered by the screenshot,
showing the widget hierarchy and the corresponding layouts.

One can switch between the design view and the generated source code in the tool bar. One can also
choose between the Selection Mode (the default) and the Connection Mode (see 3.2.3). Additionally,
there are some buttons in the tool bar to change a widget's layout (see 3.2.1).

The other components are described below.

 3.2.1 Layout

There are several types of layout managers available in NetBeans. We present the two more
powerful ones.

The default layout in the GUI-builder is the Free Design. When we
examine the generated code, we find out that this actually is the
GroupLayout. Widgets are aligned and sized relative to each other.
If widgets are of equal size, these changes can be solely applied by
direct manipulation (see 3.2.3). The alignment of different sized
widgets can be adjusted with the tool bar: Let's say there is a tall
and a flat widget side by side. When both of them are selected, the
buttons in the tool bar become active. By pushing one of the
corresponding buttons, the flat widget can then be aligned towards
the top, bottom or center of the taller.

The GroupLayout allows a rapid design, but lacks options regarding customization. We have not
been able to remove the spacing the layout manager adds between widgets (see Illustration 6). Also,
when changing a single widget in size or position, there are sometimes weird changes to other
widgets, so the layout for these has to be repeated.

The second layout type we examine is the GridBagLayout (see Illustration
7). Widgets are laid out based on a flexible grid, similar to Tcl/Tk and
Curry. A widget can just take a part of its grid cell or also several cells.
The widest widget defines the width of cells in that column and the
highest the height of cells in that row. Parameters, the so called
GridBagConstraints, like the position in the grid and the grid width for a
widget, can be applied via the widget's properties.

A disadvantage when laying out with the GridBagLayout is that there is no
way to directly manipulate widgets in the Workspace. To choose, for
example, a widget's cell, its properties have to be edited. Hence, one has to

know what a single GridBagConstraint exactly does. These disadvantages can however be
neglected for the most part when using the GridBagLayout Customizer (see 3.2.3).

Layouts can also be nested into each other.

 3.2.2 Core Features

One way to add a widget to another one is via the container's context menu, which is accessible by a
right mouse button click. The category and the widget are chosen in a sub-menu. Depending on the
layout manager, the widget will then be placed somewhere in the Workspace. A single widget can
then be selected with the mouse, a colored frame is put on it and its properties show up in the
corresponding tab in the Properties view. The properties can also be accessed by the context menu
in a separate dialog.

24

Illustration 6: The example
GUI designed with the Free
Design

Illustration 7: The
example GUI designed
with the
GridBagLayout

The properties are simple key-value pairs, but tailored to the concrete widget, without properties
which cannot be applied. The values are strings. They can be edited in text fields and some also
provide a drop-down menu with possibilities to choose from.

Menus (MenuBar, Menu and MenuItem) in NetBeans are more or less treated like other widgets (see
3.2.3).

Similar to properties, events can be defined via Properties → Events. These are key-value pairs
again, where the key is an event which can occur on this widget and the value is the name of the
event handling method.

 3.2.3 Advanced Features

NetBeans provides a preview function for the current design. In our tests it had the same look as the
design and we could click on buttons or edit text fields, but further event handling was disabled.

Another way to add a widget to the design is by dragging it from the Palette and drop it in the
Workspace. For a better accessibility, the Palette is divided into categories like Swing Containers
and Swing Controls. These categories can be faded out, together with their entries.

It is possible to select multiple widgets at the same time. Properties they share are displayed in the
Properties view. When they differ in a value, this is denoted by “<Different Values>”. Anyway,
these can be changed for the selected widgets together, i.e., we can set the property text for a button
and a text field for example. Also, like files in an operating system or text in a word processor,
selected widgets can be copied, cut and pasted.

When using the Free Design, widgets can be changed in size and position by direct manipulation.
Selecting a widget then adds eight controls for the size to the highlighting frame. Direct
manipulation in the Workspace is not possible when using the GridBagLayout, but in the
GridBagLayout Customizer. This is a separate dialog showing the grid with the widgets, the
selected widget's layout properties, as well as controls for most of the GridBagConstraints, see
Illustration 8.

In order to add a new column or row to the layout, either the Grid X and Grid Y properties can be
set or a widget dragged to an empty position. Due to the Customizer, the quite complex
GridBagLayout becomes well usable – we could easily define the layout for our example GUI.

Customizing widgets is also possible via the hierarchy. This tree-like structure, called Inspector,
contains the widgets used in the design, together with their names and types, as well as layout
managers and provides another way to access the properties. It is especially useful when layouts
have been nested.

Every change the user made in the Workspace, the Properties, the Inspector and even the
GridBagLayout Customizer can be undone.

A powerful feature is the Connection Mode, which is accessible via the tool bar. Instead of selecting
widgets in order to change their properties, a source and a target widget are selected. With the help
of a wizard, an event on the source is selected and a name for an event handling method defined. In
the next step what to do with the target when this event occurs is set up. Either a property is
changed, a method called or custom code provided. Finally, the parameters are defined in case of
the former two options.

25

Menus are treated like other widgets in NetBeans. But there is some additional functionality: A
menu item's icon and short cut can be directly changed when the menu in the Workspace is opened
(see Illustration 9). A file open dialog is used to choose an image file for the icon and left clicking
the short cut label provides a wizard to configure this short cut.

Finally, there is an easy way to employ custom widgets in the GUI-
builder. User defined widgets can be added to the palette and used
like any of the standard widgets. We can, for example, select the
widgets forming our number pad in the example GUI-design, put
them into a JPanel (by copy and paste) and add this JPanel to the
Palette. After that, we can insert the pad as a single widget into the
Workspace.

 3.2.4 Conclusion

We have examined two layout managers in NetBeans. On the one hand, the Free Design allows for
a rapid design and uses direct manipulation to arrange widgets in an intuitive manner. But the lack
of customization options fails when it comes to design details. Also, because widgets are related to
each other, a change to one widget often leads to unexpected changes to other widgets and thus
complicates the design. The GridBagLayout, on the other hand, is less intuitive at the first glance, as
it does not allow direct manipulation. However, when using the GridBagLayout Customizer, the
layout can easily be configured. We think that the GridBagLayout is the overall better and more
powerful solution. It would probably advance further, when the Customizer would be directly
integrated into the Workspace or the main view.

26

Illustration 9: Designing a
menu

Illustration 8: The GridBagLayout Customizer

There are different ways to access a widget's properties and they are where we would expect them
to be located. The Palette and the Properties can be a bit confusing, but fading out categories helps.
This is also due to the many available options.

Assigning event handlers has been solved like properties and as we would expect it. A very useful
feature seems to be the Connection Mode. In this mode we are able to define a complete event
handler, without directly accessing the code.

The possibility to select multiple widgets at once, together with the copy, cut and paste features, is a
useful addition. This assists the user when a bigger amount of similar widgets has to be laid out.

Layouts can be nested and widgets deeper in the hierarchy, which may be difficult to select, can be
accessed via the Inspector. Another way to achieve a more complex design is with custom widgets.
These are very easy to handle in NetBeans.

 3.3 Visual Studio

In Visual Studio we start with the choice of the project type. In order to design a GUI, we choose a
Windows Forms Application. An initial design for a main window opens:

Located at the top of the screenshot are the main menu and the general tool bar of the IDE, as well
as the GUI-builder's tool bar. Below these and on the left is the Document Outline (faded out) and
the design view and on the right the Toolbox and the Properties. One can switch between different
tabs in the Properties view. We focus on the Properties and the Events tabs here.

The tool bar contains controls to directly manipulate the design's layout, like the alignment of or the
margins (insets) between widgets. We examine most of them in 3.3.1.

27

Illustration 10: Designing a main window in Visual Studio

The Document Outline is a hierarchy view with a list of widgets which have been used in the design
and the Toolbox provides a list of widgets which can be added to the design, both similar to the
corresponding views in NetBeans.

 3.3.1 Layout

Initially, there are three different layout managers in Visual Studio. The standard layout is nearly
identical to the GroupLayout in NetBeans. It is always applied to the top-level window which is
designed and cannot be replaced. In order to add one of the other layout managers, a container
widget has to be added, either the FlowLayoutPanel or the TableLayoutPanel. There are some more
containers, like the SplitContainer, providing a kind of layout, but we don't really consider these
„layout managers”, due to their simplicity. It is also possible to add additional widgets from the
library, including containers, to the Toolbox.

The standard layout is relative, like the GroupLayout. It is however configurable with the tool bar, if
two or more widgets have been selected. The horizontal spacing between widgets can be equalized,
increased, decreased or removed there. This accordingly applies to vertical spacing. Different sized
widgets can also be aligned, like in NetBeans.

The FlowLayoutPanel provides a very simple layout, where widgets are appended to a row. If there
is not enough space available in one row, the following widgets are laid out in the next row below,
starting on the left and so on. Margins can be adjusted in the widgets' properties. The
FlowLayoutPanel is however too simple for the employment in an advanced design.

The TableLayoutPanel is similar to the GridBagLayout, which has an underlying grid structure, but
is a widget itself. The size of the panel can be manually adjusted or its AutoSize and AutoSizeMode
properties can be set. In case of the latter the panel will adjust its size according to the widgets it
contains. As any other widget, it has to be aligned in the parent window. Either the Center
Horizontally and Center Vertically buttons in the tool bar are used or it is dragged to the desired
position. Rows and columns may be added or removed to or from the TableLayoutPanel in a
context menu. For further customization the Column and Row Styles Dialog has to be used, which
is also available in the context menu (see Illustration 11). Rows and columns are separately
configured there. There are three options regarding the row's or column's size type:

1. Absolute: Adjusts a value for the desired number of pixels a row shall be high or a column
shall be wide.

2. Percent: Assigns the fraction of the available space a row or column shall take.

3. AutoSize: The size of the row or column is automatically adjusted.

We use the Absolute size type for our example GUI. It would be ideal to use the AutoSize option and
thus let the layout manager automatically lay out as far as possible, but there is one problem: The
option equally divides available space between rows and columns. Hence, even with equal size
properties, the plus and minus buttons become smaller than the other widgets, due to the margin we
assign to them. That's why we apply a slightly greater absolute value to the fourth column, as also
shown in Illustration 11.

28

The final result for the example is shown in Illustration 12. The design
with the default layout is identical, but without the empty space at the
bottom. If we would drag the window flatter, the TableLayoutPanel would
move above the menu bar, covering it. We did not experience this problem
with the default layout.

Another disadvantage with the TableLayoutPanel is that important layout
parameters, like Column and Row Span, Anchor, Dock (fill) and Margin,
cannot be changed in the Column and Row Styles Dialog, so we have to
switch between this and the Properties.

 3.3.2 Core Features

In Visual Studio widgets, including menus, can solely be added to the design by drag and drop from
the Toolbox to the desired location. Thus, drag and drop is a core feature here. The position can also
be set in the widget's properties. When the TableLayoutPanel is used, a widget's Dock property has
to be set to „None”, in order to move it to another cell in the panel. The Toolbox is divided into
categories, like Common Controls for buttons etc. and Containers, which can be faded out.

29

Illustration 11: Customizing the TableLayoutPanel

Illustration 12: The
example GUI designed
with the
TableLayoutPanel

Widgets can again be selected by a left click, will then be highlighted and provide controls to
change their size. Selecting a widget enables to access its properties.

The properties are key-value pairs. Most values are strings. Some provide a drop-down menu, like
the color properties, others, for example the Dock property, a simple dialog to choose a direction.
Like the Toolbox, properties are divided into categories.

Events are handled like properties. In the Events tab the name of the event handling method is
assigned to an event which shall be handled on that widget.

 3.3.3 Advanced Features

Besides the selection of widgets in the Document Outline or directly in the design view, they can
also be selected in the context menu.

Multiple widgets can be selected at once, either by pressing Control while selecting the widgets
with the mouse or by drawing a frame around these. Different values for properties are hidden here,
but can also be changed for the selected widgets together. With the tool bar it is also possible to
make selected widgets the same height, width or size. A selected widget can be changed in size and
position by direct manipulation, too.

Furthermore, a row's or column's height or width can be adjusted by directly manipulating the
border lines of a TableLayoutPanel.

Visual Studio provides copy, cut, paste and undo functionality.

 3.3.4 Conclusion

When we are planning to design a GUI with a complex layout in Visual Studio, we basically have
two options: the TableLayoutPanel or the default layout. The former presumes the usage of the
Column and Row Styles Dialog, as direct manipulation of rows or columns is often not exact
enough. One problem with this dialog is that it provides configuration options from a layout's and
not a widget's perspective. Hence, it lacks layout properties, like a widget's position in the grid or
the number of cells it covers and one often has to switch between this dialog and the Properties.
Furthermore, the configuration is rather done on a textual than on a visual basis. This leads to a less
intuitive usability compared to the GridBagLayout Customizer in NetBeans, although the same
results can basically be achieved. Again we think the usability could improve with the integration of
the dialog into the main view.

The default layout provides an easy and fast solution. The tool bar allows a direct access to its
configuration and it does not share the problems we experienced with the Free Design in NetBeans.
It probably is the better choice for a layout in Visual Studio.

The basic features, like adding widgets, accessing properties and event handling, are handled similar
to NetBeans; thus, these are as expected.

As an alternative to the hierarchy, widgets can be selected in a context menu. However, as it is more
clearly and also provides additional functionality, we think the hierarchy is the better solution.

An easy way to add user defined widgets does not exist in Visual Studio. Although it is likely to be
possible somehow, we have not been able to figure that out. Anyway, as we are particularly
interested in features which are easy to use, we have canceled our examination on this one after we
invested a reasonable amount of time.

Finally, when we disabled some visual effects on our system and used the default layout, the
WYSIWYG principle applied. Otherwise the final window's look was slightly different from that of

30

the design (the application uses the system's native look and feel, but the design does not, at least
not in every way, that's probably why the system configuration matters here).

 3.4 GUI Builder

When running the GUI Builder, the language (and version), the application shall generate code for,
has to be chosen. This choice does however not influence the look or functionality of the program.
The difference is in the widgets which can be used. When Tcl/Tk (8.4) has been chosen, the main
application starts:

Located at the top are the main menu and the tool bar. On the left are the Palette, Dialog and Menu
tabs and the design view on the right.

The tool bar provides direct access to some of the most important properties of a widget.

As before, the Palette contains a list of widgets which can be added to the design. The Dialog tab is
a hierarchy view and the Menu tab is related to menu design.

The design view has some controls attached to it, see 3.4.1 for a description.

 3.4.1 Layout

There is a single type of layout in the GUI Builder: the Grid layout from Tcl/Tk. Referring to 2.3.2,
this is a structure based on a grid with flexible row and column sizes and numbers. A row's or
column's size, as well as the weight and a padding for every widget in that row or column, can be
adjusted in a dialog. To do so, a row, a column or both are selected via the corresponding control
attached to the design view by a left click and the dialog is accessed in the Edit menu. They can also
be adjusted in a single dialog, but each separately. Such a dialog provides a simple view on a textual
basis, as illustrated in Illustration 14. Rows and columns can be added to or deleted from the grid
via the Edit menu.

31

Illustration 13: Designing a main window in the GUI Builder

Additional layout properties, like another padding or the sticky option to define the position in the
cell, are related to the widgets. Note that a widget's rowspan or columnspan property can solely be
defined by direct manipulation, i.e., by selecting the widget and dragging one side to another cell.
There is no other way to achieve this; the Properties dialog (see 3.4.2) lacks this option.

 3.4.2 Core Features

A widget can, as before, be added to the design by dragging it from the Palette to the desired cell in
the grid. Thus, drag and drop is again a core feature, as there is no other way to add widgets.

By left clicking a widget, a row control or a column control, it is selected. The selected widget or
control is highlighted. Selecting a widget also attaches controls to it to define its span properties, as
mentioned above. A selected element's properties can be accessed in the Edit menu. A widget's
Properties dialog can also be shown by a double click on the widget. As usual, this dialog provides
a list of key-value pairs, where a string value or a choice from a drop-down menu is assigned to a
property. In this context the sticky option is an exception. Its value is defined in a separate dialog,
where the widget's position in its cell(s) is chosen, similar to some properties in Visual Studio.

Designing a menu works a bit different than usual.
In the Menu tab the window's menu is represented
by a tree. Each node corresponds to a menu on the
menu bar and a leaf to an item in the parental
menu. A menu can be added via the „New
Cascade” label shown in Illustration 15. Clicking
this adds a menu with a generic name. An item is
inserted by one of the buttons on the top of the
Menu tab. This is either a button (a common menu
item), a separator line, a check box or a radio
button item. Further configuration of menus and
items can be performed in the Properties dialog, like normal widgets, though it can solely be
accessed by a double click here.

Via its properties, an event handler can also be assigned to a widget, but with a restriction: A handler
can only be assigned to the command option, which corresponds to the widget's default event. I.e.,
on a button for example, it can be defined what happens on a left click, but not on a right click. The
event handler can either be the name of the procedure to call or a short statement, which directly
defines the event handling code.

32

Illustration 14: Customizing Rows and
Columns

Illustration 15: Designing a menu and the
final example GUI-design

 3.4.3 Advanced Features

With the button in the upper left corner of the design view it is possible to toggle an alternative
drawing of the grid's borders. This switches between the thick lines shown in Illustration 13 and the
thinner shown in the other screenshots. When the cursor is above one of the grid borders, it changes
to an arrow. The thicker lines make this easier to achieve. The borders can then be dragged to adjust
row or column heights or widths.

Besides adding rows or columns to the design via the menu, it is also possible to drag a widget from
the Palette to the empty space outside the grid, in order to extend it.

Furthermore, a selected row's or column's control can be clicked again to switch between a Row or
Column Weight property of one and zero.

The tool bar contains controls to directly access some of a widget's most important properties, an
option to save the current design and options to run or stop the preview mode.

Finally, the Dialog tab provides the same functionality as directly selecting or double clicking a
widget in the design view and in fact also selects the widget there. This hierarchy can also be
traversed with options like Next Widget and Select Parent in the Commands menu.

 3.4.4 Conclusion

With the Grid layout, the GUI Builder offers the flexibility to create a GUI with a simple or a
complex layout. It is quite similar to the GridBagLayout and the TableLayoutPanel. However, the
implementation has some drawbacks. The layout has to be configured at different places. It would
be preferable to perform all of the corresponding modifications in the main view, in order to get a
better overview. Furthermore, the tool bar mixes common and layout properties up. There are also
just some of the properties accessible. The overall usability would probably advance, if an intuitive
to use customizer, similar to the one for the GridBagLayout, would be integrated into the main
view.

In addition, the menu design differs from the design of common widgets. There is only one widget
selectable at once and the application lacks an undo function, the possibility to design custom
widgets and to bind a handler to any type of event. An option to nest layouts, for example by using a
container widget, like a frame, is also missing. It is indeed possible to add a frame to the design, but
it can take a single widget only. Together with the missing custom widget option, this is a weighty
drawback.

Nevertheless, the GUI Builder is overall easy to use and provides most of the options also available
in the builders examined before. The results are as expected. Illustration 15 shows the final design
of our example GUI and Illustration 16 the running preview, which is identical to the final
application (except for the GUI Builder logo).

33

Illustration 16: The final
example GUI

 4 Requirements and Restrictions

 4.1 Requirements

From our analysis of GUI-builders, we know which features a builder must have, as well as which
comfort features it should provide to achieve a better usability. Thus, we are able to derive
requirements for our own builder. As usual there are non-functional and functional requirements.
The non-functional ones describe general aspects regarding the quality the application has to
consider and the functional ones cover the concrete features or functions of the software [SWEBOK
2004].

 4.1.1 Non-functional Requirements

• WYSIWYG. The key to a well usable interface is the user's expectations. Any action of the
user should lead to a comprehensible result in the GUI-design, i.e., as he expects. The
interface should then be intuitive to use. But as different users do not have the same
expectations, this requirement also includes to provide different ways to achieve the same
result where appropriate. Furthermore, the design should produce exactly the appearance in
the final application the user has created. However, the design view may be decorated with
context sensitive controls to achieve the usability aspect in the first place.

• Downward Compatibility. The requirements will make it necessary to extend Curry's UI-
library (see below). As there are already some extensive applications based on this library,
we have to respect downward compatibility when implementing the extensions, in order to
avoid introducing errors to the former.

 4.1.2 Functional Requirements

Referring to what we have found out about the priorities of features, we classify the functional
requirements into three classes:

1. Major: These are the core features, i.e., the must-have features which are necessary to
create a GUI.

2. Minor: These requirements are basically derived from the advanced features. They cover
useful features we have examined, as well as features we think a user expects a GUI-builder
to provide.

3. Optional: The optional requirements will also form and have been derived from advanced
features, but are relatively unimportant.

Note that these are general requirements, which are applicable to any GUI-builder. Due to
implementation reasons and restrictions, some requirements may belong to another class they have
been put into or we may even have to entirely deviate from others. Nevertheless, the goal is to
completely cover at least the major and some of the minor ones in the first instance.

Major

• The software provides some kind of layout manager.

• It is possible to configure any of the layout's properties in the main view.

• A widget can be chosen from a list and inserted into the design.

34

• A widget can be removed from the design.

• A widget can be selected with the mouse. This highlights the widget.

• Any of a selected widget's properties can be configured in the main view.

• The properties are represented by a complete list of key-value pairs. A value can either be
typed in or chosen from a list.

• Configuration changes lead to corresponding changes of the design.

• An event handler's callback function is a widget's property. It can be bound to any kind of
event.

• A menu can be added to or removed from the design.

• A menu can be configured like any other widget.

Minor

• Where possible, controls can be used instead of or in addition to pure textual values for
layout configuration.

• A widget can be dragged from a list to the design.

• A widget can be moved in the design by drag and drop.

• Multiple widgets can be selected at once.

• When multiple widgets have been selected, they can be configured at once.

• The application either provides a way to nest layouts or to define and use custom widgets.

• Widgets can be accessed via a tree-like hierarchy.

• A widget can be copied, cut and pasted.

• Multiple widgets can be copied, cut and pasted at once.

• Any action can be undone.

Optional

• Depending on the amount of widgets, they are divided into categories.

• Depending on the amount of properties a widget can have, the properties are divided into
categories.

• A selected widget provides controls to directly manipulate its size. This requirement is
optional, as, Depending on the layout, it is possibly easier for the user to configure layout or
widget properties. Manipulation on a textual basis is also more accurate.

• The layout's configuration can directly be manipulated. Due to the same argument as above,
this is an optional requirement.

• A hierarchy grants access to layout properties. This can also be a major requirement, if there
is no other way to access layout properties.

• Widget properties are tailored to the concrete widget.

• The software provides a system to aid the user with the setup of event handlers.

35

 4.2 Restrictions

Curry's UI- and GUI-library evolved since they have been announced the first time. But they still
lack some features we would require to realize any of the requirements in every way. We provide
implementations for some in the next chapter, but others would be beyond the scope of this work.
Also, due to our downward compatibility requirement, we can extend the library, but have to avoid
changes to existing functions where possible. Otherwise we had to be extremely careful, which is a
high risk and would require extensive testing. Thus, the following features will not be supported,
but we will provide a workaround where possible.

• So far, there is just one kind of layout manager in Curry: structures (Row, Column, Matrix)
based on the Grid layout. Hence, there is no option to place widgets pixel-wise. Therefore
we can't provide a visual (animated) drag and drop feature without implementing such an
absolute layout, nor does the library.

• Tcl/Tk and thus the UI-library do not support transparent widgets. In addition, there is no
absolute layout, as stated above. Hence, our UI-builder cannot draw controls on top of other
(selected) widgets. Consequently, there are drawbacks on direct manipulation.

• The event handling on menus is limited. The default event (left mouse button) opens the
menu and cannot be deactivated, but another handler for the same event can be assigned.
Event handlers can also be assigned to menu items, but just for the default event. Due to the
implementation of menus and especially their content, the configuration will be different
than that of other widgets. Furthermore, it is also not possible to define or use context-
menus.

• Attaching scroll bars is limited to only a few kinds of widgets and they are especially not
available to layout widgets. Hence, screen space is limited, too.

36

 5 Extensions
Curry's UI-library is lacking some features we will require to create a UI-builder. Thus, before we
can start with the actual design and implementation, we have to extend the library with these and
also a few other features, we think are important.

The library basically consists of two parts: on the one hand, a low-level part with either the module
GUI for a desktop application based on Tcl/Tk or the module HTML for a WUI and, on the other
hand, the module UI and its corresponding modules for a more abstract approach. Therefore, we
also split the changes into two groups: The changes of the modules GUI and UI2HTML
(implementing the logic for a WUI) basically are about functionality. The goal of the extensions of
UI and the corresponding module UI2GUI is usability.

 5.1 GUI

The following section describes the changes and extensions of the module GUI.

 5.1.1 Rowspan and Columnspan

A quite important property for components laid out on a grid- or table-like structure is the
possibility to span multiple columns or rows. Otherwise, the component would be limited to a
single cell and thus different sized widgets would require the user at least to set absolute sizes.
Consequently, this would limit the benefit of a layout manager. As these options do not exist in the
module GUI yet, we implement them.

We extend the ConfItem data type for the new properties:

data ConfItem = … | ColSpan Int | RowSpan Int

An item's argument defines the number of columns or rows to span. We also extend the function
config2tcl, which is responsible for the generation of a Tcl-string from a ConfItem, here for
example for RowSpan, using the Tk-option rowspan:

config2tcl _ _ label (RowSpan rows) =
 "grid configure " ++ label ++ " -rowspan " ++ show rows ++ "\n"

The new properties can now be employed as any other, as the example below shows. ColSpan and
RowSpan just increase a widget's display area, so one may have to assign additional properties like
Fill and Anchor to make use of the additional space.

widget = Matrix [] [
 [
 PlainButton [Text "ColSpan2", ColSpan 2]
],
 [
 PlainButton [Text "Button1"],
 PlainButton [Text "RowSpan2", RowSpan 2]
],
 [
 PlainButton [Text "Button2"]
]
]

37

Illustration 17: ColSpan
and RowSpan

 5.1.2 Empty Cells

A new problem arises with the implementation of RowSpan and ColSpan: widgets can overlap
each other, as in Illustration 18, where a widget spanning two columns is overlapped by another one
in the same row.

A solution in Tcl/Tk would be to leave a cell empty, i.e., to increase
the column index of the button labeled “Overlapping”. This is not an
option in the GUI-library of Curry, as we do not directly define
indices, but let the library generate them by the order widgets have
been defined in a layout. Because these widgets are passed as a list
to the layout, leaving elements of the list empty is also not an option,
as this would produce a compiler error.

We define a new widget kind to solve this problem: the NULL
widget. The NULL widget is a symbolic one, i.e., does only exist in

the Curry-definition of the GUI, but does not have an own representation in the underlying Tcl/Tk-
program. We extend the Widget

data Widget = … | NULL [ConfItem]

and again the ConfItem data type with new constructors:

data ConfItem = … | NoGrid

The NoGrid property marks a widget symbolic. It is required for a NULL widget to be in fact
symbolic in the function widget2tcl, where we extend the rules for the layout widgets. We
exemplary show this for a Row here:

1 widget2tcl wp label (Row confs ws) =
2 ((if label=="" then "wm resizable . " ++ resizeBehavior wsGridInfo++"\n"
3 else "frame "++label++"\n") ++
4 wstcl ++
5 (snd $ foldl (\ (n,g) l->(n+1, if elem NoGrid l then g else
6 g++"grid "++label ++ labelIndex2string (96+n)
7 ++" -row 1 -column "++show n++" "
8 ++confCollection2tcl confs
9 ++gridInfo2tcl n label "col" l ++ "\n"))
10 (1,"")
11 wsGridInfo),
12 wsevs)
13 where (wstcl,wsevs) = widgets2tcl wp label 97 ws
14 wsGridInfo = widgets2gridinfo ws

The code translates a widget to a Tcl-string by parsing its sub-widgets and their event handlers via
widgets2tcl (lines 4 & 13 – note the additional „s”) and mapping them to the grid (lines 5-10).
Note the “1” in line 10: As a consequence indexing widgets in the grid always starts with one (and
not zero, as one may be used to) and we have to take this into account anywhere we use these
indices. Details are not important here, but that the concrete widget is not available when it comes
to “gridding” is a problem. Therefore, a test whether the current widget to grid is a NULL widget is
not possible without many changes (and would possibly break downward compatibility). But the
widget's ConfItems are available (in l) and we can define that a widget with NoGrid shall not
be mapped to the grid and just return the previously created Tcl-string. Hence, the only change is in
line 5 and written in bold letters.

We also have to implement a widget2tcl pattern for the NULL widget itself, but this is very
simple, as it just returns the results of config2tcl. The implementation of config2tcl for
NoGrid is also trivial, as it is just the empty string. We could actually return this string and an

38

Illustration 18: Overlapping
of a spanning widget

empty list of event handlers directly, but we will see below that a NULL widget may also have a
reference and therefore a call of config2tcl is required.

Note that NoGrid is similar, but not identical to Display, because a widget must already exist in
the grid for the latter, but not the former. NoGrid can, of course, also be used for other widgets
than NULL.

Finally, to ensure that a NULL widget always has the NoGrid property, we extend the function
getConfs for this kind of widget to add the property, if it is not already in the list:

getConfs (NULL confs) = if elem NoGrid confs then confs else
 (NoGrid : confs)

Pattern matching, instead of a call of this function, could however undermine this mechanic, but so
far this is not the case.

Illustration 19 shows the GUI from above with an additional NULL widget behind the one spanning
columns. There is no widget overlapping another one anymore. This is the example's source code:

widget = Matrix [] [
 [
 PlainButton [Text "ColSpan2", ColSpan 2, FillX],
 NULL [],
 PlainButton [Text "Overlapping"]
],
 [
 PlainButton [Text "Button1"],
 PlainButton [Text "RowSpan2", RowSpan 2, FillY]
],
 [
 PlainButton [Text "Button2"]
]
]

 5.1.3 Images

Another very important property for a widget is the possibility to display images. These give the
user the opportunity to design a GUI with an individual look and it's hard to imagine an advanced
interface without icons (especially a GUI-builder). Images have not been implemented in the GUI-
library yet; therefore, we are implementing them now.

In Tcl/Tk an image can be loaded by the command

image create photo <name> -file <path>

where photo denotes the type of the image to be a GIF-, PPM- or PGM-file and <name> is a
handle for the loaded image. There are alternatives for photo, but a GIF seems to be sufficient
here.

39

Illustration 19: RowSpan and ColSpan with
an additional NULL widget

Consequently, an image is just defined by its path (we abandon options to configure, e.g., the
image's height or width). We define a new ConfItem reflecting this, where its argument is the
path:

data ConfItem = … | Image String

In Tk the image can be assigned to a widget by the option -image <name>. Therefore, we add a
rule to config2tcl to create the image and assign it to a widget by performing the Tcl-
commands. This is similar to 5.1.1. For the image's name we choose “image” plus the widget's
reference name (a widget's reference name in this context is its Tk-reference, e.g., “.a.b.c”, where
dots are replaced by underscores).

The following example shows the usage of Image:

widget = Row [] [
 PlainButton [Text "text disappears", Image “/test_image.gif"],
 CheckButton [Image "/test_image.gif"],
 Label [Image "/test_image.gif"]
]

We assign a test image to a PlainButton, a CheckButton and a Label. MenuButtons and
menu items (MbuttonC) also support this property. A side effect of the image option in Tk and thus
the Image ConfItem is that it overrides a text label, as shown for the button. Scaling a widget
with an associated image by using Width and Height modifies the widget, but not the image.

 5.1.4 MatrixC

As stated above, a NULL widget may or even must have a reference. This is the case for any widget
and especially for the layout widgets, as we will see in the next section. A reference WRef is of the
type ConfItem, but a Row, Col or Matrix cannot have any ConfItems. Fortunately, there
have already versions of Row and Col been implemented eliminating this deficit, namely RowC
and ColC. Though, this is not the case for the matrix; thus, we are doing this now.

We extend the data type Widget again:

data Widget = … | MatrixC [ConfCollection] [ConfItem] [[Widget]]

As we have seen above, we also have to extend widget2tcl when we are creating a new kind of
widget. We can combine the implementations of the common Matrix and those of ColC or RowC.
Consequently, the resulting code is very similar to that shown above and nearly the same as for the
common Matrix. We just parse the ConfItems and compute event handlers, add the former to
the output string and the latter to the ones from the matrix' sub-widgets.

In addition, we have to extend the functions getConfs and propagateFillInfo (for any new
kind of widget), but this is trivial and therefore we do not show the details here.

40

Illustration 20: Widgets with images.
From left to right: button, check button
and label

 5.1.5 Insert, Delete, Move and Configure

In order to implement a GUI-builder, it must be possible to add and remove widgets to or from a
design at runtime, as well as moving and configuring an existing widget. One can basically choose
out of two approaches: either using live widgets, i.e., concrete widgets or proxies for the actual
widgets, like images of these. The latter is likely to be easier to configure and could probably be
realized with a canvas-widget and thus with the existing technique for the runtime configuration of
widgets (see below). But a weighty disadvantage is that these proxies also had to emulate the
semantics, especially regarding the layout of the widgets they are representing, in order to apply the
WYSIWYG principle. Therefore, proxies would require some additional effort to realize.
Consequently, we stick to the live widgets. As it is not yet possible to dynamically insert, delete or
move them, we are implementing these features now.

So far, the module GUI just supports the dynamic configuration of widgets with ConfItems at
runtime. To achieve this, the implementation defines a data type

data ReconfigureItem = WidgetConf WidgetRef ConfItem

To reconfigure an existing widget, one creates such a WidgetConf with the reference of the
widget to configure and a new ConfItem. After that, the resulting ReconfigureItem can be
returned by the current event handler to execute the change. This approach, where a command is
encapsulated into a data object, can be seen as a variant of the command pattern, known from object
oriented languages. Referring to 2.1 this is very useful; hence, we adapt it for the insert, delete and
move features. We could stick to a WidgetConf for a simple reconfiguration of a widget, but to
cover the command pattern in every way, especially regarding the required information to undo
configurations, we also develop a new constructor WidgetConfigure (we keep WidgetConf
for downward compatibility).

We extend the data type:

data ReconfigureItem =
 …
 | WidgetInsert Widget Widget (Maybe Int) (Maybe Int) (Maybe Bool)
 | WidgetDelete Widget WidgetRef
 | WidgetMove Widget WidgetRef (Maybe Int) (Maybe Int) (Maybe Bool)
 | WidgetConfigure Widget WidgetRef ConfItem Bool

For a WidgetInsert we require

1. the parent of the widget to insert, in order to derive the new widget's reference and update
existing children (see below)

2. the new widget itself

3. its row position, if the parent is a RowC or MatrixC

4. its column position, if the parent is a ColC or MatrixC

5. whether the new widget should be inserted into a new or an existing row, if the parent is a
MatrixC

and the required parameters for a WidgetDelete are

1. the parent of the widget to delete, in order to update other children

2. the widget's reference

For a WidgetMove

1. the parent of the widget to move, in order to update the children

41

2. the widget's reference

3. the new row position (see WidgetInsert)

4. the new column position (see WidgetInsert)

5. new or existing row (see WidgetInsert)

are necessary and a WidgetConfigure requires

1. the widget, to keep track of its configuration before the change

2. the widget's reference

3. the new ConfItem

4. whether the configuration for that item should be deleted, i.e., reset to a default value

After the event handling code with the reconfiguration terminated, the scheduler takes over control
again. It checks if there are ReconfigureItems pending and performs the reconfiguration in the
function configAndProceedScheduler. There we have to insert the code, which performs
the actual insertion, deletion, movement or configuration.

For a WidgetInsert we just call a function corresponding to the given arguments, e.g.,
insertIntoMatrix if row and column positions, as well as the boolean for a new row, are of
the type Just. For a WidgetDelete we also have to retrieve the actual widget from the parent,
at first.

The functions insertIntoCol, insertIntoRow and insertIntoMatrix are quite
similar; hence, we confine ourselves to show the latter, which is also the most complex one:

insertIntoMatrix :: GuiPort -> Widget -> Widget -> Int -> Int -> Bool ->
 IO ()

1 insertIntoMatrix gp (MatrixC confs _ ws) child r c newRow = send2tk tcl gp
2 where label = getLabel $ getConfs child
3 (_, bottom) = splitAt (r-1) ws
4 (_, right) = splitAt (c-1) (if null bottom
5 then [] else head bottom)
6 ws2grid = if newRow
7 then matrix2grid ([child] : bottom) r c confs
8 else matrix2grid [child : right] r c confs
9 (wtcl,_) = widget2tcl gp label child
10 tcl = wtcl ++ ws2grid

The function's goal is to create a Tcl-string for the widget to insert, similar to widget2tcl and
send it to Tk (line 1). Widget2tcl can only generate a widget's label (and reference) when it
parses the whole GUI, starting with the root widget, but we just need a label for a single widget
here, which may be located anywhere in the hierarchy. Furthermore, widget2tcl does not
perform the mapping to the Grid when it is called with a non-layout widget. Thus, a call of
widget2tcl alone is not sufficient. See below for the actual binding of the label to the widget's
free variable for its reference. We just retrieve the label from it here (line 2 – consequently the
widget's reference must already be bound here). In addition, in order to prevent errors, we also
would like a widget's position to always be consistent with its index. Hence, we have to update
existing widgets in the parent (lines 6-8), besides the parsing of the new one (lines 9 & 10). In order
to get a list of widgets to update, we split the matrix' children at the given row and column positions
(splitAt starts with index zero). If the new widget shall be inserted into a new row, we have to
(re-)grid it and the successive rows (line 7), otherwise just the new widget and those in successive
columns (line 8). We are then performing the creation of the Grid string in

42

matrix2grid :: [[Widget]] -> Int -> Int -> [ConfCollection] -> String

matrix2grid [] _ _ _ = ""

1 matrix2grid ([] : rows) r _ confcolls
2 | not $ null rows = matrix2grid rows (r+1) 1 confcolls
3 | otherwise = ""
4
5 matrix2grid ((w : ws) : rows) r c confcolls = if elem NoGrid (getConfs w)
6 then matrix2grid (ws : rows) r (c+1) confcolls
7 else "grid " ++ label
8 ++ " -row " ++ show r ++ " -column " ++ show c ++ " "
9 ++ confCollection2tcl confcolls
10 ++ gridInfo2tcl c label "col" wsGridInfo ++ "\n"
11 ++ matrix2grid (ws : rows) r (c+1) confcolls
12 where label = getLabel $ getConfs w
13 (wsGridInfo : _) = widgets2gridinfo [w]

This function maps the new widget to the Grid and moves successive widgets. This is basically the
same as in widget2tcl, but without parsing the widgets themselves. We create the grid string on
the basis of a widget's grid information, derived from its ConfItems (lines 10 & 13) and the
current row and column indices (line 8). When we have finished this, we increase the column index
(line 6 or 11) and when a whole row has been processed, we increase the row index (line 2). Of
course, we also have to respect the NoGrid property here.

Deleting a widget with

deleteWidget :: GuiPort -> Widget -> Widget -> IO ()

works very similar; thus, we do not go into details here. We retrieve the widget's position in its
parent. If the widget does not have the NoGrid property, we are then deleting it in Tk, resp.
creating the corresponding string. Finally, we update the remaining widgets, i.e., move them
leftwards or upwards, where we reuse row2grid, col2grid or matrix2grid and send the
resulting string to Tk.

There are even more similarities between inserting and moving a widget. With, e.g.,

moveInRow :: GuiPort -> Widget -> WidgetRef -> Int -> IO ()

we remove a widget from its current position in its parent (here: Row) and insert it at the new one.
To keep it simple, we just update any child by the functions row2grid, col2grid or
matrix2grid this time and do not compute which concrete widgets have to be re-gridded.

Finally, in order to configure a widget's ConfItems, we create the function

configureWidget :: GuiPort -> WidgetRef -> ConfItem -> Bool -> IO ()

which is a combination of config2tcl and delconfig2tcl. The latter is a new function we
use to delete a ConfItem, if the corresponding argument of configureWidget is True or
more precise, the function sets a widget's property to a default value. This also covers event
handlers, where we define the handler to do nothing. For example

delconfig2tcl _ label (ColSpan _) = "grid configure " ++ label
 ++ " -colspan 1\n"

defines the widget with the given label to span a single column.

A disadvantage of the implementation of configureWidget is that a ConfItem with a
concrete value is required to determine the item's type, even if it shall be deleted. But the value is
arbitrary and therefore this should not be a serious problem.

43

Now that we have inserted, deleted, moved or configured the widget, there are still the event
handlers to add or remove to or from the schedule. After reconfiguring widgets,
configAndProceedScheduler calls configEventHandlers, which is responsible for
this task. We retrieve a widget's (child) and any of its children's event handlers by
widgets2handler and for, e.g., a WidgetInsert, just add them to a list:

configEventHandlers evs (WidgetInsert _ child _ _ _ : confitems) =
 configEventHandlers (widgets2handler child ++ evs) confitems

For a WidgetDelete we have to retrieve a widget via its reference from its parent and filter the
handlers out of the list with filterHandlers:

configEventHandlers evs (WidgetDelete parent ref : confitems) =
 let child = case getWidgetByRef parent ref of
 (Just w) -> w
 Nothing -> error ("The widget is not a child of the “
 ++ “given parent!")
 handlers = widgets2handler child
 in configEventHandlers (filterHandlers handlers evs) confitems

For a WidgetConfigure, if the ConfItem is a Handler, we have to differentiate between an
addition and a deletion of that item. We then just add or remove the handler to or from the list of
handlers.

We do not show the details of widgets2handler or filterHandlers here, but we have to
be careful when comparing handlers, as comparing the concrete functions may lead to an endless
loop (and we had in fact some problems before figuring that out). Therefore, we can compare labels
and event types only.

One may now wonder how these ReconfigureItems we just created can be used in a user's
program. This is actually not so easy, as once the main widget has been defined and runGUI been
called, the GUI-definition and hence the definition of the parent or the original widget, which are
required for the ReconfigureItems, are lost. To solve this problem we could either reproduce
widgets from the information we are receiving from Tcl/Tk or save the GUI's state somehow. We
have examined the former approach and arrived at the conclusion that it would be quite difficult to
implement, as, for example, the communication with Tcl/Tk is problematic, because the scheduler is
blocking it while listening for events. Also, we (or the user) have to keep track of the GUI-structure
and the widgets' references for these operations anyway. Thus, we take the latter approach, although
it is a little complicated for the user at the first glance, but takes the GUI to a higher level, which
provides more control.

To store the GUI-definition, the user can save it in an IO-reference and introduce it to event
handlers. But how does the definition change on a WidgetInsert, WidgetDelete,
WidgetMove or WidgetConfigure? We should not expect from the user to have knowledge
about implementation details of the module GUI. Therefore, we define functions to create the
ReconfigureItems and also an updated description. To keep it simple here in the first place
(note that functionality is the goal, as stated at the beginning of this chapter), we just update the
parent of the concerned widget.

We define a new function

createInsert :: GuiPort -> Widget -> Widget -> Maybe Int -> Maybe Int ->
 Maybe Bool -> (Widget, ReconfigureItem)

where the arguments are the same as for a WidgetInsert. Its result is the updated parent, as well
as the ReconfigureItem itself. We exemplary examine the implementation for a MatrixC
again:

44

1 createInsert gp parent@(MatrixC confs confitems ws)
2 child (Just r) (Just c) (Just newRow) =
3 (MatrixC confs confitems result,
4 WidgetInsert parent w (Just r) (Just c) (Just newRow))
5 where parentLabel = getLabel confitems
6 (top, bottom) = splitAt (r-1) ws
7 (left, right) = splitAt (c-1) (if null bottom
8 then []
9 else head bottom)
10 fillupCol = replicate (r - 1 - length ws) []
11 fillupRow = if newRow
12 then fillUp gp parentLabel (concat ws) (c - 1)
13 else fillUp gp parentLabel (concat ws)
14 (c - 1 - (length left + length right))
15 label = parentLabel
16 ++ nextlabel (concat ws ++ fillupRow)
17 mayberef = getRef $ getConfs child
18 w = case mayberef of
19 (Just ref) -> bindRef gp ref label child
20 Nothing -> child
21 result = if newRow || null bottom
22 then top ++ fillupCol ++ (fillupRow ++ [w]):bottom
23 else top ++ fillupCol
24 ++ (left ++ fillupRow ++ (w:right)):tail bottom

We already know most of the details from insertIntoMatrix, but have to redo them for the
update, because it is not possible to gain results from the actual insertion or vice versa. But there are
also some new aspects. One is the fill-up in the lines 10-14, resp. 22-24. We already stated above
that indices should be consistent with the widgets' positions in a parent. To achieve this, we put in
empty lists (rows) to fill the column part of the matrix up (lines 10 & 22 or 23) and NULL widgets
into empty spaces in a row (lines 11 & 22 or 24 – remember that empty spaces in a list are not
allowed). In fillUp we create the NULL widgets with references and bind them to labels derived
from the parent's and those of already existing children. We do the same for the new widget (line
19). See the illustrations below for examples.

Labels are identical to those used in the underlying Tcl/Tk-program. Referring to 2.3.1, these are
string values, like “.parent.child”, where “.parent” is the parent's label. In the module GUI a layout
widget's children get labels in the order they have been passed to their parent, represented by a
character and maybe a number. Let “.b”, for example, be the parent's label. The children's labels
will then be “.b.a”, “.b.b”, “.b.c”, … , “.b.z”, “.b.z1”, “.b.z2” and so on. To create a new label one
may think that the number of children is sufficient information to achieve this. But firstly, due to
deletion and insertion, this approach could lead to conflicting labels and secondly, it is absolutely
possible that the parent does not contain widgets at all. Consequently, we require both, the parent's
label and those of its children. Deriving these labels is a bit tricky to implement, but with the
description it should be clear that we just have to find some kind of lexicographical maximum; thus,
we can skip the details of the responsible function nextlabel. Note that the dependency on the
parent's label, resp. its reference, is also the reason why it is only possible to insert into a RowC,
ColC or MatrixC and that these must have bound references. Finally, to bind the label to a
widget's free reference, we implement the function bindRef using narrowing, similar to the
common binding in config2tcl, but returning the widget instead of a string:

bindRef :: GuiPort -> WidgetRef -> String -> Widget -> Widget

bindRef gp ref label w
 | ref =:= WRefLabel gp (wLabel2Refname label) (showWType w) = w

We just call the constructor for the type WidgetRef and bind the result to the reference. Because

45

we use the result of bindRef in createInsert, although we did not change the widget, we
force the interpreter to evaluate this binding.

The following sketches sum up what happens on an insertion into the different layout types (an
index in a box indicates that there is an element at that position and an empty box that there is
nothing in it, resp. at that position in a widget's list of children):

46

Illustration 21: Inserting into a RowC

createInsert _ (RowC _ _ _) new _ (Just 6) _

1 2

new

NULL

1 2 3 4 5 6 7

new

Illustration 23: Inserting into a MatrixC and into an existing row

createInsert _ (MatrixC _ _ _) new (Just 3) (Just 6) (Just False)

1,1 1,2 1,3 1,4 1,5 1,6

new

NULL

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2

1,1 1,2 1,3 1,4 1,5 1,6

new

2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6 3,7

1,1 1,2 1,3 1,4 1,5 1,6

newNULL

Illustration 22: Inserting into a ColC

createInsert _ (ColC _ _ _) new (Just 6) _ _

1
2

NULL
new

1
2
3
4
5
6

new

7

Creating a WidgetDelete by

createDelete :: Widget -> WidgetRef -> (Widget, ReconfigureItem)

is easier, as we do not have to perform any binding (and thus do not need the GuiPort here) or
fill-up. We just remove the concerned widget from its parent.

We also implement the functions

createMove :: GuiPort -> Widget -> WidgetRef -> Maybe Int -> Maybe Int ->
 Maybe Bool -> (Widget, ReconfigureItem)

which is similar to createInsert, but without binding references and

createConfigure :: Widget -> ConfItem -> Bool -> (Widget, ReconfigureItem)

which adds or replaces a ConfItem to or in a widget – the latter if one of the same kind already
exists – or delete the item if the boolean is True. We replace an event handler if the widget has one
for the same kind of event, as more than one handler for the same event does not make any sense.

The following listing shows an example where we use the createInsert and createDelete
functions:

import GUI
import IOExts

widget gui = do
 writeIORef gui mainWidget
 return gui
 where mainWidget = RowC [] [] [createButton 1 gui]

createButton n gui = PlainButton [WRef b, Text "Button",
 Handler DefaultEvent (leftHandler n gui),
 Handler MouseButton3 (rightHandler b gui)
]
 where b free

leftHandler n gui gp = do
 parent <- readIORef gui
 (newparent, ins) <- insertButton n parent gui gp
 writeIORef gui newparent
 return [ins]

insertButton n parent gui gp = return (newparent, ins)
 where new = createButton (n+1) gui
 (newparent, ins) =
 createInsert gp parent new Nothing (Just (n+1)) Nothing

47

Illustration 24: Inserting into a MatrixC and into a new row

createInsert _ (MatrixC _ _ _) new (Just 3) (Just 4) (Just True)

1,1 1,2 1,3 1,4 1,5 1,6

newNULL

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4

rightHandler b gui _ = do
 parent <- readIORef gui
 (newparent, del) <- deleteButton b parent
 writeIORef gui newparent
 return [del]

deleteButton b parent = return (createDelete parent b)

main = do
 init <- newIORef (Row [] [])
 gui <- widget init
 w <- readIORef gui
 runGUI "Insert Delete Test" w

The GUI initially consists of a RowC and a single button. On a left click on the button,
leftHandler adds another one behind the first and so on. A right click on the button deletes
itself via rightHandler. Note that the RowC does not require a reference for this special case, as
it becomes the main window with the label “.”.

We use an IO-reference to save the main widget (we have to initialize it with some value of type
Widget in the function main) and introduce its current value to event handlers. Due to this IO-
reference, where the current state of the GUI has to be manually managed, the implementation of a
simple application can become quite complex. If the GUI had nested layouts, we had to pattern
match the whole GUI-structure up to the parent we actually want to change. Anyway, we achieved
the functionality aspect of our goal and eliminate its deficits regarding usability in the next sections.

 5.2 UI2HTML

The changes of UI2HTML are complementing the extensions of the library's low-level part. As our
builder will be based on a GUI, we do not implement insert, delete, move or configure here. But the
builder shall take advantage of the UI-library and the possibility to use a design for both, a GUI and
a WUI. Hence, the new kinds of widgets and properties have to be implemented for a WUI, too.

In order to define a WUI, UI2HTML creates HTML-tags from widgets, where the attributes
correspond to (UI-)styles. Layout widgets are mapped to div or span tags and an additional
table tag. JavaScript implements the event handling. The latter is irrelevant here; thus, we stick to
the mapping of widgets and styles.

 5.2.1 Images

In UI2HTML a UI.Style is mapped to a CSS-style, resulting in an attribute for that element, like

style = “width: 100%”

for Fill X. For the new Style Image we simply add a mapping to the CSS-style

"background-image: url(“ ++ path ++ “); background-repeat: no-repeat;
 background-position: center”

where path is the Style's argument, i.e., a URL. In HTML/CSS an image can be defined as a
texture, i.e., the image is repeated until the available space is covered. As we just want a single
image to be displayed on a widget (as for a GUI), we also add the background-repeat: no-
repeat style. The following example shows how to use a button with an image in a WUI, as well
as the differences between a GUI and a WUI:

48

widget = row [
 Widget Button (Just "Button") Nothing []
 [Class [Image "http://localhost/test_image.jpg"]] []
]

As shown in Illustration 25, the image defines the widget's size and also hides the label in a GUI. In
a WUI the image does not influence the widget at all.

 5.2.2 Rowspan and Columnspan

ColSpan and RowSpan are a bit more difficult to implement, as they are different from the other
styles. As stated above, a UI.Style is mapped to a CSS-style. But in HTML rowspan and
colspan are attributes and not styles and furthermore not applied to the inner tags, but to the cells,
i.e., the td tags in the parent's table tag. The cell, as well as the table itself, must also have
“height: 100%” as a part of their style, otherwise rowspan would not have any effect. As the latter
is constant, we can directly add it (see table' below). We have to define a translation for the cell
attributes.

Common styles are mapped by styleClasses2Attrs to a pair of the type

(String, String)

which is the type of an attribute in the module HTML, resulting in

(“style“, val)

where val is the attribute's value. To differentiate between these and the span properties, we
implement a function

styleClasses2CellAttrs :: [StyleClass] -> [(String, String)]

which just maps ColSpan to

(“colspan”, show n)

and RowSpan to

(“rowspan”, show n)

where n is the number of columns or rows to span. The function

widget2hexp :: Maybe (IORef State) -> Widget CgiRef (UIEnv -> IO ()) _ ->
 [HtmlExp]

computes the mapping of a widget to HTML in the module. Layout widgets are mapped to a div or
a span tag with an additional table element. In order to access the table's cells, we replace, for
example,

xs = case kind of
 Row -> [table' [map (\ w -> widget2hexp mbstateref w) widgets)]

where xs is a list of HTML-expressions for the elements of these div or span tags, with

49

Illustration 25: Button with image
in a WUI (left) and a GUI (right)

xs = case kind of
 Row -> [table' [widgets2row mbstateref widgets]]

We map the ColSpan and RowSpan styles of the layout's children to cell attributes (or an empty
list) in the new function widgets2row and pass them, together with the corresponding HTML-
expression, to the function table'. In the customized version of this function, we are then
creating an HtmlStruct for a table element, put the children into rows (tr) and cells (td) and
combine each cell with a list of these attributes:

table' :: [[([HtmlExp],[(String, String)])]] -> HtmlExp

table' items = HtmlStruct "table" [("style","height: 100%;")]
 (map (\row->HtmlStruct "tr" []

 (map (\(item, attrs) -> HtmlStruct "td" (("style",
 "vertical-align: top; height: 100%;") : attrs) item) row))
 items)

We have highlighted the changes.

The implementation of ColSpan and RowSpan does not require NULL widgets here, as the
interpreter automatically moves widgets, which would overlap the spanning one, aside. In fact, tests
have shown that translating a NULL widget to, e.g., a div tag, would add empty space between a
spanning widget and its successors. Therefore and to keep UI2HTML compatible with the high-level
UI-implementation, we take NULL widgets into account, but just ignore them in widgets2row.

Illustration 26 shows the example from 5.1.2 in a WUI.

 5.3 UI

On the abstract or high-level side of the UI-library we want to deal with aspects regarding the
library's usability. But at first we complete it with the new kinds of widgets and properties.

As the module UI provides an abstract interface for a UI, the new elements do not implement any
functionality here. Hence, they are realized by simple extensions of the existing data types:

data WidgetKind r act1 act2 = … | NULL | CommonListBox
 | ScrollBarH (Ref r) | ScrollBarV (Ref r)

data Style = … | ColSpan Int | RowSpan Int | LBList [String]
 | Image String

There has already been a WidgetKind ListBox, but as will be shown in 5.4 below, it is mapped
to a ListBoxScroll, which is not a basic type, but a combination of a Matrix, a ListBox
and a vertical, as well as a horizontal scroll bar. This quite complex mapping causes problems
regarding reconfiguration. Therefore, we add the simpler WidgetKind CommonListBox,
together with constructors for scroll bars as single widgets, which can now also be used for a
TextEdit or a Canvas (scroll bars are, as NULL widgets, ignored in UI2HTML). A combination
of these three and a Matrix behaves like a ListBox before, but each can be separately
configured.

50

Illustration 26: RowSpan and ColSpan in a WUI

The Style LBList defines a CommonListBox' items. The meaning of the Styles ColSpan,
RowSpan and Image should be obvious. Due to our implementation of the function getConfs
in the module GUI, the NoGrid property is unnecessary for a NULL widget here.

The further additions are more advanced. In order to browse through a hierarchy of widgets or to
find a special widget, we adapt some of the known functions from the modules Prelude and
List for these purposes on lists to widgets. These will help to reduce the required input for delete
and insert operations to the information which is really necessary.

We implement a function to map another one to a widget and any of its children:

mapUI :: (Widget a b c -> Widget a b c) -> Widget a b c -> Widget a b c

two functions to accumulate a widget and any of its children by applying a binary operator, either
from top to bottom and left to right or vice versa:

foldlUI :: (d -> Widget a b c -> d) -> d -> Widget a b c -> d

foldrUI :: (Widget a b c -> d -> d) -> d -> Widget a b c -> d

one to find a widget satisfying a predicate:

findUI :: (Widget a b c -> Bool) -> Widget a b c -> Maybe (Widget a b c)

another one to find a widget's index (again starting to count with one):

findIndexUI :: Ref a -> Widget a b c -> (Maybe Int, Maybe Int)

We furthermore implement a function to find a widget and replace it by an updated version, by
comparing references and using mapUI:

updateUI :: Widget a b c -> Widget a b c -> Widget a b c

one to retrieve a widget by its reference, using findUI:

getWidgetByRef :: Ref a -> Widget a b c -> Maybe (Widget a b c)

another one to retrieve a widget's parent:

getParent :: Ref a -> Widget a b c -> Maybe (Widget a b c)

and finally a function to retrieve a widget at a given position in its parent:

getWidgetAt :: Widget a b c -> Maybe Int -> Maybe Int ->
 Maybe (Widget a b c)

We exemplary analyze findUI here, as most of the others are quite similar:

1 findUI f w@(Widget kind _ _ _ _ ws) = if f w then Just w else
2 case kind of
3 Matrix wss -> findUI' $ concat wss
4 _ -> findUI' ws
5 where findUI' [] = Nothing
6 findUI' (w':ws') = case findUI f w' of
7 Nothing -> findUI' ws'
8 justw -> justw

In line 1, if the current widget satisfies the predicate, we are done. Otherwise, we have to
differentiate between a Matrix and other widgets, as a Matrix' children are part of the
WidgetKind. If this is the case, we can just concatenate rows and proceed with the resulting one-
dimensional list. In the lines 5-8 we are then applying findUI to any child, until we have found
the first occurrence of the desired widget or return Nothing, if there are no more children,
indicating that the desired widget does not exist.

51

We implement these functions in the module UI, as they are useful for any UI, whether be it a GUI,
WUI or something else. But actually we just use them for the GUI-part, as we did not implement
insert, delete, move or configure for a WUI.

 5.4 UI2GUI

The next step is to connect the modules GUI and UI. In contrast to UI2HTML, the responsible
module UI2GUI implements almost no logic. It just maps WidgetKinds from the module UI to
Widgets and ConfItems of the module GUI. The following table sums up this mapping by the
function widgetUI2GUI:

UI GUI

Type: WidgetKind Widget ConfItem (special)

Col ColC

Row RowC

Matrix wss MatrixC … wss

Label Label

Button PlainButton

Entry Entry

MenuBar, Menu MenuButton Menu

Menu MMenuButton

MenuSeparator MSeparator

MenuItem MButtonC

Canvas w h Canvas Width w, Height h

CheckButton checked CheckButton CheckInit init

ListBox h items sel ListBoxScroll Width 10, Height h, List
items, CheckInit sel

CommonListBox ListBox

ScrollBarH uiref ScrollH guiref

ScrollBarV uiref ScrollV guiref

Scale min max Scale min max

TextEdit rows cols TextEdit Width cols, Height rows

NULL NULL

A MenuBar, resp. a MenuButton, is a special case here, as the first Menu in a MenuBar is
mapped to a MenuButton's Menu, which is, in contrast to the module UI, a ConfItem and not a
Widget. The same applies to the former Menu's children. Other children of the MenuBar are
ignored.

The extensions for the NULL, CommonListBox, ScrollBarH and ScrollBarV widgets are
trivial and this is also the case for the new properties; thus, we can skip the details.

The next goal is to implement insert, delete, move and configure in the context of the module UI.

52

We would also like to increase the usability of these operations. One aspect to achieve the latter is to
get rid of those IO-references, which have to be managed by the user's application (see above).

In order to prepare this, we introduce the type

type UIState = IORef UIWidget

where the current UI-definition can be stored. The module UI2GUI already defines a data type

data State = State (GUI.GuiPort,[GUI.ReconfigureItem])

which is part of an environment:

data UIEnv = UIEnv (IORef State)

But the name “State” may be misleading, as it suggests a global state, but in fact each event handler
creates its own version of it, as the mapping of a UI's command to a GUI's shows:

ui2guicmd cmd gp = do
 stateref <- newIORef (State (gp,[]))
 cmd (UIEnv stateref)
 State (_,reconfigs) <- readIORef stateref
 return reconfigs

The State is used to collect the GUI.ReconfigureItems, produced by a UI-command. After
that, these are returned, as expected from an event handler in the module GUI.

Nevertheless, we can extend the State with the UIState

data State = State (GUI.GuiPort,[GUI.ReconfigureItem],UIState)

and create the latter in runUI, pass it to widgetUI2GUI and then to an extended version of
ui2guicmd. Thus, it is in fact a global state now, as handlers share one reference to the
UIState. It can now be accessed by any event handler, as the environment is automatically passed
to them.

Note that we did not change existing functions, like setHandler or changeStyles, to update
the global state, due to the downward compatibility requirement. We define our own versions of
these below.

 5.5 GUI2UI

In 5.1.5 functions to create insert, delete, move and configure commands have been implemented.
These are based on the command pattern and additionally return an updated version of the
concerned widget's parent (or the widget itself, in case of createConfigure). We want to keep
these concepts in the UI-versions of the operations. Also, it is common sense that the same code
should not be implemented more than once, as for example changes had to be applied to any
version, which is error prone. Therefore, we reuse the functions. To do so, we have to be able to
map elements from the module GUI to UI.

We implement a new module GUI2UI. The mapping is basically the opposite of what is done in
UI2GUI; thus, we do not show the details here. The table in 5.4 may serve as an overview again.

We initially had another use in mind: translate a program written in the context of the module GUI
to the module UI and then, for example, a WUI (UI2HTML). But as UI is abstract, the concrete
types for, e.g., environments and event handlers are not compatible in that direction. But GUI2UI is
still useful, besides its main purpose, to test a program based on GUI in a UI-context. Furthermore,
a module GUI2HTML already exists.

53

 5.6 DynUI2GUI

At this point, everything is ready to implement the operations to dynamically add, remove or
configure widgets in the context of the module UI. We define a new module DynUI2GUI for these.
We start off with a new type synonym:

type ReconfigureItem = (UIWidget, GUI.ReconfigureItem)

Referring to 5.1.5, the functions defined in that chapter return a GUI.Widget and a
GUI.ReconfigureItem. The idea is to keep the latter, but translate the former to a
UI.Widget and update the UIState with the result. Thus, we require an operation to process
such a ReconfigureItem. That's what the following function does:

reconfigure :: [ReconfigureItem] -> UIEnv -> IO ()

1 reconfigure items (UIEnv state)
2 | null items = done
3 | otherwise = do
4 State (gp, reconfigs, ui) <- readIORef state
5 uiwidget <- readIORef ui
6 writeIORef ui (newui uiwidget items)
7 writeIORef state (State (gp, reconfigs ++ (map snd items), ui))
8 where newui uiwidget' [] = uiwidget'
9 newui uiwidget' (item : is) = newui
10 (updateUI (fst item) uiwidget') is

It actually processes a list of ReconfigureItems, as one may collect them and execute them at
once, but it is also possible to call it more than once. We retrieve the current UI-definition in the
lines 4 and 5. After that, we repeatedly update it with the first part of each item, in the order they
have been passed (lines 8-10) and write it back (line 6). We add the second parts to the list of
GUI.ReconfigureItems and write back the updated state (line 7). Due to this implementation,
we keep track of the UI's state, but hide it to the user. Hence, a user does not have to manage IO-
references with the UI-definition anymore.

Another aspect to increase the usability is to reduce the amount of information required by an
operation. In the following we achieve this by using the functions getWidgetByRef and
getParent, previously defined in the module UI. The ReconfigureItems are created by the
functions createInsert, createDelete, createMove, createLabelConfigure,
createHandlerConfigure, createStyleConfigure, createMenuInsert,
createMenuDelete and createMenuReplace. We examine createInsert:

createInsert :: UIRef -> UIWidget -> Maybe Int -> Maybe Int ->
 Maybe Bool -> UIEnv -> IO ReconfigureItem

1 createInsert parentref child@(Widget kind _ _ _ _ _) mbrow mbcol mbnewrow
2 env@(UIEnv state) = case kind of
3 Menu -> case mbrow of
4 Just row -> createMenuInsert parentref child row env
5 Nothing -> error "DynUI2GUI.createInsert: Missing row index!"
6 ...
7 _ -> do
8 State (gp, _, ui) <- readIORef state
9 uiwidget <- readIORef ui
10 createInsert' gp ui uiwidget parentref child mbrow mbcol mbnewrow

The new widget is still required to be assigned, but instead of the whole parent, its reference is
sufficient here. As menus and menu items are widgets in the module UI, it seems reasonable for a
user to insert them by this function. But in the module GUI these are ConfItems and thus
subjects to createConfigure. Therefore, we define different operations for these items (see

54

below), but call them from here (lines 3-6). As we will have to look up the parent in the UI's state,
we have to read that here at first (lines 8 & 9). The actual insertion takes place in
createInsert':

createInsert' :: GUI.GuiPort -> IORef UIWidget -> UIWidget -> UIRef ->
 UIWidget -> Maybe Int -> Maybe Int -> Maybe Bool -> IO ReconfigureItem

1 createInsert' gp ui uiwidget parentref child mbrow mbcol mbnewrow =
2 return (widget, r)
3 where parent = case getWidgetByRef parentref uiwidget of
4 Just p -> p
5 Nothing -> error ("DynUI2GUI.createInsert: Parent "
6 ++ "not found in environment!")
7 (guiwidget, r) = GUI.createInsert gp
8 (widgetUI2GUI ui parent) (widgetUI2GUI ui child)
9 mbrow mbcol mbnewrow
10 widget = GUI2UI.widgetGUI2UI guiwidget

In line 3 the given parent is looked up (as the new widget is not in the environment yet, we cannot
use getParent). In the lines 7-9 we translate the widgets to the context of the module GUI,
before we use the createInsert function from that module. We can then map the resulting
parent back in line 10 by using widgetGUI2UI defined in GUI2UI and return this, together with
the GUI.ReconfigureItem, in line 2. We perform a quite similar procedure to process move-,
delete- or (re)configure-operations.

Inserting a menu or a menu item into a menu bar is a bit different, as it corresponds to a
reconfiguration of the latter. Note that it is impossible to directly refer to a Menu,
MenuSeparator or MenuItem, because these, as stated above, are ConfItems in the
underlying module GUI; thus, they do not have references and cannot be configured or inserted.
This is the reason why the menu bar's reference is always required for the function

createMenuInsert :: UIRef -> UIWidget -> Int -> UIEnv ->
 IO ReconfigureItem

One could navigate to the desired position in the menu bar, resp. its sub-menus, by defining an
index list. But this seems unreasonable, as such a list can become quite complex. Also, a complex
menu structure with many nested sub-menus is seldom employed in an application, as it is difficult
to navigate in it for the user, too. Hence, we restrict indexing to the top menu only (third argument).
We retrieve the parental menu bar (if existent) and the menu (must also exist) with the UIRef.
Consequently, a menu bar must always be created together with a (single) menu and in order to
delete that menu, the menu bar must also be deleted. We are then recreating the menu's content,
with respect to the new child and its desired position. Finally, we replace the menu bar's menu with
the resulting one. Note that it is still possible to create a complex menu structure, but it has to be
defined by oneself before inserting. Alternatively, one can right use createMenuReplace, in
order to replace the whole top-level menu.

With the basic operations in place, we are now also able to combine them to more complex ones.
The function

createReplace :: UIRef -> UIWidget -> UIEnv -> IO [ReconfigureItem]

considerably profits from the reduction of input information. It just takes the reference of the widget
to replace and the new one (and of course the environment):

55

1 createReplace oldref new env@(UIEnv state) = case getKind new of
2 Menu -> do
3 rep <- createMenuReplace oldref new env
4 return [rep]
5 _ -> do
6 State (gp, _, ui) <- readIORef state
7 uiwidget <- readIORef ui
8 createReplace' gp ui uiwidget
9 where createReplace' gp ui uiwidget = do
10 del <- createDelete oldref env
11 ins <- createInsert' gp ui
12 (updateUI (fst del) uiwidget)
13 parentref new mbr mbc mbnewrow
14 return [del, ins]
15 where parent =
16 case getParent oldref uiwidget of
17 Just p -> p
18 Nothing ->
19 error ("DynUI2GUI.createReplace: "
20 ++ "Parent not found in “
21 ++ “environment!")
22 parentref = case getMaybeRef parent of
23 Just r -> r
24 Nothing ->
25 error ("DynUI2GUI.createReplace: "
26 ++ "The widget's parent does not "
27 ++ "have a reference!")
28 (mbr, mbc) = findIndexUI oldref parent
29 mbnewrow = case getKind parent of
30 Matrix _ -> Just False
31 _ -> Nothing

We can retrieve the parent's reference (lines 15-27) and even compute the position by using the
function findIndexUI, we defined in the module UI (line 28). The result is then a delete,
followed by an insert operation (lines 10-13). Note that we have to use createInsert' here,
because we have to pass an updated version of the UI's state, as a result of the deletion, in. This
would also be possible by calling reconfigure in between, but that would already perform one
part of the command and thus would pass over the user's decision when or whether that should be
done.

We are now revisiting the example from the end of 5.1.5. Reimplemented in the context of the
module UI, we get the following listing:

import DynUI2GUI

widget = row [
 Widget Row Nothing (Just r) [] [] [createButton r 1]
]
 where r free

createButton parent n = Widget Button (Just "Button") (Just b) [
 Handler DefaultEvent (Cmd (leftHandler parent n)),
 Handler MouseButton3 (Cmd (rightHandler b))
] [] []
 where b free

56

leftHandler parent n env = do
 ins <- createInsert parent (createButton parent (n+1)) Nothing
 (Just (n+1)) Nothing env
 reconfigure [ins] env

rightHandler b env = do
 del <- createDelete b env
 reconfigure [del] env

main = runUI "UI Insert Delete Test" widget

Compared to the GUI-version, we use a reference to the parent, instead of the concrete definition.
Due to the implementation of the module GUI, the main widget cannot have a reference; therefore,
we put the Row widget into another one here. We reduced the number of lines of code from 38 to 23
and it should be quite obvious that complexity has decreased and thus usability has strongly
increased.

Finally, to increase the usability even more, we define abbreviations, namely insertWidget,
insertMenu, deleteWidget, deleteMenu, moveWidget, configureLabel,
configureHandler, configureStyle, replaceWidget and replaceMenu. These just
call the corresponding createX function and immediately reconfigure. They can be used if the
command object is not required.

57

 6 Design and Implementation
As we defined the requirements and implemented the basic UI-features, we are now designing and
implementing the UI-builder, which is the actual goal of this work. This involves several steps:
designing the architecture and then the basic features, i.e., the core features, as well as the advanced
features and implementing these. After that (although the order is irrelevant, as we will see in the
next section), as a UI-builder's purpose basically is to generate code from a visual design, this is the
final step.

We name the application FLUID, which is an acronym for Functional Logic User Interface
Designer.

 6.1 Architecture

In order to establish a well structured and organized system, we define the system's architecture,
before we start designing its components. Referring to [Sommerville 2007], “large systems are
always decomposed into sub-systems that provide some related set of services. The initial design
process of identifying these sub-systems and establishing a framework for sub-system control and
communication is called architectural design. The output of this design process is a description of
the software architecture.” (p. 242). Consequently, we are identifying the sub-systems now.

Two components can easily be identified:

1. The interface component is the part of the system where the user designs the UI. The result
is a definition of that UI.

2. The parser is responsible for the translation of the UI-definition to a standalone Curry-
program (and maybe back).

But we would like to introduce another one:

3. As an intermediate format, XML-files store a UI-definition.

This approach has some advantages:

• An unfinished design can be saved and resumed at a later date.

• The interface component is independent from the parser and vice versa.

• Due to the independence, interface and parser are exchangeable. An XML-file could be
defined by an interface written in a different language, as well as the parser. Furthermore, if,
for example, the module UI changes, this does not necessarily lead to modifications of these
sub-systems.

• An XML-file could be developed without any knowledge about the language Curry.

• An XML-file could define a custom widget, which can be imported to a design.

These sub-systems can be seen as layers. Thus, FLUID's architecture naturally results in a layered
model. Referring to [Sommerville 2007] again, “the layered model of an architecture […] organizes
a system into layers, each of which provide a set of services. […] An example of a layered model is
the OSI reference model of network protocols.” (p. 250f).

Furthermore, besides the advantages mentioned above, “the layered approach supports the
incremental development of systems. […] So long as its interface is unchanged, a layer can be
replaced by another, equivalent layer.” ([Sommerville 2007], p. 251). Due to these, we are able to
develop the layers separately from each other and each layer can be useful without the others.

58

We schematically illustrate the architecture in Illustration 27:

The interface produces a UI-definition and contains an additional parser component. One half stores
that definition in an XML-file. The other half reads an XML-file to resume the design on a
definition. Furthermore, an XML-file could define a custom widget, which can be imported by the
interface into a design. The parser generates Curry-source code from an XML-file and writes that
into another (*.curry-)file. Contrary, it creates an XML-file from a Curry-program.

 6.2 Overview

The next step is to define the basic application. We identified the most important components in
chapter 3. We can also derive a GUI-builder's general structure and thus FLUID's initial layout:

At the top is the Menu Bar and the Tool Bar below. On the left is the Palette, the Design View is in
the center and the Properties on the right. In the following, we give a rough description of these
components and go into detail in 6.3.

59

Illustration 27: The GUI-
builder's layered model

XML File

Parser

Interface

FLUID2XML XML2FLUID

XML2Curry Curry2XML

Illustration 28: FLUID - overview

In the menu File a new design can be created, a previously saved design opened, the current design
saved, source code generated from any design or the application can be quit. In the menu Edit, the
mode can be switched from Insert to Move and vice versa, the insert or move position be chosen
and a widget can be deleted. Furthermore, a help and the about can be accessed in the menu ?.

The Tool Bar is quite important, because, referring to 4.2, we cannot use context-menus to provide
some options, as in NetBeans or Visual Studio and thus the Tool Bar is an alternative. But any
option in the Tool Bar (so far New, Open, Save, Delete, Position and the mode) is also available in
the Menu Bar. Both should be self-explanatory.

A widget to insert can be chosen in the Palette. There are various widgets and they are represented
by images in order to provide a preview.

The Design View displays the UI to create and provides access to the overall layout, i.e., the
arrangement of widgets.

A widget's configuration can be customized in the Properties. They cover general properties, like
the reference and event handlers, text and layout properties, like a widget's label or the column span,
properties regarding the appearance, like the background or border, as well as special properties for
a MenuBar or a ListBox.

 6.3 Core Features

We are now implementing the components roughly described above. We define a new module
FLUID for the main application. In order to keep track of FLUID's current state, we define type
synonyms of IO-references, which can store the relevant information and be accessed by any event
handler (if passed in). We require a state for any component:

• type PaletteState = IORef (Maybe (UIRef, UIRef -> UIRef -> UIWidget))

The PaletteState observes the currently selected widget kind in the Palette and a
function to create that widget from a reference. If FLUID has just been started, nothing is
selected, i.e., the state contains Nothing.

• type ToolBarState = IORef (InsertPosition, Mode)

The ToolBarState stores the insert or move position and whether the mode is Insert or
Move.

• type DesignState = IORef (UIRef, [(UIRef, [Style])])

We keep track of the root or main widget's reference, as well as a list of selected widgets in
the design, together with some of their styles (see below), with the DesignState.

• type PropertiesState = IORef [(UIRef, [Style])]

As FLUID shall be a desktop application, it is based on the GUI-part of the UI-library,
which lacks an implementation for some styles and just ignores these. Hence, some styles
defined in the module UI are not applicable to our live widgets, resp. would get lost.
Therefore, the PropertiesState saves a list of these styles, which can be applied later.

• type ReferencesState = IORef [(UIRef, String)]

We store a mapping from a widget's reference to a reference name in the
ReferencesState. These names are required for event handlers, which are, in most
cases, changing a widget's state and are not directly applied to the live widget when the user
defines them, but when the source code is generated and thus when the actual references are
not available anymore. An event handler then takes the name as an argument. The creation
of the reference names is very simple: We just delete the prefix of the reference, which is

60

referring to the root widget's parents, as these won't exist in the final UI. We update this state
whenever a widget has been created, deleted or renamed.

• type ArgumentsState = IORef [(String, String)]

External arguments are sometimes passed to a (main) widget, e.g., a database handle, which
have to be accessed by event handlers. The user can define these arguments for the main
widget and they are saved in the ArgumentsState. The type of the argument, together
with the defining module, must also be assigned, e.g., “DB.Database”. The latter is
especially relevant for source code generation, but may also help the user to keep track of
the arguments.

• type HandlersState =
 IORef [(UIRef, [(String, String, [(String, String)])])]

Furthermore, the HandlersState contains a mapping of event handlers to widgets. The
user can define a handler to call when an event on the widget fires. This definition covers the
type of the event, the command, i.e., a function's name, as well as a list of the handler's
arguments. The arguments again have a type.

• type FLUIDState = (PaletteState, ToolBarState, DesignState,
 PropertiesState, ReferencesState, ArgumentsState, HandlersState)

Finally, the FLUIDState combines all of the above to a tuple; thus, they are easier to
handle and types become shorter.

 6.3.1 Palette

The Palette is a simple list of widgets, which can be inserted into a design.
As we would like to provide a preview of the widgets, a list box or another
predefined widget is not sufficient. We put a list of Labels with images
showing the corresponding widgets into a column instead. Due to the
missing border property for GUI-widgets, we set their size a few pixels
wider and taller than the image's and assign a black background, which
substitutes the border. When the user selects one of the Labels, its
background color is changed to blue. In order to restore its background later,
its reference, as well as the corresponding create-function are stored in the
PaletteState. Such a create-function, e.g.,

createEntry state prefs ref _ = Widget Entry
 (Just "Entry") (Just ref)
 (createDefaultHandlers ref state prefs)
 [Class [Width 12, Bg White]] []

also applies some default properties, like Width and Bg and event handlers
(see 6.3.2) to the widget. Furthermore, the function takes the FLUIDState
and a list of references, called prefs, for some of the widgets in the
Properties. Both are relevant to event handling. Finally, it takes a reference
for the widget to create and another one, which is solely used by scroll bars,
as these require a target.

What generally complicates FLUID's design is that, referring to 4.2, screen space is limited and
cannot be expanded by scroll bars in most cases. As a result and because a user's design may take
most of the available space, a new (major) requirement arises for the components described above:
In the direction of the Design View, they have to be as narrow or flat as possible. This is especially
the case for the Palette and the Properties as these project into the Design View and limit the space
for the design. We also have to find a solution for a long list of widgets, where some of them may

61

Illustration 29:
Palette: shown and
hidden

not fit into the available space, especially at low screen resolutions.

In order to save space for the Design View, we can, of course, design the Palette
and Properties narrow, to some degree. Another useful feature for this purpose is
the possibility to hide these components. When the button (actually, it is a
Label, as it fits better) next to the label “Palette” is pushed, the Palette's
Display property is set to False. A narrow Label is shown instead, see
Illustration 29.

We solve the problem with a tall component running out of the screen in a similar
way. For the Palette, for example, we organize the labels in different columns or
pages and these into a row and set just one of the pages' Display properties to
True. With a click on one of the buttons next to the label “More”, one can turn
over the page, i.e., set the current page's Display property to False and
another one to True. We put the more important widgets on the first page.
Illustration 30 shows the second. Due to these features, the Palette should fit to
the usual screen resolutions.

 6.3.2 Design View

The Design View (Illustration 31) is the component which contains the design.
Besides the design (1), there also are two empty Rows, one to the right of the
design (2) and one below (3). Their purpose is to initialize the Design View's size
and to take any excess space, which is not required by the other components.
Otherwise, the design would stretch until it takes all the available space,

disregarding the size properties of the widgets it contains. We initialize the design itself with a label
in a Matrix. The former will be replaced by the first widget the user inserts, i.e., it is a
placeholder. Thus, the initial Design View looks as follows (the red lines are for visualization only):

(2) has a height of zero and the Fill X property and therefore is responsible for the expansion in
the x-direction only. If it had Fill Both, (1) and (2) could stretch down to the bottom of the
main window. For (3), on the other hand, we set an initial width and apply the Fill Both
property.

So far, we limit the design's layout to just a single Matrix, as it is powerful enough to achieve
most designs one can imagine and simplifies the implementation, especially regarding index
computations. With nested layouts, we also had to implement a mechanism to select a widget's
parent. We would like to delay this until we introduce custom widgets later.

There are three features the design must provide:

62

Illustration 31: The initial Design View

Illustration 30:
Palette: second
page

1. Inserting a widget.

2. Selecting a widget.

3. Moving a widget.

Inserting a Widget

The first one is probably also the most difficult. The first step is to find some graphical
representation for the layout, which the user requires to control the design. Like the GUI Builder,
which is related to FLUID, as both are based on Tk, we could implement a grid-based visualization
strategy. Actually, we use a grid without visualizing it, but take a more direct approach. As we are
employing live widgets, we can assign event handlers to the widgets in the design
(createDefaultHandlers in 6.3.1). Therefore, we abandon the visualization of cells as
proxies, but use the concrete widgets to relatively insert or move another one. I.e., on a right-click
on a widget, with respect to the chosen mode, a new widget, corresponding to the choice in the
Palette, is inserted to the left, right, top, or bottom of the one clicked, Depending on the position,
which has been chosen in the Tool Bar or the Menu Bar. The result is a mix of the grid-based layout
in the GUI Builder, the GridBagLayout in NetBeans and some aspects of the Free Design in
NetBeans or the standard layout in Visual Studio.

An advantage of this approach, compared to the grid-based, is that neither we, nor the users have to
manage cells. A widget can just be inserted or moved, without creating new cells, rows or columns
before; thus, the result is basically the same, but can be achieved in a more direct way.

In a usual grid-based approach one can leave a cell, row or column empty, in order to create empty
spaces between widgets. We can achieve the same by inserting an empty Row (a Col or a Matrix
would produce the same result, as all of them are translated to a frame in Tk) and assign the
background color; hence, it becomes “invisible”. Therefore, we add such a widget, we call frame in
the following, to the Palette. It can then be inserted, moved and configured as any other widget. See
below for an example.

Selecting a Widget

A left-click on a widget in the design selects it. We store the references of selected widgets in a list
in the DesignState, where they can be accessed by other components, especially the Properties.
As it is very easy to achieve, it is already possible to select multiple widgets. Because there is no
way to define events like the usual <control + left mouse button> yet, multiple widgets can just be
selected by left mouse clicks.

Selecting a widget should also highlight it. As borders have not been implemented for a GUI in the
UI-library yet, which would be the usual way to highlight, we apply background and foreground
colors instead. We set the background to blue, the foreground to white and disable an image, which
may be connected to the widget, because it would override the other changes. When the widgets are
deselected by left-clicking one of them again, we have to restore the original properties. Therefore,
we also store the background, foreground and image in the DesignState when a widget is
selected.

In order to configure the whole design, which corresponds to the main widget, it must be selectable,
too. As other widgets may cover the main widget and it would then not be accessible, it is not
directly selectable at all. The main widget is selected when no other widget is, instead. We also
assign an event handler, which deselects any widget and thus selects the main widget, to the empty
space below the design ((3) in Illustration 31).

63

Moving a Widget

A selected widget can also be moved, if the move-mode has been activated in the Tool Bar or the
Menu Bar. A move is basically a combination of cut and paste and thus an advanced feature, but we
already add it here, as we think it is quite important in order to accurately arrange widgets. The
process is nearly the same as inserting a widget, just the computation of the widget's new position is
a little bit different, due to the implementation of moveWidget in DynUI2GUI. So far, only the
widget which has been selected at last can be moved.

 6.3.3 Properties

The Properties is the the most complex, but also the most
important component. The configuration of selected widgets (so
far, just the one selected at last) can be adjusted here. As there
are many options, we also implement the page-system, we
already used for the Palette. The Properties can be hidden, too.

From a developer's perspective, we can put the properties into
four different categories:

1. Basic properties, like a widget's label, Height, Fill
and so on, which can be directly applied.

2. Basic properties, which cannot be directly applied, either
because we have used them to highlight a selected
widget and thus they would disturb the selection
mechanism, these are Bg (background), Fg (foreground)
and Image or they would break the selection mechanism, these are Active and
Display, or they have not been implemented for a GUI, but in the module UI and would
get lost due to the implementation of UI2GUI, these are Font and Border.

3. Properties for a special kind of widget.

4. General properties regarding event handlers and code generation.

Basic Properties

We implement properties in the first category as simple key-value pairs, i.e., a Label and an
Entry or a drop-down menu, see Illustration 32. The user can type the value into the Entry and
assign it to the selected widget by pressing the return-key or choose the value in the menu. This will
call DynUI2GUI.configureStyle and immediately apply the change. An empty value
removes the property. The drop-down menu is basically a MenuBar, but with a special
configuration. As we employ it quite often, we implement a function

createStringChoice :: UIRef -> [String] -> Int -> [Style] ->
 (String -> UIEnv -> IO ()) -> UIWidget

which creates such a menu with the given reference from a list of values. The MenuBar's initial
value is the value at the given position in the list. There can also be styles, like Height or Width,
applied to it. When the user selects an option, the given event handler is called with the
corresponding string as an argument.

The only problematic properties in this category are RowSpan and ColSpan. As a spanning
widget shall not overlap another one, we have to insert NULL widgets. We compute the difference of
the old and the new value, in order to determine the amount of widgets to insert or delete. If there is
either the difference for RowSpan or ColSpan greater than one or less than zero, we can just fill

64

Illustration 32: Basic properties

up the cells below or to the right of the spanning widget, resp. delete NULL widgets there.
Complexity increases if this predicate applies to both differences. In this case not just a row or
column, but an area has to be filled up, resp. deleted. Because of this relationship between the two
properties, we always process them together and they can also be assigned by the user at once.
Computing the required position indices is a little tricky, but shall not be examined in detail here.

A widget's RowSpan and ColSpan are also relevant for the insertion of a new widget on the
former or for the movement of an existing widget on the spanning, as well as moving the spanning
widget itself. We have to treat a spanning widget as a combination of its NULL widgets and the
widget itself; thus, we have to add RowSpan and ColSpan values to the insert or move position in
order to move or insert to the right or below the spanning widget and its NULL widgets.
Furthermore, we have to move a spanning widget together with its NULL widgets. As this is quite
complex, we would like to find an easier solution. In fact, there is a simple one: We temporarily set
the widget's RowSpan and ColSpan to one and thus also delete the NULL widgets, until the
changes have been applied and then restore the values, to reinsert the latter.

Inapplicable Properties

Similar to the first category, we represent options from the second one in the GUI, but the results
differ. As a selected widget's background, foreground and image have been saved in the
DesignState, we can directly manipulate these values. The changes will take effect when the
widget is deselected and the values restored. Analogue to createStringChoice, we implement

createColorChoice :: UIRef -> [Color] -> Int -> [Style] ->
 (Color -> UIEnv -> IO ()) -> UIWidget

which provides a drop-down menu to choose colors for the background and foreground. The other
properties in this category cannot be directly applied, but we can store them in the
PropertiesState and delay their application, until the design is saved or source code
generated.

Special Properties

So far, there are two kinds of widgets requiring special properties, namely the CommonListBox
and the MenuBar. Their content can be configured on a separate page in the Properties. For the
CommonListBox this is its items, i.e., the LBList, as these aren't widgets and thus cannot be
configured like one. Illustration 33 (left) shows the list box' properties:

65

Illustration 33: Special properties for a CommonListBox (left) and
a MenuBar (right)

An item can be added behind the selected one by typing the value in and pressing the return-key. A
selected item can be updated by pressing the tick-button or deleted by pressing the cross-button.
The system immediately applies any change to the widget. We can keep the current values over
different events by reconfiguring the event handlers with these values as an argument, whenever a
change has been applied. Due to this approach we realize a kind of a side effect.

Configuring a MenuBar, i.e., MenuItems, MenuSeparators and Menus, works very similar.
Indeed these are widgets in the module UI, but we cannot configure them like one, because they do
not have references. We connect them to the parental MenuBar's properties instead. An item can be
added, updated and deleted. In addition, one of the three types has to be chosen. A MenuItem can
be configured like a list box' item. A MenuSeparator is represented by a dashed line in the
Properties and its text is ignored. A Menu is different, as it may have items itself. In order to keep it
simple and as we have already stated above, a complex menu structure is difficult for both, the
developer and the user, we limit the configuration to the main menu and a single sub-menu. The
sub-menu is displayed next to the main menu, as shown in Illustration 33 and can be configured like
the latter. As above, changes are immediately applied.

General Properties

Finally, there are general properties, see Illustration 34. Any
widget should have a reference, as they are required to control
a widget by an event handler, for example by a handler, which
is called on a submit-button and takes the content of an
Entry. Hence, one of a widget's most important properties is
its reference or more precise the reference name, as it is not
identical to the actual reference of the live widget. It is
generated for any new widget, but can also be changed to a
more meaningful value. In order to unambiguously identify a
referenced widget, the reference name must be unique, i.e.,
another name or argument with the same value shall not exist;
therefore, we ensure that before a new name is assigned. The
result is stored in the ReferencesState.

As stated above, the main widget may also have arguments.
These can be defined in the general properties and referenced
by user-defined event handlers, as well. Like the reference
name, we check if an argument's name is unique and if its type
is non-empty. We save arguments in the ArgumentsState.
If the selected widget is not the design's main widget, we hide
the arguments section.

An event handler or more precise a call of an event handler, as
we are only generating this call and not the function itself,
consists of an event to fire it on, a command, i.e., the name of
the function to call and the arguments of the latter. These values can be defined in the general
properties, too. As shown in Illustration 34, there is a pretty printed list of handlers, where one can
be selected and its configuration changed below. We assign a default command and event to a new
handler, which has been created by clicking the file-button. Reference names, as well as arguments
defined by the main widget, can be added to the handler's argument-list. Whenever one of these
values is changed or deleted, we also update any handler referring to it by searching through the
HandlersState. A selected event handler can be deleted via the cross-button above the handler-
list.

66

Illustration 34: General properties

There is a nearly identical view for a MenuItem's handlers on the “Special”-page, if the currently
selected widget is a MenuBar. As stated above, a MenuItem is connected to a MenuBar's
properties. Hence, this is also the case for an item's event handlers. Therefore, we just add these to
the MenuBar's handlers, but mark them for the item. The only reliable and unique information we
have about an item is its position in the menu. Thus, we mark the corresponding handler by adding
an index list as a prefix to its command. Illustration 35 shows an example.

The second item in the menu at position two in the main menu has been selected, which results in
an index “[2][1]”. As the illustration indicates, this is automatically assigned to the command; the
user does not have to manually add it. The handler can also be defined in the MenuBar's general
properties, but this is less comfortable, as the index has to be manually defined. This is also quite
unsafe, because the index could refer to an inexistent item and we do not perform any check there.

Mutual dependencies between the general handlers and the menu handlers sections, as a new or
updated handler in the one should immediately show up in the other, add some complexity to their
implementation.

 6.3.4 Example

FLUID has now reached a state where we are able to design the example GUI from chapter 3. We
do this step by step:

Step 1: At first, we choose a MenuBar in the Palette and set the mode to Insert. A right-click on
the empty design inserts the menu.

Step 2: In the next step, we set the insert position to below, insert a frame by selecting it in the
Palette and right-click the menu to produce the empty space below it. We also insert an Entry,
another frame and the first column of buttons.

67

Illustration 36: Example: step 1

Illustration 35: Configuring a MenuItem's event handler

Step 3: After switching the position to right, we insert the rest of the buttons and another frame
behind this column.

Step 4: The next step is to configure any widget, here, for example, the plus-button's Label, Fill
and RowSpan properties. We also set the frames' Bg properties to the default color and adjust their
sizes.

Step 5: Because the plus-button spans two rows, a NULL widget is inserted below it and the minus-
and division-button are moved to the right. Therefore, we set the mode to Move and move the
minus- below the plus-button.

68

Illustration 37: Example: step 2

Illustration 38: Example: step 3

Illustration 39: Example: step 4

Step 6: As there was a NULL widget below the plus-button, the equals-button is moved to the right,
this time. By moving it to the right of the minus-button, we finish the design.

We stated before that one advantage of the UI-library is its high level of abstraction and that a UI
can be run as a GUI and a WUI, without touching the source code (except for the import
declaration). While this is basically true, there are some differences regarding their appearance. An
important one is the unit of measurement for a widget's size. In a GUI this is generally the size of a
character, if the widget has a string value assigned to it or pixels, if it has not. Hence, a button with
just a text is measured in characters, but with an image in pixels. In a WUI, on the other hand, a
widget is always measured in “em”, i.e., characters. Another difference is, of course, that widgets
may generally differ regarding their appearance, but sometimes also their behavior, because
identical widgets do not exist. These differences have two impacts on our example, we have to take
into account:

1. A MenuBar is much wider in a WUI than in a GUI and its size cannot be directly changed.

2. A frame is measured in characters; hence, it is less flexible as a placeholder and its size
grows (too) fast with the values of Width and Height.

We can solve number one by increasing the file-menu's ColSpan to four and number two by
setting the frames' Width and Height to one. Note that the latter results in one pixel wide and tall
frames in FLUID, what makes them very difficult to select again. Also note that, as NULL widgets
are ignored in UI2HTML, we have to add a frame behind the six- and the three-button, too.
Illustration 42 shows the tweaked design and the resulting WUI.

69

Illustration 40: Example: step 5

Illustration 41: Example: step 6

 6.4 XML-Files (Persistent Designs)

As stated above, we would like to save designs in an XML-format and be able to load it into FLUID
at a later date, which is what happens when the load resp. the save option is chosen in the Menu Bar
or the Tool Bar. Before a design is saved, we just have to check whether event handlers are
consistent, i.e., whether the arguments of handlers with the same command have the same types.
Otherwise the compilation of the source code, we will generate from the XML-document later,
could fail. This is also the main reason why user-defined arguments require types (references are
always of the type UIRef).

Nevertheless, the translation into or from XML is straightforward with the module XML, which is
provided by PAKCS. We define two new modules: FLUID2XML parses a design, together with
related states, to an XML-document and XML2FLUID does the opposite, i.e., restores design and
states.

 6.4.1 FLUID2XML

The module XML defines two constructors for an XML-expression of the type XmlExp:

data XmlExp = XText String | XElem String [(String, String)] [XmlExp]

The first one is irrelevant, as we do not use it. The second represents an element or tag with a name,
a list of attributes in a key-value format and a list of sub-expressions or children. We would like to
imitate the widget structure of the module UI. Hence, we represent widgets by Widget tags, which
also applies to the document's root element. Other values are either defined as a widget's attributes,
if there can just be a single one, like a label or as a child, if there can be multiple, like a Style.
The initial values for some of the widget constructors, especially a ScrollBarH's or a
ScrollBarV's target, are mapped to attributes, too. While parsing the UI-definition, we can also
add the values from the PropertiesState, the ReferencesState, the ArgumentsState
and the HandlersState to the document. The reference names also serve as targets for the scroll
bars. Arguments are solely added to the root element. As a Matrix contains a list of lists of
children, which cannot be directly mapped to XML, we define a tag Row for these.

The following example, which is shown in Illustration 43, should clarify the mapping. Note the list
box' refname (first Row) and its usage in the delete-button's handler (second Row).

<?xml version="1.0" standalone="yes"?>

<Widget kind="matrix" refname="a" label="">
 <Row>
 <Widget kind="common_list_box" refname="listbox" label="">

70

Illustration 42: The example designed for a WUI (left) and the resulting
WUI (right)

 <Style kind="background" color="gold" />
 <Style kind="width" value="12" />
 <Style kind="list_box_list">
 <Item value="Item 1" />
 <Item value="Item 2" />
 <Item value="Item 3" />
 <Item value="Item 4" />
 <Item value="Item 5" />
 </Style>
 <Style kind="height" value="4" />
 </Widget>
 <Widget kind="scroll_bar_vertical" refname="a_b" label=""
 target="listbox">
 <Style kind="fill" direction="y" />
 </Widget>
 </Row>
 <Row>
 <Widget kind="button" refname="deleteButton" label="Delete">
 <Style kind="col_span" value="2" />
 <Style kind="fill" direction="x" />
 <Handler event="DefaultEvent" command="deleteHandler">
 <Argument name="listbox" type="UIRef" />
 </Handler>
 </Widget>
 <Widget kind="null" refname="a_d" label="" />
 </Row>
</Widget>

 6.4.2 XML2FLUID

As stated above, this module just does the opposite of FLUID2XML, with one exception: it differs a
little bit regarding references. The reason is that there is one case, except for a widget itself, where
we require the actual reference and not just the reference name. This is a scroll bar's target, which
can only be applied when we are creating the scroll bar and it is absolutely possible that the latter
has to be created before the former (if it is somewhere to the left or above the target in the tree).
Hence, we cannot parse the XML-document to the UI-definition and the states in one pass, but have
to create the ReferencesState in the first run and the rest in a second. But we can just map a
reference name stored in a Widget tag to a free variable and bind the reference to a value later,
when the corresponding widget is created.

 6.5 Optimizations

FLUID is now capable of designing a GUI and saving and loading a design respectively. But when
the application is run, there is often a well noticeable delay between a command and the
corresponding action. For example, if a widget is selected in the Design View, it needs some time,
where the widget's properties are prepared, until the widget's background and foreground switch to
the selection colors. Of course, one reason is the amount of properties, which just need time to be
set up, but another is the time a widget's lookup requires. We can use setValue,
changeStyles and setHandler to reduce the delay where we do not need the UI-definition.
These operations are faster than the ones defined in DynUI2GUI, as they do not perform lookups
or updates on the UIState. This is, however, not an option for any changes of the widgets in the
Design View, because we require a complete UI-definition for these. We would like to increase the
speed of getWidgetByRef and getParent instead, which are frequently used when the design
is changed.

71

Illustration 43:
XML example

A UI-definition can be seen as a tree, where each node corresponds to a widget and an edge to a
parent-child relationship. So far, the lookup operations are based on a naive depth-first-search
strategy on this tree. I.e., in order to find a widget, we start at the root and follow branches from left
to right to their leaves, until the current node's reference equals the widget's we are looking for.
Hence, in the worst case, where the target is the rightmost leaf, we have to visit any node and any
edge in the tree. This can especially be a problem in FLUID, as the Menu Bar, the Tool Bar and the
Palette are to the left of the Design View and thus are often unnecessarily searched. Illustration 44
shows an example. Nodes are labeled with the corresponding widgets' references. Yellow nodes are
visited and numbers indicate the visit order.

It is possible to improve the lookup strategy for a GUI (module UI2GUI): A widget's reference
contains hierarchy information regarding its parents, we did not take into account yet. Due to this,
we are able to identify whether a widget is a sub-widget of another and thus if they are in the same
branch in the UI-tree, by comparing just the references' prefixes. If prefixes differ, an examination
of that branch is unnecessary. Otherwise, we check if the suffixes are also equal and thus we have
found the widget or descend in the branch if they are different. See Illustration 45 for an example.

Another improvement can be made by reducing the number of widgets. This is especially possible
for the Properties, as we have put, for example, basic properties like a label, Height and Width
in a single Row widget each, while we iteratively implemented them. We can replace several Rows
by a single Matrix in most cases and so also simplify the layout a little bit.

Finally, the Properties can be directly optimized. The page-system has been explained above. A
consequence of this system is that just a part of a widget's properties is visible at a time. Therefore,
only the visible part is computed and the other parts not until they are required, i.e., when the user
turns the page.

All these optimizations are noticeable, but unfortunately the delay is still there. A reason might be
that the underlying Tcl-program slows down with this amount of widgets, too. FLUID's quite long
startup time and phases where no translations from Curry to Tcl seem to be processed, are
indications for this assumption.

Further improvements could make use of multiple threads and a multi-core CPU.

72

Illustration 44: A naive depth-first-search strategy
(searching .c.b)

.1

.a

.a.a .a.b .a.c

2

3 4 5

.b

.b.a

6

7

.c

.c.a .c.b

8

9 10

Illustration 45: An improved search strategy
(searching .c.b)

65

4

.c.b.c.a

.c3

.b.a

.b2

.a.c.a.b.a.a

.a

1 .

 6.6 Advanced Features

The implementation of FLUID now covers the major requirements, as well as some of the minor. In
the following section we define the advanced features, which realize more of the minor
requirements and some optional ones.

 6.6.1 General Changes

Practice and tests have shown that, while the page-system is
sufficient for the Palette, it may sometimes be useful to directly
access more than one page of the Properties. Therefore, we
replace this system by a similar one, where related properties are
distributed to sections instead of pages and each section can
separately be shown or hidden. However, if, due to the screen
resolution, there is not enough space available for more than one
section, other sections can be hidden again. Illustration 46 shows
the new system.

As before, just the visible properties are computed and hiding any
section increases the performance and further reduces the delay
when selecting widgets. Hence, this is quite useful when a large
amount of widgets shall be selected and rearranged.

Furthermore, some icons have been reworked, in order to clarify
their meaning.

 6.6.2 Moving Multiple Widgets

If a design is based on a single layout, a common use case is that
multiple related widgets have to be moved. Moving them one by
one is unreasonable; thus, it should be possible to move them all
together. So far, a selected widget is moved relative to a target by
choosing the position and right-clicking the latter. We would like
to reuse this implementation. Multiple widgets can already be
selected and stored in the DesignState, but the order they are
selected in is random and, although they are somehow positioned
relative to each other, the DesignState does not reflect this relation. Therefore, the first step is
to retrieve the selected widgets' absolute positions with findIndexUI and sort these from top to
bottom and left to right and into lists representing rows. After that, the relative positions can be
computed, which yield the targets of the move-operations. The upper left widget is used as an
orientation point; hence, its target is the original target of the move. Successive widgets in that row
have the preceding one as their target and are moved to the right of the latter. The first widget in the
following row targets the first one in the row before and is moved below that and so on. If the
widgets shall be moved above the original target, we just reverse the list of rows and move above
instead of below; thus, the lower left widget then is the orientation point and rows are moved
bottom-up.

Due to the translation from absolute to relative positions, we can also maintain the latter, if there are
widgets between the selected ones. Illustration 47 shows an example. The buttons “B1”, “B2”, “B3”
and “B4” are moved as a compound below the label “Target”. The order they have been selected in
is irrelevant. Note that move positions are based on the positions before moving. That is the reason
why the buttons finally are not directly below “Target”, because it has been moved to the original
position of “B3”.

73

Illustration 46: Properties with
sections instead of pages

 6.6.3 Nested Layouts and the Hierarchy

For the requirements we constituted that either the possibility to nest layouts or to define and insert
custom widgets is sufficient. However, as custom widgets must be layout widgets themselves in our
implementation, we cannot realize the former without the latter. Therefore, we are now defining the
tools to nest layouts.

As before, we waive Rows and Cols and confine ourselves to employ Matrices and add an
appropriate entry to the Palette. Inserting a Matrix works as usual, but inserting into a design,
which contains a Matrix, differs a little bit. We check whether a Matrix is selected and then
decide on the basis of its position in the UI-tree, where a new widget shall be inserted. We identify
four cases:

1. A Matrix is selected and the target of the insert-operation is this Matrix: The new
widget is inserted into the Matrix at (1, 1).

2. A Matrix is selected in the same branch as the target (which is in a Matrix itself and not
the root widget): The new widget either is inserted into the selected Matrix and beside the
target or beside its top-most parent in the selected Matrix, if the target is on a lower level.
The latter case can occur when layouts have been nested multiple times and, in contrast to
its children, the right target in the selected Matrix may be difficult to access.

3. If no Matrix is selected, but the target is in a Matrix, the new widget is inserted into the
root widget and beside the target's top-most parent.

4. If the target is in the root widget, everything is as before.

Moving in or beside a Matrix is similar. But, due to the implementation of the function
createMove in the module GUI and because moving a widget from one layout widget to another
one would have an impact on its reference, moving between different layout widgets is not possible
at all. However, selected widgets may be in different Matrices and as well in a different Matrix
than the target of the move-operation. In the latter case we assume a parent of the target, which is on
the same level as a selected widget, was actually meant as the target. If such a parent does not exist
or if a new target has already been set for another selected widget before, the current widget is
ignored by the operation.

A frequent problem with nested layouts is that such a widget is covered by its children and cannot
be selected anymore. We could solve this with a simple mechanic, which just selects the parent of a
selected widget. However, this seems to be impractical, as one would probably prefer to directly
select a concrete widget and an hierarchical perspective on the design would be useful anyway.
Therefore, we design a new component, the Hierarchy. This is a list of nodes and entries, where
each node corresponds to a Matrix and an entry to any other widget. Nodes and entries have
labels, which consist of a widget's reference name and its kind. Furthermore, nodes can contain
nodes and entries themselves and each node has a button to expand or collapse. Due to the limited

74

Illustration 47: Moving multiple widgets (left: original design, right:
design after moving)

screen space, this is an important feature again.

We define a new data type, which reflects the model of such a tree view, together with two event
handlers for each entry or node

data TreeViewModel =
 TVNode String (String -> UIEnv -> IO ()) (String -> UIEnv -> IO ())
 [TreeViewModel]
 | TVEntry String (String -> UIEnv -> IO ()) (String -> UIEnv -> IO ())

and a function, which takes a reference for the tree view's root and a TreeViewModel and creates
a corresponding widget:

createTreeViewFromModel :: UIRef -> TreeViewModel -> UIWidget

If an entry or a node is selected or deselected, its corresponding event
handler is called and its label is passed to the handler. The event handler
also selects or deselects the widget in the Design View.

Because the design dynamically changes, the tree view provides
operations for these purposes, too. For example

addTreeViewFromModel :: String -> UIWidget ->
 TreeViewModel -> UIEnv -> IO ()

adds one or more entries or nodes from a TreeViewModel to the node
with the given label and to the given tree view widget and

updateEntryOrNode :: UIWidget -> String -> String ->
 UIEnv -> IO ()

updates the label of the entry or node with the given label in the given
tree view.

Like the Palette and the Properties, the complete Hierarchy can be
shown or hidden. Illustration 48 shows the Hierarchy for the example
design from 6.3.4, where the number-buttons and the buttons for the
operations have been put into separate Matrices. The node for the former collapsed.

 6.6.4 Custom Widgets

In order to separate concerns in a UI, a more convenient way than using plain
nested layouts is to define a custom widget, i.e., a widget, which consists of
several basic ones. These can be reused in the same design, as well as in other
designs. The XML-files we defined before contain any information, which is
required to create a widget from it. Hence, any saved design already defines a
custom widget. We just have to provide the tools to insert these into the current
design.

In FLUID common widgets can be chosen in the Palette. A corresponding
create-function is then stored in the PaletteState. Custom widgets fit quite
well into this implementation, as they can just provide another create-function,
which is performing the necessary operations. However, this function is
processing an XML-file and applies changes to the PaletteState, the
PropertiesState, the ReferencesState, the ArgumentsState and the
HandlersState, as the design, the custom widget is derived from, defines. Therefore, it is an
IO-function and we have to adjust the PaletteState and the other create-functions accordingly:

75

Illustration 48: The
hierarchy

Illustration 49:
Custom widgets
in the palette

type PaletteState =
 IORef (Maybe (UIRef, UIRef -> UIRef -> UIEnv -> IO UIWidget), [String])

As before, the state maybe contains the reference of a selected label in the Palette and the
corresponding create-function. The function takes a reference for the widget to create, a target (for
scroll bars) and the environment and returns the resulting widget. In order to access custom widgets,
we add a list box, where XML-filenames, without their suffixes, can be added to or removed from,
to the Palette, see Illustration 49. The new list of strings in the PaletteState stores the
corresponding paths. Finally,

createCustomWidget :: FLUIDState -> [UIRef] -> UIRef -> UIRef -> UIRef ->
 UIEnv -> IO UIWidget

creates a custom widget (the FLUIDState, the prefs and a reference for the list box are applied
before the function is stored in the state). It retrieves the current selection from the custom widget
list box and the path-list and loads the contents of the resulting XML-document. Similar to loading a
design, it applies the default event handlers (select, insert, …) to the widgets, but also merges the
properties, reference names, arguments and handlers the document contained, with those of the
current design. Because these values may already exist, especially when the same custom widget
has already been inserted, they are renamed until they are unique (by adding single quotes) and the
handlers' arguments are also adapted. As before, the function insertFromPalette then creates
a widget by calling the current create-function in the PaletteState and updates the Hierarchy.

 6.6.5 Copy, Cut and Paste

A useful feature to repeatedly insert and configure equal widgets, which also exists in a similar way
in many other applications, like word processors, is the option to copy. Hence, it can be seen as a
standard we would like to realize.

To copy a widget in FLUID, its current configuration must be saved to a “clipboard”. This covers
the actual widget, its reference name from the ReferencesState, its properties from the
PropertiesState and its event handlers from the HandlersState. Furthermore, similar to
moving multiple widgets, the positions of the widgets to copy must be sorted and saved and,
because the widgets are selected, their styles from the DesignState must be applied to the
copies. Because the positions of widgets from different levels of the UI-tree would be undefined in
a compound, just those on the same level as the widget, which has been selected at last, are copied.
We create a new state, which realizes a clipboard:

type ClipboardState = IORef (
 [UIWidget],
 [[(UIRef, (Maybe Int, Maybe Int))]],
 [(UIRef, [Style])],
 [(UIRef, String)],
 [(UIRef, [(String, String, [(String, String)])])]
)

One aspect of the associated function copyHandler is to save as much computation time as
possible, because the copies may never be used and we want to avoid unnecessary computations.
Therefore, some time intensive changes, like the assignment of new references, are skipped until the
content of the clipboard is pasted. We neither check where a spanning widget's NULL widgets are,
nor copy the latter at all. Hence, the function is rather simple. We can reuse the function which sorts
widgets by their absolute positions and returns those on the same level. Those on other levels are
removed from the selection. The states for the selection are retrieved and inserted into the
ClipboardState.

76

As soon as copyHandler is implemented, cutting is trivial, as the responsible function
cutHandler just calls copyHandler and deleteHandler.

In order to insert the content of the clipboard, i.e., to paste, we extend the event handler, which
reacts on a right-click on a widget in the design. The following operations are then performed:

1. Widgets are sorted into a list of rows according to the saved positions of the original ones.

2. New references are created and assigned to widgets, as well as new event handlers for
selecting, inserting, moving and pasting, which are based on the references.

3. The key-references in the saved lists of reference names, event handlers and properties are
replaced by the new ones.

4. NULL widgets for spanning widgets are created and inserted at the correct positions into the
list of rows.

5. If the position to paste is above another widget, the rows are reversed, i.e., they will be
inserted bottom-up.

6. The target, i.e., the widget, where the content of the clipboard is inserted relative to, is
determined as in 6.6.3.

7. The widgets are inserted according to their absolute positions in the rows.

8. In order to create unique names, reference names are renamed like for custom widgets and
the ReferencesState, HandlersState and PropertiesState are updated.

9. The Hierarchy is updated.

Note that the widgets are actually not inserted and thus their references stay unbound until the
current event handler finishes. This is the reason why we have to perform the operations step by
step and cannot, for example, insert NULL widgets relative to a spanning widget and right after
insertWidget has been called for the latter, as this would suspend the execution due to
residuation (see 2.2.6).

 6.6.6 Undo and Redo

Another requirement to realize would be the possibility to undo operations, like inserting, moving
or deleting widgets. Though, a detailed examination of the current implementation has shown that
this feature would require many changes of existing functions in the module FLUID, especially to
undo configurations of a widget's properties. At this point of the development this would be a high
risk and would also require much time and testing. Therefore, we do not implement this feature in
FLUID, but we would like to realize it for the basic UI-library, as this will show the power of the
command pattern the dynamic part of the library is based on.

In chapter 5 we payed attention to cover any relevant information in the command objects, like the
state of the widget or its parent before the command is processed. Operations like createDelete
in the module DynUI2GUI can be employed to create a command object. In order to undo
commands, they must be enqueued before they are processed, for example in a list in an IO-
reference. The required information to reverse the command can then easily be accessed. We
implement a new function

undo :: [ReconfigureItem] -> UIEnv -> IO [ReconfigureItem]

for this purpose. It takes a list of ReconfigureItems, i.e., command objects, reverses them and
returns the result. The following listing shows how an insert-operation is undone:

77

undo ((new, reconf) : rs) env = do
 cmd <- case reconf of
 GUI.WidgetInsert _ child _ _ _ ->
 case GUI.getRef $ GUI.getConfs child of
 Just r -> do
 c <- createDelete (Ref r) env
 return [c]
 Nothing -> error "DynUI2GUI.undo: Missing reference!"
 cmds <- undo rs env
 return (cmd ++ cmds)

The result simply is a delete-command, created by createDelete, for the widget referred by the
reference in the command's child-parameter, which is put into a list.

The other commands are more advanced, as, for example, a widget's original position must be
computed for insert- and move-commands. However, these problems can be solved by translating
the widget from the context of the module GUI to the module UI and using findIndexUI and/or
other functions from the module UI. Because redoing a command means to undo an undo-
operation, the reversed commands are not yet processed here, so they can be put into another queue.

undo can now be employed similar to reconfigure and calling reconfigure on a list of
reversed commands performs the corresponding changes. Undoing these realizes redo. The
following functions show how this can be generally implemented:

undoHandler cmds env = do
 (cs, us) <- readIORef cmds
 if null cs
 then done
 else do
 newus <- undo [head cs] env
 writeIORef cmds ((tail cs), newus ++ us)
 reconfigure newus env

redoHandler cmds env = do
 (cs, us) <- readIORef cmds
 if null us
 then done
 else do
 newcs <- undo [head us] env
 writeIORef cmds (newcs ++ cs, (tail us))
 reconfigure newcs env

An IO-reference contains a list of commands and a list of undo-commands. The last command resp.
the last undo-command is undone by applying undo on it. The result is then enqueued in the list of
commands or undo-commands and reconfigure is applied.

78

 7 Parsing
At this stage we are able to visually design a user interface and store that in an XML-document.
Following the architecture we defined in 6.1, the final step is to implement the lower layer, where
Curry source code is generated from the document.

 7.1 XML2Curry

So far, a frequently used approach to manually define a UI is to write a single function, which
contains the constructors for any of the interface's widgets, as well as local declarations for the
event handlers. An advantage of this procedure is that one does not have to think about arguments,
like references, which have to be available to widgets and handlers. On the other hand the source
code can be very difficult to read, especially when the UI is extensive. Another drawback is that a
single widget or handler cannot be reused by another module. For the code we generate, we would
like to separate concerns from each other.

The idea is to create an own “global” function for any widget and event handler. Furthermore, we
would like to adapt the quasi-standard architecture for applications with a user interface: MVC. If
there is a concrete model, it is defined by external arguments, which are out of our scope; hence, we
stick to the view and the controller. We further separate the view from the controller by creating an
own module for each. As the view should not be manually edited, this approach also has the
advantage that this module can just be overridden, when the design has changed.

The following example shows a cutout of the source code for the ListBox-GUI in 6.4.1:

module xml_example where

import UI
import UI2GUI
import xml_example_controller

--- Runs the UI.
main :: IO ()
main = UI2GUI.runUI "XML example" widget

--- The root widget.
widget :: UI2GUI.UIWidget
widget =
 UI2GUI.row
 [UI.Widget
 (UI.Matrix
 [[common_list_box_listbox listbox
 ,scroll_bar_vertical_a_b a_b listbox]
 ,[button_deleteButton deleteButton listbox,null_a_d a_d]])
 Nothing (Just a) [] [UI.Class [UI.Bg UI.Default,UI.Fg UI.Black]] []]
 where a free
 listbox free
 a_b free
 deleteButton free
 a_d free

We left the function definitions for the main widget's children out, as they are similar to widget,
but without the local declarations of free variables for references and the surrounding Row. The
latter is required, because the GUI-implementation neglects the main widget's configuration.

79

We derive the general structure of the view module: The name of the module and a list of imports
must be declared. The module UI must always be imported, as we use its symbols and types, like
the kind of a widget, as well as styles and colors. The other imports cover the type of the UI, i.e., an
abstract UI, a GUI or a WUI, which is determined by a user's choice and the import of the controller
module.

The imports are followed by the function declarations and definitions. The function main is
optional, as the view may just be part of a larger UI, but if it is generated, it also requires the main
window's title. The example does not cover external arguments, which can be defined for the main
widget in FLUID. If there are any, we declare free variables for them in main, in order to avoid
compiler errors.

The remaining functions form a flat structure, i.e., a list. The name of such a function is a
combination of the kind of widget it creates (the main widget excepted) and its reference name.
Each one consists of a type declaration and a rule, which defines the function. The right-hand side
of the definition may contain several calls of other widget creating functions, which is a hierarchical
structure again and the main widget also locally declares free variables for any widget.

The controller module for the example is trivial, as there is just a single event handler and we just
declare these and do not define them, but the following code snippet may clarify the idea:

module xml_example_controller where

import UI2GUI

deleteHandler :: UI2GUI.UIRef -> UI2GUI.UIEnv -> IO ()
deleteHandler listbox env = done

In order to realize the concept, we create a new module XML2Curry and the function

xml2curry :: Bool -> String -> String -> String -> Bool -> String ->
 XmlExp -> IO ()

which requires a parameter whether a main shall be generated and the title. Furthermore, it requires
the name of the module to base the UI on (UI, UI2GUI or UI2HTML), a filename for the view, a
parameter whether a controller shall be generated and a filename for it and finally an expression
containing the content of the XML-document.

In order to generate the source code we do not have to directly parse the XmlExp to a string, as this
approach would be error prone, but instead use the modules AbstractCurry and
AbstractCurryGoodies to create a valid Curry program. The latter module contains
abbreviations for frequently used constructs. We delegate the pretty printing of the resulting abstract
program to PrettyAbstract. Thus, we model the code structure described above with the
following AbstractCurry type constructors:

• A CurryProg describes one module. Its relevant parts are the name of the module, a list of
import declarations and a list of function declarations.

• A function declaration CFunc consists of a function name, as well as its arity and visibility,
which is always Public here, i.e., the generated module exports any function.
Furthermore, it covers a type expression and a list of rules. Note that the type expression is
not optional; hence, using type inference is not possible. This is the main reason why we
introduced types for external arguments and references in FLUID at all. It is not possible,
for the arguments at least, to guess their types without a concrete definition for an event
handler using the argument (and not just a stub), while parsing the XML-document. A
function declaration may be complemented with a comment by using CmtFunc instead of
CFunc.

80

• A type expression CTypeExpr is either a type variable, a type constructor with a qualified
name, e.g., (“Prelude”, “Int”) and a list of type expressions for the constructor's
arguments or a type expression for a function, which is just a composition of type
expressions.

• A rule CRule contains a list of patterns, corresponding to the function's left-hand side, a list
of pairs of expressions, one for a guard and one for the right-hand side and finally a list of
local declarations. In our case there is just a single pattern for each function, which has no
guard and local declarations are solely required for the reference declarations in the main
widget.

Parsing an XML-document containing a UI-definition in order to set up a CurryProg is not so
straightforward as it may seem in the first place. What's problematic here is their different
structures. The document is strict hierarchical, while the program is flat on the one hand and has a
hierarchical component, representing a parent-child relationship, on the other hand. A function's
type is derived from its arguments. The arguments are derived from the widget's reference name, as
well as its event handlers, resp. their arguments and those of its children. Therefore, we have to
perform a bottom-up analysis of the UI-definition and return any relevant information, i.e., the
function name, the arguments, the event handlers' signatures and the expression, which is actually
creating the widget, from a widget to its parent, until we arrive at the main widget and can finally
create the function declarations. xml2curry then creates a CurryProg for the view and another
one for the controller (if desired) and writes them to the given files.

As we would like to integrate the source code generation into FLUID, we design a dialog matching
the signature of xml2curry, see Illustration 50. We can already design it in FLUID and generate
the code by manually calling xml2curry; we just have to define the event handlers. This is very
easy, as we basically take the current values of the text fields, the check buttons and the menu and
pass these to xml2curry. As we create a main, the dialog can either run as a standalone
application or the main widget can be directly used in FLUID.

81

Illustration 50: UI generator dialog

 7.2 Curry2XML

We originally planned to implement the other direction, i.e., Curry source code to XML-files, too.
But it would be very difficult to cover any variant a GUI can be implemented of. Thus, a solution
would probably only consider a few of these variants. As this would not be very useful and because
we had rather realized as much of the requirements as possible, we waive implementing this
module.

82

 8 Conclusion
We created an application, which aids developers with the challenges of designing a user interface.

We took advantage of the abstract UI-library, which allows to define GUIs and WUIs. Extensions of
the library especially allow to dynamically insert, delete, move and configure widgets at runtime.
The current state of the UI can also be retrieved from a global UI-definition, which is automatically
updated in the background. Furthermore, operations to search and update widgets in this tree-
structure have been implemented.

The extensions of the library should be downward compatible, as we payed attention to limit the
changes of existing code to just a few lines and rather extended instead of changed.

As FLUID is a desktop application itself and thus is based on the GUI-part of the UI-library and the
appearance of a GUI differs a little bit from a WUI's, the WYSIWYG principle cannot be applied in
all respects. However, we implemented workarounds where possible and even properties, which are
not applicable to a GUI, can be applied to a design. Furthermore, there are different ways to achieve
a goal. For example, in order to replicate widgets, they can be copied and pasted somewhere else
(also to another design) or they can be saved as a custom widget and then imported to any design.

Most functional requirements, which have been derived from popular GUI-builders, have been
realized. We covered any of the major and most of the minor requirements except for drag and drop,
undo and the concurrent configuration of properties of multiple widgets. For the most part, the
optional ones have also been implemented, but, due to restrictions, direct manipulation of widgets
could just be realized to some degree.

The layered model FLUID's architecture is based on and especially the intermediate XML-files, on
the one hand, allowed to independently develop the layers from each other and, on the other hand,
layers can be substituted or extended by new ones. Hence, for example a source code generation
layer, which produces code for other languages than Curry, could be realized without breaking the
other layers. Implementing new layers could be subject to future work.

83

Bibliography
[Hanus 2000] M. Hanus (2000). A Functional Logic Programming Approach to Graphical User
Interfaces. In Proc. of the Second International Workshop on Practical Aspects of Declarative
Languages (PADL'00), pages 47-62. Springer-Verlag.
[Hanus, Kluß 2009] M. Hanus, C. Kluß (2009). Declarative Programming of User Interfaces
(diploma thesis). In Proc. of the 11th International Symposium on Practical Aspects of Declarative
Languages (PADL'09), pages 16-30. Springer-Verlag.
[Wikipedia] Wikipedia (english). Available at http://en.wikipedia.org (accessed in
December 2010).
[Molin et al. 1996] P. Molin, F. Ström (1996). A GUI Builder for Erlang/GS (diploma thesis).
Uppsala University, Uppsala, Sweden.
[Curry] Curry - A Truly Integrated Functional Logic Language. Available at
http://www.curry-language.org/ (accessed in December 2010).
[Freeman et al. 2008] E. Freeman, E. Freeman, K. Sierra, B. Bates (2008). Entwurfsmuster von
Kopf bis Fuß, orig. Head First Design Patterns, pages 191-233, 528-544. O'Reilly.
[Curry tutorial] S. Antoy, M. Hanus. Curry - A Tutorial Introduction. Available at http://www-
ps.informatik.uni-kiel.de/currywiki/documentation/tutorial (accessed in
January 2011).
[Tk tutorial] Tk tutorial. Available at http://www.tkdocs.com/tutorial/index.html
(accessed in January 2011).
[NetBeans] NetBeans IDE (v6.9). Available at http://www.netbeans.org (accessed in
August 2010).
[Visual Studio] Microsoft Visual Studio 2010 Express (v10.0). Available at
http://www.microsoft.com/express/ (accessed in August 2010).
[GUI Builder] GUI Builder (v2.5). Available at http://spectcl.sourceforge.net/
(accessed in August 2010).
[#develop] SharpDevelop (v3.2). Available at
http://www.icsharpcode.net/OpenSource/SD/ (accessed in August 2010).
[SWEBOK 2004] The Institute of Electrical and Electronics Engineers (IEEE) (2004). Guide to the
Software Engineering Body of Knowledge. IEEE. Available at
http://www.computer.org/portal/web/swebok/ (accessed in August 2010).
[Sommerville 2007] I. Sommerville (2007). Software Engineering 8, pages 242-265. Pearson
Education Limited.

84

 A Format of the XML-Files
The following document type definition (DTD) describes the structure of the XML-files for FLUID
proposed in 6.4. Note that some values of the attribute kind are not implemented in FLUID. For
Widget these are list_box, list_box_item, name, link and radio_button and
name_value for Style. Also note that the DTD is not explicitly associated with the generated
documents.

<!ELEMENT Widget (Argument | Style | Widget | Row)*>
<!ATTLIST Widget
 kind (matrix | row | col | label | button | entry | text_edit |
 scale | check_button | menu_bar | menu | menu_item |
 menu_separator | canvas | list_box | list_box_item |
 common_list_box | name | link | radio_button | null |
 scroll_bar_horizontal | scroll_bar_vertical)
 #REQUIRED
 refname ID #REQUIRED
 label CDATA #REQUIRED
 height CDATA #IMPLIED <!--Required for text_edit, canvas
 and list_box-->
 width CDATA #IMPLIED <!--Required for text_edit and
 canvas-->
 min CDATA #IMPLIED <!--Required for scale-->
 max CDATA #IMPLIED <!--Required for scale-->
 checked (True | False) #IMPLIED <!--Required for check_button and
 radio_button-->
 selection CDATA #IMPLIED <!--Required for list_box-->
 value CDATA #IMPLIED <!--Required for list_box_item and
 name-->
 selected (True | False) #IMPLIED <!--Required for list_box_item-->
 target IDREF #IMPLIED <!--Required for
 scroll_bar_horizontal and
 scroll_bar_vertical-->
>

<!ELEMENT Argument EMPTY>
<!ATTLIST Argument
 name CDATA #REQUIRED
 type CDATA #REQUIRED
>

<!ELEMENT Row (Widget)*>

<!ELEMENT Style (Item)*>
<!ATTLIST Style
 kind (align | text_align | text_color | fill | height | width |
 active | foreground | background | font | border | display |
 name_value | col_span | row_span | list_box_list | image)
 #REQUIRED
 position (center | left | right | top | bottom)
 #IMPLIED <!--Required for align and text_align-->
 color (default | black | blue | brown | cyan | gold | gray | green |
 magenta | navy | orange | pink | purple | red | tomato |
 turquoise | violet | white | yellow)
 #IMPLIED <!--Required for text_color, foreground and
 background-->
 direction (x | y | both)
 #IMPLIED <!--Required for fill-->

85

 value CDATA #IMPLIED <!--Required for height, width, active, display,
 name_value, col_span and row_span-->
 style (bold | italic | underline | dotted | dashed | solid)
 #IMPLIED <!--Required for font and border—>
 name CDATA #IMPLIED <!--Required for name_value-->
 path CDATA #IMPLIED <!--Required for image-->
>

<!ELEMENT Item EMPTY>
<!ATTLIST Item
 value CDATA #REQUIRED
>

<!ELEMENT Handler (Argument)>
<!ATTLIST Handler
 event (DefaultEvent | FocusOut | FocusIn | MouseButton1 |
 MouseButton2 | MouseButton3 | KeyPress | Return | Change |
 Click | DoubleClick)
 #REQUIRED
 command CDATA #REQUIRED
>

86

 B Contents of the CD-ROM
source/

AbstractCurryGoodies.curry – Abbreviations for AbstractCurry types, which are
frequently used.

DynUI2GUI.curry – Library to dynamically insert, remove, configure and move widgets at
runtime.

FLUID.curry – The FLUID UI-builder.

FLUID2XML.curry – Library to translate widgets and states from FLUID to XML.

GUI.curry – The GUI-library.

GUI2UI.curry – Library to map widgets from the GUI- to the UI-library.

UI.curry – Main module of the UI-library.

UI2GUI.curry – Sub-module of the UI-library to create a GUI from a UI-definition.

UI2HTML.curry – Sub-module of the UI-library to create a WUI from a UI-definition.

UIGenerator.curry – GUI, which creates Curry source code from XML-files.

UIGeneratorController.curry – Controller for the UIGenerator-GUI.

UIWidgets.curry – Combined widgets, like a tree view or a choice, for the UI-library.

XML2Curry.curry – Library to translate XML-files to Curry source code.

XML2FLUID.curry – Library to translate XML-files to widgets and states for FLUID.

docs/

about.txt – The about for FLUID.

help.txt – The help for FLUID.

images/

Images for icons.

documentation/

thesis.pdf – This document.

87

 C Installation of the Software
The software has been tested on Ubuntu Linux, Lucid and Maverick, using SWI-Prolog v5.8.0,
Tcl/Tk v8.5 and the PAKCS Linux binaries v1.9.2.

Prerequisites

• A Prolog implementation must be installed. If SWI-Prolog is used, the library “swi-prolog-
clib” may be required, which is currently unavailable to the most recent version of SWI-
Prolog, i.e., an earlier version may be used.

• Tcl and Tk v8.5 with the Wish command line interpreter. Earlier versions should still work,
but there may be drawbacks regarding the software's appearance.

• An installation of PAKCS. The configuration file “.pakcsrc” should exist in the home-
directory. In this file, the key “libraries” should at least contain the path to the folder
/tools/ui in PAKCS' installation directory, e.g.,

libraries=<pakcshome>/tools/ui

where <pakcshome> is the installation directory of PAKCS.

Installation

• Copy the folder “source” from the CD to a writable location.

• Run PAKCS in a terminal.

• Compile the modules in the copied folder by typing

:cd <copyfolder>/source

where <copyfolder> is the folder where “source” has been copied to and

:l FLUID

• Run FLUID by typing

main

88

 D Manual for the Software
The following manual for FLUID can also be directly accessed in the menu ? of the application.

Contents:

(1) Create a New Design

(2) Load or Save a Design

(3) Choose and Insert Widgets into a Design

(4) Select and Arrange Widgets in a Design

(5) Define a Widget's Properties

(5.1) Configure Simple Properties

(5.2) Configure a List Box

(5.3) Configure a Menu Bar

(5.4) Define a Reference and Arguments

(5.5) Define Event Handlers

(6) Copy, Cut and Paste

(7) Custom Widgets

(8) Generate Source Code

(1) Create a New Design

A new design can be created by choosing 'New' in the menu 'File' or via the file-button in the tool
bar. The current design can be saved before the change applies. Note that you may have to select a
widget in order to update the properties for the new design.

(2) Load or Save a Design

To load a design choose 'Open' in the menu 'File' or press the folder-button in the tool bar. The
current design can be saved before. Note that you may have to select a widget in order to update the
properties for the loaded design.

Analogue, to save a design, choose 'Save' from the menu 'File' or press the disk-button in the tool
bar.

(3) Choose and Insert Widgets into a Design

A widget to insert can be selected in the component labeled 'Palette' by left- clicking the
corresponding image. More widgets can be chosen by turning the current page via the arrows below
the palette.

If the design has just been created, the widget can be inserted by right- clicking into the white space
in the center. If there already are widgets in the design, the desired location of the new widget
relative to an existing one can be chosen in the menu 'Edit' or with the arrow-buttons in the tool bar.
Right-clicking a widget will then insert the new one, if the insert-mode is active. The mode can be
changed with the option 'Insert/Move/Paste' in the menu 'Edit' or via the button in the center of the

89

arrow-buttons in the tool bar. The plus-icon indicates that the insert-mode is active, the multi-arrow-
icon that the move-mode is active and the clipboard-icon (with an arrow pointing away from the
icon) that the paste mode is.

In order to insert into a matrix, it must be the widget, which has been selected at last (see also next
section). Right-clicking any of its children or their children inserts into the selected matrix and
relative to the former, if the insert-mode is active.

The palette can be faded in and out with the arrow next to its label.

(4) Select and Arrange Widgets in a Design

A widget in the design can be selected by a left-click. This will change the widget's appearance. (To
select a menu bar, left-click it and then one of its menu items.) Multiple widgets can be selected by
repeating the procedure. The current selection can be deselected by left-clicking one of the widgets
again or the empty space below the design. If no other widget is selected, the main widget is.

Another way to select a widget is by left-clicking its entry in the hierarchy. The hierarchy is the
component to the left of the palette, which is hidden by default. It is especially useful to select
matrices, which are covered by other widgets. A node in the hierarchy can be expanded or collapsed
by clicking on the arrow-icon next to the node.

The selection can be deleted by clicking the cross-button in the tool bar or via the menu 'Edit' and
the option 'Delete'.

One or more selected widgets can be moved by choosing the desired position relative to another one
in the menu 'Edit' or the tool bar and right-clicking a widget in the design, while the move-mode is
active (see 3). If multiple widgets shall be moved, they may be spread over the design, but will
merge at the targeted position. Note that widgets cannot be moved between different matrices.

(5) Define a Widget's Properties

To configure a widget, it must be selected. Just the widget which has been selected at last can be
configured.

In contrast to the palette, the component labeled 'Properties' does not contain several pages, but
sections and each one can be separately shown or hidden by clicking the arrow-icon next to a
heading. Note that the less sections are visible, the faster the selection of a widget is.

The properties can be faded in and out, as well.

(5.1) Configure Simple Properties (Text, Layout and Appearance)

Simple properties, like a widget's label, text align and background color, can be directly
applied by navigating to the corresponding section and typing the desired text in, followed
by 'Return' or by choosing the value in a drop-down menu.

(5.2) Configure a List Box

The content of a list box can be configured in a separate section labeled 'Special' in the
properties. To add an item to the box just type in the value and press 'Return' or first select
an existing item to add behind that. To update an existing item select it, type in the new
value and press the tick-button. A selected item can be deleted with the cross-button.

90

(5.3) Configure a Menu Bar

Similar to a list box, a menu bar's content can be configured. One can define the main menu
on the left and a (direct) sub-menu on the right. So far, just two levels of menus can be
configured. In addition to the procedure described in 5.2, the type of an item has to be
chosen in a drop-down menu. A sub-menu can only be configured if the selected item in the
main menu is of type 'Menu'.

(5.4) Define a Reference and Arguments

A widget is identified by its reference. The reference will be generated, but can also be
customized in the section labeled 'General' in the properties. Note that a reference must be
unique. If the main widget is selected, the application's arguments can also be defined.
Behind the label 'Name' and 'Type' a new one can be defined with the given name and a
qualified type, e.g.,

name = db

type = DBModule.Database

Existing arguments can be browsed or deleted above.

Any references and arguments are especially relevant and available to event handlers and
renaming resp. deleting one of these values leads to corresponding changes of the handlers'
arguments (see below).

(5.5) Define Event Handlers

Below the reference or arguments in the properties, a widget's event handlers can be defined.
Pressing the plus-button creates a new event handler. The cross-button deletes a selected
handler. The structure of an event handler is the event, followed by a colon and the
command (the name of the function to call on the event) and then a list of arguments for the
command in parenthesis. To configure a handler, select it and choose its event from the
drop-down menu. Type in the command name and press 'Return' or choose an available
argument to add and press the tick-button or an existing one to delete and press the cross-
button. Available arguments are arguments defined for the main widget, as well as any
references.

There are two ways to define event handlers for a menu bar's items:

If the selected widget is a menu bar, an event handler can be denoted to be used for a menu
item by adding a prefix to the command. The prefix may be a sequence of indices in
brackets ('[]'), where each index denotes the menu item's position (starting with zero) in the
main menu and sub-menus accordingly. For example

[3][7]doSomething

would assign the handler with the command 'doSomething' to the fourth entry in the main
menu (which should be of type menu) and the eighth in that sub-menu.

The second and most likely preferable way to define a menu item's handler is to do that in
the section 'Menu Handlers' in the 'Special'-section of a menu bar's properties. For a selected
menu item, the procedure is exactly as for a common widget described above, but indices
are automatically added.

91

(6) Copy, Cut and Paste

Any selected widget, together with their properties, can be copied or cut to the clipboard. In order to
copy the selection, choose 'Copy' in the menu 'Edit' or click on the clipboard-button (with an arrow
pointing to the icon) in the tool bar and in order to cut, choose 'Cut' in the menu or click on the
scissors-button in the tool bar. To paste previously copied or cut widgets, choose the paste-mode
and insert them by a right-click on a widget, as described in (3). Note that the references and
corresponding arguments of event handlers of these widgets may be renamed, if they would not be
unique. Also note that widgets from different matrices cannot be copied together.

(7) Custom Widgets

Any saved design also defines a custom widget. It can be imported on the second page of the palette
by clicking the plus-button there and opening the corresponding file. It may then be chosen in the
list above and used as any other widget in the palette. A custom widget can be removed via the
cross-button in the palette. Note that, as also described in (6), references and arguments of event
handlers may be renamed.

(8) Generate Source Code

In the menu 'File' a dialog to generate source code from a previously saved design can be opened
with the option 'Generate'. Choose the design behind 'Source File' and the file where the source
code shall be generated behind 'View File'. A 'Controller File', which contains event handler stubs,
can either be generated or an existing one opened. If the generated UI shall run as an application, a
main function with a title for the window can be specified. The choice behind 'Module' denotes
which type the UI shall be of, i.e., whether be it a GUI, a WUI or an abstract UI-definition. A click
on 'Generate' generates the source code. Note that existing files will be overridden.

When generation finished, the dialog closes.

92

	 1 Introduction
	 2 Basics
	 2.1 Glossary
	 2.2 Curry Basics
	 2.2.1 Modules
	 2.2.2 Functions
	 2.2.3 Types
	 2.2.4 Lists and Tuples
	 2.2.5 Higher-Order Functions
	 2.2.6 Logic Variables
	 2.2.7 Input/Output
	 2.2.8 GUI
	 2.2.9 UI

	 2.3 Tcl/Tk Basics
	 2.3.1 Widgets
	 2.3.2 Layout
	 2.3.3 Event Handling

	 3 Analyzing GUI-Builders
	 3.1 Criteria
	 3.1.1 Layout
	 3.1.2 Core Features
	 3.1.3 Advanced Features
	 3.1.4 Conclusion

	 3.2 NetBeans
	 3.2.1 Layout
	 3.2.2 Core Features
	 3.2.3 Advanced Features
	 3.2.4 Conclusion

	 3.3 Visual Studio
	 3.3.1 Layout
	 3.3.2 Core Features
	 3.3.3 Advanced Features
	 3.3.4 Conclusion

	 3.4 GUI Builder
	 3.4.1 Layout
	 3.4.2 Core Features
	 3.4.3 Advanced Features
	 3.4.4 Conclusion

	 4 Requirements and Restrictions
	 4.1 Requirements
	 4.1.1 Non-functional Requirements
	 4.1.2 Functional Requirements

	 4.2 Restrictions

	 5 Extensions
	 5.1 GUI
	 5.1.1 Rowspan and Columnspan
	 5.1.2 Empty Cells
	 5.1.3 Images
	 5.1.4 MatrixC
	 5.1.5 Insert, Delete, Move and Configure

	 5.2 UI2HTML
	 5.2.1 Images
	 5.2.2 Rowspan and Columnspan

	 5.3 UI
	 5.4 UI2GUI
	 5.5 GUI2UI
	 5.6 DynUI2GUI

	 6 Design and Implementation
	 6.1 Architecture
	 6.2 Overview
	 6.3 Core Features
	 6.3.1 Palette
	 6.3.2 Design View
	 6.3.3 Properties
	 6.3.4 Example

	 6.4 XML-Files (Persistent Designs)
	 6.4.1 FLUID2XML
	 6.4.2 XML2FLUID

	 6.5 Optimizations
	 6.6 Advanced Features
	 6.6.1 General Changes
	 6.6.2 Moving Multiple Widgets
	 6.6.3 Nested Layouts and the Hierarchy
	 6.6.4 Custom Widgets
	 6.6.5 Copy, Cut and Paste
	 6.6.6 Undo and Redo

	 7 Parsing
	 7.1 XML2Curry
	 7.2 Curry2XML

	 8 Conclusion
	Bibliography
	 A Format of the XML-Files

	 B Contents of the CD-ROM
	 C Installation of the Software
	 D Manual for the Software

