
Programming Languages and Compiler Construction
Department of Computer Science
Kiel University

Master’s Thesis

Extending the Glasgow Haskell Compiler
for functional-logic Programs with

Curry-Plugin

Kai-Oliver Prott

October 2020

Supervisors:
Prof. Dr. Michael Hanus

M.Sc. Finn Teegen

Erklärung der Urheberschaft
Hiermit versichere ich, dass ich die von mir vorgelegte Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate
kenntlich gemacht habe. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in
keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Ort, Datum Unterschrift

iii

Abstract
Curry is a functional logic programming language with Haskell-like syntax and support
for nondeterministic computations with free variables. In recent years, the language
has been extended to support type classes and higher-rank types. But when compared
with Haskell, Curry is still missing a lot of useful language extensions. Instead of
implementing all those extensions in the existing Curry compiler, the idea is to use the
Glasgow Haskell Compiler plugin infrastructure for a new compiler.

The result of this effort is Curry-Plugin, a GHC plugin that supports Curry-style
nondeterminism with call-time choice in a Haskell module. The Curry-Plugin performs
a monadic lifting of all datatypes and functions in a module and then instantiates that
monad with a type that provides the desired nondeterministic semantics with call-time
choice. It also provides the operator (?), which nondeterministically chooses between
its arguments. Due to the usage of GHC, a lot of Haskell’s language extensions can
be supported “for free”, while some of them are incompatible with the monadic lifting
used by this plugin.

v

Contents

1. Introduction 1
1.1. Contributions . 1
1.2. Outline . 2

2. Preliminaries 3
2.1. Curry . 3

2.1.1. Nondeterminism . 3
2.1.2. Call-Time Choice and Run-Time Choice 5
2.1.3. Free Variables . 6

2.2. GHC’s API and Plugin Infrastructure 6
2.2.1. Renamer Plugins . 7
2.2.2. Type Checker Plugins . 7
2.2.3. Constraint Solver Plugins . 10

3. Design 13
3.1. Overview . 13

3.1.1. Pattern Match Semantics . 13
3.1.2. Encapsulating Nondeterministic Computations 15
3.1.3. Other Features and Restrictions 16

3.2. Using other Effects . 17

4. Implementation 19
4.1. Monadic Lifting . 20

4.1.1. Lifting Data Types . 22
4.1.2. Lifting Functions . 24

4.2. Pattern Matching . 30
4.2.1. Translating Pattern Matching . 30
4.2.2. Translating Guards . 33
4.2.3. Translating Pattern Bindings . 34
4.2.4. Translating Do-Notation . 36

4.3. Sharing Effects . 37
4.3.1. A Type Class for Sharing . 38
4.3.2. Inferring Shareable Constraints in a Polymorphic Context 39
4.3.3. Using Quantified Constraints for Polymorphic Sharing 40
4.3.4. Problems with Recursion and Explicit Sharing 42

4.4. Type Classes . 43
4.4.1. Lifting Type Classes . 43

vii

Contents

4.4.2. Lifting Instances . 45
4.5. Built-In Type Definitions . 45
4.6. Importing modules . 47

4.6.1. Subverting GHC’s Type Checker for Imports 47
4.6.2. Marking Plugin Modules . 52

4.7. Further Implementation Details . 53

5. Evaluation 57
5.1. Compilation Performance . 57
5.2. Execution Performance . 57
5.3. Language Features . 59
5.4. Maintainability . 59

6. Conclusion 61
6.1. Summary and Results . 61
6.2. Related Work . 61
6.3. Future Work . 62

6.3.1. Improving the Transformation 62
6.3.2. Language Extensions . 63
6.3.3. Generalization for other Effects 64

Bibliography 67

A. Transformation of a Small Example 71

B. Generic Implementation of Shareable 73

C. List of Language Extension Support 75

viii

List of Figures
2.1. Schematic evaluation with call-time and run-time choice 5
2.2. GHC compilation pipeline with plugin extension points 7
2.3. GHC’s internal type syntax . 8

3.1. Nondeterministic computation of all permutations for a given list 14
3.2. Capturing a nondeterministic computation 15
3.3. Using datatypes and type classes . 17

4.1. Extension points used by the Curry-Plugin 19
4.2. Examples for the lifting of types . 20
4.3. Lifting rules for types . 21
4.4. Transformation rule for data type definitions 22
4.5. Examples for the lifting of data types 23
4.6. Examples for the lifting of newtypes and type synonyms 24
4.7. Transformation rule for variables . 26
4.8. Transformation rule for lambda abstractions 26
4.9. Transformation rule for applications . 27
4.10. Transformation rules for data- and newtype constructors 27
4.11. Transformation rules for case expressions and branches 28
4.12. Transformation rule for let expressions 29
4.13. Nondeterministic rules to generate pattern variants 35
4.14. Lifting of class dictionary declarations 44
4.15. Transforming an equality relation . 49
4.16. Plugin-specific debug options . 54

5.1. Execution time comparisons of both compilers and the plugin 58

ix

1. Introduction
Curry [Hanus (Ed.), 2016] is a functional logic programming language with Haskell-like
syntax and support for nondeterministic computations with free variables. In recent
years, the language has been extended by Teegen [2016] to support type classes and
by Matthes [2019] to allow higher-rank types. While there are still a lot of interesting
language extensions in Haskell that could also be implemented for Curry, implementing
those extensions requires a lot of effort and most of them will never find their way
into current compilers. This is also true for many other “industrial” programming
languages. Creating a small compiler for the core of a language might be relatively
easy, but making the language stable and feature-rich takes time. For example, the
language Rust began 2006 as a personal project of a Mozilla employee and even after
officially announcing the language in 2010, it took another five years before Rust saw
its first stable release [The Rust Team, 2016].

Most compilers, especially the GCC for all its C-like languages, only re-use parts
of the machine code generation across multiple supported languages and compilers by
transforming all languages to a common intermediate language and then using a com-
mon backend for the rest of the compilation of all languages. Using the same backend
across multiple languages allows the compiler developers to write code optimizations
and machine-code generation just once without any apparent drawbacks.

A lot of existing compilers also allow third-party code to modify their compilation
pipeline with a plugin. Examples for this include the GCC and Glasgow Haskell com-
piler [Pickering, Wu, and Németh, 2019]. While plugins are mostly used to implement
small tools for a language by reading information generated during the compilation, a
plugin can also be used to modify code between compilation phases.

Instead of extending current Curry compilers with new features, this thesis aims to
create an entirely new compiler by utilizing the existing infrastructure of the Glasgow
Haskell Compiler (GHC). By implementing a Curry-Plugin using the plugin infras-
tructure of GHC, we can leverage the Haskell compiler for most of the “heavy-lifting”
during compilation, like type checking, optimizations and code generation, while gain-
ing some of the language extensions “for free”.

1.1. Contributions
While the general feasibility of our approach to implement a compiler as a GHC plugin
has been tested in a previous research project, this thesis aims to extend the existing
prototype to support at least the full syntax from Haskell’s 2010 standard. Our pro-
totype already contains a semantic transformation for simple programs. Extending
the implementation will require solutions for sharing polymorphic variables, a correct

1

1. Introduction

transformation of type classes and a special handling for imported definitions. While
we could build a compiler with this approach, our aim is instead to make it possi-
ble to selectively transform only parts of a Haskell program. By adding functions to
capture a nondeterministic computation in a Haskell module, we will make a seamless
integration between Curry and Haskell code possible.

1.2. Outline
This thesis is composed of six main parts, including this introduction.

The second chapter establishes some preliminaries. It contains an introduction to the
functional-logic programming language Curry (Section 2.1) and the Glasgow Haskell
Compiler Plugin API (Section 2.2).

Chapter three gives an overview on the design of Curry-Plugin and how it is intended
to be used (Section 3.1). The chapter also contains a section about modifying the plugin
to support monadic effects other than nondeterminism (Section 3.2).

This is followed by the main chapter of this thesis, which describes the implementa-
tion of Curry-Plugin. It starts with a description of the monadic lifting used throughout
the plugin (Section 4.1) and continues with a look at the pattern match translation
(Section 4.2). The next section discusses everything required to share computations
within the plugin (Section 4.3). Afterwards, we discuss how type classes can be lifted
(Section 4.4) and how GHC’s various built-in type constructors and type classes can
be used and derived in the plugin (Section 4.5). In the next section, we take a look
at how definitions can be imported across modules by subverting GHC’s type checker
(Section 4.6) and in the last section of the implementation chapter, we outline some
smaller implementation details that were not explained earlier (Section 4.7).

Chapter five contains comparisons of the project complexity and performance (code
size, speed) with other Curry compilers.

In the last chapter we summarize our results (Section 6.1), discuss some related work
(Section 6.2) and conclude with an outlook on future work in Section 6.3.

2

2. Preliminaries
In this chapter, we talk about some preliminaries that are required to understand the
design and implementation of the Curry-Plugin. We will introduce the programming
language Curry, whose semantic model serves as a goal that we want to reach with the
transformation implemented by our plugin. Our starting point for that transformation
is GHC’s internal representation of Haskell’s Syntax, which we will explain alongside
the plugin API of the compiler.

2.1. Curry
Curry [Hanus (Ed.), 2016] is a functional logic programming language with Haskell-like
syntax and support for nondeterministic computations with free variables. We assume
that the reader is familiar with Haskell’s syntax and semantics and focus on the logic
aspects of the Curry language instead, which are nondeterminism, call-time choice and
free variables.

2.1.1. Nondeterminism
The value of an expression in Curry can be nondeterministic. A simple example of
this is the nullary function coin, which simulates a coin flip and can either be of value
True or False.
coin :: Bool
coin = True ? False

The so called choice operator (?) :: a -> a -> a chooses nondeterministically be-
tween its left and right argument and can occur nested inside an arbitrary expression.
This operator serves as one of Curry’s primitives to introduce nondeterminism to a
computation.

Example 2.1.1. Using the choice operator, we can define a function to nondetermi-
nistically insert an element into any position of a given list.
insert :: a → [a] → [a]
insert e [] = [e]
insert e (x:xs) = (e:x:xs) ? (x : insert e xs)

Our new function can be used to implement another function permutations, which
nondeterministically computes any permutation of its input list.
permutations :: [a] → [a]
permutations [] = []
permutations (x:xs) = insert x (permutations xs)

3

2. Preliminaries

One thing to note about these function definitions are their type signatures: The type
of their results does not indicate that the functions could be nondeterministic. This
is, of course, intentional. It gives the language more flexibility and makes it easier to
combine deterministic and nondeterministic definitions. A computational effect (like
nondeterminism), that is not visible on the type level is called an ambient effect. Even
Haskell is not a completely pure language. It provides partiality and exceptions as an
ambient effect1.

While the choice operator (?) is certainly useful for defining nondeterministic com-
putations, it is actually implemented using Curry’s other mechanism for introducing
nondeterminism: Overlapping function rules. If the left side of two or more rules in a
function definition overlap, all matching rules will be applied nondeterministically in
Curry. This allows us to define the choice operator using two overlapping rules.
(?) :: a → a → a
x ? _ = x
_ ? y = y

Even though overlapping rules are arguably the more primitive way to introduce non-
determinism in Curry, the two concepts are equally powerful. Both of them can be
expressed by using the other one.

If two or more overlapping rules can be expressed using the choice operator, then
what happens in Curry if none of the rules match? We can try this by defining a
function with one rule that never matches by using the guard syntax known from
Haskell2.
failed :: a
failed _ | False = undefined

In Haskell, evaluating the expression failed :: Int would lead to an exception that
complains about the non-exhaustive patterns in our definition. If we evaluate the
same expression in Curry, we end up with zero nondeterministic results. In fact,
our definition of failed behaves like a neutral element to our choice function: For
every expression e, the semantics of (e ? failed), (failed ? e) and (e) are the
same. The rest of this thesis will focus solely on the choice and failure operators for
nondeterminism, the reasons will become clear when we talk about the design of the
Curry-Plugin in Chapter 3.

Nondeterminism as a Tree An intuitive mental model for Curry’s nondeterminism
is the interpretation as a tree structure. A node in the tree corresponds to a choice
between the two arguments of (?) with the leaves of the tree corresponding to non-
deterministic results. The REPL (read/eval/print loop) of the KICS2 compiler for
Curry allows us to enable :set choices to present all values as trees instead of term
as shown below. We use the symbol ! to mark failed branches of our computation.

1Using unsafePerformIO, we can even use I/O as some kind of ambient effect in GHC.
2While the function failed could be defined in plain Curry, it is actually provided as a primitive

definition for performance reasons.

4

2.1. Curry

let x = 1 ? 2 in x + x

let x = 1 in x + x let x = 2 in x + x

let x = 1 ? 2 in x + x

1 ? 2 + 1 ? 2

1 + 1 ? 2 2 + 1 ? 2

1 + 1 1 + 2 2 + 1 2 + 2

call-time choice

run-time choice

Nondeterminism

Elimination of
Nondeterminism

Figure 2.1.: Schematic evaluation with call-time and run-time choice

kics2> :set choices
kics2> (True ? False) : ([] ? failed)
?
|-- L: ?
| |- L: [True]
| --- R: !
--- R: ?

|-- L: [False]
--- R: !

As a next step, we will take a look at what happens if we combine Curry’s non-
determinism effect with the laziness and call-by-need evaluation strategy known from
Haskell.

2.1.2. Call-Time Choice and Run-Time Choice

If a variable is used multiple times in a Haskell or Curry expression, it is still only
evaluated once due to the lazy call-by-need evaluation strategy used by both languages.
We can say that the value is shared across all its use sites. This effect can be observed
using unsafe language features. Evaluating the expression

let x = trace “Hello” 1 :: Int in x + x
in an interactive environment for Haskell or Curry will print “Hello” just once. If we

5

2. Preliminaries

were to inline the definition of x, we would end up with two outputs of the same string.
Like nondeterminism in Curry, tracing can be seen as an ambient effect in Haskell. So
what happens if we replace the tracing from the example with a nondeterministic
choice? If we evaluate

let x = 1 ? 2 :: Int in x + x
in Curry, we end up with two results: 2 and 4. The choice made in one of the oc-
currences of our variable x is shared across all its use sites. This interaction between
laziness and nondeterminism is called call-time choice by Hennessy and Ashcroft [1977].
Instead of deciding on the value of a variable at call-time, one could also wait until
its evaluation to fix the nondeterministic choice which is known as run-time choice. It
is equivalent to in-lining the nondeterministic choice in x to its use-sites. Like in our
tracing example, it would cause the semantics of our expression to change. Evaluating
an inline variant of our previous example yields the results 2, 3, 3 and 4. Figure 2.1
shows a schematic evaluation with both call-time and run-time choice.

This interaction between lazy evaluation and ambient effects is not reserved to non-
determinism. In probabilistic programming for example, a similar concept to call-time
choice is known as memoization [Cassel, 2014].

The last logic concept of Curry that we want to discuss are free variables.

2.1.3. Free Variables
Free variables can be defined in Curry using the keyword free. These variables can
be used to compute unknown values. This concept allows us to define a function that
returns the last element of a list using only one rule.
last :: Data a ⇒ a → a
last xs | ys ++ [e] == xs = e

where ys, e free

The type class Data is a recent addition introduced by Hanus and Teegen [2020] to
restrict the types on which the keyword free can be used. Functions, for example,
have no instance of Data, because computing all suitable functions for a free variable
of type a -> b is undecidable in general.

The class Data provides the function aValue :: Data a => a, which can be used
to eliminate all occurrences of the free keyword from a program.
last :: Data a ⇒ a → a
last xs | ys ++ [e] == xs = e

where { ys = aValue; e = aValue }

In the next section, we will take a look at some of GHC’s internals and its plugin
API.

2.2. GHC’s API and Plugin Infrastructure
Like a lot of modern compilers, GHC’s compilation pipeline can be augmented by the
use of its plugin API [Pickering, Wu, and Németh, 2019]. There are several stages

6

2.2. GHC’s API and Plugin Infrastructure

Parser Renamer Type
Checker

Template
Haskell
Splices

Desugarer

Module
Interface
Loader

Constraint
Solver

1

2

3

4

5

6 7

Figure 2.2.: GHC compilation pipeline with plugin extension points

in the compiler where a plugin can intercept the compilation to collect or modify
GHC’s internal knowledge about the module being compiled. These stages are shown
in Figure 2.2. For this thesis, only the renamer (No. 4), typechecker (No. 6) and
constraint solver (No. 5) extension points are relevant.

2.2.1. Renamer Plugins
After GHC’s renaming pass, all identifiers have been disambiguated and are annotated
with the module they originated from. Any plugin that is run at this point has access
to the list of imported modules, their interfaces and all declaration groups (i.e. groups
of mutually dependent top-level definitions), among other information.

GHC’s abstract syntax tree is parameterized over the current compiler phase to form
a tree with a growing amount of information [Najd and S. P. Jones, 2017]. Together
with some type families, this mechanism assures that the same data types can be used
throughout the main three phases (parsing, renaming, type checking) while still being
able to annotate them with the information gathered during each phase. For example,
in each position where the AST expects an identifier, a type family IdP p is used to
map the current phase p to either RdrName (after parsing), Name (after renaming) or
Id (after type checking).

2.2.2. Type Checker Plugins
After type checking, the syntax tree is annotated with accurate type information. At
this stage, all instance definitions (either derived or user-defined) have been desugared
into their dictionary bindings (see [M. P. Jones, 1995a]). This is the most useful phase
for the Curry-Plugin, because the plugin requires accurate type information for its code
transformation. While GHC actually has two representations for types — one user-
facing and one internal representation — the only relevant type information after the
type check is in the internal representation. When pretty printing the type information,
GHC actually converts3 its internal types to the more readable, user-facing format4.

3This conversion can be suppressed with a compiler flag.
4It actually converts the types into the interface representation of types, but both look the same after

pretty printing.

7

2. Preliminaries

Type := Var (Type variable/constructor)
| Type Type (Type application)
| forall Var. Type (Invisible quantification)
| forall Var → Type (Visible quantification)
| Type ⇒ Type (Invisible function type)
| Type → Type (Visible function type)
| Literal (Type literal)
| Kind `cast` Coercion (Kind cast)
| Coercion (Coercion injected in type)

Kind := Type (Kinds are types)
Var := Kind-annotated type variable

| Kind-annotated type constructor
| Type-annotated value constructor (Promoted data type)

Literal := (Not relevant)
Coercion := (Not relevant)

Figure 2.3.: GHC’s internal type syntax

The internal type syntax is given in Figure 2.3. Note that the syntax contains a
lot of constructs that are required for GHC’s advanced language extensions, but are
irrelevant for our plugin. We are interested in the internal representation of user-
written type signatures from the 2010 Haskell standard only. One notable feature of
GHC’s internal representation is that it differentiates between visible (→) and invisible
(⇒) function types. The latter are used to represent type class constraints, because
GHC will later pass “invisible” arguments to functions that contain any constraints.
The following example shows such a representation of two ordinary type signatures.

Example 2.2.1. The type of fromIntegral is represented internally with two forall
quantifiers and one invisible function type for each of the two constraints.
-- | An ordinary function type signature
fromIntegral :: (Integral a, Num b) ⇒ a → b
-- Internal type: forall a. forall b. Integral a ⇒ Num b ⇒ a → b

While the internal representation normally expects all variables quantified before any
constraint is mentioned, type class functions use a different ordering where class con-
straints are written before other variables get quantified. This can be seen with the
following function pure from the Applicative type class.
-- | A function from a type class
pure :: Applicative f ⇒ a → f a
-- Internal type: forall f. Applicative f ⇒ forall a. a → f a

The type checked AST also contains explicit application of types and “evidence” to
polymorphic functions in form of a wrapper expression. The wrapper is normally a
GHC Core expression that is used to implement a corresponding constraint from the

8

2.2. GHC’s API and Plugin Infrastructure

function it is applied to. For a type class constraint, this wrapper contains a variable
that is either implicitly bound in the function definition or it points directly to the
dictionary implementing that type class.

Example 2.2.2. If we look at an applicative version of the function replicate, we
can see that it mentions an Applicative constraint in its type signature.
replicateA :: Applicative m ⇒ Int → m a → m [a]
replicateA 0 _ = return []
replicateA n act = liftA2 (:) act (replicateA (n-1) act)

The following code will be generated after inserting the explicit applications.
replicateA :: Applicative m ⇒ Int → m a → m [a]
replicateA 0 _ = (return @ m @ dApplM @ [a]) ([] @ a)
replicateA n act = (liftA2 @ m @ dApplM @ a @ [a] @ [a])

((:) @ a)
act
((replicateA @ m @ dAppl @ a)

(((-) @ Int @ dNumInt) n 1)
act)

In Example 2.2.2, dNumInt is a dictionary for Num Int and dApplM is the dictionary
provided to satisfy the Applicative m context. The former is created by the Num
instance for Int in GHC.Num, while the latter will be passed to the function by the
caller of replicateA as an invisible argument.

To modify or create new syntax, a plugin can either construct the required terms by
directly creating the correct syntax tree datatypes, or it can use Template Haskell to
let GHC create and type check the new syntax. It is hard to construct any required
evidence in the former direct creation by hand, whereas the latter is easy to use on a
small scale. However, Template Haskell can only be used to construct new syntax from
already known pieces, which are in the scope of the Plugin source code. Using Template
Haskell to safely update a function with all its type and evidence applications is not
possible. We only use it to create the internal representation of monadic functions and
other small code snippets which are required throughout our plugin.

Example 2.2.3. The following code creates and type checks the AST representation
for a return of type a → m a
createReturn :: Type → Type → TcM (LHsExpr GhcTc)
createReturn a m =
thExpr ← liftIO $ runQ [| return |] -- Create ThExpr via quotation
let expType = mkVisFunTy etype $ mkAppTy mty etype
case convertToHsExpr (...) thExpr of -- Convert ThExpr to HsExpr
Left msg → printBad msg
Right res → do
(rnExp, _) ← (rnLExpr res) -- Resolve names
tcMonoExpr rnExpr (Check expType) -- Check type

Note that this code will use return from the scope at the definition of createReturn.

9

2. Preliminaries

Whenever we need to manually construct some part of a syntax tree, we can ask
GHC to automatically solve any required constraints by communicating with GHC’s
constraint solver. The plugin only has to supply information about any given con-
straints that are currently in scope. These constraints are usually given by the type
of the current binding we are manipulating. As a result of letting GHC solve all con-
straints, a plugin receives the evidence expressions that can be used to satisfy the
required constraints. Combined with the Template Haskell approach, we can now effi-
ciently and safely modify the full abstract syntax tree used throughout the compilation.

2.2.3. Constraint Solver Plugins

During type checking, GHC often needs to solve type class or other constraints to
check if they are satisfiable in the checked function. The type checker might even
create an equality constraint between two types that are supposed to be equal, if it
cannot immediately decide if the two types can be unified. All of those constraints
are sent to the constraint solver to check if they are valid. A constraint solver plugin
can intercept these constraints at two different stages: After simplification of given
constraints and after unflattening of wanted constraints. While the simplification and
unflattening are part of GHC’s constraint solver and not of interest to us, our plugin
will later need to intercept or modify the given and wanted constraints after each of
those phases. In general, a constraint solver plugin can inspect all constraints at the
current stage and either say that it found a contradiction between constraints, a proof
for a constraint, or it can tell GHC to extend its current list of constraints.

To tell GHC’s constraint solver to get rid of a wanted constraint, a plugin needs to
provide some kind of proof (e.g., a type class instance) and the evidence expression
(e.g., a type class dictionary) to be used. Given constraints never require any evidence
to drop, instead a given constraint contains the evidence for the correctness of its
constraint already. For all new constraints, GHC will attempt to solve them before
consulting the plugin again. This requires the author of a constraint solver plugin to be
careful to not create any endless loops during a repeated analysis and transformation
of constraints.

While all types of constraints can occur as given and wanted constraints, we will
only focus on the parts that both have in common. For our purposes, a constraint is
either a given/wanted type class constraint, or a wanted equality relation.

Type Class Constraints A type class constraint is annotated with the class that it
mentions, as well as the type arguments that were used to instantiate any class vari-
ables. It also contains the type of the full constraint, which is just the class type
constructor applied to all type arguments. A constraint Monad [] will have the type
Monad [], class Monad and the single argument []. Wanted type class constraints al-
ways need to be supplied with the instance and dictionary term to solve them, whereas
a given class constraint contains a reference to such evidence already.

10

2.2. GHC’s API and Plugin Infrastructure

Equality Constraints An equality relation will normally be marked by GHC as being
irreducible, either because the compiler has not enough information to prove it, or
because the compiler knows it to be false. The type of an equality constraint will be
the equality type constructor (~#) applied to the kinds and then the types of both
sides of the equality. If GHC tries to establish an equality between Int and [] for
example, the constraint type would be: (~#) Type (Type -> Type) Int []. GHC
will often omit the kinds and write the equality type constructor as infix, so we will do
the same. The following ill-typed example shows which kinds of constraints get sent
while type checking the code.

Example 2.2.4. The parameters on the left side of the ill-typed function negateIf
are in the wrong order.
negateIf :: Num a ⇒ Bool → a → a
negateIf x b = if b then x else negate x

The following constraints will eventually be passed to the solver.
1. Given class constraint (type signature): Num a
2. Wanted class constraint (using negate on Bool): Num Bool
3. Wanted equality constraint (returning type Bool instead of a): a ~# Bool

Note that the type variable a in the third constraint is fixed by the type signature of
negateIf and cannot be unified with Bool. While it is also easy for a human to see
that there is no way to solve the equality constraint, the type checker does not know
how the type constructor Bool is defined. If Bool were a type family, there might be
an instance that makes the constraint solvable, which is why the equality gets sent
to the constraint solver for further inspection. To make the programming of complex
plugins to GHC’s type system easier, GHC will always create an equality constraint
for a failed unification, even if the compiler can detect that there is no way to solve the
constraint. In such cases, the constraint will contain a marker to prevent the solver
from wasting time to disprove the equality.

For the example above, the constraint solver will notice that there is no rule that
makes Bool equal to a and no instance Num Bool. The first unsolved constraint will
result in the error message that GHC could not match expected type Bool with actual
type a. The error message from the second constraint will not be reported to the user,
because GHC correctly thinks that a more important error has occurred for the same
set of constraints. By turning on the debugging flag -ddump-tc-trace, we can still
see that the constraint was reported as incorrect by the constraint solver.

11

3. Design

The Curry-Plugin compiles selected modules using a nondeterministic effect with call-
time choice semantics. In this chapter, we will illustrate how to use the plugin and
explain some of the design choices we made during development.

3.1. Overview

Figure 3.1 shows an adapted version of the example program from Section 2.1 to
nondeterministically compute any permutation of a given input list. Based on this
example we explain the basic usage of the Curry-Plugin. The usage of the GHC op-
tions pragma as seen in the first line of the example activates the plugin for the given
module only. In order to avoid that deterministic functions are used accidentally,
we disable the implicit import of Haskell’s Prelude via a language pragma. Although
our newest version of the plugin automatically enables the required language pragma
NoImplicitPrelude, we still consider it a good practice to explicitly use the language
extension in the source code. While those two pragmas enable the nondeterministic
transformation, we still need to bring the choice operator into scope, along with some
other primitive definitions. These additional definitions are collected in a single mod-
ule (Plugin.CurryPlugin.Prelude) that acts as a replacement for Haskell’s default
Prelude.

Instead of activating the plugin for the whole module, we also thought about lifting
only functions that were marked with a special annotation by the user. While this
design would allow for a tighter integration between deterministic and nondeterministic
code, checking if a function definition only mentions compatible functions would have
been more involved. Having a module with mixed definitions would also prevent us
from using any kind of constraint solver plugin for the nondeterministic compilation,
because there is no reliable way to detect, which constraint originated from a (non-)
deterministic definition.

3.1.1. Pattern Match Semantics

Other compilers for Curry allow their users to implement the insert function as seen
in Figure 3.1 by using overlapping patterns instead of the choice operator. However,
a one-to-one copy of the overlapping implementation of insert would not behave as
intended using Curry-Plugin, because of a semantic difference for overlapping pattern
between the plugin and other Curry compilers. For our Curry-Plugin, we decided to
mostly stick with the pattern match semantics from Haskell for two reasons:

13

3. Design

{-# OPTIONS_GHC -fplugin Plugin.CurryPlugin #-}
{-# LANGUAGE NoImplicitPrelude #-}
module Example where

import Plugin.CurryPlugin.Prelude

permutations :: [a] → [a]
permutations [] = []
permutations (x:xs) = insert x (permutations xs)

where insert e [] = [e]
insert e (x:xs) = (e:x:xs) ? (x : insert e xs)

examplePermN :: Int → [Int]
examplePermN n | n ≥ 0 = permutations [1..n]

Figure 3.1.: Nondeterministic computation of all permutations for a given list

• Curry’s pattern match semantics are specific to a nondeterministic language.
Implementing them would prevent us from generalizing the plugin to work with
more effects than just nondeterminism.

• Using wildcards as a catch-all pattern is often used by Haskell programmers.
Curry’s overlapping pattern semantics would force those developers to adapt a
different coding style.

There is only one small difference between Haskell and our plugin. While Haskell
matches on patterns in a left-to-right fashion, the Curry-Plugin first looks for a position
where each rule contains a constructor pattern. These positions are called inductive
[Hanus (Ed.), 2016] and their parameters are guaranteed to be evaluated to determine
the correct function rule for further evaluation. If no inductive position is found, the
plugin falls back to a left-to-right pattern matching. Matching on inductive positions
first reduces the risk of unnecessarily forcing the evaluation of a ⊥ value or an infinite
loop as shown in the following example.

Example 3.1.1. The following definition test does not terminate for left-to-right
pattern matching, but it produces a result when matching on the inductive pattern of
the second argument in (&&) first.

test :: Bool
test = loop && False

where loop = loop

(&&) :: Bool → Bool → Bool
True && True = True
_ && False = False
False && True = False

14

3.1. Overview

{-# LANGUAGE TemplateHaskell #-}
module HaskellWrap where

import Example
import Plugin.CurryPlugin.Encapsulation

main = putStrLn $
"There are " ++ show (length resTH) ++
" permutations of a list of length " ++ show n ++
". Permuting an empty list results in: " ++ show resFix

where
n = 9
resTH = $(evalGeneric DFS 'examplePermN) n -- TemplateHaskell
resFix = eval1 DFS permutations [] :: [[Int]]

Figure 3.2.: Capturing a nondeterministic computation

Note that matching on inductive positions first might change the order of evaluation.
In the context of order-dependent side effects like tracing, the changes in our matching
strategy might lead to differences in the order that those effects are executed. However,
in this thesis we focus on nondeterminism, where the order of effects is not observable
by the programmer.

3.1.2. Encapsulating Nondeterministic Computations

While Haskell modules cannot be imported into Curry modules, the other direction is
possible. In fact, we consider it to be best practice to only use the plugin for those parts
of a program that are supposed to be nondeterministic. Any further computations and
IO can be handled in a Haskell module.

To allow users of our plugin to handle the results of a nondeterministic computa-
tions in an ordinary Haskell module, we have to provide an interface to encapsulate a
nondeterministic function. Figure 3.2 shows two different methods of encapsulating a
computation: One that uses Template Haskell to generate a wrapper function of the
correct arity, and one that uses a pre-built wrapper for a fixed arity. Especially for
inexperienced Haskell programmers, the more simple functions that do not use meta-
programming with Template Haskell seem to be more intuitive. This is why the plugin
provides the fixed-arity wrappers for an arity of up to three.

All of the encapsulation functions take a search strategy as their first parameter and
return a list of the collected results. Currently, the “Encapsulation” module provides
depth-first and breadth-first search strategies, while the addition of more involved
strategies is possible as well.

Each of the wrappers provided by the plugin has restrictions concerning the kind
of functions that it can be used with. The implementation of evalGeneric uses the
reification mechanism provided by Template Haskell, which dictates that the type of

15

3. Design

the wrapped function has to be known prior to type checking the wrapper expression
itself. In general, obtaining the type will never fail if the nondeterministic function
is imported1. In addition to this Template Haskell restriction, each wrapped function
is not allowed to have a higher-order function as a parameter. Higher-order functions
like map are not excluded from being encapsulated by that restriction, because the
function passed to map does not have a higher-order type. A few examples for restricted
functions are given below in Example 3.1.2.

Example 3.1.2. Although the type of the encapsulated function f in the first example
is given in the type signature, Haskell does not know if that type is correct. Thus, this
example will not be accepted.
myEvalWrong :: Nondet (Int :→ Int) -- ^ Nondeterministic function

→ Int → [Int]
myEvalWrong f n = $(evalGeneric DFS 'f) n

When a specialized wrapper without TH is used instead, the example is accepted.
myEvalOkay :: Nondet (Int :→ Int) -- ^ Nondeterministic function

→ Int → [Int]
myEvalOkay f n = eval1 DFS f n

The next function is accepted, because map has no higher-order parameter, …
evalHOOkay :: [Int]
evalHOOkay = $(evalGeneric DFS 'map) (+1) [1..3]

… but wrapping this fictional function is rejected, because it essentially expects a higher-
order function like map as its parameter.
evalHOWrong :: [Int]
evalHOWrong = $(evalGeneric DFS 'someFictionalFunc) map [1..3]
-- someFictionalFunc :: Nondet (((a :→ b) :→ [a] :→ [b]) :→ [a] :→ [b])

3.1.3. Other Features and Restrictions
In contrast to existing Curry compilers, our plugin does not support free variables,
because we cannot change the syntax which is accepted by GHC. As an alternative, we
could implement the Data type class from Hanus and Teegen [2020] that we mentioned
in Section 2.1, but this has not been done yet.

To make sure that only plugin-compiled functions can be used in a Curry module, our
plugin marks each compiled module with an annotation and checks if each imported
module has the same annotation as well. For some modules that contain internal
definitions, we set the annotation by hand.

Our Curry-Plugin also allows the definition of type synonyms, data types, newtypes
and type classes as shown in Figure 3.3. Any data type can also use a deriving clause
to create class instances automatically, but this is restricted to mostly the same classes

1It also works if the function is from a different declaration group, i.e. a group of declarations created
by a top-level TemplateHaskell splice, plus all plain Haskell declarations until the next splice.

16

3.2. Using other Effects

data Queue a = Queue [a] [a] -- ^ A data structure for representing queues.
deriving Show

class IsList l where -- ^ Type class for "list-like" data structures
fromList :: [a] → l a

instance IsList Queue where -- ^ Type class instance for 'Queues'
fromList s = Queue s []

Figure 3.3.: Using datatypes and type classes

as in Haskell. Our current implementation is, however, not able to derive instances of
Read. While we do not officially support any language extensions yet, multi-parameter
type classes and other extensions to Haskell’s type classes are deemed compatible with
the plugin. A comprehensive list of unofficially supported language extensions can be
found in Appendix C.

When importing a plugin-compiled module in an ordinary Haskell module, all of the
defined data types are available as the normal deterministic version. This allows a user
to work with the result of encapsulated functions as usual, without having to manually
convert a nondeterministic data type.

While data types are available for further use, any defined or derived instances and
type classes are only provided as their nondeterministic version, because converting
a nondeterministic function to a deterministic one is not possible in general. This
restriction also applies to datatypes that contain functions. They can not be converted
automatically. To use any instances from a plugin module in the deterministic world,
the user has to define them again manually or by using a standalone deriving instance.
While not having a Show instance might be inconvenient when using GHCi to inspect
the result of a function, there are no good solutions to this problem yet.

3.2. Using other Effects
Our plugin can also be adapted to other monadic effects by changing the code in two
key modules: The effect implementation in Plugin.Effect.Monad has to be swapped
and new encapsulation functions need to be implemented to replace the functions in
Plugin.CurryPlugin.Encapsulation. The same lifting mechanism works for every
monadic effect and can be used to implement nondeterminism, probabilism, reactive
programming [Van Der Ploeg, 2013] and other effects.

As a proof-of-concept we have forked our plugin2 and implemented a new plugin
for probabilism. Its monadic effect type is implemented via algebraic effects [Plotkin
and Pretnar, 2009] and a free monad construction, but that was not part of my work.
The implementation of the plugin provides its user with the primitive probabilistic
function choice :: Double -> a -> a -> a, where choice p x y chooses x with a

2Code available at https://git.ps.informatik.uni-kiel.de/kaiprott/2020-kprott-ma/.

17

https://git.ps.informatik.uni-kiel.de/kaiprott/2020-kprott-ma/

3. Design

probability of p and y with counter-probability (1− p). Note that the fork is based on
an older version of the plugin. The implementation is just a proof-of-concept and is
not expected to be fully functioning. The function definitions in the following Exam-
ple 3.2.1 allow us to compute the probability that a random string of a given length
over the alphabet containing “a” and “b” is a palindrome.

Example 3.2.1. Using the choice primitive, we can define a function to pick a value
from a given list using a uniform probability distribution.
uniform :: [a] → a
uniform [x] = x
uniform (x:xs) = choice 0.5 x (uniform xs)

With our uniform function, we can implement a function to pick a character from our
alphabet “ab” and a function to create a random string with n independently chosen
charactes.
pickChar :: Char
pickChar = uniform ['a', 'b']

randomString :: Int → String
randomString n | n == 0 = ""

| n > 0 = pickChar : randomString (n-1)

To check if a given string is a palindrome, we compare it with its reverse.
isPalindrome :: String → Bool
isPalindrome s = s == reverse s

If we encapsulate a computation that checks if a random string of length two is a
palindrome, we can see that the string is a palindrome with a probability of 50%.
randomPalindrome :: Bool
randomPalindrome = isPalindrome (randomString 2)

-- ghci> print (allValuesNF randomPalindrome)
-- Dist [(True, 0.5), (False, 0.5)]

In the future, we would like to have a single plugin, which is usable for any effect
without a hard-coded effect implementation. These plans for a generalized plugin will
be discussed as part of the future work in Section 6.3.

18

4. Implementation

In this chapter, we will explain how the Curry-Plugin achieves its semantic transfor-
mation. The plugin consists of three sub-plugins, each having a different purpose and
using a different extension point of GHC’s plugin API as shown in Figure 4.1. The “Im-
port Constraint Solver” and the “Import Check” are both concerned with the correct
handling of imports and will be explained in Section 4.6, while the main transformation
takes place in the “Lifting” phase. The lifting can be divided into five sub-phases:

1. Lifting type constructors (Section 4.1.1 and Section 4.4.1) to allow deeply nested
nondeterminism in data structures.

2. Compiling and simplifying pattern matching (Section 4.2) to make the imple-
mentation of phase five simpler and more manageable.

3. Deriving internal type classes for all data types (Section 4.3), because our trans-
formation requires each data type to have certain instances1.

4. Lifting instance information (Section 4.4.2) of existing type class instances to
account for the changed data type definitions after the first phase.

5. Lifting function definitions (Section 4.1.2) to achieve our desired semantics.

Although functions are lifted last in the plugin, knowing how they are lifted is cru-
cial in understanding earlier phases, which is why we will start this chapter with an
introduction to the lifting of types, data types and functions.

Renamer Import
Check

Type
Checker Lifting

Constraint
Solver

Import
Constraint

Solver

Desugaring

GHC phases

Plugin phases

Figure 4.1.: Extension points used by the Curry-Plugin

1Technically, internal type classes are derived before pattern match compilation takes place.

19

4. Implementation

4.1. Monadic Lifting
At the core of our plugin transformation stands a monadic lifting, where the monad is
instantiated with our preferred effect to achieve the desired semantics. In order to lift
data types and functions, we first have to know how types are lifted in general. For
our Curry-Plugin, we are using Nondet as our monadic type constructor, where Nondet
is just a newtype wrapper around the nondeterminism implementation by Fischer,
Kiselyov, and Shan [2011]. We could use any other monadic effect implementation for
nondeterminism with call-time choice, but settled for the mentioned library because it
is relatively fast and easy-to-use. Our main lifting J·K requires two other operations:

• J·Ki, a lifting for “inner” types, which does not wrap the full type and

• J·Kr, an operation that just replaces type constructors.

The main lifting works by wrapping the whole type without constraints in our monad
and replacing every type constructor, if available, with its nondeterministic version.
Haskell’s special function type constructor (→) is also replaced, by applying the lifting
to both sides of the the arrow. This will automatically wrap both sides with the
monadic type constructor as well. For better readability, we will use the type synonym.
type (:→) a b = Nondet a → Nondet b

To avoid wrapping any constraints or variable quantifier, we first split off any invisible
Π-types, where an invisible Π-type is a variable binder bound by forall or a (type
class) constraint. Invisible means that the type or constraint does not have to be
explicitly applied to this type. With PolyKinds, GHC allows writing types that require
their type applications to be visible. Only wrapping the un-quantified part of the type
prevents the rank (i.e. the nesting of a forall type; see [Odersky and Läufer, 1996])
from increasing, which keeps the type as simple as possible. The full lifting scheme for
types is given in Figure 4.3, with examples for it in Figure 4.2.

The fact that we avoid wrapping invisible Π-types is present in the lifting rules for
forall quantifiers and constraints, where we use a different lifting if the inner part of
the type still contains constraints or quantifiers. Our lifting scheme has no rules for
the type literals, kind casts or type-level injected coercions that were presented as part
of GHC’s internal type system in Section 2.2, because those are only used with certain
language extensions. One detail to note about the inner lifting J·Ki is that its rule is
only applicable to monomorphic types without constraints and quantifiers. We never
use the inner lifting for anything else, so this is sufficient for now.

-- Int has no ND version, while List and Num have oneJ [Int] K = Nondet (ListND Int)J a → [Int] K = Nondet (a :→ ListND Int)J forall a. a → a K = forall a. Nondet (a :→ a)J forall a. Num a ⇒ a K = forall a. NumND a ⇒ Nondet a

Figure 4.2.: Examples for the lifting of types

20

4.1. Monadic Lifting

Full Lifting

J forall v. ty K = forall v. J ty K if ty is a forall or (⇒)

J forall v. ty K = forall v. Nondet J ty Ki if ty is not a forall or (⇒)

J ty1 ⇒ ty2 K = J ty1 Kr ⇒ J ty2 K if ty2 is a forall or (⇒)

J ty1 ⇒ ty2 K = J ty1 Kr ⇒ Nondet J ty2 Ki if ty2 is not a forall or (⇒)

J ty1 → ty2 K = J ty1 K → J ty2 K
J ty1 ty2 K = Nondet (J ty1 Ki J ty2 Ki)
J type_constr K = Nondet nd_type_constr

J type_variable K = Nondet type_variable

Inner Lifting

J ty Ki = ty′ where J ty K = Nondet ty′

Type Constructor Replacement

J forall v. ty Kr = forall v. J ty Kr
J ty1 ⇒ ty2 Kr = J ty1 Kr ⇒ J ty2 Kr
J ty1 → ty2 Kr = J ty1 Kr → J ty2 Kr
J ty1 ty2 Kr = J ty1 Kr J ty2 Kr
J type_constr Kr = nd_type_constr

J type_variable Kr = type_variable

Figure 4.3.: Lifting rules for types

21

4. Implementation

4.1.1. Lifting Data Types
In order to support deeply nested nondeterminism in data types, every constructor
has to be lifted. If we look at the type of those constructors, we might be tempted
to apply our lifting to the full type. While this will be necessary to lift functions in
Section 4.1.2, we know that the (partial or full) application of a constructor can never
introduce any new effects by itself. This allows us to only lift the parameters of each
constructor, because they are the only potential sources of nondeterminism in a data
type. In fact, applying the lifting to the full type of a constructor would result in
invalid data type definitions, because a constructor has to have its corresponding type
constructor as a result in Haskell. The following code shows this restriction by defining
a Maybe data type and its incorrectly lifted version with GADT syntax.
data Maybe a where data MaybeND a where
Nothing :: Maybe a NothingND :: Nondet (MaybeND a)
Just :: a → Maybe a JustND :: Nondet (a → Nondet (MaybeND a))

When compiling the lifted definition MaybeND, GHC will complain that “data construc-
tor NothingND returns type Nondet (MaybeND a) instead of an instance of its parent
type MaybeND a”. We will later see in the lifting of function implementations that we
have to treat constructors different than functions, because their types have a different
structure.

According to the design choices explained in Chapter 3, we also want to keep the
original data type definition. This forces us to rename our nondeterministic version by
adding “ND” as a suffix to types, constructors and record fields. This is done without
checking for name clashes between new and existing data types, because the compiler
uses a unique key and not the name to differentiate between identifiers after GHC’s
renaming phase. If one of the types with a name clash is imported somewhere else, it
is also clear that the user wants to import the deterministic type. In order for GHC to
know the correct type as well, we decided to only export original data type definitions,
because they are the ones that should be mentioned in the source code. We can now
define the following rule to lift data types, an example for it is given in Figure 4.5.

J data D a1 . . . an data DND a1 . . . an
= C1 ty11 . . . ty1n ⇒ = CND1 J ty11 K . . . J y1n K
|
... |

...
| Cm tym1 . . . tymn Kd | CNDm J tym1 K . . . J ymn K

Figure 4.4.: Transformation rule for data type definitions

Type synonyms As type synonyms are just aliases for a concrete type, it seems
reasonable to apply the normal lifting for types to the right side of each synonym
definition. While this could certainly work, it introduces a few problems. This can be
seen in the following example, where we define and use a String type synonym on the
left, with the lifted versions on the right.

22

4.1. Monadic Lifting

-- Unlifted -- Lifted
data Maybe a data MaybeND a
= Nothing = NothingND
| Just a | JustND (Nondet a)

-- In "pseudo" Haskell -- Provided as a built-in definition
data [] a data ListND a
= [] = NilND
| a : [a] | ConsND (Nondet a) (Nondet (ListND a))

-- Unlifted, in GADT syntax -- Lifted, in GADT syntax
data Either l r where data EitherND l r where
Left :: l → Either l r LeftND :: Nondet l → EitherND l r
Right :: r → Either l r RightND :: Nondet r → EitherND l r

Figure 4.5.: Examples for the lifting of data types

Example 4.1.1. The following lifting for type synonyms is not correct.
-- Unlifted -- Lifted
type String = [Char] type StringND = Nondet (ListND Char)
isEmptyStr :: String → Bool isEmptyStr :: Nondet (StringND :→ Bool)

If we now expand both the synonyms StringND and (:→) in the nondeterministic type
signature of isEmptyStr, we end up with the following type.
Nondet (Nondet (Nondet (ListND Char)) → Nondet Bool)

The expanded type signature contains one more application of Nondet to the first
parameter ListND Char than we would like to have, because both the lifting of the type
signature and the lifting of String introduced a Nondet application.

By lifting type synonyms with the inner lifting defined in Figure 4.3 instead, we prevent
this duplicate inclusion of Nondet.

Newtypes The constructor of a newtype declaration has different semantics when
compared to a constructor from a data declaration: At run time, a newtype constructor
is desugared to a coercion between the types on the left and right side of its declaration.
This makes the behavior of a newtype more similar to a type synonym than a data
declaration. The notable difference is, that type class instances cannot be defined for
type synonyms, only for data and newtypes. Originally, our lifting treated newtype
declarations as ordinary data declaration, which turned out to be wrong. To see this,
let us take a look at a newtype-version of the example from above.
-- Unlifted -- Lifted
newtype String = Str [Char] newtype StringND = Str (Nondet (ListND Char))
isEmptyStr :: String → Bool isEmptyStr :: Nondet (StringND :→ Bool)

23

4. Implementation

-- Unlifted -- Lifted
newtype Ident a = Ident a newtype IdentND a = IdentND a
newtype IDFun a = IDFun (a → a) newtype IDFunND a = IDFunND (a :→ a)
type Invisible a = a type InvisibleND a = a
type Arrow a b = a → b type ArrowND a b = a :→ b

Figure 4.6.: Examples for the lifting of newtypes and type synonyms

We have already established, that a newtype behaves just like a type coercion at run
time. This also implies, that a type constructor from a newtype declaration is replaced
with its right side during desugaring and we end up with the same problematic type as
in the synonym example. By using the inner lifting for newtypes instead of the lifting
for data types, this problem can be avoided2 In Figure 4.6 we give examples for the
correct lifting of a few type synonyms and newtype declarations.

Replacing Type Constructors When lifting any type throughout the plugin, we can
use a map to lookup a nondeterministic replacement for an occurrence of a type con-
structor, except in the lifting of type constructors itself. In GHC’s datatype for type
constructors, the entities (e.g., data types, classes, …) behind each definition refer back
to their “parent” type constructor. This leads to a cyclic, graph-like data structure
that is convenient to use, but difficult to update. If we lift the definition of a data type
or any other type constructor, we need to perform this replacement without having
the final type constructor at hand; the input of our lifting depends on its output. This
also happens if we look at only a single data type definition: The result type of each
constructor definition is exactly the type constructor being defined. This is shown
more clearly in the following example, by using GADT syntax for the type definition.
data Identity a where
Identity :: a → Identity a

-- ^ The value constructor inside the data declaration
-- refers back to the type constructor being defined.

Thankfully, we can use Haskell’s lazy evaluation to make the lifting of type constructors
a simple fixed-point computation by feeding the output of the function back to its
input. We only have to be careful with printing debug information to avoid forcing
any results. Our data type lifting also requires some information behind IO-accessible
references, so we also have to be careful with the order of some operations to avoid
deadlocks.

4.1.2. Lifting Functions
If we take a look at the type of a lifted function, we can already see how the lifted
implementation of that function has to look like.

2Section 4.4 will introduce a small exception to the treatment of newtype definitions that are intro-
duced by the dictionary transformation of type classes.

24

4.1. Monadic Lifting

1. Every lambda abstraction has to be wrapped in a return statement, because each
type-level arrow is nested inside a Nondet. Additionally, each lambda binder has
to be unary and no variables can be bound on the left side of a function definition,
otherwise we have no place to add the return.

2. Before pattern matching on a value, we have to first extract it from the monad
using bind (>>=). This also implies, that pattern matching in a lambda or nested
pattern matching is not possible, because the nested values are nondeterministic
as well (except for newtypes).

3. Before applying a function to a value, we first have to extract the function from
the monadic wrapper using bind again. This has to be done for each parameter
that is passed to it.

While the last point can easily be achieved during lifting, the first two are hard to
implement without some kind of pre-processing. This is why we assume in the lifting of
functions, that every input function only contains simple, non-nested pattern matching
without lazy patterns, unary lambda expressions with only variable patterns and no
variables on the left side of its definition. For pattern matching, we even go a step
further and assume that the outermost pattern is only a constructor and never a
variable. Example 4.1.2 shows a few examples for what is and is not expected to occur
in the input of our lifting. The pre-processing itself will be explained in Section 4.2.

Example 4.1.2. The following functions show the (un-) expected input for the lifting
of functions. Let us consider the three given implementations of const. Only the third
implementation is allowed in the lifting, because the first one contains pattern on the
left side of a function definition while the second contains a non-unary lambda.
const1 x y = x -- ^ Not allowed
const2 = λx y → x -- ^ Not allowed
const3 = λx → λy → x -- ^ Allowed

Any matching on constructor pattern is only allowed to occur in case expressions.
Thus, only the second variant of isJust is valid after pre-processing.
-- | Not allowed
isJust1 (Just _) = True
isJust1 _ = True
-- | Allowed
isJust2 = λx → case x of
Just _ → True
_ → False

Nested constructor patterns as used below in unwrapSingleton are forbidden, multiple
case expression should be used instead.
-- | Not allowed
unwrapSingleton1 = λ(x : []) → x
-- | Allowed
unwrapSingleton2 = λx → case x of { (x : xs) → case xs of { [] → x } }

25

4. Implementation

In the following paragraphs, we will explain how the lifting of functions, variables,
lambda abstraction, application, constructors, case expressions and let expressions
works. Every other syntactic element, like if-expressions or operator applications, can
be translated by adapting the same techniques, which is why we skip their translation.
We also give the translated type annotations and applications for every syntactic ele-
ment that is annotated in GHC. These type annotations are not from a user-written
type annotation, as any user-writtern type is irrelevant after the type check (see Sec-
tion 2.2). For better readability, we omit the Monad dictionaries that would be passed
to return/(>>=) and sometimes omit their type annotations if they are clear from the
context. A full example for the translation can be found in Appendix A.

Variables By assuming that every ocurrence of a variable outside of patterns is lifted,
mostly the type of a variable has to be edited. In contrast to data types, we cannot
keep the original version of lifted functions, because we do not know if the original
definitions used any nondeterministic function or primitive. So a renaming of functions
and variables is not reqired. Later we will see in Section 4.3.3, that lifted variables
need to be supplied with new or updated dictionaries. Additionally, a few of GHC’s
built-in functions will be replaced with lifted versions as discussed in Section 4.5. Both
of these extensions are not part of the core lifting and will be discussed later.

J v :: ty Ke = v :: J ty K
Figure 4.7.: Transformation rule for variables

Example 1. The variable isOdd is lifted as shown below.J isOdd :: Int → Bool Ke = isOdd :: Nondet (Int :→ Bool)

Lambda Abstractions A lambda abstraction is translated by simply wrapping it in a
correctly-typed return and translating the inner expression. If the variable bound by
the lambda occurs more than once on the right side, we also insert a share operator to
explicitly share that variable across all its occurrences. This operator and the reason
why we need it will be explained in Section 4.3.

J (λ(x :: ty1) → e :: ty2) Ke
= return @ Nondet @ J ty1 → ty2 Ki

(λ(x' :: J ty1 K) → share x' >>= λx → J e Ke :: J ty2 K
Figure 4.8.: Transformation rule for lambda abstractions

Example 2. A lambda expression that implements the identity function is lifted as
shown below.J λx → x Ke = return (λx' → share x' >>= λx → x)

26

4.1. Monadic Lifting

Applications The transformation of an application of two expressions is straightfor-
ward, we only have to extract the “real” function from the monad before applying it
in the lifted setting.

J (e1 :: ty1 → ty2) (e2 :: ty1) Ke
= (>>=) @ Nondet @ J ty1 → ty2 Ki @ J ty1 Ki)J e1 Ke (λ(f :: J ty1 → ty2 Ki) → f J e2 Ke :: J ty2 K)

Figure 4.9.: Transformation rule for applications

Example 3. The application of isOdd onto the variable zero is lifted as shown below.J isOdd zero Ke = isOdd >>= λf → f zero

Constructors While the type of a lifted constructor for a type T a1 . . . an has the form
Nondet τ1 → . . . → T a1 . . . an, our functions are expected to have a type of Nondet
(Nondet τ1 → (. . .→ Nondet (T a1 . . . an))) This type discrepancy can be solved in two
ways: We could make our translation rule for applications more complex by adapting
it to work for fully saturated constructor applications as well. Any partial constructor
applications would be transformed into anonymous lambda functions. While this would
generate a concise and simple lifting output, it is hard to implement. Instead, we
decided to generate more complex code and hope for GHC to optimize it sufficiently.
Our implementation transforms ocurrences of a constructor to have a similar type to
a function. To achieve this, we create a chain of return applications and lambda
binders, applying the lambda-bound variables to the nondeterministic constructor in
the end. For newtypes, however, we have to keep in mind that the value inside a
newtype constructor is unlifted. Thus, the plugin cannot apply the nondeterministic
newtype constructor to the lifted variable. Instead, our Curry-Plugin generates a call
to fmap to apply the constructor onto its single argument inside the monadic context.

Data ConstructorsJ C :: ty1 → . . . → tyn Ke
= return @ Nondet @ J ty1 → . . . → tyn Ki $ λ(x1 :: J ty1 K) →

. . .
return @ Nondet @ J tyn Ki $ CND x1 . . . xn−1

Newtype ConstructorsJ C :: ty1 → ty2 Ke
= return @ Nondet @ J ty1 → ty2 Ki $ λ(x :: Jty1K) →

fmap @ Nondet @ J ty1 K @ J ty2 K CND x

LiteralsJ lit :: ty Ke = return @ Nondet @ J ty Ki lit -- Like a nullary constructor

Figure 4.10.: Transformation rules for data- and newtype constructors

27

4. Implementation

Example 4. The data constructor Just is lifted as shown below.J Just Ke = return (λx → return (JustND x))

Example 5. The newtype constructor Identity is lifted as shown below.J Identity Ke = return (λx → fmap IdentityND x)

Case Expressions Although a case expression is assumed to be in a simplified form
already, we still need to take care of a few things. Before performing a case analysis in
the lifted setting, we need to use (>>=) to extract our value from the monad again. The
translation of a case-branch is more complex: We know that the outermost pattern
is definitely a constructor pattern that only contains variable patterns. In most cases
these variables will be lifted, except if the constructor stems from a newtype declara-
tion. In order to assume that every variable we encounter somewhere else in the AST
is lifted, we need to introduce a lifted version for any variable in a case expression over
a newtype. A lifted variable might need to be shared explicitly again, but sharing any
of these unwrapped newtype variables is not required, because they can only contain
an effect in a more deeply nested position. This nested effect will be shared by a case
expression that scrutinizes the effectful part of this value if necessary.

Case ExpressionsJ case (e :: ty1) of { br1; . . .; brn } :: ty2 Ke
= (>>=) @ Nondet @ J ty1 Ki @ J ty2 Ki)J e Ke (\case { J br1 Kb; . . .; J brn Kb })

Case Branches - Data ConstructorJ C (n1 :: ty1) . . . (nn :: tyn) → e Kb
= CND (n1' :: J ty1 K) . . . (nn' :: J tyn K)
→ share n1' >>= λn1 →

. . .
share nn' >>= λnn →J e Ke

Case Branches - Newtype ConstructorJ C (n :: ty) → e Kb
= CND (n' :: J ty Ki))
→ let n = return n' in J e Ke

Figure 4.11.: Transformation rules for case expressions and branches

Example 6. A case expression with a data constructor is transformed as shown below.J case x of { Just y → y + y; Nothing → zero } Ke
= x >>= \case

JustND y' → share y' >>= λy → J y + y Ke
NothingND → zero

28

4.1. Monadic Lifting

Example 7. A case expression with a newtype constructor is transformed as shown
below.J case x of { Identity x → x } Ke
= x >>= \case

Identity x' → let x = return x' in x'

Let Expressions Let expressions are expected to only contain functions and no pat-
tern bindings, because the latter have been desugared during the pre-processing (see
Section 4.2.3). We obviously have to translate local definitions like any other function,
but we also need to share any newly introduced variables.

J let v = e1 in e2 Ke = let v' = J e1 Ke in share v' >>= λv → J e Ke
Figure 4.12.: Transformation rule for let expressions

Example 8. A let expression that binds a single variable is transformed as shown
below.J let x = coin in x + x Ke
= let x' = coin in share x' >>= λx → J x + x Ke

Note that we try to split let expressions with more that one binding into nested let
expression first, to make sharing across multiple let-bound definitions easier. This split-
ting is not possible if the expressions are (mutually) recursive, but the general lifting
will still work. In Section 4.3.4 we will see, that sharing of variables across unsplittable
or recursive bindings is challenging and not supported in the current plugin.
Example 9. A let expression that binds two variables is transformed as shown below.J let { x = zero, y = x } in x + y Ke
= J let x = zero in let y = x in x + y Ke
= let x' = zero in share x' >>= λx → let y = x in J x + y Ke

Optimizing Sharing for Single-Ocurrence Variables The transformation rules given
above always insert a call to share for bound variables to correctly model call-time
choice, even if the variable does not need to be shared. To avoid sharing of single-use
variables, our plugin uses different transformation rules in some cases. These optimized
rules skip the insertion of a share, whenever the variable occurs at most once in the
scope that it is bound. However, if a variable is used in multiple branches of a case-
expression, our simple check does not detect whether sharing can be omitted or not.
Example 4.1.3. While transforming the expression given below, our plugin detects
that x needs no sharing, but fails to detect the same for y.J let { x = True, y = 2 } in case x of { True → y; False → 2 ∗ y} Ke
= let { x = True, y' = 2 } in share y' >>=

λy → J case x of { True → y; False → 2 ∗ y} Ke

29

4. Implementation

4.2. Pattern Matching
While our lifing of functions only excepts a small subset what is possible to write in
Haskell, we still want to use our plugin for more complex function as well. To do this,
we use a modified version of the algorithm to transform pattern matching from Wadler
[1987].

That algorithm can be used to compile pattern matching to get rid of nested pattern
in function rules and case expressions, but Haskell also allows patterns in guards, on
the left side of let-bound definitions and in do-notation. We start by explaining the
general translation of pattern matching and then continue with the details of all the
other pattern constructs.

4.2.1. Translating Pattern Matching
The internal representation of rules in GHC uses the same data type for rules in both
case expressions and functions, as well as for lambda (-case) expressions. This makes
compilation of pattern matching siginificantly easier.

Fresh variables As a first step, we replace each top-level pattern of each rule with
a fresh variable, because our main algorithm expects a list of variables to scrutinize
and the list of rules with the corresponding patterns for each variable. For function
definitions, these new variables are introduced by a lambda on the right side of a rule,
while we use a let-definition to bind the scrutinee of a case expression to the vari-
able3. The introduction of new variables also splits multi-arity lamdas and functions
into unary lambda expressions. The following rules describe this transformation more
formally. The bracket notation Jmatch . . .Kp is used for the pattern match algorithm
and will be explained afterwards. E is used as a placeholder to be inserted if none of
the patterns is applicable. For the case of our Curry-Plugin, we instantiate E with the
nondeterministic failure (failed).

f p11 . . . p1n = e1 f = λx1 → . . . λxn → J match [x1, . . ., xn]... ⇒ [([p11, . . ., p1n], e1), . . .
f pm1 . . . pmn = em ([pm1, . . ., pmn], em)] E Kp
case v of
p1 → e1... ⇒ J match [v] [([p1], e1), . . ., ([pm], em)] E Kp
pm → em

case e of
p1 → e1... ⇒ let v = e
pm → em in J match [v] [([p1], e1), . . ., ([pm], em)] E Kp

3While the introduction of a new let would increase the number of heap allocations during execution,
GHC’s optimizer will inline these bindings under most circumstances.

30

4.2. Pattern Matching

After introducing new variables for each argument, we use the Jmatch xs eqs EKp
transformation to desugar any pattern matching. Here, xs is the list of all newly
introduced variables, eqs are the matching rules as a list of pattern/expression pairs
an E is the expression to use if no match was successful.

Inductive Position Haskell would now match on the variables in a left-to-right order,
but for our plugin we decided to first look for an inductive position that will defnitely
be demanded as outlined in Chapter 3. To find this position, we traverse left-to-right to
find the first argument, where each equation in eqs consists of a constructor pattern at
top-level. Let i ∈ [0 .. length xs] be the smallest index such that for all (ps, e) ∈ eqs
holds that psi is a constructor pattern. If none such index exists, fall back to Haskell’s
pattern match semantics and use index i = 0.

The match Transformation There are four different cases to consider for the patterns
at index i in each of the equations. In the case of as-pattern (@), lazy-pattern (~) or
bang-pattern (!)4, we use the inner pattern for our decision instead. The following are
modified rules from the description of Haskell’s pattern matching by Hanus [2019].

1. No matches left to consider because xs is empty:
There are no more matches to perform. We now need to check if there exists a
rule for the matches made previously.

a) At least one equation left in eqs:
Use the first of the remaining equations to create the result expression.J match [] [(ps, e), . . .] E Kp
⇒ e

b) No equations left because eqs is empty:
It seem that none of the previous patterns could be matched successfully,
so we use E for a catch-all alternative.J match [] [] E Kp
⇒ E

2. All equations in eqs use a variable pattern at index i:
In this case, we substitute the variables in each equation.J match xs [([p11, . . ., v1i, . . ., p1n], e1),...

([pm1, . . ., vmi, . . ., pmn], em)] E Kp
⇒ J match [x1, . . ., x(i−1), x(i+1), . . ., xn]

[([p11, . . ., v1(i−1), v1(i+1), . . ., p1n], e1[v1i 7→xi]),...
([pm1, . . ., vm(i−1), vm(i+1), . . ., pmn], em[vmi 7→xi])] E Kp

4Bang-pattern are not actually supported by the plugin, but the pattern match implementation
already accounts for their occurence.

31

4. Implementation

3. All equations in eqs use a constructor pattern at index i:
We need to create a case expression over xi and translate the rest of our matching
together with any new nested patterns. To create the patterns for our new case,
we first group all eqs to (eqs1 ++ …eqsk), such that each psi in every eqsj starts
with the constructor Cj , where C1 …Ck are all used constructors of the same type
as xi. Let each eqsj be of the following form.

eqsj =

[([ps11, . . ., ps1(i−1), (Cj p11j . . . pnj

1j), . . ., ps1n], e1j),...
([psmj1, . . ., psmj(i−1), (Cj p1mjj

. . . pnj

mjj
), . . ., psmjn], emjj)]

Then our transformation can proceed by creating a branch for each used con-
structor and including any nested patterns in the rest of the translation. Instead
of generating a branch for each unused constructor, we introduce a catch-all case
to reduce code duplication.

J match xs (eqs1 ++ . . . ++ eqsk) E Kp
⇒ case xi of

C1 v11 . . . v1n1
→ J match xs'1 eqs'1 E Kp

...
Ck vk1 . . . vknk

→ J match xs'k eqs'k E Kp
_ → J match [] [] E Kp

where for all a, b the variables vab are fresh and xs'j , eqs'j are defined as:

xs'j = [vj1, . . ., vjnj
, x1, . . ., x(i−1), x(i+1), . . ., xn]

eqs'j =

[([p11j, . . ., pnj

1j , ps11, . . ., ps1(i−1), ps1(i+1), . . ., ps1n], e1j),...
([p1mjj

, . . ., pnj

mjj
, psmj1, . . ., psmj(i−1), psmj(i+1), . . ., psmjn], emjj)]

This gets slightly more complicated in the presence of lazy pattern, literal pattern
or overloaded lists, which we omitted here because the main transformation stays
the same.

4. Constructor and variable patterns in eqs are mixed:
This last case is translated by grouping constructor and variable patterns. Every
group is then translated seperately, where subsequent groups are used to create
the failure expression of its predecessor.J match xs eqs E Kp
⇒ J match xs eqs1 J match xs eqs2 J . . . J match xs eqsl E Kp . . .KpKp

Where eqs is equal to eqs1 ++ . . . ++ eqsl so that each group eqsκ is non-empty
and all groups alternate between containing only constructor or only variable
patterns.

32

4.2. Pattern Matching

Example 4.2.1. We will now show the algorithm in action on the following partial
xor definition.
xor :: Bool → Bool → Bool
xor x False = x
xor False True = True

Notice that the term xor loop False will not terminate if evaluated with Haskell’s
left-to-right strategy. But our pattern matching will identify the second argument as
inductive and scrutinizes it first. The following transformation will take place:
-- Introduce variables
xor = λv1 → λv2 → J match [v1, v2]

[([x, False], x), ([False, True], True)] failed Kp
-- Match on second position - all constructors → Rule 2
xor = λv1 → λv2 → case v2 of
False → J match [v1] [([x], x)] failed Kp
True → J match [v1] [([True], True)] failed Kp
_ → J match [] [] failed Kp

-- Branch 1: No inductive position, use 0 instead - all variables → Rule 3
-- Branch 2: No inductive position, use 0 instead - all constr. → Rule 2
xor = λv1 → λv2 → case v2 of
False → J match [] [([], v2)] failed Kp
True → case v1 of

True → J match [] [([], True)] failed Kp
_ → J match [] [] failed Kp

_ → J match [] [] failed Kp
-- Branch 1 and 2: List of variables is empty, at least one eqs → Rule 1 a)
-- Branch 3 and 4: List of variables is empty, no more eqs → Rule 1 b)
xor = λv1 → λv2 → case v2 of
False → v2
True → case v1 of

True → True
_ → failed

_ → failed

Note that the last catch-all branch in the outer case is not required. We do not
perform any exhautiveness check to avoid its creation. It is instead removed in GHC’s
desugaring to core, even if no optimizations are performed.

4.2.2. Translating Guards

There are three different kinds of statements that can occur inside a guard: A Boolean
expression, a let-binding or a pattern-binding. The expression associated with a guard
is only executed if all boolean expressions were evaluated to true and if all matches
in the pattern-binding succeeded. Any newly introduced variables are scoped left-to-

33

4. Implementation

right. This makes guards equivalent to nested let, if and case expressions. To desugar
a guard statement, we need two expressions: One to use if the guard succeeds and
one if it fails. In general, the failure expression is passed to the guard desugaring by
the pattern match compilation and contains code that tries the remaining patterns or
any other guards. Multiple statements are desugared by successively translating each
one. The following rules show the translation of a single statement, where success
and fail are the expressions to be used in the respective cases.
let (. . .) ⇒ let (. . .) in success

p ← e ⇒ case e of { p → success; _ → fail}

e ⇒ if e then success else fail

The resulting expression is fed back into the pattern match compilation, to desugar
any new case- or let expressions. An example for the full translation of guards is shown
below.

Example 4.2.2. The function isJust and its desugared variant without guards.
-- Original definition -- After pattern and guard translation
isJust :: Maybe a → Bool isJust :: Maybe a → Bool
isJust x | let y = x isJust = λx → let y = x in case y of

, Just _ ← y = True Just _ → True
| otherwise = False _ → if otherwise then False else fail

4.2.3. Translating Pattern Bindings
A pattern binding in Haskell is supposed to be lazy, so it is equivalent to a case
expression with a lazy pattern.

Example 4.2.3. The following two programs are semantically equivalent. Both of
them would evaluate to True and not to ⊥.
aTrue1 :: Bool
aTrue2 = let Just _ = undefined in True

aTrue1 :: Bool
aTrue2 = case undefined of { ~(Just _) → True }

Unfortunately, we cannot translate pattern bindings into lazy case expressions, because
the lifted version of a lazy case would be strict in its effect by using (>>=). Instead
we have to translate lazy patterns into pattern bindings and introduce selector func-
tions for the latter. Given an expression let p = e1 in e2, we first have to generate
variants of p for each variable in it. This can be done with the nondeterministic set
of rules shown in Figure 4.13. Note that there is no rule to generate a variant of a
wildcard pattern and that wildcards are only generated for constructor arguments.

All variants of patterns are generated at constructor positions or at-patterns (@) to
get rid of any unnecessary nested patterns. Otherwise, a generated pattern variant

34

4.2. Pattern Matching

might force too much of the binding to be evaluated, which would not be lazy enough.
We also rename every variable to a fresh name to avoid name clashes.

Example 4.2.4. The pattern (x@(Just y), (z:_)) has three variants:
(x', _)
((Just y'), _)
(_, (z':_))

We can now define the translation that creates a selector function for each pattern
variant. Each selector uses a lambda function to match on its corresponding part of
the original pattern. Here, v is a fresh variable, pj are the pattern variants and xj , x′j
the corresponding original and renamed variables.
let p = e1 in e2 ⇒ let v = e1

x1 = (λp1 →x′1) v
...
xn = (λpn →x′n) v

in e2

Example 4.2.5. The expression (let (x@(Just y), (z:_)) = e1 in e2) will be
transformed to:
let v = e1

x = (λ(x', _) → x') v
y = (λ((Just y'), _) → y') v
z = (λ(_, (z':_)) → z') v

in e2

Note that the lambda functions still contain pattern matches and are thus not in the
form required by the lifting as depicted in Section 4.1.2. This can be fixed by repeatedly
applying the pattern match algorithm from this section.

pi ⇒v p′i
C p1 . . . pn ⇒v C _ . . . _ p′i _ . . . _

∀i ∈ [1 . . . n] (4.1)

p⇒v p′

v@p⇒v p′
(4.2)

v@p⇒v v′ (4.3)

v⇒v v′ (4.4)

where v′ is a fresh variable in each rule.

Figure 4.13.: Nondeterministic rules to generate pattern variants

35

4. Implementation

While the transformation given above is semanitcally correct, the current imple-
mentation has a few shortcomings with respect to the explicit sharing outlined in
Section 4.3. All (mutually) recursive local definitions of a single let are placed together
into so called “binding groups” in GHC. Our implementation always places all gener-
ated (selector) functions for a pattern binding in the same binding group, because a
pattern binding is allowed to be recursive as well. This is also done for non-recursive
bindings, because it was significantly easier to implement. However, we will later see
in Section 4.3.4 that our explicit sharing implementation does not share values inside
of binding groups. Until the implementation is fixed, no sharing is performed across
variables in a single pattern binding, which can be seen on the following example.

Example 4.2.6. Although call-time choice semantics would dictate that test evalu-
ates to 2 and 4, the choice is not shared across x and y. All (incorrect) results are: 2,
3, 3 and 4.
test = let (x, y) = (let v = 1 ? 2 in (v, v))

in x + y
-- ghci> eval DFS test
-- [2, 3, 3, 4]

4.2.4. Translating Do-Notation
There are two different reasons for desugaring do-notation:

1. The syntax for do allows arbitrary pattern on the left side of a bind statement.
Just like pattern in case expressions, a bind has to be desugared because it might
contain nested (constructor) patterns.

2. When GHC desugars do-notation to core, it uses the (>>=) and return from
the unlifted monad instance. We obviously want the compiler to use the lifted
versions of both functions to ensure a correct result. In the case of list compre-
hensions, which use the same AST data types, GHC uses a specialized desugaring
that does not use the monad instance for lists at all. In most cases, the functions
that GHC uses for its desugaring are given in the internal syntax tree for the
do-notation or comprehension, but in some crucial cases they are sadly missing.
Only when RebindableSyntax or MonadComprehensions were used, then the
functions are guaranteed to be present. Thus, the second goal of desugaring do-
notation is to convince GHC that RebindableSyntax was used5 and annotating
any missing function required to desugar the syntax.

The first point is achieved by transforming the pattern in each bind statement to
a variable pattern and then matching on that variable in a case expression, similar
to how (lambda) functions are desugared already. For the second goal, we only need
to find the relevant monadic functions and annotate them in the correct positions

5How this is done relatively technical and uninteresting. It depends on the exact syntax that was
used in the source code

36

4.3. Sharing Effects

of the AST. Instead, we could also completely desugar do-notation to functions and
applications only, but if we want to consider extensions like ApplicativeDo in the
future, this desugaring would quickly get a lot more involved. We will only outline the
first part of our transformation with an example below, because the second part is an
uninteresting technical detail of the implementation.
Example 4.2.7. Consider the following function nextInt to return and increment a
counter in a state monad.
data MyState = MyState Int

| NoState

class MonadState s m where
get :: m s
put :: s → m ()

nextInt :: (MonadFail m, MonadState MyState m) ⇒ m Int
nextInt = do
MyState i ← get
let next = i + 1
put (MyState next)
return i

Note that our plugin uses MonadFailDesugaring by default, which is why we need a
MonadFail context on the type variable m. The function nextInt will be transformed
to:
nextInt :: (MonadFail m, MonadState MyState m) ⇒ m Int
nextInt = do
v ← get
case v of
MyState i → do

let next = i + 1
put (MyState next)
return i

_ → fail -- Unless the pattern cannot fail.

This transformation of bind statements makes it easier to get rid of any nested pattern
inside the do-notation, because we can now apply our pattern match algorithm to
desugar the remaining case expression. Of course, let statements can be treated like
normal let expressions as they are just syntactic sugar.

4.3. Sharing Effects
Sharing of nondeterministic choices in the plugin is required to faithfully represent
Curry’s call-time choice semantics, as established in Section 2.1. Although Haskell
implicitly shares values as well, this is not sufficient to implement a monadic lifting
with call-time choice. Consider the following program with a shared choice and its
simple transformation.

37

4. Implementation

shared :: Int sharedND :: Nondet Int
shared = x + x sharedND = (+) >>= λf1 → f1 x >>= λf2 → f2 x

where x :: Int where x :: Nondet Int
x = 1 ? 2 x = (?) >>= λg1 → g1 1 >>= λg2 → g2 2

Even though x is shared in both the unlifted and lifted code, in the lifted setting
the value being shared is a monadic computation. In the setting of nondeterminism,
the result of this monadic computation can be represented as a tree, where a node
corresponds to a choice and a leaf represents a deterministic result. The only thing
that is shared between both ocurrences of x is this tree, but not the choice that is
made outside the definition of x.

We can fix this problem by adapting a framework for explicitly sharing nondeter-
ministic computations by Fischer, Kiselyov, and Shan, 2011. This framework provides
a type class Shareable and the operation share that we have already used in Sec-
tion 4.1.2 for our lifting. If we insert this sharing operator in the function from above,
we end up with the following semantically correct code.
sharedND :: Nondet Int
sharedND = share x >>= λx' → (+) >>= λf1 → f1 x' >>= λf2 → f2 x'

where x :: Nondet Int
x = (?) >>= λg1 → g1 1 >>= λg2 → g2 2

To use share :: (Monad m, Shareable m a) ⇒ m a → m (m a), we need an in-
stance of Shareable for the shared value. In the next Section (4.3.1) we will discuss
this type class and how to derive it automatically for all user-defined data types. Addi-
tionally, Haskell’s polymorphism might require us to share the value of a polymorphic
type. Making this possible was one of the biggest challenges during development.
Section 4.3.3 and Section 4.3.2 will discuss two different attempts at overcoming the
problem.

4.3.1. A Type Class for Sharing
The only operation provided by the Shareable type class is used to share any choices
nested somewhere in the components of a data type. The type class and a typical
instance are given below.
class Shareable m a where
shareArgs :: (Monad n) ⇒
(forall b. (Shareable m b ⇒ m b → n (m b))) → a → n a

data ListND a = Nil | Cons (Nondet a) (Nondet (ListND a))

instance Shareable Nondet a ⇒ Shareable Nondet (ListND a) where
shareArgs f Nil = pure Nil -- Nothing to share
shareArgs f (Cons x xs) = Cons <$> f a <∗> f xs -- Share both x and xs

Because the instances of this type class are very generic, we decided to use Haskell’s
Generic library [Jeuring et al., 2009] to simplify the instances even more. Using
DefaultSignatures, we can give a default implementation for shareArgs for every

38

4.3. Sharing Effects

data type that has an instance of the Generic type class and where its generic repre-
sentation has an instance of a generic version of Shareable called ShareableGen. The
instances of this new class for all of the data types used in the generic representation of
types need to be defined only once. Afterwards, we can derive the Generic instances for
each type by using the DeriveGeneric language extension [Magalhães et al., 2010]. By
enabling DeriveAnyClass, we can also derive our Shareable type class. The derived
instances will use the generic implementation as long as Generic has been derived as
well. The full implementation of Shareable with all its generic machinery is given in
Appendix B.

The interface for encapsulating nondeterminism outlined in Chapter 3 requires us to
convert between lifted and unlifted data types. This is done with the following type
class, which also performs a pull-tabbing [Alqaddoumi et al., 2010] step to “pull” all
nondeterminism from the arguments to the top level of a lifted data type.
class Monad m ⇒ Normalform m a b | a → b, b → a where
nf :: m a → m b -- From effectful to effect-free
liftE :: m b → m a -- From effect-free to effectful

Like with Shareable, this class can be derived via a similar generic mechanism.

4.3.2. Inferring Shareable Constraints in a Polymorphic Context

For any given function we know the type of every value that has to be shared. This
allows us to deduce that the lifted version of toPair from the following example will
need a Shareable constraint on the type a.
toPair :: a → (a, a)
toPair a = (a, a)

applyAndToPair :: (a → b) → a → (b, b)
applyAndToPair f = toPair ◦ f

The second top-level function never uses sharing itself, but it uses the function toPair
instantiated with the type b. Consequently, we have to add Shareable Nondet b as
a constraint in the lifted type of applyAndToPair.

Another thing to note in this simple example is, that we could have also over-
approximated the required constraints by assuming that every polymorphic type vari-
able might need to be shared. While this initially seems promising, only type variables
with the simple kind Type6 can have a Shareable constraint. As soon as any higher-
kinded type variables are used, this over-appoximation is not possible anymore because
there are infinitely many types that can be constructed using this type variable. To
see this, consider the types that can be created by just combining the type variable
m :: Type → Type with a nullary type constructor like Int:

m Int, m (m Int), m (m (m Int)),

6We are using GHC’s new notation for Kinds, where * is replaced with the more verbose Type.

39

4. Implementation

It is easy to see, however, that every implementation of a function only uses sharing
on a finite number of types7.

This allowed us to infer the required constraints by traversing the dependency graph
of all involved functions and using a fixed-point iteration for mutually recursive decla-
rations, which is quite similar to how types are inferred for dependent declarations in
a Hindler-Milner [Hindley, 1969; Milner, 1978] based type system. The result of this
inference was used during the lifting phase to manually include the correct Shareable
constraints in the lifted type of each function.

The inference was originally implemented for a version that did not support type
classes to test this approach. We thought that it could be adapted easily to also include
class and instance declarations, but that turned out to be wrong. When lifting the
type of a function from a type class, no implementation is avaliable to determine the
required constraints, which forced us to add the constraints for a specific instance in the
instance head instead of adding them to the class function. This appoach was short-
sighted, because not every value of a class function can be constrained in the instance
declaration. For example, we cannot add Show a as a constraint to the following
instance declaration to trace all mapped values.
instance {- Show a ⇒ -} Functor [] where
-- fmap :: (a → b) → [a] → [b]
fmap f xs = map (λa → trace (show a) a) xs
-- ^ Not possible

4.3.3. Using Quantified Constraints for Polymorphic Sharing

After eventually noticing the issue of type classes for the inference of Shareable, we
took another look at the over-approximation of required constraints. That approach
did not have the problem of having to look at the implementation of a function to fig-
ure out the required constraints and would thus be usable for type classes as well. We
quickly realized that although there are infinitely many combinations of a type vari-
able m :: Type→ Type, we only want to have an instance Shareable Nondet (m x)
for every x that satisfies Shareable Nondet x. Using GHC’s language extension
QuantifiedConstraints8, a constraint of that form can be written down as shown in
the following examples.

Example 4.3.1. Consider the following unlifted type signatures for two functions.
The first function id uses a type variable of simple kind Type, while the generalized
and function uses a type variable of kind Type → Type.
id :: a → a
and :: Foldable t ⇒ t Bool → Bool

7This is only true if none of the functions have a higher-rank type.
8We are relatively sure that QuantifiedConstraints is safe to use for our purposes, even though the

extension leads to non-confluence in GHC when combined with local type equalities (see GHC bug
report #172959) and it requires us to enable UndecidableInstances

40

https://gitlab.haskell.org/ghc/ghc/issues/17295

4.3. Sharing Effects

If we take a look at their lifted types, we can see that a quantified constraint is used for
the second type.

id :: Shareable Nondet a ⇒ Nondet (a :→ a)
and :: (Foldable t,

, forall x. Shareable Nondet x ⇒ Shareable Nondet (t x)) -- ← Quantified
⇒ Nondet (t Bool :→ Bool)

To make the construction of a type with Shareable constraints easier, the new
constraints are added as the last constraints in every function. Their order is defined
by the order of the foralls that bind the corresponding type variables. If the function
happens to be an instance function for a type class dictionary, we have to differentiate
between the variables bound by the instance and the variables bound by the type
of the class function. Here, the constraints for instance variables are inserted before
the forall bindings of the class function type. This difference between ordinary and
instance function types can only be observed in Haskell’s internal type representation,
not in the pretty-printed debug output10. The following example shows the full lifting
for an instance function.

Example 4.3.2. Consider the following type definition for an identity on monadic
types and its corresponding functor instance.

data IdentityT m a = IdentityT (m a)
instance Functor m ⇒ Functor (IdentityT m) where (...)

The internal name and type of the fmap implementation generated by the instance is
shown below. Notice that the type variables and constraint given by the instance head
occur at the start of the type.

$cfmap :: forall m. Functor m
-- ^ Instance variables
⇒ forall a. forall b. (a → b) → IdentityT m a → IdentityT m a
-- ^ Function variables

The lifted type will contain Shareable constraints at two different positions.

$cfmap :: forall m. FunctorND m
⇒ (forall x. Shareable Nondet x ⇒ Shareable Nondet (m x)
-- ^ Instance constraints
⇒ forall a. forall b.

Shareable Nondet a ⇒ Shareable Nondet b
-- ^ Function constraints
⇒ Nondet ((a :→ b) :→ IdentityTND m a :→ IdentityTND m a)
-- ^ Lifted type

10Except when full debug mode is turned on with -dppr-debug, but the option also makes types and
other debug output hard to read.

41

4. Implementation

4.3.4. Problems with Recursion and Explicit Sharing
Consider the following program with a cyclic definition that includes a nondeterministic
choice.
threeOnes :: [Int]
threeOnes = take 3 ones

where ones :: [Int]
ones = [] ? 1 : ones

If we consider Curry’s call-time choice semantics, we can argue that threeOnes should
yield the two results [] and [1, 1, 1], because we share the nondeterministic decision
in ones across its own recursive call. This result is produced by both of the Curry
Compilers KICS2 and PAKCS. For our plugin, however, transforming threeOnes to
behave semantically correct is quite challenging. To see the problem, let us consider
the lifted version of the program without any explicit sharing.
threeOnes :: Nondet (ListND Int)
threeOnes = take >>= λf1 → f1 3 >>= λf2 → f2 ones

where ones:: Nondet (ListND Int)
ones = (?) (return NilND) (return (ConsND (return 1) ones))

Our plugin would now have to explicitly share the occurrences of ones in both the
body of threeOnes and ones itself. However, we can only share an identifier after it
has been defined, which prevents us from using the shared variable in the defintion of
the function itself.
threeOnes :: Nondet (ListND Int)
threeOnes = share ones >>= λones' → take >>= λf1 → f1 3 >>= λf2 → f2 ones'

where
ones :: Nondet (ListND Int) -- ones' not known in this defintion.
ones = (?) (return NilND) (return (ConsND (return 1) ones'))

The example above is adapted from a paper by Christiansen, Seidel, and Voigtländer
[2011], where they discuss the problems of defining a suitable operational semantics
for recursive let expressions in the appendix A. Although the two Curry compilers
KICS2 and PAKCS produce the same results for the evaluation of threeOnes, there
are programs that behave differently between both compilers. There is no obvious
reason why our plugin should not be able to correctly transform at least each example
that works with KICS2, because both the plugin and compiler work quite similarly. It
might help to look at the differences between code compiled by the plugin and KICS2
to figure out how to improve our semantic transformation, but this is left for future
work. Adding another sharing operator for recursive definitions based on a fixed-point
computation similar to the type class MonadFix might help to solve this problem in
our transformation.

Note that sharing in let expressions is not implemented incorrectly in general. A
good rule of thumb is that as long as a let expression can be decomposed into sev-
eral nested lets, sharing across the nested bindings is possible. Internally, our plugin
actually performs this splitting as part of the lifting transformation we described in

42

4.4. Type Classes

Section 4.1. There is only one problem with sharing and pattern bindings that was
mentioned in Section 4.2.3 already: We do not perform any sharing across all variables
introduced by a pattern binding. Although sharing should be possible to implement for
non-recursive pattern bindings, our implementation conservatively puts all generated
selector functions for pattern bindings in the same binding group, which prevents us
from splitting the definitions like we did in the example above. GHC provides us with
the information whether or not a binding is (mutually) recursive; however we just did
not have the time for a more complex implementation.

4.4. Type Classes
After GHC has completed type checking the source code, every type class will be
associated with a dictionary data type declaration and every class instance with a
function binding that uses the corresponding dictionary constructor. This has two
consequences for our plugin:

1. We have to lift every class declaration and its dictionary data type definition.

2. We have to lift the dictionary function and the corresponding class method im-
plementations for every instance declaration.

4.4.1. Lifting Type Classes
The type constructor of a class declaration contains the dictionary data type declara-
tion and some information on the type and name of any method or super class selector
functions. The method selector functions have exacly the same name and type as the
class method they correspond to. They are written in the source code by the user and
not inserted by GHC, whereas super class selectors are used by GHC’s constraint solver
to extract a super class dictionary from a given class dictionary. A super class selector
function that extracts a class Super v1 …vn from another class MyClass v1 …vn has
the type Super v1 …vn ⇒ MyClass v1 …vn. When lifting selector functions, we use
our ordinary lifting J·K for types for method selectors, whereas super class selectors are
not lifted but use the type constructor replacement J·Kr instead.

Class Dictionaries The associated dictionary data type definition for a class declara-
tion contains exactly one constructor with an argument for every super class and class
method in the order of their ocurrences. This can be seen in the following example.

Example 4.4.1. Defining the type class Monad introduces the following internal data
type defintion.
data Monad m = C:Monad -- ^ Internal constructor name
(Applicative m) -- ^ Applicative super class
(m a → (a → m b) → m b) -- ^ (>>=)
(m a → m b → m b) -- ^ (>>)
(a → m a) -- ^ return

43

4. Implementation

-- Original class defintions
class MyEq a where
equal :: a → a → Bool

class MyEq a ⇒ MyOrd a where
lessOrEqual :: a → a → Bool

-- Original class constructors
newtype MyEq a = C:MyEq (a → a → Bool)
data MyOrd a = C:MyOrd (MyEq a) (a → a → Bool)

-- lifted class constructors, not renamed because they replace the originals
newtype MyEq a = C:MyEq (Nondet (a :→ a :→ Bool))
data MyOrd a = C:MyOrd (MyEq a) (Nondet (a :→ a :→ Bool))

Figure 4.14.: Lifting of class dictionary declarations

Although we do not want to lift the types of super class arguments, the type lifting
function used for the lifting of ordinary constructor declarations also achieves the
correct transformation for dicitionary constructors. Even though the type of a super
class selector is of kind Constraint, which does not appear in value constructors of
a data type definition, the transformation J·K does not perform its lifting if the type
is a constraint. This exception leads to a correct treatment of super class selectors in
dictionary constructor types that can be seen in Figure 4.14.

Single-Argument Type Classes There is only one small problem for classes with ex-
acly one super class or class method: GHC optimizes dictionaries for these kind of
classes by using a newtype instead of a data type definition. Because of the special
semantics for newtype constructors, their parameter is not lifted as outlined in Sec-
tion 4.1.1. This requires us to add a special exception for the lifting of every newtype
declaration that originated from a class declaration. For these newtypes, we use the
normal lifting of data types as well. Additionally, a newtype class dictionary contains
a coercion between its left and right side of the newtype defintion. This coercion has
to be updated so that any optimizations performed by GHC on the Core intermediate
language are correct. Figure 4.14 also shows the lifted version of a newtype class.

Default Implementations While the lifting of a default method does not differ from
the lifting of an ordinary function, the presence of a default implementation for a class
method poses some problems for its lifting. Although we normally keep the original
version of each type constructor, we cannot keep any unlifted class declarations. If we
were to keep them, we would have to remove their potentially nondeterministic default
implementations. Even though this would be possible in theory, anyone who uses the
unlifted original class might be confused by its lack of default implementations, leading
to our decision to remove the unlifted class entirely.

44

4.5. Built-In Type Definitions

4.4.2. Lifting Instances

After the type check, GHC has already created a dictionary function for each instance
and renamed all instance functions with a unique name to avoid name clashes11. In
Section 4.3.3, we have already seen the lifting and Shareable constraints of instance
function types. However, we also have to lift the generated dictionary function and
the actual implementation of instance functions. The following example shows the
functions generated by GHC during type checking of an Eq instance for Maybe.

Example 4.4.2. A dictionary function for an instance of Eq uses the corresponding
class dictionary constructor C:Eq and applies it to all functions of the transformed
instance.
-- Original instance
instance Eq a ⇒ Eq (Maybe a) where
(==) = (...)

-- Dictionary function
$fEqMaybe :: forall a. Eq a ⇒ Eq (Maybe a)
$fEqMaybe = C:Eq $c==Maybe $c/=Maybe

-- Instance functions without their implementation
$c==Maybe :: forall a. Eq a ⇒ Maybe a → Maybe a → Bool
$c/=Maybe :: forall a. Eq a ⇒ Maybe a → Maybe a → Bool

The instance functions are lifted by using the normal lifting for functions shown in Sec-
tion 4.1.2, but dictionary functions need special treatment. Thankfully, we only need
to update the types of the dictionary itself and any constructor or instance functions
used in it, because the function does not have to be lifted into Nondet. After updating
the types, we might need to pass any new Shareable constraints from the dictionary
function to each instance function. This is quite simple, because each instance function
in a dictionary requires the same type and evidence applications in the same order.

4.5. Built-In Type Definitions
Some of Haskell’s type constructors like lists, tuples and numbers cannot actually be
defined using a data type definition. Other type constructors are treated specially
by GHC because they interact with the typing of syntactic constructs (i.e., Num for
number literals or Monad for do-notation). Lastly, all type classes that are derivable
by GHC have to be treated differently than other classes during the lifting of their
derived instances. While we are not able to replace the type constructors that GHC
uses or recognizes internally, our plugin can replace each occurence of a built-in type
constructor with its own built-in version.
11GHC does not use the name of the type constructor to disambiguate instance functions, because

that does not work for some language extensions. A generated Unique identifier is used instead.

45

4. Implementation

Loading Built-In Type Constructors While talking about the lifting of data types
in Section 4.1.1, we have already established that type constructors for data types,
newtypes and type synonyms have to be replaced with their nondeterministic version
throughout the plugin. By initializing the mapping used for the type replacement with
values to replace built-in type constructors, we only have to provide a nondeterministic
definition for each of GHC’s special types that we care about. These manually lifted
definitions are provided by a module in the plugin source code. Note that we currently
only support 2-ary tuples, but other tuple sizes could be added.

Deriving Built-In Type Classes While the mechanism for replacing built-in type
constructors described above would be enough to change the type class to its lifted
version after deriving a class instance, the derived functions will always use and mention
functions from Haskell’s Prelude or base modules. This does not change even if the
language extension RebindableSyntax is used. There is no way for us to influence
GHC’s deriving mechanism. However, we can manually edit the derived function while
lifting it to replace each function from Haskell’s Prelude with a built-in function from
the plugin. Note that the type class Read is entirely unsupported by our plugin,
because GHC uses parsers with higher-rank types for its Read class, contrary to what
the Haskell 2010 standard says. By not exposing Read in our Prelude, we prevent the
user from deriving it as well.

Deriving Enum Except for Enum, this ad-hoc function replacement works great. Enum
instances generated by GHC use unboxed integers (Int#) as shown in the following
example.
-- Original datatype
data D = A | B | C deriving Enum

-- GHC's generated helper functions
$maxtag :: Int
$maxtag = I# 2#

$tag2con :: Int → D
$tag2con (I# a) = GHC.Prim.tagToEnum# a#

$con2tag :: D → Int#
$con2tag A = 0#
$con2tag B = 1#
$con2tag C = 2#

-- Exemplary succ function from Enum for datatype D
succ a = case $con2tag a of

a# | a# == $maxtag (I# a#) → error "..."
| otherwise → $tag2con (I# a# + 1)

Our current lifting cannot handle unboxed types, which is a little problematic for
Enum. Instead we detect if an instance of Enum is derived by checking for the usage

46

4.6. Importing modules

of $con2tag or other primitive functions. Any derived instance is lifted by using a
specialized scheme where we compute the normal form of all parameters and convert
them to their deterministic counterpart with nf. We can then use the original derived
instance and convert the result back to the nondeterministic data type with liftE.
For the function succ from above, we will generate the follwing lifted code.

succ = return $ λx → liftE (fmap succ' (nf x))
where succ' a = case $con2tag a of -- succ' will be generated in-line

a# | a# == $maxtag (I# a#) → error "..."
| otherwise → $tag2con (I# a# + 1)

4.6. Importing modules

After the plugin has lifted all definitions in a module, the ambient effect turns into
an explicit effect. While it is necessary for the effect to be visible on the type level in
order to generate type correct core code, this effect visiblilty is problematic when type
checking code that uses imported definitions. All imported defintions have a lifted
type, so GHC’s type checker complains that imported defintions are used as if they
are unlifted. Instead, GHC’s type checker should treat them as unlifted. Furthermore,
if the programmer uses any type class methods or writes any (type class) constraints,
any evidenc generated by the constraint solver for these constraints will be wrong.
Sometimes the constraints might be insoluble, even when they will be solveable after
lifting is done completely.

At the start of the plugin project, we intended to use a plugin that runs after
each interface has been loaded to un-lift any definition included in that interface.
Unfortunately, modifying interfaces in an interface plugin is not supported by GHC.
As an alternative, we opted to subvert GHC’s type checker to allow using imported
defintions.

4.6.1. Subverting GHC’s Type Checker for Imports

One simple way to extend or modify GHC’s type check is to implement a constraint
solver plugin. Even though GHC’s constraint solver only interacts with constraints, in
Section 2.2.3 we have already mentioned that equality constraints are generated if the
type checker fails to unify two types. The constraint solver plugin of our Curry-Plugin
can intercept and modify these equalities to help the type checker in validating the
type correctness of a given program. Our constraint solver plugin has four main goals:

1. It has to turn our effect type Nondet invisible by intercepting equality constraints
and removing any occurrence of Nondet from both sides of the equality relation.
The constraint solver uses the constraint produced by this transformation to
(hopefully) show the equality bettween the unlifted left and right sides of the
constraint.

47

4. Implementation

2. The plugin also needs to automatically solve any constraints that mention the
Shareable type class. There are a few different reasons why these constraints
might be unsolvable for GHC:

• The constraint might mention a type variable, but every Shareable con-
straint is added by the plugin during lifting. As a consequence, user-written
code will never provide a given Shareable constraint for variables in the
type of a function. For example, imagine that the imported function toPair
has a lifted type Shareable ⇒ Nondet (a :→ Tuple2ND a a). Then the
following user-written function will fail to type check, because it is missing
a Shareable a constraint that will not be added until after the type check.
quadruple :: a → ((a, a), (a, a)) -- Unlifted type
quadruple x = toPair (toPair x) -- Missing Shareable a

• The constraint might mention a type constructor that is defined in this
module, but Shareable instances for local types are not created until after
the type check. As an example, consider the following type MyBool. If we
use the imported toPair function from above on a value of type MyBool, the
type checker will complain about the missing Shareable instance, because
the instance for MyBool does not exist during type checking.
data MyBool falsePair :: MyBool -- Unlifted type
= T | F falsePair = toPair F -- Missing Shareable MyBool

• The constraint might mention a type constructor that is imported. Except
for a few edge-cases, only the deterministic version of a type constructor,
without a Shareable instance, is visible after importing. In the following
example, we use the imported function toPair on a value of type Maybe
Bool, but there is no Shareable instance for Maybe, only for its lifted coun-
terpart MaybeND.
noValuePair :: Maybe Bool -- Unlifted type
noValuePair = toPair Nothing -- Missing Shareable (Maybe Bool)

3. The second goal of our constraint solver plugin is to transform given type class
constraints. Here, we sometimes have to treat the type constructor of the class
constraint different than the types it is applied to. The applied types are trans-
formed so that they only mention nondeterministic type constructors (if avail-
able), but for the type constructor of the class itself we might need to choose the
deterministic version. While the choice between both class alternatives depends
on a number of different factors, the plugin converts everything to the nondeter-
ministic version, except if any of the type constructors has been defined in the
current module.

4. The last goal of our constraint solver plugin is quite similar to the previous one.
Any wanted class constraints also have to be transformed like above. The only
difference is, that our plugin has to provide evidence (e.g., a suitable type class
instance) for the transformation of a wanted constraint (see Section 2.2.3).

48

4.6. Importing modules

We assume that repeat is imported and has type: Nondet (a0 :→ (ListND a0))).
According to GHC, the function below is incorrecly typed, because repeat is nullary
and cannot be applied to an argument.
replicate :: Int → a → [a]
replicate n a = take n (repeat xs)

where
take _ [] = []
take n (x:xs)
| n == 0 = []
| n > 0 = x : take (n-1) xs

-- Could not match expected type ‘t → [a]’
-- with actual type ‘Nondet (a0 :→ (ListND a0))’
-- The function ‘repeat’ is applied to one argument,
-- but its type (...) has none.

This definition produces the equality constraint
((t → [a]) ~# Nondet (a0 :→ (ListND a0))),
which is transfomed to the solvable constraint
((t → [a]) ~# (a0 -> [a0])).

Figure 4.15.: Transforming an equality relation

Turning Nondet invisible The plugin transforms an equality constraint of the form
(ty1 ~# ty2) by removing any application of the Nondet type constructor and re-
placing any other type constructor with its deterministic version in both ty1 and ty2,
resulting in (ty′1 ~# ty′2). If none of the two types changed in the transformation, we
cannot help GHC to solve this constraint and thus leave it unchanged. Otherwise, we
now have to create the new constraint and a coercion for GHC to insert. Thankfully
the coercion is irrelevant and will be removed by our lifting after the type check. For
our new constraint it would be sufficient to only change the equality relation, but an
equality constraint also contains information about its own “origin” and a description
of the type error that lead to this constraint. If the new equality turns out to be un-
solvable because of a type error in the user-written code, these informations are used
by GHC to create the error message. Unless we clear the type error description and
remove any mention of Nondet from the origin of the constraint, this error message
contains confusing and outdated information. Figure 4.15 shows the transformation
of an equality relation. As an alternative to “un-lifting” both sides of the equality,
the plugin could also make sure that both sides contain a lifted type. GHC’s type
check would still accept the same set of programs in this alternative implementation.
However, any type errors generated for incorrect programs are less readable if we lift
both sides, because the error message would mention the lifted types.

Solving Shareable Constraints If our constraint solver plugin encounters Shareable
constraints, we mark them as solved. At this moment, we might not be able to produce
any correct evidence for the constraint. Thankfully, all type class constraints, including

49

4. Implementation

Shareable, will be solved during our main lifting phase again. Even if we create
correct evidence for some cases, we would re-create it later on. To satisfy GHC’s
constraint solver, the plugin creates a dummy variable and tell GHC that this new
variable contains the required type class dictionary. While the variable will always stay
unbound and invalid, we know that the evidence will be discarded no matter what.
Otherwise, one of the later transformations performed by GHC will complain about
the variable not being in scope. One other thing to consider is, that after the lifting is
done, every lifted data type and type variable always has a Shareable constraint, which
is why solving the constraint later will never fail.

Transforming other type class constraints Although every type class constraint will
be solved again later on, for any other type class than Shareable, we cannot just
assume that it will be solveable. In the case that the programmer makes a mistake
and the code is definitely incorrecly typed, we would like to produce a suitable error
message. While transforming given and wanted type class constraints, we have to
decide if they should be transformed to contain the lifted or unlifted class; a wrong
desicion leads to a constraint that will never be solveable. There are a few conditions
that make this decision possible:

• Any built-in class will never be a multi-parameter type class. Thus, if the number
of types applied to the class is 6= 1, we know that the class is not built-in.

• According to Chapter 3 and Section 4.4, user-defined type classes do not have an
unlifted version. Only built-in classes differentiate between a lifted and unlifted
version of its class.

• Before the main lifing phase, all instances use the deterministic version of each
type constructor.

• After the main lifting phase, all instances use the nondeterministic version of
each type constructor in the instance definition. During constraint solving, this
last condition is only relevant for imported instances, because they are the only
instances that are already lifted during type checking of another module.

Both given and wanted constraints are handled with the following scheme: To deter-
mine the right course of action for our constraint transformation, we start by lifting
the types that were applied to the class type constructor with our inner lifting J·Ki and
decide any further action based on the lifting result.

• If none of the applied types changed during this transformation, we know that
they either contain only type variables and no type constructors, or that every
one of those type constructors has no lifted version. Only data types that are
defined in the current module and some built-in types do not have a lifted version.
These data types can only have an instance that mentions their unlifted type
constructor and an unlifted class, forcing us to unlift the class from the original
constraint.

50

4.6. Importing modules

• If all of the types changed, we know that the constraint can only be solved if it
mentions the lifted class.

• If the class is a multi-parameter type class and only some of the types changed,
we thankfully know that there is no distinction between a lifted and unlifted
class.

GHC does not guarantee us that our plugin never sees a constraint that was created by
our plugin itself. To see that the lifting scheme above does not lead to infinite circles,
one has to realize that we only ever “unlift” built-in type classes and only if the applied
types did not change during lifting. If the types did not change during one invocation
of the constraint solver plugin, they can never change in subsequent invocations, thus,
any infinite circles are avoided.

As an example for the handling of constraints, consider the following data type Nat
with a derived Eq instance and three variants of a lookup function.

data Nat = Zero | Succ Nat
deriving Eq

lookup :: Eq k ⇒ [(k, a)] → Maybe a
lookup = (...)

lookupNat :: [(Nat, a)] → Maybe a
lookupNat = lookup

lookupMaybeNat :: [(Maybe Nat, a)] → Maybe a
lookupMaybeNat = lookup

To check if lookupNat is correctly typed, GHC has to solve the constraint Eq Nat,
which is trivial. For lookupMaybeNat, however, we need to show that there is an
instance of Eq (Maybe Nat). Unfortunately, Maybe is imported and has no instance
for Eq, only MaybeND has an instance for EqND. By transforming all type constructors
in the wanted constraint to their nondeterministic counterpart, GHC can use the in-
stance EqND a ⇒ EqND (MaybeND a) from the Plugin-Prelude to reduce the wanted
constraint from EqND (MaybeND Nat) to EqND Nat. This new constraint is unsatis-
fiable again, because at this point in the compilation there is only a derived Eq Nat
instance. As a consequence we un-lift the remaining constraint, so that GHC is able
to fully verify the type of lookupMaybeNat.

One disadvantage of the current lifting scheme for type classes is that a user might
be confronted with lifted type constructors in error messages. To fix the messages we
would need to unlift any constraint that is unsolvable. While this detection is possible,
GHC would pass us the new unlifted constraint in a subsequent constraint solver plugin
invocation. Here, we would need some way to detect that the constraint originated
from an unsolveable constraint to prevent us from lifting the constraint and falling into
an endless circle. This problem remains to be solved in future work.

51

4. Implementation

4.6.2. Marking Plugin Modules
To make sure that all definitions imported by the programmer are compatible with
the lifting, we have to prevent any import of modules that did not use the plugin. By
marking every plugin-compiled module with a module annotation pragma during the
lifting, we are able to recognize compatible modules from the information contained in
their interface files. GHC allows any expression with a Data instance as an annotation.
The Data class provides a de- and serialization mechanism for data types. GHC uses
these Data instances to serialize the annotation’s value. The same restrictions as for
spliced expressions in Template Haskell apply for all expressions inside annotations12,
because they both are evaluated at compile-time. For our plugin, however, none of
these restrictions matter. The plugin uses the following annotation pragma for each
module.
{-# ANN module Nondeterministic #-}

The expression Nondeterministic is a nullary constructor defined as follows.
data NondetTag = Nondeterministic

deriving (Eq, Data)

We derive the Data instance for NondetTag by using DeriveDataTypeable as a lan-
guage extension. Now the plugin can use the type NondetTag in annotations.

Checking all imports from the currently compiled module is done by the Import
Check phase shown in the plugin overview at Figure 4.1 from the beginning of this
chapter. The Import Check first gathers all imported modules and then checks if each
of these imported modules contains a Nondeterministic annotation. For every invalid
import we emit an error and abort the compilation if more than one error occurs. We
do not check for this annotation in modules that are not directly imported by the
current module for two reasons:

1. If a transitively imported module does not contain the required annotation, at
least one of the imported modules must have failed to compile13.

2. By only performing this shallow import check, we allow the user of our plugin
to expose manually lifted definitions from plain Haskell modules into the plugin-
compiled world. The user only has to add the required annotation pragma in
the source code of the module to be imported. This mechanism is heavily used
to expose built-in definitions in the new Prelude provided by our plugin.

We originally planned to also un-lift any imported definitions in the Import Check,
but this is not possible with GHC’s current implementation. GHC differentiates be-
tween modules from external packages and the so-called home package. While GHC
hides external packages and their modules behind an IORef to only load them on de-
mand, home package modules are not implemented with any statefulness and therefore
12Details are in the GHC wiki at https://gitlab.haskell.org/ghc/ghc/-/wikis/annotations.
13This simple check is sufficient even in the presence of cyclic module imports managed by .hs-boot

files, although cyclic module dependencies are not supported by our plugin.

52

https://gitlab.haskell.org/ghc/ghc/-/wikis/annotations

4.7. Further Implementation Details

cannot be modified successfully. GHC uses the HomePackageTable to store modules
from the home packace, except if GHC’s one-shot compilation mode is used. In one-
shot mode, GHC considers all modules to be from external packages and never saves
them in the HomePackageTable. In contrast to compilation using GHC’s simple make-
style compilation with --make or interactive compilation with GHCi, one-shot compila-
tion is significantly slower and cannot be used together with the tools Stack of Cabal.
Thankfully, un-lifting of imported defintions becomes obsolete with the idea to use a
constraint solver plugin to subvert GHC’s type checker.

4.7. Further Implementation Details
This section explains some minor details that are not required to understand the main
parts of our implementation.

Record Selectors After the type check has been performed by GHC, a selector func-
tion is generated for each record constructor. These selectors are also annotated wher-
ever the corresponding record label is used in a record update or construction. When
desugaring Haskell code to core, GHC will use the selector functions whenever a record
update or construction is transformed. All selector functions are expected to be unary,
otherwise an internal compiler error is thrown.

As a consequence, our plugin has to make sure that lifted selector functions can
be applied to a value and produce a correctly lifted result. Our normal lifting for
functions would transform a selector to a nullary function, so we use a different lifting
for the definition of selectors that does not wrap the outer function layer as shown in
the following example.

Example 4.7.1. Consider a record defintion of the Identity data type.
data Identity a = Identity { runIdentity :: a }

GHC will automatically create a selector function for all record fields.
runIdentityselector :: Identity a → a
runIdentityselector Identity { runIdentity = value } = value

The lifting of a record selector is performed differently.
runIdentityselectorND :: Nondet (IdentityND a) → Nondet a
runIdentityselectorND x = x >>= \case
IdentityND { runIdentity = value } → value

Note that GHC is only able to use record patterns in the defintion of a selector, because
record patterns are desugared without using the selector function itself. When our
plugin lifts a record update, it also has to lift the annotated occurence of the selector
function. Here we can treat selector functions like unary constructors, because they
have the same type structure.

53

4. Implementation

Option name Option description

dump-original Dumps the type checked code
before the plugin is run.

dump-original-ev Dumps top-level evidence bindings
before the plugin is run.

dump-original-inst-env Dumps the instance environment
before the plugin is run.

dump-original-type-env Dumps the type environment
before the plugin is run.

dump-inst-env Dumps the instance environment after
instance information is lifted.

dump-pattern-matched Dumps the code after
pattern matching has been compiled.

dump-deriving-errs Dumps internal errors during
deriving of internal classes.

Figure 4.16.: Plugin-specific debug options

Debugging the Plugin There are several flags for the plugin that can be activated
to output intermediate results of the plugin transformation. They complement GHC’s
pre-existing debug flags that are documented at Section 6.13 of the GHC User’s Guide.
The most commonly used flag when debugging the plugin is -ddump-tc, because it out-
puts the code after GHC has type checked it. Any activated plugin for the type checker
is run before the output as well, so the flag can be used to get the final transformation
output of the Curry-Plugin. Every plugin-specific debug option is shown in Figure 4.16.
All of them have to be prefixed with -fplugin-opt Plugin.CurryPlugin: so that
GHC knows to which plugin they belong.

Testing the Plugin The project for the plugin also contains a small test suite based
on Cabal’s detailed-0.9 framework that can be used to run two different types of tests:

• Compilation tests that check if a given list of test modules can be compiled with
the plugin. It is used to test the robustness of the plugin transformation and as
a check that only plugin-compiled modules can be imported.

• Semantic tests that check if a given nondeterministic definition from a plugin-
compiled module behaves as expected. All nondeterministic defintions are cap-
tured lazily to allow testing of infinite trees of nondeterministic choices.

Our test suite currently contains a small number of tests, but it could be expanded
easily. With these tests in place, we were able to find a regression problem when we
changed our approach for sharing polymorphic values as outlined in Section 4.6. The
test were also helpful to locate a problem with too strict encapsulation in a previous
implementation where we did not use the sharing library by Fischer, Kiselyov, and
Shan [2011].

54

4.7. Further Implementation Details

Installing the Plugin The plugin can be installed for GHC 8.10.1 by running cabal
install --lib curry-ghc-plugin from the root of the project. Other compiler ver-
sions are incompatible. The plugin can also be used via Stack, where we even provide
an example project to play around with in the sandbox subfolder of the project. By
executing stack repl sandbox, one can load the example in a GHCi session. The
plugin is not (yet) available on Hackage or Stackage.

Error Messages Most of the error messages a user will see are generated by GHC’s
parser, name resolution or type checker. Although our constraint solver plugin heavily
modifies types to guide the compiler’s type check, our implementation ensures that
type errors are as readable as possible. In some cases, however, our plugin generates
its own error messages.

1. When the Curry-Plugin detects an incompatible module among the imported
modules (see Section 4.6), the plugin emits an error message that points to the
problematic import declaration.

2. Whenever the monadic transformation of any syntactic element introduced by a
language extension fails, our plugin generates a message that informs the user
about the unsupported extension. Although we could check all enabled language
extensions before trying to transform a module, we intentionally decided against
this check and instead generate a message for the places where such an extension
is used. By deferring the check to use-sites, we allow the user to enable and use
any extensions, as long as they do not impact our transformation.

3. Although most bugs in our implementation are hopefully fixed, any error that
we did not expect and cannot recover from is assumed to be a bug and reported
to the user as a panic message. A panic is used by GHC for unexpected error
messages that it cannot recover from.

In each case, we try to enrich every generated error message with a source location
that points to the problematic part of the module.

55

5. Evaluation

In this chapter we will evaluate our approach to implement a Curry compiler as a GHC
plugin. For all categories we will compare our plugin with Curry’s two main compiler
implementations: KICS2 and PAKCS.

5.1. Compilation Performance
To compile a module containing only a function to compute all permutations of a list,
our plugin requires around 3.5s. While this seems relatively high, most of the time
is spent loading module interfaces from various packages. Without our plugin, GHC
normally does not load the packages unless required, but with the plugin the compiler
is forced to load them. If a different plugin-compiled module is loaded or when the
permutations module is recompiled with -fforce-recomp in the same session, the
compilation time drops to 0.5s where only 0.05s are spent in the type checking and
lifting phase. It might be possible to prevent the high compilation time for the first
module, because there is no obvious reason why the plugin forces all packages to be
loaded. To put these times into perspective, the PAKCS and KICS2 compilers for
Curry take approximately 2.4s to load a similar module. For more than a single
module, our plugin outperforms both other compilers during compilation. This was
expected, as PAKCS and KICS2 have to call more than a single executable/compiler
for every module. While the time to lift modules does grow linearly with the size
(m) of the module in general, looking up a type constructor might take a time of
O(log(n)), where n is the number of in-scope type constructors. This might lead to a
time complexity of O(m log(n)) for a plugin invocation that will be added on top of
GHC’s complexity 1.

5.2. Execution Performance
The performance of plugin-compiled code depends heavily on the use of sharing and
nondeterminism. Thus, we test variations of the following three programs.
test1 :: Int → Int -- 1. No sharing, no nondeterminism
test1 n = foldr (+) 0 [1..n]

test2 :: Int → Int -- 2. No sharing, with nondeterminism
test2 n = (foldr (?) 1 [2..n]) + 1

1We do not include the complexity of pattern matching in our calculation, because complex patterns
would have to be desugared by GHC without the plugin.

57

5. Evaluation

test3 :: Int → [Int] -- 3. Sharing and nondeterminism
test3 n = permutations [1..n]

Of course, we have to wrap these functions with the correct encapsulation to test them
in the Curry-Plugin. Note that foldr shares its first parameter, but sharing a function
is almost a no-op and can be ignored. For the second test, we capture all results and
print them to the console to force their evaluation. In the last test it is sufficient to
print the number of permutations for a good measurement.

Both compilers and the plugin have similar run-times for all length variations of
the first test, but PAKCS has an overhead of approximately 1s. The other two tests
are more interesting and Figure 5.1 contains a graph of the execution times for all
compilers of both tests. We can see that the plugin outperforms KICS2 and PAKCS
in the nondeterminism test, but further investigation revealed that a small portion of
the plugin’s advantage came from a smaller overhead at performing IO.

As soon as Curry-Plugin has to share values between computations in the permuta-
tions test, its performance drops significantly compared to KICS2 and PAKCS. Pro-
filing the test program with GHC confirms that our plugin spent one third of its time
traversing lists for their Shareable instance with <*>. An additional 20% are used for
other parts of the implementation of share. Thankfully, the time to look up shared
values in the state that is used by the sharing implementation of Fischer, Kiselyov, and
Shan [2011] seems to be negligible. One thing to note is that the Shareable instance
for lists is hand-written and does not use our generic deriving mechanism. Other per-
formance tests show that sharing via generically derived instances is not noticeably
slower than hand-written instance because of excessive inlining performed by GHC.
We will discuss some future work to increase the plugin’s performance in the context
of sharing in Section 6.3

Figure 5.1.: Execution time comparisons of both compilers and the plugin

58

5.3. Language Features

5.3. Language Features
In its current form, the Curry plugin has two major feature restrictions when compared
to both other Curry compilers:

1. Our plugin does not support the declaration of free variables (see Chapter 3).

2. Our plugin does not support sharing of choices in recursive local declarations and
pattern bindings (see Section 4.3.4).

3. Our plugin does not support functional patterns (see [Antoy and Hanus, 2006]).

While the first restriction can be mitigated by using generator functions [Hanus and
Teegen, 2020], the second restriction is more severe and requires future work. However,
I conjecture that there are few applications for sharing within recursive bindings.

On the positive side, my plugin already supports a lot of language extensions “for
free”, that Curry is currently lacking. Aside from a lot of minor extensions like
LambdaCase, we also support MultiParamTypeClasses, which are quite handy and
have been used in the context of monad transformers by M. P. Jones [1995b]. A full
list of language extensions and their level of support can be seen in Appendix C. One
of the advantages of our plugin is that the list of supported extensions can be increased
relatively easy, because most of the heavy-lifting is done by GHC already. If we were
to adapt such an extension into one of the other Curry-Compilers, we would need
significantly more lines of code – and more code leaves more room for bugs.

Aside from language extensions, the possibility to integrate “Curry-Code” within
Haskell with our plugin makes developing applications that use nondeterminism much
easier because of the better availability of tooling and libraries in the Haskell ecosystem.

5.4. Maintainability
On the topic of maintainability, we are interested in the challenges of fixing bugs,
implementing new features and upgrading to new GHC versions.

Maintaining KICS2 and PAKCS The experience from recent years has shown that
the common frontend for KICS2 and PACKS is easy to port to new GHC versions.
By recently switching the build tool for the frontend to Stack, compilation is also
independent from the build systems configuration. The backend of KICS2 however
had some difficulties with new GHC flags and optimizations in the past and sometimes
does not work with new versions. Debugging these problems is usually possible, but
time consuming. Implementing new features for both Curry compilers will almost
surely require bigger changes to the common frontend, sometimes without changing
the intermediate language called FlatCurry. This makes it possible for students to
work on the compiler as a part-time job or as part of their thesis. The current code
base seems relatively easy to work with.

59

5. Evaluation

Maintaining the Plugin Our Curry plugin also uses Stack as a build tool, but up-
grading its code-base to a new GHC version requires some effort due to the tight
integration into the compiler. Our plugin project started with GHC version 8.6.5 and
was later moved two versions ahead to GHC 8.10.1, because a specific bug fix from the
newer version was required. Note that GHC does not use strict semantic versioning,
instead the second version number increases between each release, where odd numbers
are reserved for development releases. Major version steps are reserved for big new
features. All changes that were required for the upgrade of our plugin to GHC 8.10.1
were implemented within one day, even though “visible dependent quantification” was
added by Scott [2019] and required some changes to the type system. Thankfully
GHC’s internal type system was only affected slightly.
In the near future, GHC 9.0 will be released with the new (optional) linear type system.
Linear types required a lot of changes to GHC’s type checker and inference, but the
internal types will be changed only slightly again. According to a recent talk by Simon
L. Peyton Jones and Ben Gamari at the 2020 Haskell Implementors Workshop2, GHC
9.0 will also contain a lot of changes that might simplify our plugin implementation
quite a bit, but that is just speculation for now.

To conclude the section about maintainability, our plugin requires more work to
port it to new GHC versions than current compilers. However it also profits a lot more
from an upgrade to a new GHC, because a new version gives us the opportunity to
implement new language extensions with much less additional effort.

2https://icfp20.sigplan.org/details/hiw-2020-papers/12/GHC-Status-Update

60

6. Conclusion

This chapter summarizes our results, shows similarities or differences to other related
work and gives an outlook on possible future work.

6.1. Summary and Results
In this thesis we have implemented a compiler based on a GHC plugin for the Curry
programming language.

When activated, our plugin performs a monadic lifting on the source code of a module
to integrate nondeterminism as an ambient effect into an existing Haskell module. To
correctly model call-time choice semantics, we explicitly share variables in our monadic
lifting. By using quantified constraints, we could provide the required type classes for
our implementation even in the context of types with higher-kinded type variables. As
a consequence, Curry-Plugin’s semantic transformation is enough to achieve a Curry-
style functional-logic language. Our implementation also serves as a proof-of-concept
for a bug fix in the KICS2 compiler (KICS2 Issue #281).

With Curry-Plugin we have reached our goal in supporting the whole Haskell 2010
standard, including type classes and deriving mechanisms. By using a constraint solver
plugin, we achieve an ambient effect that remains hidden from the user, even when im-
porting definitions from within a plugin-compiled module. Although the plugin could
be modified to be used as a compiler, it is more convenient to embed plugin-compiled
code within native Haskell as some form of (embedded) domain specific language. The
implementation of our plugin as described in this thesis is easy to modify to support
other effects and language extensions.

We have also provided a comparison of the plugin with the two main Curry compiler
implementations to show the feasibility and strength of our approach, especially the
easy integration of new language extensions that are not supported by other Curry-
Compilers.

6.2. Related Work
Current implementations of Curry compilers generate Haskell code that is then further
processed by GHC for the remaining transformation to machine code [Braßel et al.,
2011]. The generated Haskell code implicitly uses a monadic lifting similar to the one
used in Curry-Plugin, but fully in-lines the nondeterminism effect into each datatype.

1https://git.ps.informatik.uni-kiel.de/curry/kics2/-/issues/28

61

https://git.ps.informatik.uni-kiel.de/curry/kics2/-/issues/28
https://git.ps.informatik.uni-kiel.de/curry/kics2/-/issues/28

6. Conclusion

In contrast to our Curry-Plugin they have to implement a parser, type checker and
other parts of a compiler from scratch.

To reduce the code that has to be written for the compiler of the Eden language,
Loogen, Ortega-Mallén, and Peña-Marí [2005] base their work on a fork of GHC to
avoid re-implementing any features. However, keeping up with GHC’s development
using this approach is still problematic.

GHC plugins have been used for a variety of different tools [Pickering, Wu, and
Németh, 2019]. One example that is most similar to Curry-Plugin is a core-plugin from
Elliott [2017] that implements a full code transformation based on categories to allow
different interpretations of the same code. Their goal, however, is not to implement
a different programming language. Another example for a plugin that extends GHC’s
type check is the plugin version of Liquid Haskell by [Vazou et al., 2014], a tool to
introduce refinement types into Haskell. Their plugin collects information about a
module from its desugared Core code to generate constraints that are then solved
by the pre-existing Liquid Haskell SMT-based implementation. The type-nat-solver
by Diatchki [2015] extends GHC’s constraint solver with a plugin to solve type-level
constraints with booleans and natural numbers using an SMT-Solver as the backend
as well.

The monadic lifting used by our plugin is based on work done by Wadler [1990],
while the sharing implementation for call-time choice semantics is based on a paper by
Fischer, Kiselyov, and Shan [2011] that shows how lazy nondeterministic programming
can be achieved in a pure functional way. Their implementation however requires the
user to write all code in a monadic fashion.

6.3. Future Work
While there are still a few bugs left to fix in our implementation (e.g., tuples with arity
> 2 and deriving for Read), we propose a few open questions for further research. Our
future work can be put into three distinct categories:

1. Improving the transformation
2. Implementing support for more language extensions
3. Generalizing the plugin for more effects.

The first point mainly includes future optimizations to reduce the overhead of lifting
and sharing of computations. Our last point contains ambitious steps to turn the plugin
into a compiler for a language with a first-class effect system, similar to languages like
Eff by Bauer and Pretnar [2015].

6.3.1. Improving the Transformation

We have already mentioned our problems with implementing a correct semantic trans-
formation for effectful recursive bindings in Section 4.3.4. While a good, composable
operational semantic is hard to define for such bindings, we need to implement a so-

62

6.3. Future Work

lution that is at least as good as the transformation achieved by KICS2. Adding a
new sharing-operator based on a monadic fixed-point computation might be a possible
solution, but so far it has not been tested.

On the topic of performance, we have seen that sharing computation slows us down
significantly, even if compared to KICS2. The advantage that KICS2 has over our plu-
gin is, that sharing only occurs for nondeterministic values by labeling choices instead
of blindly sharing all values, even if they are effect-free. To improve the performance
of our plugin, we could skip sharing values if we know them to be effect-free, but that
requires a complicated effect analysis. Implementing such an analysis and optimizing
the transformation based on the effectfulness of values is one point for future research.

For a lot of inductively defined functions, share might be invoked multiple times
with the same values. Consider the following lifted variant of insert that is used when
computing all permutations of a list throughout this thesis.
insert :: Shareable Nondet a ⇒ Nondet (a :→ ListND a :→ ListND a)
insert = return $ λx' → share x' >>= λx → return $ λxs → xs >>= \case

Nil → return (Cons x' (return Nil))
Cons y' ys' → share y' >>= λy → share ys' >>= λys →
(return (Cons x (return (Cons y) (return Nil))))
? (return (Cons y (insert >>= λf1 → f x >>= λf → f2 ys)))

Here we use share multiple times throughout all recursive invocations of insert:
Once for each sub-list (tail) of the second parameter (zs), once for each head of zs
and once for the first argument of insert. If we also count the sharing that is required
to share the list components when invoking share on zs, each element in zs will be
shared one more time than its predecessor. This leads to O(length(zs)2) invocations of
share, which is obviously too much. If we know that the full list zs will be demanded
eventually, then we could compute its normal form to trigger all sharing and then
continue with a sharing-free version of insert. This optimization would effectively
implement a call-by-value semantics and is not possible in general for call-by-need
evaluation.

While evaluating profiling results obtained with the benchmarks in Chapter 5, we
also noticed that GHC seems to have trouble optimizing our generated code. Even
after increasing GHC’s in-lining threshold and the number of optimization passes, and
even after adding some rewrite rules, performance increased only slightly. As the last
point in the category of future performance improvements, we want to investigate how
to enable GHC to optimize plugin-generated code even further.

6.3.2. Language Extensions
GHC currently has over 100 language extensions, ranging from simple syntactic exten-
sions like LambdaCase to advanced extensions like TypeFamilies. Our plugin currently
supports only a subset of all extensions as seen in Appendix C.

Datatype Extensions With the current deriving scheme for Shareable for data types
we cannot support data type extensions like GADTs, because Generic is not derivable for

63

6. Conclusion

such data types. We could change our deriving scheme by generating all Shareable
instances with the plugin without using GHC’s Generic. That would allow us to
support at least GADTs, because their instances are still easy enough to generate. To
support unlifted types (e.g., UnboxedSums, UnliftedTuples) we could adapt our lifting
to behave differently if a value has an unlifted kind. Something similar has been done
by Downen et al. [2020] to encode the correct calling convention for a function or value
on the kind-level.

Type System Extensions GHC’s full type system is incredibly rich and some of its
extensions are not entirely compatible (see GHC bug report #172952). While we think
that support for higher-rank types and type families should be possible to implement,
their implementation might require significant changes to the plugin. If we look even
further, it is unclear how data type promotion and polymorphic kinds should interact
with plugin-lifted definitions. A promoted data type should probably not be lifted by
the plugin, but we have not thought about all interactions with the plugin. We instead
leave this question open for future work.

Other extensions There are a lot of extensions that might work out-of-the-box that
have not been tested with the plugin at all, so we have a lot to do in the future on that
front. We also know that overloading of syntactic constructs with RebindableSyntax
can be supported even with the plugin enabled. In fact, a small part of it should
work already. While that is a lesser-used extension in Haskell, it might see more
use in the future with the arrival of linear types, because that extension often requires
importing linear versions of existing definitions like a linear monad type class. Without
RebindableSyntax or the planned RebindableDo, do-notation would be unusable with
linear types.

6.3.3. Generalization for other Effects
We have already mentioned in Section 3.2, that the monadic lifting performed in our
plugin is completely orthogonal to the nondeterminism effect we use. We have already
shown that our plugin can be adapted to a probabilistic effect by changing approxi-
mately 500 lines of code. We could also implement a plugin for reactive programming
Van Der Ploeg [2013] to write programs in a reactive style without explicitly using a
monad.

But forking and changing the plugin for every effect that we want to use seems
unnecessary when the lifting and effect are orthogonal to each other. Our goal for
the future is to let the user specify an effect and corresponding handlers in a module
to be used with the plugin. That would enable our plugin to transform GHC to a
compiler for a language with effects as a first class language feature, similar to the
mentioned language Eff by Bauer and Pretnar [2015]. One of the challenges when
implementing this generalization will be to provide an effect-independent Prelude to

2https://gitlab.haskell.org/ghc/ghc/issues/17295

64

https://gitlab.haskell.org/ghc/ghc/issues/17295
https://gitlab.haskell.org/ghc/ghc/issues/17295

6.3. Future Work

be used independently of the effect. We might also reconsider our approaches to some
of the previously mentioned future work, especially the interaction between language
extensions and our plugin will be more deliberate if we consider arbitrary monadic
effects. As another step, we could adapt the plugin to let the user choose between
evaluation strategies like call-by-value and call-by name.

65

Bibliography
Alqaddoumi, Abdulla et al. (2010). “The pull-tab transformation”. In: Proc. of the

Third International Workshop on Graph Computation Models, pp. 127–132.
Antoy, Sergio and Michael Hanus (2006). “Declarative Programming with Function

Patterns”. In: Logic Based Program Synthesis and Transformation. Ed. by Patricia
M. Hill. Berlin, Heidelberg: Springer, pp. 6–22. doi: 10.1007/11680093_2.

Bauer, Andrej and Matija Pretnar (2015). “Programming with algebraic effects and
handlers”. In: Journal of Logical and Algebraic Methods in Programming 84.1,
pp. 108–123. doi: 10.1016/j.jlamp.2014.02.001.

Braßel, B. et al. (2011). “KiCS2: A New Compiler from Curry to Haskell”. In: Pro-
ceedings of the 20th International Workshop on Functional and (Constraint) Logic
Programming (WFLP 2011). Springer LNCS 6816, pp. 1–18. doi: 10.1007/978-
3-642-22531-4_1.

Cassel, John (2014). “Probabilistic Programming with Stochastic Memoization Im-
plementing Nonparametric Bayesian Inference”. In: The Mathematica Journal 16.
doi: 10.3888/tmj.16-1.

Christiansen, Jan, Daniel Seidel, and Janis Voigtländer (2011). “An adequate, deno-
tational, functional-style semantics for Typed FlatCurry”. In: International Work-
shop on Functional and Constraint Logic Programming. Springer. Berlin, Heidel-
berg: Springer, pp. 119–136. doi: 10.1007/978-3-642-20775-4_7.

Diatchki, Iavor S. (2015). “Improving Haskell Types with SMT”. In: Proceedings of the
2015 ACM SIGPLAN Symposium on Haskell. Haskell ’15. Vancouver, BC, Canada:
Association for Computing Machinery, pp. 1–10. doi: 10.1145/2804302.2804307.

Downen, Paul et al. (2020). “Kinds Are Calling Conventions”. In: Proc. ACM Program.
Lang. 4. doi: 10.1145/3408986.

Elliott, Conal (2017). “Compiling to Categories”. In: Proceedings of the ACM on Pro-
gramming Languages 1.ICFP. doi: 10.1145/3110271.

Fischer, S., O. Kiselyov, and C. Shan (2011). “Purely functional lazy nondeterministic
programming”. In: Journal of Functional programming 21.4&5, pp. 413–465. doi:
10.1017/S0956796811000189.

Hanus, Michael (2019). Declarative Programming Languages – Lecture Notes (in Ger-
man). url: https://www-ps.informatik.uni-kiel.de/~mh/lehre/dps19/.

Hanus, Michael and Finn Teegen (2020). “Adding Data to Curry”. In: Declarative
Programming and Knowledge Management. Ed. by Petra Hofstedt et al. Springer
International Publishing, pp. 230–246. doi: 10.1007/978-3-030-46714-2_15.

Hanus (Ed.), Michael (2016). Curry: An Integrated Functional Logic Language (Vers.
0.9.0). Available at http://www.curry-language.org.

67

https://doi.org/10.1007/11680093_2
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.3888/tmj.16-1
https://doi.org/10.1007/978-3-642-20775-4_7
https://doi.org/10.1145/2804302.2804307
https://doi.org/10.1145/3408986
https://doi.org/10.1145/3110271
https://doi.org/10.1017/S0956796811000189
https://www-ps.informatik.uni-kiel.de/~mh/lehre/dps19/
https://doi.org/10.1007/978-3-030-46714-2_15
http://www.curry-language.org

Bibliography

Hennessy, M. C.B. and E. A. Ashcroft (1977). “Parameter-Passing Mechanisms and
Nondeterminism”. In: Proceedings of the Ninth Annual ACM Symposium on Theory
of Computing. STOC ’77. Boulder, Colorado, USA: Association for Computing
Machinery, pp. 306–311. doi: 10.1145/800105.803420.

Hindley, R. (1969). “The Principal Type-Scheme of an Object in Combinatory Logic”.
In: Transactions of the American Mathematical Society 146, pp. 29–60. doi: 10.
2307/1995158.

Jeuring, Johan et al. (2009). “Libraries for Generic Programming in Haskell”. In: Ad-
vanced Functional Programming: 6th International School, AFP 2008, Heijen,
The Netherlands, May 2008, Revised Lectures. Ed. by Pieter Koopman, Rinus
Plasmeijer, and Doaitse Swierstra. Berlin, Heidelberg: Springer, pp. 165–229. doi:
10.1007/978-3-642-04652-0_4.

Jones, Mark P. (1995a). “A system of constructor classes: overloading and implicit
higher-order polymorphism”. In: Journal of Functional Programming 5.1, pp. 1–
35. doi: 10.1017/S0956796800001210.

Jones, Mark P. (1995b). “Functional programming with overloading and higher-order
polymorphism”. In: Advanced Functional Programming. Ed. by Johan Jeuring and
Erik Meijer. Berlin, Heidelberg: Springer, pp. 97–136. doi: 10.1007/3- 540-
59451-5_4.

Loogen, Rita, Yolanda Ortega-Mallén, and Ricardo Peña-Marí (2005). “Parallel func-
tional programming in Eden”. In: Journal of Functional programming 15.3, pp. 431–
475. doi: 10.1017/S0956796805005526.

Magalhães, José Pedro et al. (2010). “A Generic Deriving Mechanism for Haskell”. In:
SIGPLAN Not. 45.11, pp. 37–48. doi: 10.1145/2088456.1863529.

Matthes, Jan-Hendrik (2019). “Extending Curry with higher-rank polymorphism (in
German)”. MA thesis. Germany: CAU Kiel.

Milner, Robin (1978). “A theory of type polymorphism in programming”. In: Journal of
Computer and System Sciences 17.3, pp. 348–375. doi: 10.1016/0022-0000(78)
90014-4.

Najd, Shayan and Simon Peyton Jones (2017). “Trees that Grow”. In: J. UCS 23.1,
pp. 42–62. doi: 10.3217/jucs-023-01-0042.

Odersky, Martin and Konstantin Läufer (1996). “Putting Type Annotations to Work”.
In: Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’96. St. Petersburg Beach, Florida, USA: Associ-
ation for Computing Machinery, pp. 54–67. doi: 10.1145/237721.237729.

Pickering, Matthew, Nicolas Wu, and Boldizsár Németh (2019). “Working with Source
Plugins”. In: Proceedings of the 12th ACM SIGPLAN International Symposium
on Haskell. Haskell 2019. Berlin, Germany: Association for Computing Machinery,
pp. 85–97. doi: 10.1145/3331545.3342599.

Plotkin, Gordon and Matija Pretnar (2009). “Handlers of Algebraic Effects”. In: Pro-
gramming Languages and Systems. Ed. by Giuseppe Castagna. Berlin, Heidelberg:
Springer, pp. 80–94. doi: 10.1007/978-3-642-00590-9_7.

68

https://doi.org/10.1145/800105.803420
https://doi.org/10.2307/1995158
https://doi.org/10.2307/1995158
https://doi.org/10.1007/978-3-642-04652-0_4
https://doi.org/10.1017/S0956796800001210
https://doi.org/10.1007/3-540-59451-5_4
https://doi.org/10.1007/3-540-59451-5_4
https://doi.org/10.1017/S0956796805005526
https://doi.org/10.1145/2088456.1863529
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.3217/jucs-023-01-0042
https://doi.org/10.1145/237721.237729
https://doi.org/10.1145/3331545.3342599
https://doi.org/10.1007/978-3-642-00590-9_7

Scott, Ryan (2019). Visible Dependent Quantification in Haskell - Ryan Scott. url:
https://ryanglscott.github.io/2019/03/15/visible-dependent-quantifi
cation-in-haskell/.

Teegen, Finn (2016). “Extending Curry with type classes and type constructor classes
(in German)”. MA thesis. Germany: CAU Kiel.

The Rust Team (2016). Rust Project - Frequently Asked Questions. url: https://
prev.rust-lang.org/en-US/faq.html.

Van Der Ploeg, A. J. (2013). “Monadic Functional Reactive Programming”. In: Pro-
ceedings of the ACM SIGPLAN Haskell Symposium. Ed. by C Shan. doi: 10.
1145/2578854.2503783.

Vazou, Niki et al. (2014). “Refinement Types for Haskell”. In: Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming. ICFP ’14.
Gothenburg, Sweden: Association for Computing Machinery, pp. 269–282. doi:
10.1145/2628136.2628161.

Wadler, Philip (1987). “Efficient Compilation of Pattern-Matching”. In: The Imple-
mentation of Functional Programming Languages. Ed. by Simon L. Peyton Jones.
Prentice-Hall, pp. 78–103. doi: 10.1016/0141-9331(87)90510-2.

Wadler, Philip (1990). “Comprehending Monads”. In: Proceedings of the 1990 ACM
Conference on LISP and Functional Programming. LFP ’90. Nice, France: Asso-
ciation for Computing Machinery, pp. 61–78. doi: 10.1145/91556.91592.

69

https://ryanglscott.github.io/2019/03/15/visible-dependent-quantification-in-haskell/
https://ryanglscott.github.io/2019/03/15/visible-dependent-quantification-in-haskell/
https://prev.rust-lang.org/en-US/faq.html
https://prev.rust-lang.org/en-US/faq.html
https://doi.org/10.1145/2578854.2503783
https://doi.org/10.1145/2578854.2503783
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1016/0141-9331(87)90510-2
https://doi.org/10.1145/91556.91592

A. Transformation of a Small Example

-- code after pre-processing
newtype Identity a = Identity a
data Pair a = Pair a a

mapIdentity :: (a → b) → Identity a → Identity b
mapIdentity = λf → λv → case v of
Identity a → Identity (f a)

mapBoth :: (a → b) → Pair a → Pair b
mapBoth = λf → λv → case v of
Pair a1 a2 → Pair (f a1) (f a2)

-- code after lifting
newtype IdentityND a = IdentityND a
data PairND a = PairND (Nondet a) (Nondet a)

mapIdentity :: Nondet ((a :→ b) → IdentityND a :→ IdentityND b)
mapIdentity = return (λf → return (λv → v >>= \case
IdentityND a' → let a = return a' in
(return $ λx → fmap IdentityND x) >>= λf1 → f1
(f >>= λf2 → f2 a)))

mapBoth :: Nondet ((a :→ b) → PairND a :→ PairND b)
mapBoth = return (λf' → share f' >>= λf → return (λv → v >>= \case
PairND a1 a2 → (return $ λx1 → return $ λx2 → return (Pair x1 x2)) >>=
λf1 → f1 (f >>= λf2 → f2 a1) >>= λf2 → f2 (f >>= λf2 → f2 a2)))

71

B. Generic Implementation of Shareable

class Shareable m a where
shareArgs :: (Monad n) ⇒

default shareArgs :: (Gen.Generic a, ShareableGen m (Gen.Rep a), Monad n) ⇒
(forall b. (Shareable m b ⇒ m b → n (m b))) → a → n a

shareArgs f a = Gen.to <$> shareArgsGen f (Gen.from a)

class ShareableGen m f where
shareArgsGen :: (Monad n) ⇒
(forall b. (Shareable m b ⇒ m b → n (m b))) → f x → n (f x)

instance (Monad m) ⇒ ShareableGen m Gen.V1 where
shareArgsGen _ v = case v of
-- No value of this type can exist

instance (Monad m) ⇒ ShareableGen m Gen.U1 where
shareArgsGen _ = return

instance (Monad m, ShareableGen m f, ShareableGen m g) ⇒
ShareableGen m (f Gen.:+: g) where
shareArgsGen f (Gen.L1 x) = Gen.L1 <$> shareArgsGen f x
shareArgsGen f (Gen.R1 x) = Gen.R1 <$> shareArgsGen f x

instance (Monad m, ShareableGen m f, ShareableGen m g) ⇒
ShareableGen m (f Gen.:∗: g) where
shareArgsGen f (x Gen.:∗: y) =
(Gen.:∗:) <$> shareArgsGen f x <∗> shareArgsGen f y

-- | This instance overlaps the next instance.
-- Any lifted type defined by a data declaration uses this instance,
-- the other instance is used for lifted newtypes.
instance {-# OVERLAPPING #-} (Monad m, Shareable m b)
⇒ ShareableGen m (Gen.K1 i (m b)) where
shareArgsGen f (Gen.K1 x) = Gen.K1 <$> f x

instance {-# OVERLAPPABLE #-} (Monad m, Shareable m c)
⇒ ShareableGen m (Gen.K1 i c) where
shareArgsGen f (Gen.K1 x) = Gen.K1 <$> shareArgs f x

instance (Monad m, ShareableGen m f) ⇒ ShareableGen m (Gen.M1 i t f) where
shareArgsGen f (Gen.M1 x) = Gen.M1 <$> shareArgsGen f x

73

C. List of Language Extension Support
The following lists shows all language extensions for GHC 8.10.1 and if they are sup-
ported by the plugin. For extensions that are marked as supported, there is no reason
for them not to work. Either because they are fully desugared by GHC before the type
checker plugin is run, or because explicit support for the extension was implemented for
the plugin. Not that not all of the extensions marked as supported have been tested,
there is rather no reason for them not to work. Extensions that we were unsure about
or know that they are incompatible with the plugin have been marked as unsupported.
An unsupported extension sometimes contains a note on how difficult they would be
to implement.

Extension Support Status
AllowAmbiguousTypes Supported
ApplicativeDo Unsupported, but easy to implement
Arrows Unsupported
BangPatterns Unsupported, but very easy to implement
BinaryLiterals Supported
BlockArguments Supported
CApiFFI Unsupported
ConstrainedClassMethods Supported
ConstraintKinds Unsupported
CPP Supported
DataKinds Unsupported
DatatypeContexts Unsupported
DefaultSignatures Supported
DeriveAnyClass Supported
DeriveDataTypeable Unsupported
DeriveFoldable Unsupported
DeriveFunctor Supported
DeriveGeneric Unsupported
DeriveLift Unsupported
DeriveTraversable Unsupported
DerivingStrategies Supported
DerivingVia Supported
DisambiguateRecordFields Supported
DuplicateRecordFields Supported
EmptyCase Supported

75

C. List of Language Extension Support

EmptyDataDecls Supported
ExistentialQuantification Unsupported
ExplicitForAll Supported
ExplicitNamespaces Supported
ExtendedDefaultRules Unsupported
FlexibleContexts Supported
FlexibleInstances Supported
ForeignFunctionInterface Unsupported
FunctionalDependencies Supported
GADTs Unsupported
GADTSyntax Supported
GeneralisedNewtypeDeriving Supported
HexFloatLiterals Supported
ImplicitParams Unsupported
ImplicitPrelude Required
ImpredicativeTypes Unsupported
IncoherentInstances Supported
InstanceSigs Supported
InterruptibleFFI Unsupported
KindSignatures Supported
LambdaCase Supported
LiberalTypeSynonyms Unsupported
MagicHash Supported
MonadComprehensions Unsupported, but almost implemented
MonadFailDesugaring Supported
MonoLocalBinds Supported
MonomorphismRestriction Supported
MultiParamTypeClasses Supported
MultiWayIf Supported
NamedFieldPuns Supported
NamedWildCards Supported
NegativeLiterals Supported
NPlusKPatterns Unsupported, but almost implemented
NullaryTypeClasses Deprecated
NumDecimals Supported
NumericUnderscores Supported
OverlappingInstances Supported
OverloadedLabels Unsupported, but easy to implement
OverloadedLists Unsupported, but easy to implement
OverloadedStrings Unsupported, but easy to implement
PackageImports Supported

76

ParallelListComp Unsupported
PartialTypeSignatures Supported
PatternGuards Supported
PatternSynonyms Unsupported
PolyKinds Unsupported
PostfixOperators Supported
QuantifiedConstraints Unsupported
QuasiQuotes Unsupported
Rank2Types Unsupported
RankNTypes Unsupported
RebindableSyntax Unsupported, but easy to implement
RecordWildCards Supported
RecursiveDo Unsupported
RoleAnnotations Supported
Safe Unsupported
ScopedTypeVariables Unsupported
StandaloneDeriving Supported
StarIsType Supported
StaticPointers Unsupported
Strict Unsupported
StrictData Unsupported
TemplateHaskell Unsupported
TemplateHaskellQuotes Unsupported
TraditionalRecordSyntax Supported
TransformListComp Unsupported
Trustworthy Unsupported
TupleSections Supported
TypeApplications Supported
TypeFamilies Unsupported
TypeFamilyDependencies Unsupported
TypeInType Unsupported
TypeOperators Supported
TypeSynonymInstances Supported
UnboxedSums Unsupported
UnboxedTuples Unsupported
UndecidableInstances Supported
UndecidableSuperClasses Supported
UnicodeSyntax Supported
Unsafe Unsupported
ViewPatterns Unsupported

77

	Introduction
	Contributions
	Outline

	Preliminaries
	Curry
	Nondeterminism
	Call-Time Choice and Run-Time Choice
	Free Variables

	GHC's API and Plugin Infrastructure
	Renamer Plugins
	Type Checker Plugins
	Constraint Solver Plugins

	Design
	Overview
	Pattern Match Semantics
	Encapsulating Nondeterministic Computations
	Other Features and Restrictions

	Using other Effects

	Implementation
	Monadic Lifting
	Lifting Data Types
	Lifting Functions

	Pattern Matching
	Translating Pattern Matching
	Translating Guards
	Translating Pattern Bindings
	Translating Do-Notation

	Sharing Effects
	A Type Class for Sharing
	Inferring Shareable Constraints in a Polymorphic Context
	Using Quantified Constraints for Polymorphic Sharing
	Problems with Recursion and Explicit Sharing

	Type Classes
	Lifting Type Classes
	Lifting Instances

	Built-In Type Definitions
	Importing modules
	Subverting GHC's Type Checker for Imports
	Marking Plugin Modules

	Further Implementation Details

	Evaluation
	Compilation Performance
	Execution Performance
	Language Features
	Maintainability

	Conclusion
	Summary and Results
	Related Work
	Future Work
	Improving the Transformation
	Language Extensions
	Generalization for other Effects

	Bibliography
	Transformation of a Small Example
	Generic Implementation of Shareable
	List of Language Extension Support

