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Abstract

Programmers need mechanisms to store application specific data that persists multiple
program runs. To accomplish this task, programmers usually have to deal with storage
specific code to access files or relational databases.

Functional logic programming provides a natural framework to transparent persistent
storage through persistent predicates, i.e., predicates with externally stored facts.

We provide an implementation of persistent predicates, based on relational databases,
for the functional logic programming language Curry. Our library supports functional
logic programming with databases in the background, i.e., the programmer can access a
database employing functional logic programming techniques, and not database related.

We provide a prototype implementation of the presented library to document the
usefulness of our approach and have compared it to the existing file based implementation
with encouraging results.
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1. Persistent Storage

Programming languages need mechanisms to store data that persist among program
executions. Internal data needs to be saved and recovered, or external data has to be
represented and manipulated by an application. For instance, web applications often
read data stored on the web server and present it to the user in a structured way. Often
interactive forms, which allow for the manipulation of the internal data via a web based
interface, are provided.

The most common approach to persistent storage is to use files to store the data that
shall persist among program executions. Data can be stored in an application specific
format, e.g, the Java programming language offers a mechanism called serialization to
write objects to streams of data. Thus, in Java programs this mechanism could be
employed to store data in files. To make the stored information available to other
applications possibly written in different programming languages, the data format has
to be language independent. The eXtensible Mark-up Language (XML) serves that
purpose. Many programming languages provide libraries to read and write XML data,
and sometimes they also provide a mechanism to automatically convert XML data into a
language specific format. This mechanism is called XML language binding, and it allows
for transparent access to XML data; i.e., the programmer does not need to be aware of
XML if he uses XML language binding.

Access to data stored in files becomes inefficient for very large files. Usually Databases
are used to efficiently access a large amount of stored data. Relational database systems
based on the relational data model presented by [2] dominate the database world. In a
relational database data is stored in tables that can be divided into rows and columns.
For instance, scientific publications could be stored in a table, each record in an own row;
and the table could include columns for the name of the author, title of the publication,
etc.

The Structured Query Language (SQL) [13] is used to access and maintain data stored
in a relational database. It provides statements to create and delete databases and tables
as well as statements to access these tables, e.g., query information. A query selects some
rows of a table using a condition and projects some columns to be queried. For instance,
the SQL statement

SELECT title FROM publications WHERE author="Euclid"

retrieves all titles of publications written by Euclid, since the column title of the table
publications is projected, and all rows where the column author contains the value
"Euclid" are selected. Relational database systems provide tools to interactively enter
SQL queries and view the results. This kind of access, however, becomes inefficient if a
large amount of queries has to be sent, or the queries results are voluminous and require
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1. Persistent Storage

further processing. Thus, application programs can interface with database systems to
run queries and process their results.

1.1. Database Access

Database access is handled differently in common programming languages. In Java
JDBC1 can be used to access ODBC2-compliant databases. It enables the programmer
to send SQL queries to a database and process the results wrapped as Java objects.
This kind of access is error-prone, since SQL queries are represented as strings in a Java
program, and thus, their syntax is not checked by the compiler. An approach to trans-
parently store objects of the programming language Python in a relational database is
described in [11]. The programmer can store and retrieve Python objects in a relational
database without dealing with SQL statements. HaSQL3 and HaskellDB [10] are ap-
proaches to database access in Haskell. The latter provides combinators to construct
database queries using relational algebra that are automatically translated into SQL
queries. Thus, it ensures the queries to be syntactically correct and type-safe. Logic
programming provides a natural approach to relational databases, since logic program-
ming languages have a built-in notion of predicates. The notion of persistent predicates,
which provide transparent database access in Prolog, is introduced in [3]. The definition
of persistent predicates is stored externally, e.g., in a relational database, and thus, per-
sists over multiple program runs and is available to other programs. An application using
persistent predicates does not rely on a specific storage mechanism which therefore can
be exchanged without touching the code of the application; [3] provides implementations
based on both files and relational databases.

An implementation of dynamic predicates that adheres to the evaluation strategy of
Curry [1] is presented in [7]. Predicates are called dynamic if their definition changes
at runtime and persistent if they are dynamic and externally stored to persist multiple
program runs. The library presented in [7] implements persistent predicates by storing
facts in files. This thesis adds a database implementation to the library, and thus, it
allows for functional logic programming with databases. Internal data of a Curry ap-
plication can be transparently stored in a relational database, and an interface to an
existent database can be generated automatically. Functional logic programming com-
bines the best of the two main directions of declarative programming: Computing with
partial information and nondeterministic search for solutions from logic programming
is combined with high level abstraction mechanisms from functional programming, i.e.,
higher order functions, lazy evaluation and algebraic data types. The notion of pred-
icates offers a natural interface to relational databases, and higher order functions are
very useful to construct complex combined dynamic predicates. This work integrates
database access into a functional logic programming paradigm which is an advantage
over the most existing database libraries where the programmer has to learn a database

1http://java.sun.com/products/jdbc/
2Open DataBase Connectivity
3http://members.tripod.com/˜sproot/hasql.htm
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1.1. Database Access

query language or needs to be familiar with relational algebra to construct database
queries.

This section mentioned mechanisms to persistently store data used in application pro-
grams. This data can be stored in files or relational databases, and persistent predicates
allow for transparent storage of data in programming languages that support predicates
and binding of free variables. This thesis presents a functional logic database library
for the programming language Curry based on persistent predicates, and a prototype
implementation is used to document the usefulness of the approach.

The next chapter introduces Curry and SQL. The presented library is introduced
in Chapter 3. In Chapter 4 we discuss implementation details before we compare the
new implementation with the previously presented file based approach in Chapter 5. In
Chapter 6 we consider related and future work and Chapter 7 concludes.

13



1. Persistent Storage

14



2. Preliminaries

2.1. Curry

Curry [8] is a multi-paradigm programming language combining functional, logic and
concurrent programming. In this section we give an introduction to Curry, and we
introduce an example program we will refer to in future sections.

2.1.1. Operational Semantics

The integration of functional and logic programming is reflected by the operational
semantics of Curry which is based on lazy evaluation combined with a possible instan-
tiation of free variables. On ground terms the operational model is similar to lazy
functional programming, while free variables are nondeterministically instantiated like
in logic languages; hence, different results can be computed for different variable instan-
tiations. Logic programming focuses on the bindings of free variables while in functional
programming one is interested in the computed result. Since Curry is an integrated func-
tional logic programming language, an answer expression is a pair of variable bindings
and a computed result. Because more than one result may be computed nondeterministi-
cally, initial expressions are reduced to disjunctions of answer expressions. A disjunctive
expression is a multi-set of answer expressions usually written as

{x_1=v_1,...,x_m=v_m} e_1 | ... | {x_1=v_1’,...,x_m=v_m’} e_n

where the bindings of free variables are enclosed in curly brackets preceding the computed
result, and the alternatives are separated by vertical bars. For instance, the rules

f 0 = 2

f 1 = 3

define a function f which yields 2 if applied to 0 and 3 if applied to 1. If x is a free
variable, the call f x reduces to the disjunctive expression

{x=0} 2 | {x=1} 3

since x can be bound to 0 to reduce f 0 to 2, or x can be bound to 1 to reduce f 1

to 3. If they are clear from the context the bindings of free variables are omitted in
disjunctive expressions.

In Curry, nested expressions are evaluated lazily, i.e. the leftmost outermost function
call is selected for reduction in a computation step. If in a reduction step an argument
value is a free variable and demanded by an argument position of the left-hand side
of some rules, it is either instantiated to the demanded values nondeterministically or
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2. Preliminaries

the function call suspends until the argument is bound by another concurrent compu-
tation. Binding free variables is called narrowing ; suspending calls on free variables is
called residuation. Curry supports both models since it aims at providing a platform for
different declarative programming styles, and which strategy is “right” depends on the
intended meaning of the called function.

2.1.2. Data Type and Function Declarations

Curry supports algebraic data types that can be defined by the keyword data followed
by a list of constructor declarations divided by |. The declaration

data List a = [] | a : List a

defines the ubiquitous type of lists usually written as [a] with the constructors [] for
the empty list and (:) which takes an element and a list and constructs a list with the
given element as head and the given list as tail. Instead of 1:2:3:[] one can write
[1,2,3] for convenience. As an example of a function operating on lists, consider list
concatenation:

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x:(xs ++ ys)

As strings are represented as lists of characters in Curry, this function can also be used
to concatenate strings. To model optional values, Curry defines the type Maybe a as

data Maybe a = Nothing | Just a

So a value of type Maybe a is either Nothing or Just x for some value x. Type synonyms
can be defined by the keyword type. The declarations

data Publication = Publication Id [Author] Title [Id]

data Author = Author Name (Maybe Address)

type Id = Int

type Title = String

type Name = String

type Address = String

model a data type representing publications. A publication consists of a numeric iden-
tifier, a list of authors, a title and a list of identifiers that represent other publications
referenced by the publication. An author consists of a name and an optional address.

In Curry functions are defined by rules with an optional condition; function application
is written in prefix notation except for infix operators which can be used in infix notation
or in prefix notation if enclosed in brackets. Functions can be defined using pattern
matching by writing constructor applications as arguments. For instance, the function
title that gets the title of a publication can be defined as:

title :: Publication -> Title

title (Publication _ t _ _) = t
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2.1. Curry

The underscore is an anonymous variable and used for values that are not required for
the definition of a function. The functions

identifier :: Publication -> Id

authors :: Publication -> [Author]

references :: Publication -> [Id]

and

name :: Author -> Name

address :: Author -> Maybe Address

can be defined analogously. In Curry, anonymous functions can be defined using lambda
abstractions. The abstraction

(\p -> identifier p == 42)

is equivalent to the function

idIs42 p = identifier p == 42

but no name is assigned to the anonymous function. Such functions are useful in com-
bination with higher order functions like filter

filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = []

filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

Functions can be arguments and results of other functions, and a function need not be
applied to all arguments. As an example consider the function publicationById that
takes a list of publications and an identifier and returns the publication with the given
identifier if there is such a publication:

publicationById :: [Publication] -> Id -> Publication

publicationById ps n = head (filter (\p -> n == identifier p) ps)

This declaration employs a lambda abstraction to select the appropriate publication.
The function fails if there is no matching publication, since the function head, which
returns the first element of a non-empty list, fails if applied to the empty list. Instead
of the lambda abstraction

(\p -> n == identifier p)

function composition

(.) :: (a -> b) -> (c -> a) -> c -> b

f . g = \x -> f (g x)

can be used to identify the publication with the identifier n:

(n==) . identifier
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2. Preliminaries

The expression (n==) is a partial application of (==) to n and thus takes another argu-
ment which is compared to the value of n.

As another example of a higher order function consider the definition of foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr _ e [] = e

foldr f e (x:xs) = f x (foldr f e xs)

and the application

foldr (\x y -> x++", "++y) "" ["Euclid","Hilbert"].

The function foldr is applied to a lambda abstraction as first argument that puts
a comma between its two arguments, the empty string as second argument and the
list of two mathematicians as third argument. The application evaluates to the string
"Euclid, Hilbert, ". All given mathematicians are listed in a single string separated
by commas. Unfortunately, there is also a comma after the last name, since the empty
string given as second argument of foldr is also separated from the resulting string by
a comma. The function foldr1 is a variant of foldr that is only defined for non-empty
lists and does not require an identity element. The application

foldr1 (\x y -> x++", "++y) ["Euclid","Hilbert"]

evaluates to the string "Euclid, Hilbert".
For a clear separation of imperative and declarative parts of a program, Curry supports

monadic IO introduced by [12]. An IO action that returns a value of type a has the type
IO a and can be created using

return :: a -> IO a

Multiple IO actions can be sequentially combined by

(>>=) :: IO a -> (a -> IO b) -> IO b

For example

getChar >>= putChar

is a combined IO action copying one character from stdin to stdout.
Since Curry is a functional logic language it provides a notion of free variables that

can be bound by unification, nondeterministic search for solutions and nondeterministic
operations. Predicates are expressed as functions with result type Success - a type that
has only a single value success which is used as result for satisfiable constraints. In
Curry, nondeterministic operations can be defined by overlapping rules. The function
(?) defined as

(?) :: a -> a -> a

x ? _ = x

_ ? x = x

nondeterministically returns one of its arguments, hence,
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2.1. Curry

member :: [a] -> a

member = foldr1 (?)

is an operation nondeterministically evaluating to an element of the given list. The
member function can be used to define a predicate publication that is satisfied if the
given publication can be unified with a publication in a given list of publications.

publication :: [Publication] -> Publication -> Success

publication = (=:=) . member

Indeed this definition without the type signature would work for lists of arbitrary types.
We declare a specialized type since we want to define the predicate only on publica-
tions. The constraint equality operator (=:=) binds free variables and has result-type
Success, thus, it fails if its arguments cannot be unified. The predicate publication

nondeterministically unifies its second argument with an element of its first argument.
If more than one list element can be unified with the second argument, more than one
result is computed; and if no element of the first argument matches the second, the
operation fails. We can now define a function that finds the title of a publication with a
given identifier in a list of publications in (at least) two alternative ways: We can employ
a purely functional approach

titleById :: [Publication] -> Id -> Title

titleById ps = title . publicationById ps

or we can use the predicate publication:

titleById ps n | publication ps (Publication n X t X) = t

where

t free

X = let x free in x

To avoid the declaration of unused free variables, we define a singleton free variable X.
Think of it as an underscore; the occurrences of X in the definition of titleById denote
different free variables. We use a local declaration introduced by let local decls in exp
to define the singleton variable. We only need to declare t as free variable in the
local declarations introduced with the keyword where in the declaration of titleById.
Beyond free variables, functions can be defined inside local declarations introduced by
let or where.

The first declaration is very short, but it employs rather special functions title and
publicationById. The predicate publication is more general, since it could as well
be used to define the functions authorsById, refsByTitle, etc. The search goal can
be augmented with boolean conditions, which resemble a filter in a purely functional
approach:

19



2. Preliminaries

idByKeyword :: [Publication] -> String -> Id

idByKeyword ps keyword

| publication ps (Publication n X t X)

& (keyword ‘substringOf‘ t) =:= True

= n

where

n,t free

The function substringOf is defined as

substringOf :: String -> String -> Bool

substringOf s [] = null s

substringOf s (c:cs) = startsWith (c:cs) s || substringOf s cs

startsWith :: String -> String -> Bool

startsWith _ [] = True

startsWith (c:cs) (p:ps) = p==c && startsWith cs ps

The IO action

getAllSolutions :: (a -> Success) -> IO [a]

computes all results for a predicate and is used to encapsulate nondeterminism. So
another approach to compute identifiers of publications that have a given keyword in
their title is to define a predicate holding for such identifiers and use getAllSolutions

to compute all solutions for the predicate:

idHasKeyword :: [Publication] -> String -> Id -> Success

idHasKeyword ps keyword n

= publication (Publication n t X X)

& (keyword ‘substringOf‘ t) =:= True

where

t free

Now the IO action

getAllSolutions (idHasKeyword ps keyword)

computes all identifiers for publications with titles that contain the given keyword.

We saw that predicates provide a convenient access to a list of stored publications.
But we do not need to store data in lists, we can as well use predicates to define facts
representing stored data. For instance, a predicate storing (some) prime numbers can
be defined as

prime :: Int -> Success

prime = (=:=) . member [2,3,5,7,11,13,17]

employing the presented member operation and a list of prime numbers. We can also
directly define a predicate identifying prime numbers:

20



2.2. Structured Query Language

prime’ :: Int -> Success

prime’ 2 = success

prime’ 3 = success

prime’ 5 = success

prime’ 7 = success

prime’ 11 = success

prime’ 13 = success

prime’ 17 = success

In this definition each fact is given explicitly in the program source. Both predicate
declarations are equivalent, i.e., they can be used interchangeably.

In this section we introduced the functional logic programming language Curry and
saw that a predicate can be versatilely employed to query a given list of publications.
The next section introduces SQL which is used to query relational databases.

2.2. Structured Query Language

The Structured Query Language (SQL) [13] is a standardized language to query and
manipulate relational databases. The relational data model [2] presents two kinds of
languages to access a relational database: relational algebra and relational calculus. Re-
lational algebra uses algebraic combinators like join and projection to combine relations
represented by tables. SQL is an exponent of relational calculus languages where the
desired results are described in a way easily accessible to humans. In this section we
introduce those SQL statements necessary to follow the examples presented in this thesis
and present the data types for table columns supported by SQL.

2.2.1. SQL Statements

SQL supports so called schema-statements used to maintain a relational database, data-
statements to access tables in a database and transaction-statements to perform several
statements as an atomic unit. As an example for a schema-statement consider the
CREATE TABLE statement

CREATE TABLE authors (name TEXT,address TEXT)

which is used to create tables in a database. The example statement creates a table
called authors with two columns name and address. The columns have been associ-
ated with types; there are types for numbers, characters, strings or even dates. Usually
SQL keywords are written in CAPITAL letters while table and column names are not.
Another SQL-schema-statement is DESCRIBE table which can be used to query infor-
mation about a database table. The statement

DESCRIBE authors

requests the names of the table’s columns, their types and some other information con-
cerning null values, keys and default values. Consider the first two columns of the
answer, specifying the column’s names and their types:
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2. Preliminaries

Field Type Null Key Default Extra

name TEXT YES NULL

address TEXT YES NULL

The values are those we used in the CREATE TABLE statement above. SQL-data-statements
involve insertion and deletion

INSERT INTO authors VALUES ("Euclid","Alexandria")

DELETE FROM authors WHERE name="Euclid"

as well as selection

SELECT address FROM authors WHERE name="Euclid"

of table rows. With the INSERT-statement the specified values are inserted as new row
of the given table. In the example only one data record is inserted, multiple records
can be inserted separated by commas. Rows can be deleted by specifying a condition
restricting the rows to delete. The SELECT-statement contains a similar restriction to
specify the rows to select from the given table. Additionally, the columns that shall
be selected are given. As result of the SELECT statement a table with one row and one
column is returned

Alexandria

since there is only a single record for Euclid in the database, and the column address was
projected in the query. As a default, all SQL-statements are instantly committed and
therefore change the database immediately. To temporarily disable auto-commit mode,
the transaction-statement

START TRANSACTION

is provided. All statements that change the database and are performed after the trans-
action starts have to be committed explicitly by

COMMIT

or can be discarded using

ROLLBACK

For instance, the statements

START TRANSACTION

INSERT INTO authors VALUES ("Euclid","Alexandria")

ROLLBACK

do not affect the database; no additional data record is inserted into the table authors.
For the SQL-transaction-statements to take effect, the database has to be set up to
support a transactional table engine if it does not support one by default.
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2.2. Structured Query Language

2.2.2. Column Types

Values can be stored in various formats in the columns of database tables. The presented
column types can be divided into three categories: numeric types, date and time types
and string types.

There are numeric types for integer values and for floating point numbers. The pre-
sented types differ in their range, and some are simply synonyms for others. Table 2.1
shows integer types and their signed and unsigned ranges. Table 2.2 shows different

column type signed min signed max unsigned max synonyms
TINYINT -128 127 255 BIT,BOOL,BOOLEAN

SMALLINT -32768 32767 65535
MEDIUMINT -8388608 8388607 16777215
INT -2147483648 2147483647 4294967295 INTEGER

Table 2.1.: Integer Column Types

column type absolute min absolute max synonyms
FLOAT ≈ 1.2 · 10−38 ≈ 3.4 · 1038

DOUBLE ≈ 2.2 · 10−308 ≈ 1.8 · 10308 REAL

DECIMAL ≈ 2.2 · 10−308 ≈ 1.8 · 10308 DEC,NUMERIC,FIXED

Table 2.2.: Floating Point Column Types

floating point column types. The minimal and maximal absolute values are given; if the
types are specified UNSIGNED negative values are not allowed. Values of type DECIMAL

are stored as string with one character for each digit.
SQL supports data types for date and time values. Table 2.3 shows three of them

column type format
DATE YYYY-MM-DD

TIME HH:MM:SS

DATETIME YYYY-MM-DD HH:MM:SS

TIMESTAMP YYYY-MM-DD HH:MM:SS

Table 2.3.: Date and Time Column Types

and their format. A TIMESTAMP column is useful for recording the date and time of
operations changing the table contents. It is automatically set to the current date and
time if no value or the null value is assigned.

Strings can be stored in binary format or as characters with an associated character
set. Table 2.4 shows different column types to store strings and binary large objects
(blobs). The types BINARY and VARBINARY as well as the BLOB types store binary strings
rather than non-binary strings. Non-binary strings have an associated character set
and are compared case insensitive. Columns of type VARCHAR and VARBINARY as well
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column type maximum length
CHAR 255
VARCHAR 255
BINARY 255
VARBINARY 255
TINYTEXT 255
TINYBLOB 255
TEXT 65,535
BLOB 65,535
MEDIUMTEXT 16,777,215
MEDIUMBLOB 16,777,215
LONGTEXT 4,294,967,295
LONGBLOB 4,294,967,295

Table 2.4.: String Column Types

as columns with TEXT or BLOB types require only storage for actual stored characters,
while columns of type CHAR and BINARY require a fixed amount of storage regardless
of their contents. Their are additional column types for strings and sets of strings.
Columns of type ENUM(value_1,...,value_n) store values chosen from the given list
of values, while the null value and a special error value ’’ is also allowed. The values
are represented internally as integers. Columns of type SET(value_1,...,value_n)

store up to 64 values chosen from the given list. SET values are represented internally as
integers.
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In this chapter we consider an implementation of persistent predicates in Curry em-
ploying a relational database for external storage of the predicates facts. The use of
a relational database allows for handling large amounts of data that cannot be held in
memory to apply the file based approach. Moreover it enables conditions on dynamic
predicates to be solved by the database system, not by the run-time system.

Using persistent predicates for database access, hides the database from the program-
mer and allows for a functional logic programming style. Programming with predicates
is well known to logic programmers, and features of functional programming like higher
order functions and partial evaluation can be applied to combine persistent predicates.
As seen in Section 2.1, predicates enable a versatile access to stored ground values. The
familiar programming paradigm is a key advantage of the presented database library.

The facts of a persistent predicate can be transparently stored as rows of a database
table associated with the predicate, i.e., the programmer does not need to be aware of
the storage mechanism. Each argument of the predicate can be stored in an own column,
and complex arguments like tuples can be stored in multiple columns to allow for queries
restricting only parts of it. Since lists are frequently used in Curry, they are considered
separately; in Section 3.2.3 we describe how lists are stored in database tables.

In the remainder of this chapter we describe the interface of the presented library,
discuss how arguments of persistent predicates are stored in database tables and present
a set of database specific combinators that can be directly translated into database
queries.

3.1. Interface of the Library

In this section we describe the interface of the presented database library. Indeed it is
similar to the interface presented in [7] but adds database specific combinators which
can be directly translated into database queries.

Persistent predicates are defined by the keyword persistent, since their definition
is not part of the program but externally stored. The only information given by the
programmer is a type signature and a string argument to persistent identifying the
storage location. The predicate defined below stores values of type Publication in the
table publications in the database currydb:

publication :: Publication -> Dynamic

publication persistent "db:currydb.publications"

The storage location is prefixed with "db:" to indicate that it is a database table. After
the colon, the database and the table are given divided by a period. The database must
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be accessible via the employed back-end on the computer that runs the program. The
result type of persistent predicates is Dynamic which is conceptually similar to Success

the result type of ordinary predicates. Dynamic predicates are distinguished from other
predicates to ensure that the functions provided to access them are only used for dynamic
predicates, and not for ordinary ones.

3.1.1. Interfacing Existing Databases

The presented database library allows for transparent storage of algebraic data types
in a relational database. It can, however, also handle existing database tables using
database predicates. If a table authors created by

CREATE TABLE authors (name TEXT, address TEXT)

is present in the database currydb, the persistent predicate declaration

authors :: String -> String -> Dynamic

authors persistent "db:currydb.authors"

can be used to access the data stored in that table. This predicate declaration can be
automatically generated, and the programmer can use it as provided, or he can change
it to structure the arguments of the database predicate. The predicate defined by

data Author = Author Name (Maybe Address)

type Name = String

type Address = String

author :: Author -> Dynamic

author persistent "db:currydb.authors"

can also be used to access the database table authors. Section 3.2 discusses how argu-
ments of persistent predicates can be represented as columns of a database table.

To generate persistent predicate declarations for existing relational database tables,
the functions

interface :: String -> IO ()

interfaceTables :: String -> [String] -> IO ()

are provided which both take a database name as argument and generate a Curry file with
declarations of dynamic predicates interfacing tables of the given database. The function
interface generates predicates for all tables in the database, and interfaceTables is
provided with a list of table names to interface with.

To generate a predicate declaration for a given database table, we need to compute a
type signature for the predicate that resembles the column types of the given table. Each
column is represented by exactly one argument of the predicate and the argument types
are chosen to reflect the type of the column they represent. To formalize the translation,
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we define a mapping τ translating SQL column types into Curry types:

Bools := {BIT, BOOL, BOOLEAN}
Ints := {TINYINT, SMALLINT, MEDIUMINT, INT, INTEGER, BIGINT}

Floats := {FLOAT, DOUBLE, REAL, DECIMAL, DEC, NUMERIC}
Strings := {VARCHAR, TINYTEXT, MEDIUMTEXT, TEXT, LONGTEXT}

SQLTypes := Bools ∪ Ints ∪ Floats ∪ {CHAR} ∪ {DATE} ∪ Strings

CurryTypes ⊇ {Bool, Int, Float, Char, SQLDate, String}

τ : SQLTypes → CurryTypes, t 7→



Bool , t ∈ Bools
Int , t ∈ Ints
Float , t ∈ Floats
Char , t = CHAR

SQLDate, t = DATE

String , t ∈ Strings

Arguments of type Bool, Int, Float, Char and SQLDate can be generated from corre-
sponding SQL column types. The type SQLDate is only defined to represent dates in
SQL format and described in detail in Section 3.1.5.

To generate the above declaration of the persistent predicate authors, the function
interfaceTables can be called with the database’s and table’s names. The call

interfaceTables "currydb" ["authors"]

writes the above declaration of the predicate authors into a file called currydb.curry.

3.1.2. Basic Operations

The basic operations for persistent predicates stored in a database involve assertion,
retraction and query. Because the definition of dynamic predicates changes over time,
their access is only possible inside the IO Monad [12] to provide an explicit order of
evaluation. To manipulate the facts of a dynamic predicate, the functions

assert :: Dynamic -> IO ()

and

retract :: Dynamic -> IO ()

are provided. The arguments of assert and retract must not contain free variables,
and thus, only assertion and retraction of ground facts are allowed. If the arguments
of a database predicate are not ground, a call to assert or retract suspends until the
values of the arguments are known. As an example recall the database predicate author
interfacing the table authors. The IO action

assert (author (Author "Euclid" (Just "Alexandria")))

inserts a row with the appropriate values into the table authors, and the IO action
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retract (author (Author "Euclid" (Just "Alexandria")))

deletes all such rows from the table authors. Note that the return type of retract is
IO () unlike presented in [7] and that all facts that equal the value to retract are deleted,
if there is more than one such fact. The original return type of retract presented in [7]
is IO Bool, and its behavior was changed to reflect the DELETE statement present in
SQL. All matching records are removed by this statement, and to determine whether
an entry was deleted, the resulting table has to be compared to the original, which is a
needless inefficiency. To identify, whether a fact exists in the database, the programmer
can use the function isKnown, hence, he is not reliant on the function retract to return
a boolean value.

A query to a dynamic predicate can have multiple solutions computed nondetermi-
nistically. To encapsulate search, the function

getDynamicSolutions :: (a -> Dynamic) -> IO [a]

takes a dynamic predicate and returns a list of all values satisfying the abstraction similar
to getAllSolutions for predicates with result type Success. For instance, the query

getDynamicSolutions (\name -> author (Author name (Just "Alexandria")))

computes a list of all names of authors from Alexandria that are stored in the table
authors. The function

getDynamicSolution :: (a -> Dynamic) -> IO (Maybe a)

can be used to query only one solution, and

isKnown :: Dynamic -> IO Bool

detects whether a given fact exists in the database. Note that isKnown can be imple-
mented as

isKnown d = getDynamicSolution (const d) >>= return . isJust

The function getKnowledge provided by [7] is not supported in combination with persis-
tent predicates stored in a database. See Section 5.1 for a discussion of this limitation.

3.1.3. Transactions

Since changes made to the definition of persistent predicates are instantly visible to other
programs employing the same predicates, transactions are required to declare atomic
operations. As database systems usually support transactions, the provided functions
rely on the databases transaction support:

transaction :: IO a -> IO (Maybe a)

transactionDB :: String -> IO a -> IO (Maybe a)

abortTransaction :: IO a

The function transaction is used to start transactions that do not use persistent pred-
icates stored in a database. To start a transaction employing database predicates, the
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function transactionDB is supplied with a database name and an IO action to per-
form. Both functions perform the given IO action as a transaction and wrap its result
in the Maybe type if the transaction completes normally or return Nothing if it fails or
is aborted with abortTransaction.

To perform a transaction in different databases, calls to transactionDB can be nested.
For instance, if an IO action t involves predicates from two databases database1 and
database2 the call

transactionDB "database1"

(transactionDB "database2" t >>= maybe abortTransaction return)

performs the IO action t as a transaction in both given databases. The function maybe
is defined as

maybe :: a -> (b -> a) -> Maybe b -> a

maybe x _ Nothing = x

maybe _ f (Just x) = f x

and useful for programming with optional values.

3.1.4. Combining Dynamic Predicates

Often information needs to be queried from more than one dynamic predicate at once, or
a query has to be restricted with a boolean condition. For instance, a predicate storing
authors of publications can be combined with a predicate storing publications along with
the name of its author and its title. We simplify the example presented in Section 2.1
to illustrate a combination of dynamic predicates:

data Publication = Publication Name Title

data Author = Author Name (Maybe Address)

type Name = String

type Title = String

type Address = String

publication :: Publication -> Dynamic

publication persistent "db:currydb.publications"

author :: Author -> Dynamic

author persistent "db:currydb.authors"

The example defines two persistent predicates stored in a database currydb. One stores
publications by the name of the author and the title of the publication. The other one was
already established in Section 3.1.2 and stores names of authors along with an optional
address. To query the titles of publications written by authors from Alexandria, we need
to combine both predicates. Moreover, to query the names of authors of publications with
titles that contain the word“Geometry”, we need to combine the predicate publication
with a boolean condition expressing this property.
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Dynamic predicates can be combined to more complex predicates using two different
forms of conjunction. One combines two values of type Dynamic, the other combines a
Dynamic-value with a boolean condition:

(<>) :: Dynamic -> Dynamic -> Dynamic

(|>) :: Dynamic -> Bool -> Dynamic

As an example of a combination of two different dynamic predicates consider a query
for titles of publications written in Alexandria. It can be expressed in Curry by

writtenInAlexandria :: Title -> Dynamic

writtenInAlexandria title

= publication (Publication name title) <>

author (Author name (Just "Alexandria"))

where

name free

and the IO action

getDynamicSolutions writtenInAlexandria

returns a list of all titles of publications written by authors from Alexandria currently
stored in the tables publications and authors. A query for names of authors that worked
on geometry can be expressed by

workedOnGeometry :: Name -> Dynamic

workedOnGeometry name

= publication (Publication name title) |>

"Geometry" ‘substringOf‘ title

where

title free

and the IO action

getDynamicSolutions workedOnGeometry

returns the list of all authors of publications with a title containing the word“Geometry”
currently stored in the table publications.

The presented combinators can be employed to construct Dynamic-abstractions that
resemble database queries. The functions writtenInAlexandria and workedOnGeometry

contain everything necessary to construct a database query. To illustrate this correspon-
dence they are given as lambda abstractions along with an SQL statement resembling
the abstraction.

The function writtenInAlexandria is equivalent to the lambda abstraction

\title ->

publication (Publication name title) <>

author (Author name (Just "Alexandria"))

The declaration of the free variable name has been omitted to emphasize the resemblance
to the database query
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SELECT publications.title

FROM publications, authors

WHERE publications.name = authors.name

AND authors.address = "Alexandria"

The pattern variable title of the abstraction corresponds to the projected column title
in the database query, and the tables publications and authors used in the query resemble
the corresponding predicates used in the body of the lambda abstraction. Moreover, the
variable name is shared among the two predicate calls. This restriction is expressed in the
first part of the WHERE-clause of the database query. The second part of the WHERE-clause
expresses the restriction posed by the ground value in the second argument position of
the constructor Author.

The function workedOnGeometry is equivalent to the lambda abstraction

\name ->

publication (Publication name title) |>

"Geometry" ‘substringOf‘ title

The declaration of the free variable title has been omitted similar to the previous
example. The abstraction corresponds to the database query

SELECT publications.name

FROM publications

WHERE publications.title REGEXP "Geometry"

The projected column name resembles the pattern variable name, and the predicate
publication is represented by the corresponding table in the database query. The sub-
string condition is translated into a restriction, expressed by a simple regular expression.
The regular expresison is just the string “Geometry” that has to occur somewhere in the
value of the column title in the table publications to satisfy the restriction.

Unfortunately, we cannot construct the conditions presented in the previous examples
at runtime since the structure of the corresponding expression is not available to the run-
time system, and the used variables are not associated with the corresponding columns
of the tables: For instance, the internal structure of

"Geometry" ‘substringOf‘ title

is not available at runtime and the name-columns of the tables publications and authors
have to be associated with the shared variable name to compute the restriction

publications.name = authors.name

Both problems are addressed in later sections: Section 3.3 introduces combinators that
can be directly translated into SQL queries and Section 4.1 presents a program trans-
formation automatically augmenting a program with such combinators.

3.1.5. Special Purpose Combinators

SQL has built-in data types for text or sequences of characters, numerical values like in-
tegers and floats, and there is also a special data type representing dates. In Section 3.1.1

31



3. A Functional Logic Database Library

we showed how the column types of SQL are represented in Curry. The only column type
not represented by a primitive Curry type is DATE which is modeled by the abstract data
type SQLDate. Its constructor is hidden to prevent pattern matching. Instead functions
are provided to construct, decompose or compare values of type SQLDate:

sqlDate :: Int -> Int -> Int -> SQLDate

year :: SQLDate -> Int

month :: SQLDate -> Int

day :: SQLDate -> Int

before :: SQLDate -> SQLDate -> Bool

All those functions can be translated into database queries using the program trans-
formation described in Section 4.1. For instance, if the data type for publications is
augmented with a date of publication

data Publication = Publication Name Title SQLDate

the query function

writtenBeforeChrist :: Title -> Success

writtenBeforeChrist title

= publication (Publication X title date) |>

date ‘before‘ sqlDate 0 1 1

would describe all titles of publications written before Christian era. The equivalent
database query is

SELECT publications.title

FROM publications

WHERE publications.date < "0000-01-01"

There are other notable predicates that can be translated into database queries. We
already used the function substringOf to query publications about geometry. The
functions startsWith and endsWith are equally useful, can be translated similarly and
are therefore provided by the database library:

startsWith :: String -> String -> Bool

endsWith :: String -> String -> Bool

substringOf :: String -> String -> Bool

Those functions can be used as infix operators and are translated into database queries
using regular expressions.

In this section we discussed the interface of the presented database library. The key
operations involving assertion, retraction and query of dynamic predicates were pre-
sented as well as two different conjunction operators to build more complex dynamic
predicates. Finally, we documented the resemblance of complex dynamic predicate ab-
stractions to database queries and motivated the database specific combinators presented
in Section 3.3.
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3.2. Arguments of Predicates in a Database Table

The representation of a persistent predicate’s arguments in a database table determines
the queries generated for this predicate. Primitive values such as numbers or strings can
be stored in one column, and queries can restrict these columns according to the values.
The persistent predicate

authors :: String -> String -> Dynamic

authors persistent "db:currydb.authors"

introduced in Section 3.1.1 is stored in the database currydb in a table authors with
two columns which is automatically generated with the SQL statement

CREATE TABLE authors (name TEXT, address TEXT)

if it does not exist while loading the program. The conditional predicate

authors name "Alexandria" |> name=="Euclid"

describes the author Euclid of Alexandria employing both a condition attached to the
dynamic predicate using (|>) and a ground value in the second argument position of
authors. An SQL query describing Euclid of Alexandria needs the condition

name="Euclid" AND address="Alexandria"

in its WHERE-part since the first argument of the predicate authors is stored in the column
name and the second in the column address. All arguments could be stored like this in
a single column of a table since there are functions readTerm and showTerm converting
arbitrary values into strings and vice versa. More sophisticated storage mechanisms,

Type of Argument Representation
primitive: Int, Float, Char, String single column
record types multiple columns, maybe separate table
lists separate table, null for empty list
optional values single column, null for Nothing
everything else string representation in single column

Table 3.1.: Representation of Arguments

however, give rise to more detailed database queries. Especially record types and lists
can be handled differently to allow for efficient translation of restrictions into database
queries. Table 3.1 shows how different Curry types can be represented in a database.
The subsequent sections describe the storage of optional values, record types and lists.

Similar to Section 3.1.1, we formalize the translation of Curry types into SQL column
types before we give examples in the following sections. A Curry type is mapped into a
word over SQL column types, each representing one database table. A Curry type can
be associated to more than one column type if it is a record type; and if it embodies a
list, it is stored in multiple tables.
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Let CurryTypes be a set with the following properties:

CurryTypes ⊇ {Bool, Int, Float, Char, Date, String}
∀n ∈ N ∀t1, . . . , tn ∈ CurryTypes : record(t1, . . . , tn) ∈ CurryTypes

∀t ∈ CurryTypes : optional(t) ∈ CurryTypes

∀t ∈ CurryTypes : list(t) ∈ CurryTypes

and
SQLTypes ⊇ {BOOL, INT, FLOAT, CHAR, DATE, TEXT}

For instance, the type Publication defined as

data Publication = Publication Author Title

data Author = Author Name (Maybe Address)

type Title = String

type Name = String

type Address = String

is represented by

record(record(String, optional(String)), String).

We define a mapping ζ as:

ζ : CurryTypes → SQLTypes+

t 7→



BOOL , t = Bool

INT , t = Int

FLOAT , t = Float

CHAR , t = Char

DATE , t = SQLDate

ζ(t1) · . . . · ζ(tn), ∃n ∈ N ∃t1, . . . , tn ∈ CurryTypes : t = record(t1, . . . , tn)
ζ(t′) , ∃t′ ∈ CurryTypes : t = optional(t′) ∧ |ζ(t′)| = 1
TEXT , ∃t′ ∈ CurryTypes : t = optional(t′) ∧ |ζ(t′)| > 1
INT , ∃t′ ∈ CurryTypes : t = list(t′)
TEXT , otherwise

Concatenation on words and a length function are defined as usual:

(x1, . . . , xm) · (y1, . . . , yn) := (x1, . . . , xm, y1, . . . , yn)

|(x1, . . . , xn)| := n

Record types are mapped to multiple columns that store the components of the record;
see Section 3.2.1 for a complete discussion. Optional values of type optional(t′) are
stored in one column, since a single null value is used to represent a missing value. If
a value of type t′ is usually stored in multiple columns, a string representation of this

34



3.2. Arguments of Predicates in a Database Table

value is stored in one column instead. Note that the value of ζ(list(t′)) is INT because
for lists of type list(t′) a separate table with column types ζ(t′) is created and the list
elements are referenced by an INT-reference (cf. Section 3.2.3). Other Curry types, i.e.,
those with multiple constructors like

data Either a b = Left a | Right b

are represented by a single column of type TEXT; in Section 3.2.2 we discuss an alternative
approach.

3.2.1. Optional Values and Record Types

In database tables usually the null value is used to represent missing values. In Curry the
type Maybe a serves the same purpose; hence, values of type Maybe a can be represented
in one column by the string representation of the value of type a or as null value if they
equal Nothing. This approach enables the programmer to access existing database tables
with columns that can contain null values via the Maybe type. This is an advantage
since the notion of optional values represented by null values is transferred to the Curry
program where optional values are represented as values of type Maybe a.

In this section we employ the Maybe type to store an optional address in a record type
representing authors of a publication.

Record types are types similar to tuples, i.e., non-recursive types with a single con-
structor. To independently restrict parts of a record, these parts need to be stored in
separate columns. For instance, recall the predicate author

data Author = Author Name (Maybe Address)

author :: Author -> Dynamic

author persistent "db:currydb.authors"

introduced in Section 3.1.1. If the argument of author was stored in a single column in
a table created by

CREATE TABLE authors (author TEXT)

the predicate describing Euclid of Alexandria can be expressed in Curry by

author name (Just "Alexandria") |> name=="Euclid"

An equivalent database query needs to restrict the single column with the condition

author=’Author "Euclid" (Just "Alexandria")’

since the value of type Author is saved as string in the single column of the table authors.
If instead a table with two columns is created

CREATE TABLE authors (name TEXT, address TEXT)

a database query describing Euclid of Alexandria can be formulated using the condition

name="Euclid" AND address="Alexandria"
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in the WHERE-part of the query. This representation of records allows for more flexible
restrictions, since columns need not always be restricted with ground values. Recall the
query introduced in Section 3.1.4

SELECT publications.title

FROM publications, authors

WHERE publications.name = authors.name

AND authors.address = "Alexandria"

The condition

publications.name = authors.name

can only be expressed if the name of an author is saved in a separate column of the table
authors. The presented database library stores records in multiple columns per default to
enable more flexible conditions on parts of a record. To complete the section on storing
records we describe two alternative approaches for storing the columns of records. The
database library implements the one described first, the other one is primarily considered
to prepare the reader for the next section where we present how to store lists in separate
tables.

To describe the first approach, we consider an example involving the record types
Publication and Author:

data Publication = Publication Author Title

data Author = Author Name (Maybe Address)

type Title = String

type Name = String

type Address = String

publication :: Publication -> Dynamic

publication persistent "db:currydb.publication"

The parts of the records can be stored in multiple columns of the table associated with
the database predicate. Therefore, in the given example the author’s name and address
can be stored in two columns of the table publications created by

CREATE TABLE publications (name TEXT, address TEXT, title TEXT)

To insert the book “Elements” by Euclid of Alexandria into the table publications, the
IO action

assert (publication

(Publication (Author "Euclid" (Just "Alexandria")) "Elements"))

has to be performed. Table 3.2 shows the table publications after this assertion. The
presented database library stores records like presented in this paragraph. There is an
alternative approach which can employ sharing to reduce the memory requirements of
the stored records and is described in the remainder of this section.
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name address title
Euclid Alexandria Elements

Table 3.2.: Table publications in database currydb

The columns representing the part of a record can be stored in a separate table with
an additional reference identifying the entries of that table. To store the facts of the
predicate publication defined above, two tables can be created with the SQL statements

CREATE TABLE publications (author INT, title TEXT)

CREATE TABLE authors (ref INT, name TEXT, address TEXT)

The Tables 3.3 and 3.4 show the created tables after the assertion

assert (publication

(Publication (Author "Euclid" (Just "Alexandria")) "Elements"))

author title
1 Elements

Table 3.3.: Table publications in database currydb

ref name address
1 Euclid Alexandria

Table 3.4.: Table authors in database currydb

The record Author "Euclid" (Just "Alexandria") is stored in a separate table au-
thors, and the reference identifying this record is inserted into column author of the
table publications. If many publications written by few authors have to be stored, this
mechanism allows to share the record for an author by using its reference multiple times
in the table publications, and thus, the authors do not have to be stored again with
every of their publications in the database. References could be counted to prevent the
retraction of a still referenced record.

In this section we showed how records are represented in the columns of a database
table. The parts of the record are stored in own columns; hence, they can be restricted
independently from each other. An alternative approach that employs a separate table
for a stored record was presented. This approach can be adapted to store lists which is
described in the next section.

3.2.2. Variant Records and Recursive Types

Variant records are non-recursive data types with multiple constructors. As an example
consider an alternative data type representing publications:
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data Publication

= Book Author Title

| Article Author Title Journal

| PhdThesis Author Title School

| InProceedings Author Title Proceedings

data Author = Author Name (Maybe Address)

data Journal = Journal Name Publisher Volume Number

data School = School Name Address

data Proceedings = Proceedings Title Publisher

type Title = String

type Name = String

type Address = String

type Publisher = String

type Volume = Int

type Number = Int

We did not yet address how to store variant records except for optional values of type
Maybe a; and we also did not address recursive data types1. Variant records can not be
stored like records for two reasons:

• The alternative values may require a different number of columns of different types
to store their parts.

• The table does not store information about which value is stored.

In the example, values constructed with Article require 7 columns to store their parts,
while values constructed with PhdThesis or InProceedings require only 5 columns. The
constructor Book is stored in 3 columns. We cannot store values of type Publication in
a single table, unless we used different columns for every alternative, placing null values
in the unused columns on an assertion. Padding a table with null values squanders
storage space, since columns have to be reserved which are rarely used. Storing the
parts of different alternatives in the same columns would inhibit reconstruction, unless
information is stored, which alternative to use to rebuild the stored value. For instance,
storing values constructed with PhdThesis and InProceedings in the same columns
would be possible, since both require the same column types. For the same reason we
cannot reconstruct a value, since we do not know which constructor to use. We can
store information about the constructor in a separate column; but in general we cannot
prevent using some null values in each inserted table row.

In Section 3.2.1 we showed how to store record types in a separate table. This approach
can be adapted to store variant records and recursive data types: Each alternative can
be stored in a separate table, so different columns can be reserved for each table, and
no null values need to be placed in unused columns. The values stored in the separate

1Lists will be considered separately in the next section.
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table are referenced like presented in Section 3.2.1; but in the referencing table an index
identifying the constructor must be stored along with the reference to determine which
table is referenced. In the example five tables can be created to store publications

CREATE TABLE publications (publication INT, alternative INT)

CREATE TABLE books (ref INT, name TEXT, address TEXT, title TEXT)

CREATE TABLE articles ...

CREATE TABLE phds ...

CREATE TABLE inprocs ...

and the values inserted by

assert (publication

(Book (Author "Euclid" (Just "Alexandria")) "Elements"))

are shown in Tables 3.5 and 3.6. Since Book is the first constructor in the definition of

publication alternative
1 0

Table 3.5.: Table publications in Database currydb

ref name address title
1 Euclid Alexandria Elements

Table 3.6.: Table books in Database currydb

Publication, the value 0 is stored in the column alternative. Hence, the reference 1

identifies the value representing Euclid’s Elements stored in the table books.

3.2.3. Lists

Because of their prominent role in functional programming, lists are not stored as strings
but considered separately. Recall the original data type Publication introduced in
Section 2.1:

data Publication = Publication Id [Author] Title [Id]

Every publication has a unique identifier, and, instead of only one, multiple authors can
be stored in a list. Another list stores identifiers of cited publications. The list of authors
is stored in a separate table similar to the approach presented at the end of Section 3.2.1.
Instead of storing one author in the separate table, all authors are inserted with the same
reference. To preserve the order of the list, an additional index is stored along with the
entry. A similar table is employed to store the list of citations; hence, the predicate

publication :: Publication -> Dynamic

publication persistent "db:currydb.publications"

is stored in three tables created by the SQL statements
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CREATE TABLE publications

(id INT, authors INT, title TEXT, citations INT)

CREATE TABLE authors (ref INT, idx INT, name TEXT, address TEXT)

CREATE TABLE citations (ref INT, idx INT, id INT)

The IO action

assert (publication (Publication 17

[Author "Euclid" (Just "Alexandria")] "Elements" [42,7,11])

asserts the “Elements” written by Euclid of Alexandria. The tables 3.7, 3.8 and 3.9
show the values inserted by this assertion. The table authors is similar to the one

id authors title citations
17 1 Elements 1

Table 3.7.: Table publications in database currydb

ref idx name address
1 0 Euclid Alexandria

Table 3.8.: Table authors in database currydb

ref idx id
1 0 42

1 1 7

1 2 11

Table 3.9.: Table citations in database currydb

used in Section 3.2.1, but it also stores the indices of the stored authors to preserve
their order. Table citations stores the citations [42,7,11]. Similar to the assertion of
missing optional values, a null value is inserted instead of a reference to the elements of
the list if an empty list is to be stored.

We presented an approach to store arguments of persistent predicates in columns of
database tables. For record arguments we discussed two different approaches storing
multiple columns in the table associated with the predicate or in a separate table. An
approach to store variant records and arbitrary recursive data types was discussed but is
not considered further, since it is not realized in the current implementation. Since they
are frequently used by functional programmers, lists and optional values are addressed
separately.

3.3. Database Specific Combinators

In Section 3.1 we showed that dynamic predicate abstractions resemble database queries.
These, however, can not be constructed at runtime since information about the structure
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of the conditions and the columns in which variables are stored is missing at runtime.
The database specific combinators presented in this section serve the first purpose: They
record the structure of the conditions in data terms available at runtime. Columns,
however, have to be referenced explicitly with these combinators, so while using them as
programmer is possible it is slightly inconvenient and not recommended. The program
transformation presented in Section 4.1 automatically associates variables with database
table columns by generating expressions built from the combinators presented in this
section. Hence, the programmer does not need to take the database tables into account,
but he is free to do so and use database specific code. If he does, of course, he cannot
change the internal storage mechanism of the database predicates.

Recall the predicate workedOnGeometry introduced in Section 3.1.4:

workedOnGeometry :: Name -> Dynamic

workedOnGeometry name

= publication (Publication name title) |>

"Geometry" ‘substringOf‘ title

where

title free

The predicate’s condition "Geometry" ‘substringOf‘ title can be translated into an
equivalent expression of the type SQLExp Bool:

substringOf’ (val "Geometry") (col 1)

accounting that the variable title is stored in the second column of the table storing
facts for the persistent predicate publication. The abstract data type SQLExp a repre-
sents expressions used in the WHERE-part of an SQL query. Its constructors are hidden,
so only the provided combinators can be employed to construct these expressions. The
combinator

(.|>) :: Dynamic -> SQLExp Bool -> Dynamic

is used to combine a database predicate and an expression of type SQLExp Bool. The
function

val :: a -> SQLExp a

is used to lift ground values to the type SQLExp a and

col :: Int -> SQLExp a

is used to reference columns in database tables. The columns of all involved tables are
numbered from zero and columns from combined predicates are consecutively numbered.

Various operators to construct values of type SQLExp a are provided. In Section 3.1.4
a query for titles of publications written in Alexandria was introduced to demonstrate
the combination of dynamic predicates:

\title ->

publication (Publication name title) <>

author (Author name (Just "Alexandria"))
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This query was recognized to be equivalent to the database query

SELECT publications.title

FROM publications, authors

WHERE publications.name = authors.name

AND authors.address = "Alexandria".

To express the WHERE-part of this query, an expression of type SQLExp Bool is required
that represents a boolean conjunction of equalities.

To construct such expressions, comparison operators like

(.==) :: SQLExp a -> SQLExp a -> SQLExp Bool

(.<=) :: SQLExp Int -> SQLExp Int -> SQLExp Bool

and boolean operators like

(.&&) :: SQLExp Bool -> SQLExp Bool -> SQLExp Bool

(.||) :: SQLExp Bool -> SQLExp Bool -> SQLExp Bool

are provided. Many others, such as combinators to construct arithmetic expressions, are
available; see Appendix A for a complete list.

Employing these combinators, the WHERE-part of the query above can be expressed in
Curry by

col 0 .== col 2 .&& col 3 .== val "Alexandria".

If this expression is attached to the dynamic predicate, an efficient database query can be
generated to get the solutions of the predicate. This example is reviewed in Section 4.1.6
which clarifies how to compute the numbers of the columns.

Note that the provided combinators are type safe. They are implemented using a
phantom type: The type parameter of the polymorphic type SQLExp a is not used in
the definition of this type but only to encode the typing-rules for the combinators used
to construct expressions of type SQLExp a. Constructing an ill-typed expression like
val 42 .== val "" is prevented from the Curry type checker; hence, the combinators
not only ensure syntactically correct but also type safe SQL queries. Since only provided
combinators can be used to construct the expressions, the type signatures of these com-
binators ensure type safety of the constructed expressions. Unfortunately, there is one
combinator that potentially destroys type safety since it constructs expressions of arbi-
trary type: The function col :: Int -> SQLExp a is used to reference table columns
of any column type. The programmer using these combinators has to ensure that he
references columns containing values with correct types, since otherwise, type errors in
the WHERE-part of a database query cannot be prevented. The translation of values of
type SQLExp Bool into the WHERE-part of an SQL query is straightforward, since the
provided combinators resemble the most common operations available in SQL.

An SQL query not only includes a restriction but also projections on some database
table’s columns. For instance, the above query
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SELECT publications.title

FROM publications, authors

WHERE publications.name = authors.name

AND authors.address = "Alexandria"

selects only the title column of the table publications instead of all columns of all involved
tables. To express projections in Curry, there is another combinator

(.!!) :: Dynamic -> [Int] -> Dynamic

which takes a list of column numbers as argument identifying the columns that have
to be projected. The query shown above is automatically generated from the Curry
predicate

\title ->

publication (Publication name title) <>

author (Author name (Just "Alexandria")) .|>

col 0 .== col 2 .&& col 3 .== val "Alexandria" .!! [1]

The programmer is encouraged to use the presented combinators only if he is certain
about the column numbers. Referencing columns numerically is error-prone and restrict-
ing or projecting the wrong columns certainly results in unexpected program behavior.

In this chapter we presented a functional logic database library based on persistent
predicates stored in a relational database. After we described its interface, we pointed
out the resemblance of predicate abstractions to database queries and discussed how
argument values of persistent predicates can be represented as columns of a database
table. Based upon this, we presented database specific combinators which express restric-
tions and projections on such columns and can be directly translated into SQL queries.
The following chapter discusses the ideas behind the implementation of the presented
library beginning with the mentioned program transformation translating conditions on
database predicates into restrictions expressed with database specific combinators.
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In this chapter we discuss the implementation of the presented database library. Initially
we describe a program transformation which is applied to programs utilizing database
predicates. This transformation enables efficient generation of SQL queries for programs
that do not use the database specific combinators by automatically introducing restric-
tions that can be translated into a database query. After describing this transformation,
an inliner is presented, which prepares the original program for transformation. Finally,
the implementation of the three key operations of dynamic predicates, assertion, query
and retraction are discussed. The general idea of their implementation is given before we
describe the full approach, which considers the storage of arguments in separate tables.

4.1. Transforming Dynamic Predicates

The presented database library provides combinators which can be translated into SQL
queries. Conditions expressed with those combinators are therefore checked by the
database system instead of being checked by the application using the library. These
combinators, however, are slightly inconvenient to program with because the table’s
columns have to be referenced directly and thus the programmer has to consider the
database used to store persistent predicates. A key advantage of persistent predicates is
transparency, i.e., they can be used without knowledge of their internal storage. Using
the SQL combinators directly destroys this transparency because the structure of the
underlying tables has to be considered in order to use them. Furthermore, relying on
a database system which is able to perform the described queries restricts their use to
database predicates. Predicates stored in files are not affected by the database specific
combinators; thus, changing the external storage from a relational database to, e.g., files
renders the database specific combinators introduced in the program code useless.

This section describes a program transformation translating conditions on database
predicates into restrictions that can be translated into an SQL query. Conditional
database predicates defined using (|>) are extended with an equivalent restriction at-
tached by (.|>), and a warning is presented if such a translation fails. Thus, the
described transformation combines the advantages of the database specific combinators
with those of the more convenient generic combinators on dynamic predicates: Pro-
grams using the generic combinators are translated into programs that can be efficiently
evaluated using a database system, and the storage mechanism of database predicates
can later be replaced by others, since no database specific combinators are used in the
original program.

The provided transformation basically includes an initialization and three different
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optimizations. The initialization collects information necessary to send database queries,
i.e., the database name as well as the names of the tables and their columns are stored
to be employed for query generation. After the initialization the program can be used
to access the underlying database. Additionally we provide three different optimizations
that use the database specific combinators to add

• restrictions for conditions attached to database predicates,

• restrictions for argument values of database predicates and

• projections to query only required columns.

The first optimization generates restrictions that can be translated into SQL queries
from boolean conditions attached to a database predicate. If there are ground values
or shared variables as arguments of a database predicate, the second optimization uses
the database specific combinators to express such a restriction. Finally, the projection
combinator is used to restrict the query to required columns omitting those not needed
for the definition of a database predicate.

In the remainder of this section we describe the initialization of database programs, in-
troduce an approach to readable meta-programming and consider information employed
by all optimizations and how to compute it. Then we describe each optimization in an
own subsection giving typical examples for the translated expressions.

4.1.1. Initialization

While the optimizations described in Sections 4.1.5, 4.1.6 and 4.1.7 modify the generated
database queries the initialization enables them, and hence, it is required to run the
database program. The programmer declares database predicates giving a type signature
and a storage location specifying the database and the table to store the facts. For
instance, the predicate publication is declared as

data Publication = Publication Author Title

data Author = Author Name (Maybe Address)

type Title = String

type Name = String

type Address = String

publication :: Publication -> Dynamic

publication persistent "db:currydb.publications"

and thus, the table publications in the database currydb has to be considered. If it exists,
the table’s columns are queried with the SQL statement

DESCRIBE TABLE publications

and stored along with the names of the database and the table as a database table
specification:
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data DBSpec = DBSpec String String [String]

The specification for the table publications is

DBSpec "currydb" "publications" ["name","address","title"]

This information can be employed to query the facts stored in the specified table with
the SQL query

SELECT name, address, title FROM publications

which is sent to the database currydb.

If the table publications does not yet exist in the database currydb, it has to be created
with the SQL statement

CREATE TABLE publications (name TEXT, address TEXT, title TEXT)

To generate this SQL statement, the columns1 have to be computed from the type
signature of the predicate publication.

In Section 3.2 we described how arguments are represented in the columns of a
database table. Each argument of the database predicate is stored in at least one column
of the associated table; records are stored in multiple columns, one for each component.
As the sole argument of the predicate publication is a record of type Publication, it
is stored in more than one column. The first part of the data type Publication is of
type Author which is itself a record type and, thus, stored in multiple columns. Because
both arguments of the constructor Author are of type String, it is stored in two columns
of type TEXT. As the second argument of the surrounding constructor Publication is
also of type String, it is also stored in a column of type TEXT, and three columns are
required to store values of type Publication as a whole.

To prepare a program which contains database predicates for database access, the
associated database tables have to be examined to store the names of their columns. If
there is no associated table yet for a database predicate, it can be created considering
information about the predicate’s type. After this initialization the program can be
used; to generate more efficient queries, however, additional program transformations
described in later sections are performed.

4.1.2. FlatCurry

Curry programs are compiled into a simplified core language FlatCurry that can be
read by other Curry programs. In this section, we describe how FlatCurry modules and
expression are represented in Curry. Curry modules are represented by the data type
Prog. A value of this type has the form

Prog modname imports typedecls functions opdecls

where

1Unfortunately, the column names created automatically are not as eloquent as shown in the example.
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• modname is the name of the module,

• imports is a list of names of imported modules,

• typedecls is a list of algebraic data type declarations,

• functions is a list of function definitions and

• opdecls is a list of infix operator declarations.

In this section, we focus on function definitions and the expressions used in function’s
bodies.2 A function declaration has the form

Func name arity type (Rule [i_1,...,i_arity] e)

where

• name is the functions name,

• arity is the count of the functions arguments and

• type is a type signature.

This declaration represents the function definition

name :: type

name x_1 ... x_arity = e

and each i_j is the index of the variable x_j. The expression e in the rule’s body is of
type Expr and can be constructed in various ways. Before we consider the constructors
of Expr, we discuss the representation of expressions more generally. The expression

if b then x else y

is represented as a call to the function if_then_else

if_then_else b x y

Higher order applications are represented by an external function apply. For instance,
the body of the definition

f x y = x y

is represented as

apply x y

Conditional rules are expressed as calls to the external function cond. For instance,

zero x | x=:=0 = success

is represented as

zero x = cond (x=:=0) success

2See http://www.informatik.uni-kiel.de/˜pakcs/lib/CDOC/FlatCurry.html for a complete description.
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Function calls have the form

Comb FuncCall name args

where

• FuncCall is of type CombType and characterizes the call as a function call,

• name is the name of the called function and

• args is a list of expressions representing the arguments of the call.

Constructor calls are represented similarly; they employ ConsCall, not FuncCall, as
comb type. Partial calls use PartCall n as comb type, where n is the count of missing
arguments. Beyond function or constructor calls, FlatCurry expressions can be variables
Var n represented by a unique index n or literals represented as Lit l where l is an
Integer, Float or Char constant. There are also constructors for local declarations,
possibly of free variables, for nondeterministic choices and for case distinctions.

The transformations described in the next sections modify FlatCurry programs that
are represented in Curry like presented in this section. The next section describes a
programming style that helps to do this in a convenient way.

4.1.3. Readable Meta-Programming

Manipulating programs with other programs is called meta-programming. FlatCurry
expressions soon get hard to overlook, so this Section presents an approach to con-
cisely describe them. Moreover, functions that allow for simulated pattern matching on
FlatCurry expressions are introduced.

To get in touch with how FlatCurry is represented in Curry, consider the following
expression representing the string "Curry":

(Comb ConsCall ("prelude",":") [

(Lit (Charc ’C’)),

(Comb ConsCall ("prelude",":") [

(Lit (Charc ’u’)),

(Comb ConsCall ("prelude",":") [

(Lit (Charc ’r’)),

(Comb ConsCall ("prelude",":") [

(Lit (Charc ’r’)),

(Comb ConsCall ("prelude",":") [

(Lit (Charc ’y’)),

(Comb ConsCall ("prelude","[]") ([]))])])])])])

Writing those terms gets awkward if done frequently and is typing error-prone, since
strings are used to reflect function and constructor names. A both natural and sufficient
solution is to introduce wrapper functions for function and constructor calls:
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char_ c = Lit (Char c)

x :. xs = Comb ConsCall ("prelude",":") [x,xs]

nil_ = Comb ConsCall ("prelude","[]") []

The representation of the string "Curry" can now be expressed as

char_ ’C’ :. char_ ’u’ :. char_ ’r’ :. char_ ’r’ :. char_ ’y’ :. nil_

To be even more concise, this expression can be generalized using the functions map and
foldr:

string_ = foldr (:.) nil_ . map char_

Now the above expression changes to string_ "Curry" which is apparently the most
concise description possible. Note that the wrapper functions take multiple arguments
like the functions they represent, instead of a list of arguments like the constructors
they evaluate to. Another example in Section 4.1.6 shows that this is useful allowing for
partial application of the wrapper functions.

Pattern matching is a powerful mechanism to structure the definition of a function. It
enables the programmer to break a function into multiple rules that can be understood
independently. Matching complex FlatCurry expressions is tedious, but fortunately a
similar technique can be applied to decompose FlatCurry expressions as was applied to
construct them. As a both basic and elegant approach, logical search can be employed to
reverse the presented string converter: For a given FlatCurry expression e the expression

let s free in string_ s =:= e &> s

evaluates to the string, represented by e; no additional converter function is necessary.
The function (&>) simulates a guard and is defined as

(&>) :: Success -> a -> a

c &> x | c = x

Although logical search often suffices to elegantly decompose FlatCurry expressions,
pattern matching with case expressions is more powerful in certain situations. Consider
the definitions

x &&. y = Comb FuncCall ("prelude","&&") [x,y]

True_ = Comb ConsCall ("prelude","True") []

conjunction = foldr1 (&&.)

The function conjunction takes a non-empty list of FlatCurry expressions and con-
structs the boolean conjunction of the given elements. For instance the expression

conjunction [True_,True_,True_]

evaluates to
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(Comb FuncCall ("prelude","&&") [

(Comb ConsCall ("prelude","True") ([])),

(Comb FuncCall ("prelude","&&") [

(Comb ConsCall ("prelude","True") ([])),

(Comb ConsCall ("prelude","True") ([]))])])

and thus equals

True_ &&. True_ &&. True_

A function parts that computes the parts of a boolean conjunction can be defined using
logical search as

parts e | conjunction bs =:= e = bs

where

bs free

This function, however, nondeterministically returns all possibilities for an argument
of conjunction that lead to the given expression, and this is probably not what the
programmer needs. For instance,

parts (True_ &&. True_ &&. True_)

nondeterministically evaluates to a value equal to one of the lists

[True_ &&. True_ &&. True_]

[True_, True_ &&. True_]

[True_, True_, True_]

Only the last result corresponds to the parts of the conjunction, the others can be further
divided. The given function parts could be alternatively defined as3

parts e | e =:= (b &&. b’) = parts b ++ parts b’ where b, b’ free

parts e = [e]

To obtain the desired behavior, the second rule must not be considered if the first rule
matches; information about a failing match needs to be employed to define the function
appropriately. In Curry we can express this behavior using case expressions:

parts e = case e of

Comb FuncCall ("prelude","&&") [b,b’] -> parts b ++ parts b’

_ -> [e]

Unfortunately, at the same time we gain the opportunity to employ negative information,
we lose the convenient programming style enabled by the presented combinators, because
we have to write patterns on FlatCurry expressions.

To release the programmer from this burden, we define a data type for patterns on
FlatCurry expressions and a function to perform the actual matching, which can be used
in guarded rules of a function. Since pattern matching involves binding of unknown
values we use free variables to express them. Patterns are defined as follows4:

3Unlike the previous version, this function decomposes arbitrarily nested conjunctions.
4We only give slightly modified parts of the implementation for documentation purpose.
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data Pattern = V Expr | PChar Char | PComb QName [Pattern] | ...

The constructor V wraps free variables and is used to express unknown values that shall
be bound by the matching function. Patterns can be defined for every kind of FlatCurry
expression. As an example consider the implementation of the matching function (@)

for the given pattern types:

exp @ (V x) | exp=:=x = True

exp @ (PChar c’)

= case exp of

Lit (Charc c) -> c=:=c’ &> True

_ -> False

exp @ (PComb name’ args’)

= case exp of

Comb _ name args -> name==name’ && and (zipWith (@) args args’)

_ -> False

The first rule binds free variables. If (@) is called with a ground term as first argument
and in the second argument all arguments of V are free variables, the guard always
succeeds. As (@) is employed for pattern matching, its first argument should always be
ground. The second rule matches against characters. Note that the character argument
of PChar should be a free variable to prevent the function from failing. These deficiencies
could be overcome if a primitive function isFree detecting whether its argument is a free
variable was available. Employing isFree would allow for the use of ordinary FlatCurry
expressions instead of separately defined patterns and matching against certain literals
would be enabled without loosing the possibility to use free variables as literals. This
would allow, e.g., to match against a certain string. A function similar to isFree is
provided in the employed Curry implementation [6]; it is, however, an unsafe feature and
therefore not used in this context. The last given rule is the most interesting because
patterns can be nested. To match a function or constructor call, its name is compared
to the name given in the pattern and its arguments are matched recursively. To give an
example how (@) can be used to define functions on FlatCurry expressions, we redefine
the function parts:

x &&- y = PComb ("prelude","&&") [x,y]

parts e

| e @ (b &&- b’) = parts b ++ parts b’

| otherwise = [e]

where

b, b’ free

The introduced FlatCurry pattern type enables convenient pattern matching of FlatCurry
expressions. At the same time, it allows for employing failing matches because the match-
ing function has return type Bool rather than Success. Nested patterns can be written
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much more concisely with the presented pattern type than with case expressions.
We presented an approach to readable meta-programming including functions to con-

cisely construct FlatCurry expressions and a mechanism to decompose them with simu-
lated pattern matching. As an example we discussed strings and boolean conjunctions,
but the approach can be carried over to any kind of FlatCurry expression. The trans-
formation presented in the next sections employs the given ideas, see Section 4.1.6 for
another example of the given approach.

4.1.4. Associating Argument Positions with Columns

Since columns must be referenced directly using the database specific combinators, these
need to be associated with argument positions of the predicate and the expressions at
these argument positions. Reconsider the predicate storing publications by their authors
and titles:

data Publication = Publication Author Title

data Author = Author Name (Maybe Address)

type Name = String

type Title = String

type Address = String

publication :: Publication -> Dynamic

publication persistent "db:pubdb.publications"

For an application

publication (Publication (Author name address) title)

we get the information shown in Table 4.1. If one expression, e.g. a variable, is associated

argument expression column numbers
name 0

address 1
title 2

Table 4.1.: Associating Arguments with Columns

with more than one column, all column numbers would be recorded in the table. To
compute this information, publication’s type has to be considered since it determines
the columns which are required to store facts. From the type signature and the associated
type declarations we can conclude that three columns are required to represent the
predicate publication and that the first two columns are associated with the arguments
of the constructor Author and the third column is associated with the second argument of
the constructor Publication. Thus, analyzing the application shown above, the variable
name corresponds to the first column, the variable address to the second and the variable
title to the third column. Such tables associating argument expressions with a list of
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column numbers are used in all transformations described in the next subsections. Since
columns must be referenced directly using the database specific combinators, associating
columns with expressions is the main problem to solve for the transformations.

4.1.5. Translating Conditions

The combinator (|>) can be used to attach boolean conditions to dynamic predicates.
For instance, a call to the predicate publication could be restricted to match only those
publications that contain the word “Geometry” in their title:

publication (Publication author title)

|> "Geometry" ‘substringOf‘ title

Using the information which is provided in the table associating argument positions with
columns of a database table, conditional dynamic predicates can be augmented with a
restriction build from the combinators presented in Section 3.3. Variables are translated
into an associated column using the function col :: Int -> SQLExp a, literals and
strings are wrapped with val :: a -> SQLExp a and called functions are replaced with
their database equivalent if possible. Since there is a function

substringOf’ :: SQLExp String -> SQLExp String -> SQLExp Bool

to express the substring condition and the variable title is associated to column 2 (see
Table 4.1), the above predicate can be translated into

publication (Publication author title)

.|> substringOf’ (val "Geometry") (col 2)

If the programmer defines his own function mySubstringOf to express the substring
condition, this cannot be translated into an efficient version; so the expression

publication (Publication author title)

|> author == (Author "Euclid" (Just "Alexandria"))

&& "Geometry" ‘mySubstringOf‘ title

is translated into

publication (Publication author title)

.|> col 0 .== val "Euclid" .&& col 1 .== val "Alexandria"

|> "Geometry" ‘mySubstringOf‘ title

and a warning is presented, indicating that

"Geometry" ‘mySubstringOf‘ title

could not be translated.
Conditional database predicates can be automatically translated into a form that

allows for efficient database query generation using information about which expressions
are associated with which columns of the underlying database tables. Variables are
translated into a reference to an associated column, literals and strings are wrapped as
values of the internal SQLExp data type and function calls are translated into equivalent
translatable calls if possible.
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4.1.6. Restricting Columns with Values of Arguments

Conditions, however, are not the only source of restrictions generated for calls to database
predicates. For instance, the programmer can use shared variables to express equalities
among database columns. Section 3.1.4 introduced a query for titles of publications
written in Alexandria:

writtenInAlexandria :: Title -> Dynamic

writtenInAlexandria title

= publication (Publication name title) <>

author (Author name (Just "Alexandria"))

where

name free

The information about the shared variable name can be translated into SQL as well as
the string "Alexandria" which is associated to the second column of the table authors.
The information about the column associations for the combined predicate is shown
in Table 4.2. The variable name is shared among the calls of the database predicate

argument expression column numbers
name 0,2

title 1
"Alexandria" 3

Table 4.2.: Associating Arguments with Columns

and, thus, has two associated columns. The variable title is associated with column 1
and the string "Alexandria" with column 3. Thus, an efficient query for the combined
predicate should restrict column 3 to equal "Alexandria" and columns 0 and 2 to contain
the same value, since otherwise if n publications and m authors are stored, the query
will have n ∗m answers. Hence, the combined predicate is translated into

publication (Publication name title) <>

author (Author name (Just "Alexandria")) .|>

col 0 .== col 2 .&& col 3 .== val "Alexandria"

To give an example how the ideas presented in Section 4.1.3 can be employed to
generate the translatable conditions, consider the following example code5:

generateRestriction (arg,cols)

| isVar arg && 1 < length cols

= let (col:cols’) = cols

in foldr1 (.&&.) (map (col .==.) cols’)

| isGround arg = foldr1 (.&&.) (map ((val_ arg) .==.) cols)

5The code is modified to point out the general approach instead of quoting the actual implementation.
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The predicates isVar and isGround can be applied to FlatCurry expressions. They hold
for those expressions representing variables or ground terms respectively. The functions
(.&&.), (.==.) and val_ construct calls to the corresponding functions without at-
tached period or underscore. The type signature of generateRestriction is omitted
because all involved expressions represent FlatCurry expressions. Hence, they are of
the same type Expr and the type signature is of little use. The function’s argument
corresponds to one row of the shown tables associating arguments with a list of col-
umn numbers. If the argument is a variable associated with more than one column,
equality restrictions for those columns are generated. If the argument is a ground value,
all associated columns are restricted to equal that value. Without using the wrapper
functions we could hardly use higher order functions to build the restrictions, because
partial applications of FlatCurry expressions representing function calls could only be
expressed by lambda abstractions. Hence, beyond documenting the approach of genera-
ting restrictions according to arguments, this example shows how the ideas presented in
Section 4.1.3 help to write readable code in meta-programming.

4.1.7. Adding Projections

The presented restrictions control the WHERE-part of the generated SQL query. Another
combinator (.!!) is provided to declare projections which hence controls its SELECT-
part. To automatically compute those columns that need to be queried, again, the
information about the associated columns is used. To demonstrate how to compute
which columns need to be projected, we consider an academic example: In the definition
of q

p :: Int -> Bool -> Int -> Dynamic

p persistent "db:currydb.p"

q :: Int -> Dynamic

q a = p a (even b) b where b free

all columns of the table storing p’s facts have to be queried but all for a different reason:
The first column is required because the variable a is a pattern variable of q. The third
column has to be queried because the variable b is also the argument of the call to the
function even. The result of this call has to be compared to the value in the second
column, so this is also required. There are three different reasons for a column to be
projected:

• It is associated to a pattern variable of the predicate being defined,

• it is associated to a complex expression, e.g., a function call or

• it is associated to a variable which is part of a complex expression, e.g., an argument
of a function call.

If a column is associated to a pattern variable, this variable is visible outside the defined
predicate and has to be bound by the query. If it is associated with a complex expression,
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it has to be checked against the queries result; and finally, if it is part of a complex
expression, it has to be bound to evaluate this expression. A column is not required if
it is associated to a variable which is not used somewhere else in the program.

In this section we discussed the program transformation which applies three different
optimizations of calls to database predicates. All optimizations rely on information
about expressions associated to columns of database tables which can be computed
considering the type signature of database predicates. The presented restrictions often
significantly limit the answers returned from the generated database query, and thus,
this transformation is crucial for reasonable run-time performance.

4.2. Inlining Curry Programs

The program transformation described in Section 4.1 expects combined dynamic pred-
icates to be inlined. Inlining replaces function calls with function’s right-hand-sides,
hence brings forward reduction steps that would have been performed at runtime other-
wise. For instance, consider the definition of the function f

f x = 2*x

An inlining step for f consists of replacing a call of f by an instance of f’s body. So the
expression

f (a+b)

is translated into

2*(a+b)

by inling the call of the function f.
The inliner, used to prepare a program which includes database access, is inspired by

the Glasgow Haskell Compiler inliner [9]. Although Curry’s core language FlatCurry
differs from HaskellCore, some key ideas of the Haskell inliner, especially the notion of
loop-breaking functions described below, can be applied to Curry as well.

The employed algorithm can be described as follows:

inlining process :

while program changes do

perform inlining steps

perform simplifications

done

Inlining steps are performed as long as they change the program, and they are interleaved
with minor simplifications like dead code elimination and others described below. An
inlining step is only performed if the function’s patterns can be matched. For instance,
a call to the function

null [] = True

null (_:_) = False
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is only inlined if its argument is a constructor rooted term. The simplifications comprise

• dead code elimination,

• elimination of calls to the primitive function apply and

• case simplification.

Dead code elimination deletes definitions of functions that are neither used nor exported.
A function definition becomes dead code if every call to the function has been inlined. In
FlatCurry higher order applications are expressed with a primitive function apply (cf.
Section 4.1.2). However, if the first argument of apply is an evaluated partial function
call, then we can augment the function’s arguments with the second argument of apply
instead of using apply. This situation is quite common after inlining, and new inlining
steps could be enabled by this transformation, since only function applications with
saturated arguments can be inlined.

There are different modifications on case-expressions which play together to simplify
an inlined program. If the scrutinee of a case-expression is a variable and used somwhere
in the branch expressions, we can replace it with the matched expression and possibly
enable the transformation described next for another case-expression. For instance,

case x of

Nothing -> []

Just y -> case x of

Nothing -> y

Just z -> z

can be transformed into

case x of

Nothing -> []

Just y -> case Just y of

Nothing -> y

Just z -> z

If the scrutinee is known to be a specific literal or constructor-application, we can replace
the case expression by the matching branch expression. We can simplify the above
example:

case x of

Nothing -> []

Just y -> y

If the scrutinee of a case expression is itself a case expression, and all branch expressions
of the inner case are literals or constructor-applications, we can merge the branches of
both case expressions. For instance,
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case (case x of

Nothing -> []

Just y -> [y]) of

[] -> False

(z:zs) -> True

can be transformed into

case x of

Nothing -> False

Just y -> True

The presented transformations play well together to simplify an inlined program. Often,
they give rise to further inlining steps.

The example program presented below uses higher order functions to combine dynamic
predicates. The predicate wroteTheSame holds for two different authors that wrote
publications with the same title.

data Publication = Publication Name Title

publication :: Publication -> Dynamic

publication persistent "db:currydb.publications"

publications :: [Publication] -> Dynamic

publications = foldr1 (<>) . map publication

wroteTheSame :: Name -> Name -> Dynamic

wroteTheSame name name’ = publications

[Publication name title, Publication name’ title] |>

name /= name’

where

title free

The most notable point in this example is the predicate publications being defined
using recursive higher order functions and, hence, not being directly associated to a
database table.

To generate SQL queries from combined dynamic predicates, these need to be inlined.
Otherwise it would not be possible to determine the correct tables or column numbers
that represent the predicate’s data. Only those predicates that are declared persistent in
the program code have associated information about the database table and its columns
that store the defining facts. Those predicates, however, that are built from others using
the provided combinators do not have such associated information but store their data in
the tables of the underlying primitive predicates. Hence, inlining uncovers which primi-
tive predicates were used to combine an arbitrary predicate by replacing the combinators
used to construct the predicate.

Inlining the call of the predicate publications results in the following definition of
the predicate wroteTheSame:
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wroteTheSame name name’

= publication (Publication name title) <>

publication (Publication name’ title) |>

name /= name’

where

title free

The predicate publication is declared persistent in the program code; thus, its argu-
ments can be associated to columns as described in Section 4.1.4.

In some cases a function call must not be inlined to ensure the sharing of expensive
or nondeterministic computations and to prevent the inlining process from running into
an infinite loop, since inlining steps are performed as long as there are matching calls
of function rules that can be replaced by an instance of the rules body. Replacing all
matching function calls once is called an inlining pass and in the inlining process inlining
passes are repeated until they do not change the program, i.e., until no more function
calls can be inlined.

4.2.1. Sharing and Nondeterminism

An argument variable of a function is called shared when it occurs more than once in the
function’s body. As an example for a function with a shared argument variable consider
the definition of the function double:

double :: Int -> Int

double n = n + n

Assuming f x as an expensive computation, the call double (f x) must not be inlined
or the resulting code may perform badly. Another problem results from nondeterministic
computations. As 0?1 nondeterministically returns either 0 or 1 the call double (0?1)

results in either 0 or 2 because 0?1 is shared as argument of double. The expression
(0?1) + (0?1), however, nondeterministically returns 0,1,1 or 2, and thus, inlining
the call double (0?1) would change the results the expression evaluates to.

As a consequence, calls of functions with shared arguments may only be inlined if the
shared arguments may be safely duplicated. An argument may be safely duplicated if it
is a variable, a literal or a partial function call whose already supplied arguments may be
safely duplicated. For instance, the call map (0?) [1,2] may be safely inlined although
the first argument of map is shared and (?) is nondeterministic. Ground terms may also
be safely duplicated; we avoid duplicating them, however, to prevent immoderate code
duplication.

4.2.2. Termination

Inlining recursive functions does not terminate in general. To prevent the inlining process
from running into infinite loops, the call-graph of the functions that may be inlined has
to be considered. A call-graph for a set of functions is a graph which has a directed
edge from a function f to a function g iff g is applied somewhere in the body of f.
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So, if there is a circle in the call-graph, inlining all functions on the circle will not
terminate. To assure termination, one can choose a loop-breaking set of functions such
that the modified call-graph where this set of functions is removed has no circles. Not
inlining any loop-breaking function effectively ensures termination. Note that every loop-
breaking set of functions contains all directly recursive functions, and thus, refusing to
inline loop-breaking functions means refusing to inline any directly recursive function.

There are, however, examples where inlining directly recursive functions would be
beneficial. We showed in the example that map and foldr1 can be used to combine a
non-empty list of values as arguments of a dynamic predicate. If p is a dynamic predicate
taking exactly one argument, then

foldr1 (<>) . map p

is a function taking a nonempty list of values of p’s argument type and returning a
conjunction of applications of p to every element of the given list. Refusing to inline map
and foldr1 would inhibit translating any so combined predicate into an efficient SQL
query.

The example shows that inlining directly recursive functions often terminates and that
refusing to inline them is too restrictive for the purpose of the presented database library.
To describe such function calls that can be safely inlined repeatedly, we introduce the
notion of descending argument positions: An argument position n of a function f is
called descending iff for every call of f in f’s body there is a strict sub-term of f’s nth
argument at the nth argument of the call. To clarify this notion look at the definition
of map:

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

map’s second argument is descending, since there is a strict sub-term of this argument at
the second argument of the sole recursive call. For an example of a terminating function
without descending arguments consider a:

a [] y = ():y

a (_:xs) [] = a xs [()]

a (x:xs) (_:ys) = a xs (a (x:xs) ys)

Neither the first nor the second argument is descending because the underlined argu-
ments are no strict sub-terms of the original arguments. Note that those calls of directly
recursive functions where there is a constructor-rooted term at a descending argument
position can be inlined without running into infinite loops. The presented inliner refuses
to inline calls to loop breaking functions except for calls to directly recursive functions
with constructor-rooted terms at a descending argument position. This ensures termi-
nation of the inlining process described above.
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4.3. Asserting Facts

To assert a dynamic predicate which is declared persistent in the program’s source, a
string representation of the predicate’s arguments has to be inserted into the associated
columns of the database table used to store the predicate’s facts. To assert a fact for a
persistent predicate that does not use separate tables, we proceed as follows:

assert :

table = get associated table

args = convert argument values

sql_insert( table, args )

Initially, the arguments of the involved predicates are converted. Primitive values are
converted into strings, and records are split into multiple parts that are converted inde-
pendently. The values are inserted into the table associated to the persistent predicate.

Consider the predicate publication storing one author and the title of a publication:

data Publication = Publication Author Title

data Author = Author Name (Maybe Address)

type Title = String

type Name = String

type Address = String

publication :: Publication -> Dynamic

publication persistent "db:currydb.publications"

The facts for this predicate are stored in a table with three columns created by

CREATE TABLE publications (name TEXT, address TEXT, title TEXT)

To assert the book “Elements” by Euclid of Alexandria, the IO action

assert (publication

(Publication (Author "Euclid" (Just "Alexandria")) "Elements"))

has to be performed. The corresponding SQL statement is

INSERT INTO publications VALUES ("Euclid","Alexandria","Elements")

and the resulting table is shown in Table 4.3.

name address title
Euclid Alexandria Elements

Table 4.3.: Table publications in database currydb

Alternatively, the author of a publication can be stored in a separate table along with
a unique reference. In this case two tables are created to store publication’s facts by

CREATE TABLE publications (author INT, title TEXT)

CREATE TABLE authors (ref INT, name TEXT, address TEXT)
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To perform the assertion shown above, a new reference has to be computed, and all
values have to be inserted in the corresponding tables. In general, a persistent predicate
with associated separate tables is asserted as follows:

assert :

table = get associated table

sepTables = get associated separate tables

args = convert argument values

for each t in sepTables do

ref = get_unused_reference( t )

sepArgs = get those args stored in t

sql_insert_with_ref( t, ref, sepArgs )

args = replace sepArgs with ref in args

done

sql_insert( table, args )

Separate tables are considered additionally to the predicate’s main table. For each sepa-
rate table, the corresponding arguments are stored with a new reference. This reference
is stored to be inserted in the original table associated to the persistent predicate.

We mix SQL with Curry code to describe how the values in the example are inserted:

SELECT MAX(ref) FROM authors

let newref = maxref + 1

INSERT INTO authors VALUES (newref, "Euclid", "Alexandria")

INSERT INTO publications VALUES (newref, "Elements")

Initially, a new reference is computed by querying the previously inserted reference.
Finally, this reference is used to insert the appropriate values into the tables authors
and publications. Note that the whole assertion has to be atomic to prevent multiple
use of references in parallel assertions. Transactions discussed in Section 3.1.3 can be
employed to ensure mutual exclusion of parallel assert operations. Tables 4.4 and 4.5
show the results of the SQL statements.

author title
1 Elements

Table 4.4.: Table publications in database currydb

ref name address
1 Euclid Alexandria

Table 4.5.: Table authors in database currydb
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4.3.1. Lists as Arguments

To describe how lists are asserted, we reconsider the example employed in Section 3.2.3:

data Publication = Publication Id [Author] Title [Id]

data Author = Author Name (Maybe Address)

type Id = Int

type Title = String

type Name = String

type Address = String

publication :: Publication -> Dynamic

publication persistent "db:currydb.publications"

Facts of the predicate publication are stored in three tables, since the lists of authors
and references are stored in extra list tables (cf. Section 3.2.3). The employed tables are
created by

CREATE TABLE publications (id INT, authors INT, title TEXT, refs INT)

CREATE TABLE authors (ref INT, idx INT, name TEXT, address TEXT)

CREATE TABLE references (ref INT, idx INT, id INT)

List tables have to be treated differently compared to other tables storing data corre-
sponding to one fact in each row, since in a list table multiple rows correspond to the
same fact. These rows are inserted at once, and a reference is computed similar to the
assertion of a single argument in a separate table. A null value is inserted instead of a
reference if the argument list is empty.

In general, list tables are handled similar to separate tables:

assert :

table = get associated table

listTables = get associated list tables

args = convert argument values

for each t in listTables do

ref = get_unused_reference( t )

listArgs = get list stored in t from args

sql_insert_all_with_index( t, ref, listArgs )

args = replace listArgs with ref in args

done

sql_insert( table, args )

For each list a new reference is computed which is stored in the corresponding table
together with the list elements.

The following IO action asserts Euclid’s Elements with an additional identifier and a
list of references:
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assert (publication (Publication 17

[Author "Euclid" (Just "Alexandria")] "Elements" [42,7,11]))

Initially, the lists are asserted with new references, and finally, these references are
inserted into the corresponding columns of the table publications.

id authors title refs
17 1 Elements 1

Table 4.6.: Table publications in database currydb

SELECT MAX(ref) FROM authors

let newref0 = maxref + 1

INSERT INTO authors VALUES (newref0,0,"Euclid","Alexandria")

SELECT MAX(ref) FROM references

let newref1 = maxref + 1

INSERT INTO references VALUES (newref1,0,42),(newref1,1,7),(newref1,2,11)

INSERT INTO publications

VALUES (17,newref0,"Elements",newref1)

ref idx name address
1 0 Euclid Alexandria

Table 4.7.: Table authors in database currydb

Tables 4.6, 4.7 and 4.8 show the values inserted in the database tables.

ref idx id
1 0 42

1 1 7

1 2 11

Table 4.8.: Table references in database currydb

If more than one fact has to be inserted as a combined dynamic predicate, SQL
statements can be accumulated if they store data in the same tables. Similar to the
elements of an argument list, multiple facts defining the same predicate can be inserted
at once if they do not use extra tables to store parts of their associated data. This can
significantly reduce the count of SQL statements that have to be sent to the database.

This section revealed how different types of arguments of persistent predicates are
asserted by inserting string representations of the predicate’s arguments into the columns
of the associated tables. Additional tables separately storing some arguments and list
tables storing the elements of an argument list in multiple columns of an extra table
were considered.
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4.4. Querying Dynamic Predicates

To retrieve stored information about a dynamic predicate, the database is queried, and
the answers are converted corresponding to the predicate’s argument types. The query
is generated from the associated information about the tables and their columns and
from a possibly attached condition restricting the query.

Simple persistent predicates, i.e., those that do not use additional tables to store their
arguments, can be translated into a single SQL query. To query the arguments of a
simple database predicate we proceed as follows:

query :

table = get associated table

proj = get projected columns

restr = get attached restriction

args = sql_select( table, proj, restr )

convert args according to argument types of predicate

First, we query the predicate’s values from the associated database table. Database
specific conditions and projections are employed to limit the requested values. Then
the requested values are converted according to the argument types of the persistent
predicate.

Reconsider our running example that does not involve lists as arguments:

data Publication = Publication Author Title

data Author = Author Name (Maybe Address)

publication :: Publication -> Dynamic

publication persistent "db:currydb.publications"

The associated database table is omitted since it was given several times in previous
sections (cf. Table 3.2 or 4.3). The predicate

workedOnGeometry :: Name -> Dynamic

workedOnGeometry name

= publication (Publication (Author name X) X)

.|> substringOf’ (val "Geometry") (col 2)

.!! [0]

involves both a condition that can be translated into a database query and a projection
of the first column of the table, which represents the name of the publication’s author.

The corresponding SQL query is

SELECT name FROM publications WHERE title REGEXP "Geometry"

If the predicate is a combination of other persistent predicates, these are combined into
one query.

It is still possible to translate even a combined dynamic predicate into a single query
if some arguments are stored in separate tables. To express the references used to
associate the relative values, additional conditions have to be generated. Recall the
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Tables 4.4 and 4.5 and the above query for authors that worked on geometry. The latter
has to be changed by adding a condition which associates the column author of the table
publications with the column ref of the table authors :

SELECT authors.name

FROM publications, authors

WHERE publications.author=authors.ref

AND publications.title REGEXP "Geometry"

4.4.1. Lists as Arguments

Due to the different nature of list tables compared to those that store other arguments,
one query is not enough if the predicate has a list as argument stored in such a table.
In list tables an argument for a single fact is usually stored in multiple rows, which
is not the case for other tables. Hence, an extra query for every queried list table is
necessary. Initially, a query is generated like described before, not yet heeding that
some arguments may be lists. Then, those values that are references into list tables
are used to query these tables, and the results are converted into a list matching the
corresponding argument type of the predicate. We return to our running example which
involves lists for authors and references:

data Publication = Publication Id [Author] Title [Id]

publication :: Publication -> Dynamic

publication persistent "db:currydb.publications"

The expression getDynamicSolutions publication is translated into the SQL queries

SELECT id, authors, title, refs FROM publications

SELECT name, address FROM authors WHERE ref=1 ORDER BY idx

SELECT id FROM references WHERE ref=1 ORDER BY idx

The condition in the second and third query is ref=1 because the values of both columns
authors and refs in the first query is 1 (see Table 4.6). If there is more than one matching
entry in the column referencing a list table, a query for every entry is generated since
a different list is referenced by every entry. To preserve their order, the stored lists are
queried sorted by their index.

Unfortunately, this approach to query lists can be slightly inefficient if many lists have
to be queried since for every list an extra query is generated. Thus, it would be beneficial
to restrict queried lists in advance. Since they are stored in multiple rows of an extra
table, this is not as simple as restricting other values. In Curry, the function

elem :: a -> [a] -> Bool

is used to check whether a list contains some value. Consider a query for publications
that reference Euclid’s Elements:
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referencesElements title

= publication (Publication X X title refs)

|> 17 ‘elem‘ refs

where

refs free

Imagine a large database with a few publications referencing Euclid’s Elements indicated
in the Tables 4.9, 4.10 and 4.11. The query presented above would retrieve every publi-

id authors title refs
... ... ... ...

17 42 Elements 71

... ... ... ...

18 99 Foundations of Geometry 1899

... ... ... ...

Table 4.9.: Table publications in Database currydb

ref idx name address
... ... ... ...

42 0 Euclid Alexandria

... ... ... ...

99 0 Hilbert NULL

... ... ... ...

Table 4.10.: Table authors in Database currydb

ref idx id
... ... ...

71 0 42

71 1 7

71 2 11

... ... ...

1899 0 17

... ... ...

Table 4.11.: Table references in Database currydb

cation in the database and test if its references contain the identifier 17 afterwards. To
be able to restrict lists in advance, the function

elem’ :: SQLExp a -> SQLExp [a] -> SQLExp Bool

is provided which takes a literal or string lifted to the SQLExp type as first argument and
a column reference, pointing to a list column as second. Like the other combinators it

68



4.4. Querying Dynamic Predicates

is automatically introduced by the program transformation if possible. The restriction
on lists is implemented with an extra query which is sent before the others to restrict
possible references in the list table:

SELECT ref FROM references WHERE id=17

SELECT title FROM publications WHERE refs=1899

Due to the restriction, no list of references has to be queried instead of every single list
of references in the database. If the references were projected in the second query, only
those lists that contain a reference to Euclid’s Elements would have to be queried.

In general, lists are queried as follows:

query :

table = get associated table

listTables = get associated list tables

for each t in listTables do

if t is restricted then do

restr = getRestriction( t )

refs[ t ] = sql_select_refs( t, restr )

done

done

args = sql_select_with_refs( table, refs )

for each listRef in args do

t = get table that listRef points to

listElems[ t ] = sql_select_values( t, listRef )

done

args = replace listRefs with corresponding list elements in args

convert args according to argument types of predicate

A query for a persistent predicate with lists as arguments can be divided into three
phases:

• Query references for lists that satisfy a given elem-condition.

• Use this references to query the other arguments of the predicate.

• Query elements of lists according to the former query.

Initially, list references are queried according to elem-conditions, given by the program-
mer. These references are used to restrict the rows that are queried from the main table
of the predicate. Finally, the elements of those lists, that satisfy the whole query are
retrieved. If the former query would not be restricted with the list references pointing to
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lists that satisfy a given elem-condition, the last phase would retrieve much more lists,
that would have to be tested afterwards.

This section presented a mechanism to query a database predicate. Beyond simple
database predicates those using extra tables for their arguments where considered as
well as a special kind of table storing lists.

4.5. Retracting Facts

Compared to inserting and querying data for a persistent predicate, deleting it is a
bit more involved. For every table associated to a predicate or argument a DELETE-
statement is generated. The problem is, however, which rows to select for deletion. This
problem is discussed after the general approach for deletion is presented reconsidering
our running example that does not involve lists:

data Publication = Publication Author Title

To retract Euclid’s Elements, the IO action

retract (publication (Publication

(Author "Euclid" (Just "Alexandria")) "Elements"))

has to be performed. If there are no separate tables for arguments, retracting a fact is
done by constructing an appropriate condition for the DELETE-statement, since rows of
a table cannot be deleted directly but only via a condition restricting the rows to delete.
Thus, to retract Euclid’s publication, the following query can be sent to the database:

DELETE FROM publications

WHERE name="Euclid" AND address="Alexandria" AND title="Elements"

The general approach to retraction of simple predicates is:

retract :

table = get associated table

args = convert argument values

restr = restrict columns to equal args

sql_delete( table, restr )

Those rows that store values representing the arguments of the persistent predicate are
deleted from the associated database table. A condition is generated accordingly from
the converted argument values.

4.5.1. Lists as Arguments

If the persistent predicate has lists as arguments, these have to be deleted separately.
To determine which lists have to be deleted, a SELECT-statement is necessary. Instead
of publications involving lists we consider an academic example to reveal this necessity:
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p :: Int -> [Int] -> Dynamic

p persistent "db:currydb.p"

main = do

assert (p 1 [1,2,3] <> p 2 [1,2,3] <> p 1 [1,2,4])

retract (p 1 [1,2,3])

The tables associated with p are shown after asserting the facts, and thus, they contain
the entries for p 1 [1,2,3]. The rows which have to be deleted to retract p 1 [1,2,3]

col0 col1

1 1

2 2
1 3

Table 4.12.: Table Associated with p

ref idx col0

1 0 1
1 1 2
1 2 3

2 0 1
2 1 2
2 2 3
3 0 1
3 1 2
3 2 4

Table 4.13.: Table Associated with Second Argument of p

have been accentuated. The rows of one table, however, cannot be deleted without
querying the other: If from the first table all lines that contain 1 in the first column
were deleted, p 1 [1,2,4] would be wrongly retracted and the rows with reference
3 in the list table would be no longer referenced. The list table needs to be queried
to test the list referenced by the second column. On the other hand, if from the list
table all rows would be deleted that represent the list [1,2,3], the list argument of
p 2 [1,2,3] would be deleted resulting in an inconsistent first table, since reference
2 would no longer be present in the list table. The list cannot be removed from the
list table without considering the corresponding first argument of p which can only be
revealed by querying the first table. Hence, first the rows have to be queried similar to
Section 4.4 and then the list argument is tested to find out the rows to delete:

SELECT col1 FROM p WHERE col0=1

This query has two results: 1 and 3, and for both references the list table has to be
queried:
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SELECT col0 FROM plist WHERE ref=1 ORDER BY idx

SELECT col0 FROM plist WHERE ref=3 ORDER BY idx

After testing the results, the correct rows can be deleted:

DELETE FROM p WHERE col0=1 AND col1=1

DELETE FROM plist WHERE ref=1

Thus, the general approach to delete lists as arguments of persistent predicates can
be described as follows:

delete :

table = get associated table

listTables = get associated list tables

args = convert non-list argument values

restr = restrict columns to equal args

perform query algorithm with restr

refs = get queried references of given list argument values

refRestr = restrict list columns to equal a corresponding ref

sql_delete( table, restr && listRestr )

for each ref in refs and corresponding t in listTables do

sql_delete_with_ref( t, ref )

done

Initially the arguments of the persistent predicate are queried from the database table.
An additional restriction is generated from the non-list arguments of the predicate. Then,
the queried lists are tested to equal the lists given as arguments of the predicate. The
references from those lists, that match the supplied arguments are employed to delete the
appropriate rows from the main table associated to the predicate. Finally, the references
are used to delete the lists from the associated list tables.

Retracting a fact involves both SELECT- and DELETE-statements if the predicate
is stored in multiple tables. A condition has to be computed restricting the values of all
columns, since no direct deletion of values is possible with SQL.

4.6. Sending SQL Queries

The SQL queries generated by the presented library need to be sent to the database with
a low level primitive that takes an SQL string as argument and returns a list containing
the results of the query. This primitive has the type

queryDB :: String -> String -> [[String]]
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and hence, it takes the database name and the SQL query as arguments and returns
the results as list of rows, which are themselves lists of cells, one for every column. It is
implemented with a call to the command-line application of MySQL6 which is called in
batch mode and accessed via stdin and stdout.

In this chapter we described the ideas behind the implementation of the presented
database library. The program transformation that enables the programmer to access
a database both transparently and efficiently was considered. Transparency is achieved
by the use of persistent predicates without database specific combinators. Efficiency
is obtained by augmenting the original program with those combinators to enable the
translation into most restrictive possible database queries. After considering the trans-
formation, the three key operations of persistent predicates, i.e., assertion, query and
deletion, were discussed; first mentioning the simplified approach restricted to simple
predicates without more than one associated table and, finally, describing the general
approach including tables for separate arguments and lists.

6http://www.mysql.com/
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5.1. Simulating Dynamic Knowledge

The interface of the dynamic predicate library presented in [7] provides a function
getKnowledge which is used to conceptually retrieve all currently known information.
This knowledge is returned as a function converting values of type Dynamic into values of
type Success, and thus, it enables the programmer to apply a logic programming style
to dynamic predicates. Since getKnowledge is not supported in combination with persis-
tent predicates stored in a database, the programmer is forced to use the alternative con-
junction combinators (<>) and (|>) which also allow for a logic programming style but
cannot be applied as flexible as the concurrent constraint conjunction (&). Especially,
recursive dynamic predicates cannot be defined using (<>). Hence, getKnowledge seems
to be more flexible in combination with (&) and getAllSolutions than (<>) and (|>)

in combination with getDynamicSolutions. This section, however, shows that the pro-
gramming style enabled by getKnowledge can be imitated using getDynamicSolutions

and, thus, can be applied to persistent predicates stored in databases as well.

To demonstrate the mentioned programming style, consider an example program defin-
ing a recursive predicate holding for a route between two cities:

connection :: (City,City) -> Dynamic

connection dynamic

route :: (Dynamic -> Success) -> [City] -> Success

route known [c1,c2] = known (connection (c1,c2))

route known (c1:c2:cs)

= known (connection (c1,c2)) & route known (c2:cs)

main = do

known <- getKnowledge

getAllSolutions (route known) >>= mapIO_ print

If connection were a persistent predicate stored in a database, calling getKnowledge

would not be allowed. The programmer can, however, call getDynamicSolutions in-
stead to retrieve the information needed to define the function known explicitly. Using a
datatype representing the facts of the database predicate, route can be defined similar
to the example above:
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connection :: (City,City) -> Dynamic

connection persistent "db:currydb.connections"

data Dyn = Connection (City,City)

route :: (Dyn -> Success) -> [City] -> Success

route known [c1,c2] = known (Connection (c1,c2))

route known (c1:c2:cs)

= known (Connection (c1,c2)) & route known (c2:cs)

main = do

connections <- getDynamicSolutions connection

let known (Connection c) = c =:= foldr1 (?) connections

getAllSolutions (route known) >>= mapIO_ print

The explicit definition of the function known is still possible in more complex examples
(see Appendix B for the idea and the complete example), although the programmer has
to control what data is retrieved in advance. The similarities of the given examples
encourage to believe that the presented transformation could be done automatically.
The information on restrictions, however, needs to be transferred from the applications
of known to its definition to avoid querying too much information from a potentially
very large database. Future implementations of this database library should consider
to provide such a transformation. Experience has to reveal whether it is useful or too
inefficient in practice.

5.2. Empirical Results

To document the usefulness of the presented approach, we provide a prototype imple-
mentation and compare its performance to that of the existing file based implementation.
Four different queries are presented to highlight advantages and deficiencies of one ap-
proach compared to the other. Neither the file based nor the database implementation
can prevail over the other implementation in all tests.

As basis for our tests we employ a database of publications obtained from the CiteSeer1

database. CiteSeer is a library and search engine primarily for literature in computer
science. Its database can be downloaded in XML format and we have converted and
stored it employing both persistent predicates that use files for external storage and oth-
ers that employ a relational database. We cannot store the whole database with the file
based implementation, since all facts are held in memory at runtime. Hence, we access
only 20,000 publications with file based persistent predicates while 100,000 publications
are stored with database predicates. This appears to be unfair competition; however,
research has been made for decades how to efficiently access relational databases, and
database predicates presumably will be used with large amounts of data that does not

1http://citeseer.ist.psu.edu/
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fit in memory. So, this imbalance is justified with regard to practical aspects. In Sec-
tion 5.2.2 we discuss how the different amounts of stored data and different counts of
returned results affect the response time of both implementations.

We now describe the employed queries and compare their run time in both tested
implementations. The presented measurements are average times taken on an AMD
Athlon(tm) XP 3200+ with 1 GB main memory. We performed ten queries and elimi-
nated outliers to compute an average from the remaining values. The file based imple-
mentation needs about 10 seconds to read the stored 510MB into memory. In applica-
tions that perform few database queries like CGI scripts this is not negligible; neverthe-
less, we discard this load time for the presented measurements.

5.2.1. The Queries

To query the database, we employ a minimal data type representing publications:

data Publication = Publication Id Title [Id]

type Id = Int

type Title = String

A publication stores an identifier, a title and a list of identifiers referencing other pub-
lications. The database stores many other attributes, but this interface suffices for the
presented queries. See Appendix C for the complete module that interfaces the CiteSeer
database.

The first query simply queries one publication with a specific identifier.

intMatch title

= publication (Publication 10000 title X)

It can be used to measure the time the implementation needs to search through all
entries. Whether a given entry has a specific identifier can be tested very fast.

The second query is similar to the first; however, it has a more complex condition, so
both implementations will take more time to solve it.

stringMatch title

= publication (Publication X title X)

|> "Curry" ‘substringOf‘ title

All publications that contain the word ”Curry” in their title are requested.
The third query differs from the second only in the word searched for in the title.

stringMatch’ title

= publication (Publication X title X)

|> "Database" ‘substringOf‘ title

Since the database contains much more publications about databases than about Curry,
this query has a lot more results. Hence, we can compare the run time of this query
with that of the previous one to detect what time is needed to read the results of a query
compared to the time that is needed to compute this result.
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Finally, we consider a query incorporating a restriction on the stored list of references.

elemMatch title

= publication (Publication X title refs)

|> 3264 ‘elem‘ refs

where

refs free

This query relies on the database implementation to restrict the queried values in advance
by the condition on the publication’s references. Otherwise, every entry would have to
be read from the database to test the condition.

5.2.2. The Results

Table 5.1 shows the results of our measurements, listing for each query the count of
results and the time required to retrieve them. The first query is answered by both

Condition Files : (20,000) Database : (100,000)
count : seconds count : seconds

id is 10000 1 : 0.7 1 : 0.4
"Curry" in title 0 : 11.7 5 : 1.3
"Database" in title 367 : 11.2 1758 : 15.3
3264 in refs 1 : 1.3 4 : 0.8

Table 5.1.: Results of the Performance Comparison

implementations in less than a second. For significant results a larger amount of data
is required; the file based implementation, however, cannot handle arbitrary amounts of
data, so we cannot increase the significance of the result for this query. The database
implementation could benefit from an index on the database tables if these grow.

The second and third query expose differences between the two implementations:
While the file based implementation answers both queries equally fast, the response
time of the database implementation highly depends on the count of requested results.
Therefore, we can conclude that the time required to read the results is a crucial factor
for the response time and that the answers are computed quite fast. This observation is
supported by the fast response to the query with few results compared to the file based
approach. A more sophisticated back-end for the database implementation potentially
increases its performance substantially.

Since the count of requested results determines the response time of the database
implementation, the last query shows that the restriction of lists significantly improves
the response time. If the condition on references were not considered in the database
query, all 100,000 publications would have to be queried and tested afterwards; this
would definitely inhibit a response in less than a second. The fast response time of the
file based implementation shows that the condition on references can be tested faster
than the substring condition of the second and third query.
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The theoretic foundations common to logic programming and deductive databases are
covered in [4]. It is shown that the fields of deductive databases and logic programming
can be studied uniformly from a single point of view.

The notion of persistent predicates is introduced in [3] where a database implemen-
tation based on a Prolog to SQL compiler [5] is provided. Persistent predicates are
implemented by storing facts in both files and relational databases. They enable the
programmer to store data that persists from one execution to the next and is stored
transparently, i.e., the program’s source code need not be changed with the storage
mechanism. The database implementation presented in [3] relies on a mid-level database
layer which handles database access sophisticatedly compared to the implementation pre-
sented in this thesis. While a mid-level database layer enables standardized access to
different database API’s, our implementation communicates through standard IO with
a command line application for database access. In [3] clustering of Prolog queries is
performed to access the database more efficiently. The approach presented in this thesis
employs special conjunction operators on dynamic predicates for the same purpose. We
also provide a mechanism to handle transactions which is especially important for de-
veloping web applications. In such applications one does not know when the individual
programs reacting to clients requests are executed. For database access, [3] relies on side
effects, i.e., non-declarative features of Prolog. Due to side effects, a computed result
depends on the employed evaluation strategy.

Evaluation strategies of functional logic programming languages [1] cause problems for
the evaluation of persistent predicates. Their evaluation order is difficult to determine in
advance by the programmer and the order of database updates and queries is important
for the programs behavior. These problems are solved in [7] by the use of monads [12],
which provide a clear separation of the declarative and the imperative part of a program.
The use of monads is an advantage over the Prolog implementation, since declarative
and imperative parts of database programs are separated in a clean manner. We extend
the library presented in [7] with a database implementation of persistent predicates. The
original library provides a function to conceptually retrieve all currently known facts of
arbitrary predicates. This function is not supported by the presented implementation,
but can be simulated as shown in Section 5.1.

A combinator library for Haskell, which is used to construct database queries with
relational algebra, is provided by [10]. It allows for a syntactically correct and type-
safe implementation of database access. A general approach to embed domain specific
languages into higher-order typed languages is provided and applied to relational algebra
to access relational databases. The employed back-end relies on ActiveX Data Objects
and, hence, can access any ODBC compliant database which is an advantage over the
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presented database predicate library. The key advantage of the approach presented in
this thesis, however, is a programming style which functional logic programmers are
used to. While [10] syntactically integrates a domain specific language into the Haskell
programming language, our approach transparently integrates database access into an
existing programming paradigm. Functional features, e.g., higher order functions, can
be used to construct complex persistent predicates which extend the notion of predicates
common to logic programmers.

As future work the low level interface of the presented library needs to be considered:
The current implementation uses a command line interface to MySQL to send database
queries and retrieve results via stdin and stdout. This implementation suffices for a
proof of concept but suffers from moderate performance. It should be exchanged by an
interface implemented, e.g., using JDBC to be able to access arbitrary ODBC-compliant
database systems. Such an implementation could provide query results lazily similar
to the function readFile that lazily returns the contents of a text file. In the current
implementation, all answers to a database query are provided at once which causes delays
for large result sets. Querying results as they are needed by the application could reduce
the response time of the low level database interface.

In Section 3.2.2 we presented an approach to store variant records and recursive data
types in multiple tables of a database. An implementation of this approach could reveal,
whether it is beneficial.

The ideas presented in Section 5.1 can be employed to automatically generate queries
to compute dynamic knowledge returned by the function getKnowledge. Thus, a future
implementation could offer the complete interface to dynamic predicates presented in [7].
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Application programs need to store data that persists multiple runs of the program.
Such data can be stored in files or, if large amounts of data have to be managed, in
databases. Persistent predicates are an abstraction providing transparent access to per-
sistently stored data, i.e., application programs can use persistent predicates regardless
of their storage mechanism which can be flexibly exchanged.

In this thesis we provide an implementation of persistent predicates based on rela-
tional databases for the functional logic programming language Curry. It is based on
the dynamic predicate library introduced by [7] and implements an alternative storage
mechanism for persistent predicates. Facts are stored in a relational database, not in
files, and accessed via SQL statements generated from database specific combinators.

To interface with existing databases, declarations of persistent predicates can be au-
tomatically generated. A type signature for a persistent predicate is obtained from
a database table description. Arguments of a persistent predicate are stored in the
database in a flat form, and, by default, each column of the database table is associated
to one argument of the generated persistent predicate. The programmer can change the
generated type signature to provide additional structure to the arguments. For instance,
he can introduce records to store multiple columns of the table at once. We describe
exactly how different kinds of arguments can be represented in columns of a database
table, and we provide beneficial storage mechanisms especially for record types and lists.

The presented library aims at providing a mechanism allowing for both transparent
and efficient access to relational databases by transforming storage independent pro-
grams into database specific ones. Transparent access is achieved, since persistent pred-
icates can be combined to resemble typical database queries without including database
specific code. Programs employing persistent predicates without database specific con-
structs can be used to access data stored in files or relational databases. Database
specific combinators that allow for the generation of efficient database queries are intro-
duced automatically by a program transformation.

In this thesis we introduce the database specific combinators and describe how they are
translated into database queries. We also describe the program transformation that au-
tomatically augments a program with database specific code. Especially, the transforma-
tion automatically associates argument positions of persistent predicates with columns
of database tables and generates database specific conditions from database independent
ones. The conditions restrict the rows of the associated database tables. To restrict the
requested columns, also projections are introduced.

Along with the transformation, useful programming techniques for meta-programming
are introduced that allow for conveniently construct and decompose FlatCurry expres-
sions. An inliner used to prepare a program for transformation is also described. The
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inliner employs ideas found in [9], and a notion of descending argument positions is
introduced to safely inline a class of directly recursive functions.

A prototype implementation of the presented approach has been compared to the ex-
isting file based implementation with encouraging results. Although database access can
be improved to reduce the response time for large result sets, the presented implementa-
tion successfully competes with the existing file based implementation. It is mandatory
when the stored data is too voluminous to be held in main memory.
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--- Expression pointing to the column of some table.

col :: Int -> SQLExp _

--- Constant value

val :: a -> SQLExp a

--- References a column by its name.

column :: String -> SQLExp _

--- Is expression the null value?

isNull :: SQLExp _ -> SQLExp Bool

--- Is expression not the null value?

isNotNull :: SQLExp _ -> SQLExp Bool

--- Is expression Nothing?

isNothing’ :: SQLExp (Maybe _) -> SQLExp Bool

--- Is expression Just?

isJust’ :: SQLExp _ -> SQLExp Bool

--- Is expression the empty list?

null’ :: SQLExp [_] -> SQLExp Bool

--- Is argument element of the other?

--- The first argument has to be a literal or string,

--- the second has to be a database column.

elem’ :: SQLExp a -> SQLExp [a] -> SQLExp Bool

--- Equality on expressions

(.==) :: SQLExp a -> SQLExp a -> SQLExp Bool

--- Less or equal

(.<=) :: SQLExp Int -> SQLExp Int -> SQLExp Bool
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--- Greater or equal

(.>=) :: SQLExp Int -> SQLExp Int -> SQLExp Bool

--- Less than

(.<) :: SQLExp Int -> SQLExp Int -> SQLExp Bool

--- Greater than

(.>) :: SQLExp Int -> SQLExp Int -> SQLExp Bool

--- Boolean conjunction

(.&&) :: SQLExp Bool -> SQLExp Bool -> SQLExp Bool

--- Boolean disjunction

(.||) :: SQLExp Bool -> SQLExp Bool -> SQLExp Bool

--- Addition

(.+) :: SQLExp Int -> SQLExp Int -> SQLExp Int

--- Subtraction

(.-) :: SQLExp Int -> SQLExp Int -> SQLExp Int

--- Multiplication

(.*) :: SQLExp Int -> SQLExp Int -> SQLExp Int

--- Integer division

div’ :: SQLExp Int -> SQLExp Int -> SQLExp Int

--- Match regular expression

(.=~) :: SQLExp String -> SQLExp String -> SQLExp Bool

--- Match SQL pattern

(.~~) :: SQLExp String -> SQLExp String -> SQLExp Bool

--- Negate boolean

not’ :: SQLExp Bool -> SQLExp Bool

--- Invert integer

inv :: SQLExp Int -> SQLExp Int

--- Does first argument start with second?

--- Can only be applied if second argument is a constant!

startsWith’ :: SQLExp String -> SQLExp String -> SQLExp Bool
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--- Does first argument end with second?

--- Can only be applied if second argument is a constant!

endsWith’ :: SQLExp String -> SQLExp String -> SQLExp Bool

--- Is first argument a substring of second?

substringOf’ :: SQLExp String -> SQLExp String -> SQLExp Bool

--- Date comparison

before’ :: SQLExp SQLDate -> SQLExp SQLDate -> SQLExp SQLDate

--- Year from date

year’ :: SQLExp SQLDate -> SQLExp Int

--- Month from date

month’ :: SQLExp SQLDate -> SQLExp Int

--- Day of month from date

day’ :: SQLExp SQLDate -> SQLExp Int
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B. Example: Transitive Closure

--- Shows how to mimic dynamic knowledge provided with getKnowledge.

--- Since getKnowledge can not (yet) be used together with database

--- predicates, the programmer has to query needed facts and to store

--- them as datatypes instead of calling getKnowledge. This example

--- shows that both access methods lead to similar programs.

---

--- @author Sebastian Fischer

import Dynamic

import AllSolutions

--- Computes the last element of a list.

last :: [a] -> a

last = head . reverse

--- A route from Kiel to Hamburg will be computed

data City = Kiel | Hamburg | Luebeck | Flensburg

connection :: (City,City) -> Dynamic

connection = dynamic

capital :: City -> Dynamic

capital = dynamic

--- Transitive closure of the connection predicate.

route :: (Dynamic -> Success) -> [City] -> Success

route known [c1,c2] = known (connection (c1,c2))

route known (c1:c2:cs)

= known (connection (c1,c2)) & route known (c2:cs)

capital_route :: (Dynamic -> Success) -> [City] -> Success

capital_route known (c:cs)

= route known (c:cs)

& known (capital c)

& known (capital (last cs))
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init = assert $ foldr1 (<>)

(map connection

[(Flensburg,Kiel),(Kiel,Luebeck),(Luebeck,Hamburg),(Kiel,Hamburg)]

++ map capital [Kiel,Hamburg])

--- Prints routes from one capital to another.

main = do

init

known <- getKnowledge

getAllSolutions (capital_route known) >>= mapIO_ print

connection_db :: (City,City) -> Dynamic

connection_db = persistent_db "db:currydb.connection"

capital_db :: City -> Dynamic

capital_db = persistent_db "db:currydb.capital"

data DynamicDB = Connection (City,City) | Capital City

--- Transitive closure of the connection predicate.

--- This cannot be tyranslated into one SQL query and is therefore

--- not constructed with Dynamic combinators.

route_db :: (DynamicDB -> Success) -> [City] -> Success

route_db known [c1,c2] = known (Connection (c1,c2))

route_db known (c1:c2:cs)

= known (Connection (c1,c2)) & route_db known (c2:cs)

capital_route_db :: (DynamicDB -> Success) -> [City] -> Success

capital_route_db known (c:cs)

= route_db known (c:cs)

& known (Capital c)

& known (Capital (last cs))

--- Prints routes from one capital to another.

--- The function known is defined explicitly to be used like

--- the function returned by getKnowledge.

main_db = do

connections <- getDynamicSolutions connection_db

capitals <- getDynamicSolutions capital_db

let known (Connection c) = c =:= foldr1 (?) connections

known (Capital c) = c =:= foldr1 (?) capitals

getAllSolutions (capital_route_db known) >>= mapIO_ print
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--- Interface to a database storing scientific publications

--- obtained from http://citeseer.ist.psu.edu.

---

--- Persistent predicates are employed to access the database

--- and algebraic data types are defined to structure the rows

--- of the tables.

---

--- @author Sebastian Fischer

import Dynamic

data Record = Record Header Metadata

data Header = Header Identifier Datestamp SetSpec

type Identifier = Int

type Datestamp = SQLDate

type SetSpec = String

data Metadata = Citeseer

(Title,[Author],Subject)

(Maybe Description)

((Contributor,Publisher,Date),

(Format,DCIdentifier,Source),

(Language,(References,IsReferencedBy),Rights))

type Title = String

data Author = Author Name (Maybe Address) (Maybe Affiliation)

type Name = String

type Address = String

type Affiliation = String

type Subject = String

type Description = String

type Contributor = String

type Publisher = String
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type Date = SQLDate

type Format = String

type DCIdentifier = String

type Source = String

type Language = String

type References = [Identifier]

type IsReferencedBy = [Identifier]

type Rights = String

recordDB :: Record -> Dynamic

recordDB = persistent_db "db:currydb.citeseer"

recordFile :: Record -> Dynamic

recordFile = persistent "file:/usr/local/dipl/citeseer/records"

data Pulication = Publication Int String [Int]

publication record (Publication nr title refs)

= record (Record (Header nr X X)

(Citeseer (title,X,X) X (X,X,(X,(refs,X),X))))

intMatch record title

= publication record (Publication 10000 title X)

stringMatch record title

= publication record (Publication X title X)

|> "Curry" ‘substringOf‘ title

stringMatch’ record title

= publication record (Publication X title X)

|> "Database" ‘substringOf‘ title

elemMatch record title

= publication record (Publication X title refs)

|> 3264 ‘elem‘ refs

where

refs free

countDynSols x = getDynamicSolutions x >>= print . length
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