
Property-Based Testing in the
Context of DB Interactions

Lars Jürgensen

Master‘s Thesis

Programming Languages and Compiler Construction Group
Faculty of Engineering

Christian-Albrecht University of Kiel
Germany

2021

Advised by
Prof. Dr. Michael Hanus

Dr. Nikita Danilenko

Selbstständigkeitserklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbststän-
dig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
verwendet habe.

Kiel,

Abstract

Thoroughly testing applications with database interactions is challenging, since
the tested functionality depends on the input and the current database state.
The goal of this thesis is to discuss different techniques and approaches to test
database applications using property-based testing. One approach is to use ex-
tended generators, which encapsulate both the generation and insertion of the
generated values into the database. This approach is highly flexible and com-
posable. Since it often requires much manual effort to write generators for rela-
tional database content, we propose a graph-based algorithm, which generates
database content in a demand-driven fashion. We restrict the generated content
to be acyclic and prove that all connected, acyclic contents can be generated
using this algorithm. We implement the algorithm in a project-independent li-
brary in Scala. The implementation is well integrated with the property-based
testing library ScalaCheck, as it can be arbitrarily combined with other gener-
ators and can be used to define properties. An alternative approach is model-
based testing, where a random sequence of operations is executed on the sys-
tem under test and the observed behaviour is compared to a simplified, abstract
model of the system. We propose different techniques to use our graph-based
algorithm to generate initial database contents for this model-based testing ap-
proach.

v

Acknowledgements

I would like to express my gratitude to Nikita Danilenko, the main supervisor of
this thesis, for his patience, for the numerous insightful conversations, and for
giving me advice and guidance during this thesis. I wish to thank Cap3 GmbH
for supporting the thesis and providing a comfortable place to work. Further-
more, I am grateful for the supervision and feedback from Michael Hanus and
for giving me the opportunity to write this thesis in his research group. Finally, I
would like to acknowledge Lorenz Boguhn and Nowzar Tasslimi for their help-
ful feedback on drafts of this thesis and John Hughes from the Chalmers Uni-
versity for some initial recommendations and ideas.

vii

Contents

1 Introduction 1

2 Background 3
2.1 Scala . 3
2.2 Property-Based Testing . 4
2.3 Stateful Property-Based Testing . 5
2.4 Mathematical Notations . 8

3 Writer Approach 9
3.1 Motivating Example . 9
3.2 Generator Extension . 12
3.3 Refinements . 14
3.4 Discussion . 15

4 Reference Graph Generator 19
4.1 Reference Schema . 19
4.2 Reference Graph . 20
4.3 The Algorithm . 22
4.4 Expand Forward . 25
4.5 Expand Backward . 25
4.6 Example . 25
4.7 Properties of the Algorithm . 28

4.7.1 Correctness . 30
4.7.2 Completeness . 35

4.8 Discussion . 48
4.8.1 Termination . 48
4.8.2 Restrictions . 49
4.8.3 Constraints . 50

4.9 Implementation . 50
4.9.1 HList . 51
4.9.2 Templates . 52
4.9.3 Configuration . 52

ix

CONTENTS

5 Stateful Property-Based Testing 55
5.1 Problem of Non-Determinism . 56
5.2 Challenge of Command Statistics 58
5.3 Bug in Shrinking Algorithm . 60
5.4 General Experiences . 60
5.5 Hybrid Approach . 61

5.5.1 Internal Generation . 63
5.5.2 External Generation . 63
5.5.3 Generation in Command 64

6 Related Work 65
6.1 Test Data Generation . 65
6.2 Testing Stateful Systems . 67

7 Conclusion 69
7.1 Future Work . 70

Bibliography 71

Index 75

x

Chapter 1

Introduction

Thoroughly testing applications with database interactions can be challenging.
To test the functionality of a method, it is not only necessary to choose a suitable
input, but also to bring the database into a specific state beforehand. Addition-
ally, it is not always sufficient, to verify the output of the method. If the method
inserts or mutates database content, techniques to verify these changes to the
database are also required. Conventional testing approaches are often example-
based: The tester chooses a set of interesting input examples and checks if the
behaviour of the system under test matches their expectation. A drawback of
this strategy is that the test quality is limited by the thoroughness and the cre-
ativity of the tester, in the sense that corner cases are only tested if such tests
are explicitly specified. The QuickCheck library for Haskell introduced an al-
ternative approach called property-based testing, where abstract properties of
the functionality are defined, which shall hold for any given input [Claessen
and Hughes, 2000]. Afterwards, the testing framework calls the functions with
randomly generated input, to verify whether the specified properties hold. Ini-
tially, property-based testing was meant to test pure scenarios, which means
that the tested functions are free of side effects and deterministic such that the
same input always leads to the same output. However, applications with data-
base interactions are generally not pure: They contain side effects in the form
of read and write operations to the database, and the behaviour does not only
depend on the input, but also the current database state. This complicates test-
ing database applications using the property-based testing approach. The goal
of this thesis is to examine how this testing technique can still be applied to
database applications.

We present the first approach, which we call writer approach, in Chapter 3.
The idea is to create custom extended generators, which do not only encapsu-
late the generation of values, but also the insertion of the generated values into
the database. This approach is very flexible, and the tester has high control over
if, how, and when values are inserted into the database. An advantage of this
approach is its compositionality, as complex generators can be defined by com-

1

1. Introduction

Pure Context

System Under TestInput Output

Context of DB Interactions

System Under Test

DB

ApplicationInput Output

Figure 1.1: A comparison of a pure context and the context of database interac-
tions. In a pure context, the output only depends on the input. In the context
of database interactions, there are side effects, and the output depends on the
current database state.

bining multiple previously defined generators. However, there are scenarios in
which the tester still has to do a lot of manual work to avoid that rare corner
cases are missed.

In Chapter 4 we present an approach in which a reference graph is gener-
ated. The idea is to randomly generate database content in a demand driven
fashion with a graph-based approach. The reference graph generator is imple-
mented using the custom extended generators and, therefore, is a special case
of the first approach. We restrict the generated database content to be acyclic.
As it is important not to miss corner cases, we prove that all acyclic, connected
database contents can be generated by this generator. We implement the pro-
posed algorithm in Scala in a project-independent library. As a proof of concept,
we use our implementation to generate data in tests for a real-world application
and another small example project.

In Chapter 5 we discuss an already existing approach called stateful property-
based testing. The idea is not to test the methods (called commands) of the ap-
plication individually, but to treat the application as a stateful system, and test
all commands collectively. For this purpose, the testing framework generates
a random sequence of commands and executes these commands on the system
under test. Afterwards, the behaviour of the system under test is compared
to a simplified abstract model of the application. This approach is suitable for
stateful systems in general, and therefore not limited to database applications.
We use this approach to test two real-world applications and discuss our ex-
periences and challenges we encountered. Additionally, we propose a hybrid
approach, where initial database content is generated using the reference graph
generator, and a random sequence of commands is executed afterwards.

In Chapter 2 we introduce the concepts and tools this thesis is founded on.
Related work is presented and discussed in Chapter 6. In Chapter 7 we con-
clude this thesis and present ideas for future work. The index on page 75 shows
where specific terms or concepts are introduced.

2

Chapter 2

Background

In this chapter, we introduce some tools and concepts, which are required to
comprehend the topics of this thesis. In Section 2.1 we introduce the program-
ming language Scala. The idea of property-based testing and the ScalaCheck
library is presented in Section 2.2. In Section 2.3 we explain the concept of state-
ful property-based testing, and we list mathematical notations in Section 2.4.

2.1 Scala

All our implementations are written in Scala. Scala is a programming language
which combines the object-oriented and functional paradigms [Odersky et al.,
2004]. However, the concepts and approaches we propose are mostly indepen-
dent of the programming language and can be implemented in other languages
similarly. Nevertheless, we introduce some basic Scala syntax to make the code
examples more understandable. In Scala, methods can be defined using the def
keyword:

def add(a: Int, b: Int): Int = a + b

The parameters are listed in parentheses and the type of a method, parameter,
or variable is defined using colons. Polymorphism can be expressed by adding
type parameters in square brackets:

def concat[A](a: List[A], b: List[A]): List[A] = a ++ b

Scala also allows higher order functions. A function can be passed as a param-
eter just like other values:

def double(value: Int): Int = value * 2

val doubleList = List(1,2,3).map(double)

Alternatively, it is also possible to define an anonymous function inside the pa-
rameter list:

val doubleList = List(1,2,3).map {

number: Int =>

number * 2

3

2. Background

}

2.2 Property-Based Testing

In conventional unit tests, a function is normally called with a fixed input and
the output is compared to the expected result:

reverse(List(1,2,3)) == List(3,2,1)

A disadvantage of this approach is that the functionality is only tested for the
explicitly stated inputs. The QuickCheck library introduced an alternative ap-
proach, where abstract properties of the tested functionality are defined and af-
terwards tested by randomly generating test cases [Claessen and Hughes, 2000].
This approach is called property-based testing. We use ScalaCheck, which is
a property-based testing library for Scala [Nilsson, 2014]. General properties
of the tested function have to be specified, which describe the relationship be-
tween the input and output. We use a property of the reverse function for lists
as an example:

val prop = forAll {

(xs: List[Int], ys: List[Int]) =>

reverse(xs ++ ys) == reverse(ys) ++ reverse(xs)

}

When the property is tested, the lists xs and ys are randomly generated, and
the framework checks whether the property holds for the generated values. By
repeatedly testing a property with random inputs, one gains higher confidence
in the correctness of the implementation of the function for which the property
needs to hold.

scala> prop.check

+ OK, passed 100 tests.

In the example above, ScalaCheck handles the list generation. However, it is
also possible to manually define generators to restrict the generated values, or
to generate values of custom types. As an example, we look at how a generator
for a user can be implemented.

val userGen: Gen[User] = for {

id <- Gen.uuid

name <- Gen.alphaStr

age <- Gen.choose(18, 80)

} yield User(id, name, age)

The user generator is implemented by combining three predefined generators
from the ScalaCheck library. These generators are combined using a construct
called for-comprehension, which is comparable with the do notation in Haskell.

4

2.3. Stateful Property-Based Testing

compare

Abstract Model

State 1

State 2

State 3

State 4

Command 1

Command 2

Command 3

Command 4

Command Sequence

execute execute

DB

Application

System Under Test

Figure 2.1: Illustration of the stateful property-based testing approach. The test
framework generates a random sequence of commands. These commands are
executed on the system under test and on a simplified abstract model of the
system. Afterwards, the behaviour of the system under test is compared to the
abstract model.

2.3 Stateful Property-Based Testing

Property-based testing is especially suitable to test pure functions, which are
functions without side effects, where the output solely depends on the input.
However, many real-world applications have an internal state, and the beha-
viour depends on previously called methods. Stateful property-based testing is
an approach to use property-based testing to test the behaviour of a collection of
stateful methods with interdependencies. These methods are called commands.
Instead of only generating the input for a single command, the framework gen-
erates a random sequence of commands. As the expected behaviour of each
command depends on the previously called commands, an abstract model of
the application must be specified by the tester. After a command was executed,
the behaviour can be compared to the behaviour of the abstract model of the
application. Additionally, one can check if invariants of the application, which
should always be satisfied, are still fulfilled.

To demonstrate how a stateful property-based test can be implemented, we
introduce an example, where we test an ATM implementation with ScalaCheck.
The example only serves the purpose of explaining the concepts, and therefore
we omit some required methods. It is based on a more detailed example from

5

2. Background

the ScalaCheck user guide1.

class ATM {

def withdraw(amount: Int) = ???

def deposit(amount: Int) = ???

def getBalance() = ???

}

In this example, the system under test (SUT) is the ATM class, and the current
state of the abstract model can be implemented with an integer, which repre-
sents the current balance:

type Sut = ATM

type State = Int

Next, we have to define, how an initial state of the abstract model can be gener-
ated. In our case, we can always start with a balance of 0:

def genInitialState: Gen[State] = Gen.const(0)

Each command requires the definition of the following four methods:

The run method defines how the command can be executed on the system
under test.

The nextState method specifies how the abstract state changes when the
command is executed. If, for example, some money is deposited, the same
amount has to be added to the abstract state.

The preCondition defines, under which circumstances a command may be
executed. For example, we can specify that money can only be withdrawn,
if the current account value is larger than the withdrawn amount.

The postCondition method compares the output of the system under test
with the expected behaviour. For example, the output of the getBalance
method should be equal to the current balance of the abstract model.

We implement the commands Deposit and GetBalance in the following fashion:

case class Deposit(amount: Int) extends UnitCommand {

def run(atm: Sut): Unit = atm.deposit(amount)

def nextState(state: State): State = state + amount

def preCondition(state: State): Boolean = true

def postCondition(state: State, success: Boolean): Prop = success

}

1https://github.com/typelevel/scalacheck/blob/main/doc/UserGuide.md

6

https://github.com/typelevel/scalacheck/blob/main/doc/UserGuide.md

2.3. Stateful Property-Based Testing

case object GetBalance extends Command {

type Result = Int

def run(atm: Sut): Result = atm.getBalance

def nextState(state: State): State = state

def preCondition(state: State): Boolean = true

def postCondition(state: State, result: Try[Result]): Prop = {

result == Success(state)

}

}

The Deposit command extends UnitCommand, which means that the execution of
the Deposit command does not return anything. Therefore, the Result type is
not specified, and the type signature of the postConditionmethod looks slightly
different.

When the framework executes the test, it generates a random sequence of
commands, so that all preconditions hold. Afterwards, all commands are exe-
cuted on the system under test. For each command, the output is compared to
the expected behaviour using the postCondition method. The test is successful
if all postconditions are satisfied. If one of the postconditions is not satisfied, the
framework tries to minimize the command sequence by iteratively removing
commands from the sequence and checking if the smaller test case still leads to
failing postconditions. This process is called shrinking and has the goal to find
a potentially minimal counterexample.

A risk of stateful property-based testing is that the implementation of the
abstract model can be very similar to the actual application and the same bugs
are contained in the abstract model. There are several options to avoid this
problem:

A simpler implementation is used, which cannot be used for the actual
application due to non-functional requirements. The abstract model can
for example use a slower algorithm.

Only a subset of the functionality is implemented.

Different technologies are used. For example, when the actual application
uses SQL queries, the abstract model can be implemented with in-memory
collections of the relevant values.

This testing strategy is particularly useful when what the code should do is
simple, but the implementation is complex [Hebert, 2019]. The abstract model
can also be implemented in a different programming language than the system
under test [Arts et al., 2015].

7

2. Background

2.4 Mathematical Notations

In this section, we list mathematical notations used in this thesis.

The natural numbers N start with 0. The set of positive integers, which
excludes 0, is denoted as N≥1.

Given a set A and a number n ∈N, the cartesian power An is defined as

An B { (a1, . . . , an) | ∀i ∈ { 1, . . . , n } : ai ∈ A } .

For every number n ∈N, the list of pairs

((a1, b1), (a2, b2), . . . , (an, bn))

is written as ((ai, bi))
n
i=1.

Let f : A→ B be a function and A′ ⊆ A be a set. The function

f |A′ : A′ → B,

x 7→ f (x)

is called the restriction of f to A′.

Let f : A → B be a function and A′ be a set with A ⊆ A′. The function
f ′ : A′ → B is called an extension of f , if the following property holds:

∀a ∈ A : f ′(a) = f (a)

8

Chapter 3

Writer Approach

A prerequisite of property-based testing is the generation of test cases. In a
pure scenario, only the input of a function has to be generated. In the context
of database interactions, it is often necessary to generate database content, as
the behaviour of the function might depend on it. A straightforward approach
is to first generate test data and manually insert the generated content into the
database at the beginning of each test. While this is feasible in small scenarios,
it can be very laborious, when there is a large quantity of relationships between
different tables in the database. For the insertion of a single value into the da-
tabase, it can be necessary to fill multiple other database tables beforehand, to
avoid referential integrity constraint violations. Referential integrity constraints
are constraints that enforce that every referenced value exists in the database.

We introduce an alternative approach, where both the generation and the
insertion of the generated values into the database are encapsulated in a sin-
gle monad called GenWithDBActions. This approach is very flexible, as these
extended generators, which use the GenWithDBActions monad, can be defined
similarly to normal generators. Additionally, the tester can define, which of
the generated values are inserted into the database. Extended generators which
were already defined can be reused in the definition of new generators, to avoid
redundant code, which makes this approach very compositional.

3.1 Motivating Example

ScalaCheck uses the Gen monad to encapsulate the random generation of val-
ues. There already exist some predefined generators, e.g. one that generates an
integer in the given range:

Gen.choose(min: Int, max: Int): Gen[Int]

For-comprehensions can be used to compose multiple generators into more
complex generators. In the example from Section 2.2, a generator for users is
implemented by combining three existing generators:

9

3. Writer Approach

val userGen: Gen[User] = for {

id <- Gen.uuid

name <- Gen.alphaStr

age <- Gen.choose(18, 80)

} yield User(id, name, age)

Generators can later be used to test whether certain properties are fulfilled
for all generated values. This can be achieved using the forAll method.

def forAll[A](gen: Gen[A])(f: A => Prop): Prop

This method has two arguments: The first argument is the generator, and the
second argument is a function, which checks whether a property is fulfilled for
a generated value. A simple property can be defined as follows:

val prop = forAll(userGen) {

user: User =>

user.age <= 80 && user.age >= 18

}

This test simply checks whether all generated users have an age in the correct
interval. The property is defined with a Boolean expression, which is internally
converted into a property of type Prop. The generator userGen is used to gen-
erate the user. This test is completely independent of the database. However,
there are many scenarios, in which the tested function requires existing con-
tent in the database. Therefore, we need the functionality, which adds content
into the database. Many database query libraries (e.g. Slick, Quill and Doobie)
provide a monad, which encapsulates database actions. In this thesis, we will
focus on the DBIO monad from the Slick library [Lightbend, 2012], but similar
approaches are possible for other libraries. The type signature of a method that
defines the database action to add a user can be defined as follows:

def insertUser(user: User): DBIO[User]

It is important to realize that calling this method does not have any effect on the
database. Instead, the method only returns a DBIO value. This DBIO value can be
executed at a later point to insert the value into the database. For this purpose,
we use the method run, which takes a database action, executes it, and returns
the result:

def run[A](dbio: DBIO[A]): A

In reality, DBIO actions are executed differently, but we stick to this method for
simplicity. Now we can define a test, which inserts the generated user into the
database.

val prop = forAll(userGen){

user: User =>

run(insertUser(user))

//test something

}

10

3.1. Motivating Example

task
*task_id
assignee_id
…

user
*user_id
…

Figure 3.1: A database schema with users and tasks. Each task entry references
an assigned user.

In this approach, all generated values are inserted into the database man-
ually in each property. In small scenarios, as the example above, this is not
a problem, but in more complex scenarios it can be a tedious and error-prone
task, as the insertions have to be in the correct order.

Consider the database schema in Figure 3.1. There is a table for tasks and a
table for users. Each task is assigned to a user. The generator of a Task takes
the UUID of a user as an argument, as it must be referenced. As both the user
and the task must be inserted into the database for the test, we need a combined
generator. This generator creates both a task and a corresponding user.

case class Task(name: String, assigneeId: UUID)

def taskGen(assigneeId: UUID): Gen[Task] = ???

val setupGen: Gen[Setup] = for {

user <- userGen

task <- taskGen(assigneeId = user.id)

} yield Setup(user, task)

Note that both, the user and the task, are returned by the generator, even if
the content of the user is irrelevant for the tested function. This is necessary,
since the user must be inserted into the database in the property. Now a pro-
perty can be defined:

val prop = forAll(setupGen){

case Setup(user, task) =>

run(insertUser(user))

run(insertTask(task))

//test something

}

With this approach, the user and the task have to be inserted manually. If the
task had been inserted into the database before the user, a referential integrity
constraint violation would occur, as the user does not exist yet. Therefore, the
tester has to insert the values in the correct order, which is an error-prone effort.
Clearly, this approach does not scale well, when database rows have numerous
direct or indirect dependencies.

11

3. Writer Approach

3.2 Generator Extension

To address the difficulties of manual database insertions, we introduce the mo-
nad GenWithDBActions, which encapsulates both the generation and the inser-
tion of values. Intuitively, a value of type GenWithDBActions[A] can be viewed
as a generator of type Gen[(DBList, A)], which does not only generate a value,
but a pair of the value and a list of database actions. For the list of database
actions, we use the type DBList. The generators can be combined as previ-
ously, but for each generated value, a database action handling the insertion
is appended to the DBList. After the generation is complete, all actions can be
executed at once.

Instead of actually working on a pair, we use a concept called Writer, as
directly generating a pair is impractical. A value Writer[L, A] of the Writer
monad encapsulates a computation where a stream of data of type L is attached
to the result of the computation of type A. This concept can be used, to collect
logging entries during a computation [Grabmüller, 2006]. In this case, the type L
is a list of logging entries. Another use case is code generation, where the code
is successively appended to the result [Brown and Sampson, 2009, Axelsson,
2016].

For our purposes, we utilize a Writer[DBList, A], which means that during
the computation database actions are collected and attached to the result. As in
our case the computation is a generator, this leads to the following type:

Gen[Writer[DBList, A]]

To simplify the access to the inner monad, we utilize the monad transformer
WriterT. A monad transformer is a structure that combines the functionality
of two nested monads into one [Liang et al., 1995]. In our case, the monad
transformer combines the behaviour of the Gen monad and the Writer monad.
The monad transformer does not change the semantic meaning but provides
additional methods, which make the usage of the monads more practical. The
first method useful to us is liftF:

def liftF[A](gen: Gen[A]): GenWithDBActions[A]

The liftF method exists in all monad transformers and converts (or lifts) a
value of the outer monad into a value of the combined monad. This means
that a normal generator Gen[A] can be converted into the extended generator
GenWithDBActions[A]. The second method we use is tell:

def tell[A](action: DBIO[A]): GenWithDBActions[Unit]

The tell method is specific to the Writer monad and is used to attach a value to
the stream of collected data of the computation. As we are collecting database
actions, we use the tell method to attach a database action to the generator.
The database action does not necessarily have to be an insertion, but insertions
are the most common.

12

3.2. Generator Extension

GenWithDBActions[Task]

userDBGenGen

taskGenGen

insertTask

GenWithDBActions[User]

userGenGen

insertUser

Figure 3.2: A visualization of the definition of GenWithDBActions generators.
The generator for a task can be defined by using the generator for a user.

Now we can start using GenWithDBActions for our example. Similarly to nor-
mal generators, GenWithDBActions can be combined using for-comprehensions:

val userDBGen: GenWithDBActions[User] = for {

user <- liftF(userGen)

_ <- tell(insertUser(user))

} yield user

The first line of the for-comprehension represents the generation of a user, and
the second line represents the insertion of the generated user into the database.
When the userDBGen is defined, neither the user is generated nor is the user
inserted into the database. Instead, the monadic value encapsulates the defini-
tion, how the user can be generated and inserted at a later point. This generator
can be used in the definition of other GenWithDBActions, as we will show in the
previous example from Figure 3.1:

val taskDBGen: GenWithDBActions[Task] = for {

user <- userDBGen

task <- liftF(taskGen(assigneeId = user.id))

_ <- tell(insertTask(task))

} yield task

The definition of the taskDBGen is visualized in Figure 3.2. A few things are
noteworthy in this example: Firstly, the user does not have to be inserted any-
more, because the insertion is already encapsulated in userDBGen. Secondly, the
UUID of the generated user can be used to define the generation of the task in the
next line. This demonstrates the compositionality of this approach. And lastly,
the return type GenWithDBActions[Task] does not have to contain the user any-
more. This is because the insertion of the user is already encapsulated in the
generator and therefore the user is no longer required. Using the taskDBGen, we
can define the property again:

val prop = forAll(taskDBGen) {

case ValueWithDBActions(task, actions) =>

actions.foreach(run)

//test something

}

13

3. Writer Approach

Now the generation does not only return the task but both the task and the
database actions. The type ValueWithDBActions is used as a container for the
generated values and the database actions. Before implementing the actual test,
we still have to run all database actions. However, in contrast to the previous
approach, we do not have to manually execute all actions anymore but can ex-
ecute all actions at once.

3.3 Refinements

As the pattern of executing all database actions in the beginning of a test occurs
frequently, we implemented the method forAllDB in order to simplify the tests:

def forAllDB[A](

genDB: GenWithDBActions[A])(

f: A => Prop

): Prop = ???

The type signature is very similar to the forAll method. The main difference
is that it takes an extended generator GenWithDBActions[A] instead of a regu-
lar generator Gen[A] as an argument. Internally, the forAllDB method executes
all database actions and uses the forAll method to evaluate the property after-
wards. Additionally, preliminary steps to prepare the database are included.
Using this method, a property can be defined as follows:

val prop = forAllDB(taskDBGen) {

task: Task =>

//test something

}

It is noticeable that calling the liftF and tell methods consecutively is an-
other frequently repeating pattern. This happens in situations when a given
conventional generator Gen should be converted into a GenWithDBActions which
only inserts the generated value into the database. An example is the user gen-
erator userDBGen we previously defined:

val userDBGen: GenWithDBActions[User] = for {

user <- liftF(userGen)

_ <- tell(insertUser(user))

} yield user

To simplify this pattern, we define an createAndInsert method:

def createAndInsert[A](

gen: Gen[A])(

implicit insertable: Insertable[A]

): GenWithDBActions[A]

In this method, the first parameter of the createAndInsertmethod is the genera-
tor. The second parameter is implicit, which means that the parameter does not

14

3.4. Discussion

customers
*customer_id
…

orders
*order_id
customer_id
…

order_items
*order_id
*item_id

products
*product_id
category_id
…

category
*category_id
…

GenWithDBActions[Order] GenWithDBActions[Product]

GenWithDBActions[Category]GenWithDBActions[Customer]

GenWithDBActions[OrderItem]

Figure 3.3: A demonstration of the compositionality of GenWithDBActions.
When the database schema is hierarchically structured, the generators can be
defined in the same structure.

have to be explicitly passed when the method is called. Instead, Scala searches
in the current scope for a value with the specified type and automatically passes
it as the argument. In this case, the implicit parameter is of type Insertable[A].
The type Insertable[A] encapsulates the information, how a value of type A
can be inserted into the database. For the createAndInsert method to work, the
tester has to provide an instance of Insertable[A] once. Given that this is the
case, the definition of userDBGen can be simplified to the following expression:

val userDBGen: GenWithDBActions[User] = createAndInsert(userGen)

Using this method generally avoids the risk of forgetting to specify the database
insertions in extended generators.

3.4 Discussion

The writer approach is especially suitable for hierarchically structured database
schemas. An example of a hierarchically structured database schema is shown
in Figure 3.3. In the example, customers can place orders. Each order contains
a set of products. This relationship is represented by the order_item table. Ad-
ditionally, products are assigned to product categories. To insert a single order
item into the database it is necessary to insert an order, a customer, a product,
and a product category beforehand. However, the extended generator for the
order item does not use the generators for the customer and category directly, as
the generators for the order and the product already include these generators,
respectively. Therefore, it is not necessary to focus on transitive dependencies

15

3. Writer Approach

task
*task_id
company_id
assignee_id
…

company
*company_id
…

user
*user_id
company_id
…

Figure 3.4: A database schema with tasks, users, and companies. Each task be-
longs to a company and has an assigned user. Additionally, the user references
the company they work at.

in this approach. This makes the generators maintainable, as changes to their
transitive dependencies do not affect the generators. Furthermore, redundant
code is avoided by the compositionality of the generators.

The implementation of generators is not so straightforward when the data-
base schema is not hierarchically structured. We show an example in Figure 3.4.
In the example, tasks belong to a company and have an assigned user. The user
references the company they work at. This database schema is not hierarchical,
as there are two paths from a task to a company. It is possible to define the gen-
erator similarly to the previous example: Whenever a table references another
table, the generator directly uses the generator of the other table. We visualize
this generator structure in Figure 3.5. The generator of a task uses the generators
of a user and a company. As the user belongs to a company, the user generator
uses the generator of a company as well. A drawback of this approach is that
it always generates the company of the user and the company of the task sepa-
rately. Therefore, the case that the user and the task belong to the same company
is never generated1. The scenario that the task and the user belong to the same
company can be generated in the following manner: The generator of a task
starts by generating a company. The ID of the generated company is passed to
the user generator so that the generated user can reference the same company.
In this case, the user and the company always belong to the same company. A
generator that can generate both scenarios can be defined by randomly choos-
ing between the two described generators. This example demonstrates that the
writer approach is very flexible, but in some scenarios, manual effort is required

1This statement is only true under the assumption that the generator never returns the same
company twice. This scenario cannot be generally ruled out. However, the probability is van-
ishingly small if UUIDs are used.

16

3.4. Discussion

GenWithDBActions[User] GenWithDBActions[Company]

GenWithDBActions[Company]

GenWithDBActions[Task]

Figure 3.5: A possible way to implement generators for the database schema in
Figure 3.4. In this case, the company of the user and the company of the task
are always independent of each other. The scenario that the user and the task
belong to the same company is never generated.

to avoid that corner cases are missed.

17

Chapter 4

Reference Graph Generator

When property-based tests are written for database applications, it is often sen-
sible to insert data into the database as a preliminary step. For the insertion of
rows into a database table, it is often necessary to insert rows into adjacent data-
base tables beforehand, due to foreign key references. As the adjacent database
tables can also have foreign key references, this can lead to long transitive refer-
ence chains. Depending on the database configuration, it might be necessary to
add the rows in a specific order, to avoid integrity constraint violations. Doing
this manually can be very laborious and cause a lot of boilerplate code. This
can also be hard to maintain, as changes in the database schema can make a lot
of changes in the test case generation necessary. Additionally, the generation
of test cases must be implemented carefully, so rare corner cases are not omit-
ted. We propose an algorithm to automate the process of creating references
depending on the database schema. The implementation uses seed-based ran-
domization such that the same seed always leads to the same generated graph.

4.1 Reference Schema

We focus only on the references between different rows and ignore the concrete
content of the columns. Therefore, we speak of proxies instead of rows. To
generate database content based on the proxies, the values of the columns need
to be generated as well. This can be done after the generation of the references
and is not a part of the proposed algorithm. We model both the schema and the
content of the database similarly to heterogeneous information networks but
utilize multigraphs.

Definition 4.1.1 (Multigraph). A (directed) multigraph is the structure
G = (V, E, s, t) where V is a finite set of vertices, E is a finite set of edges,
s : E → V defines the source vertex of an edge and t : E → V defines
the target vertex of an edge. Given an edge labelling function f : E →
LE, then (V, E, s, t, f) is called an edge labelled multigraph. Given an
additional vertex labelling function g : V → LV , then (V, E, s, t, f , g) is

19

4. Reference Graph Generator

User Company

Task object type

required ref. type

optional ref. type

Figure 4.1: An example of a reference schema. There are tasks, users, and com-
panies. A user can optionally work at a company. Each task belongs to a com-
pany and is assigned to a user.

called an edge and vertex labelled multigraph.

An alternative definition would represent a multigraph as a set of vertices
and a multiset of edges. We choose this approach to be able to differentiate
different edges with the same source and target vertex. The multigraph which
represents the database schema is called the reference schema. We define a
reference schema as follows:

Definition 4.1.2 (Reference Schema). A reference schema is an edge
labelled multigraph RS = (V , E , sourceType, targetType, necessity), where
necessity : E → { required, optional } is the edge labelling function. We
call the vertices object types and the edges reference types. For a reference
type rt ∈ E , we call sourceType(rt) the source type, targetType(rt) the
target type. We say rt is required iff necessity(rt) = required, and rt is
optional iff necessity(rt) = optional.

The vertices of a reference schema represent the database tables and the
edges represent foreign key constraints. Thus, the semantics of a reference type
between the object types v and w is that table v has a column that references
the primary key column of the table w. We included the edge-labelling func-
tion necessity to be able to model NOT NULL constraints of foreign keys. The
reference schema is a multigraph in order to allow multiple foreign key con-
straints between the same two tables. We do not model more complex database
constraints. An example of a reference schema can be seen in Figure 4.1.

4.2 Reference Graph

Using the definition of a reference schema we can now define the multigraph,
which represents the content of the database.

Definition 4.2.1 (Reference Graph). For a reference schema RS = (V ,
E , sourceType, targetType, necessity) an edge and vertex labelled and di-
rected RG = (V, E, s, t, ϕ, ψ) is called a reference graph for RS iff all the
following statements hold:

1. ϕ : V → V

20

4.2. Reference Graph

T1

U1 C1 U2

T2

reference

proxy

Figure 4.2: An example of a reference graph for the reference schema in Fig-
ure 4.1. C1 is of type Company, U1 and U2 are of type User and T1 and T2 are of
type Task.

2. ψ : E→ E

3. ∀e ∈ E : sourceType(ψ(e)) = ϕ(s(e)) ∧ targetType(ψ(e)) = ϕ(t(e)).

4. ∀v ∈ V : ∀rt ∈ E : | { e ∈ E | rt = ψ(e) ∧ s(e) = v } | ≤ 1.

We call the vertices proxies and the edges references. For every v ∈ V
we call ϕ(v) the type of v and for every e ∈ E we call ψ(e) the type of
e. For a reference e ∈ E, we call sourceType(ψ(e)) the source type and
targetType(ψ(e)) the target type of e. We call d ∈ E a dependency of
v ∈ V iff ϕ(v) = sourceType(d) and we call it a backward dependency
of v ∈ V iff ϕ(v) = targetType(d).

The vertices, or proxies, each represent a database row and the edges rep-
resent foreign key references. An example of a reference graph can be seen in
Figure 4.2. The third property states that the types of the source and target
of an edge match the definition of the reference schema. The fourth property
states that for a proxy, there are never multiple references that satisfy the same
constraint. However, by our definition, it is possible that for some required ref-
erence type there is no reference. This is intentional, since the property is not
fulfilled in intermediate steps of the algorithm.

Definition 4.2.2 (Fully Defined). Let RG = (V, E, s, t, ϕ, ψ) be a refer-
ence graph for the reference schema RS = (V , E , sourceType, targetType,
necessity), v ∈ V be a proxy and rt ∈ E be a reference type.

1. rt is satisfied for v :⇐⇒ ∃e ∈ E : ψ(e) = rt∧ s(e) = v

2. v is fully defined :⇐⇒ ∀rt ∈ E : necessity(rt) = required ∧ ϕ(v) =
sourceType(rt)⇒ rt is satisfied for v.

3. RG is fully defined :⇐⇒ ∀v ∈ V : v is fully defined.

Therefore, a reference graph is fully defined, if every proxy has a reference
for each required dependency of that proxy. We use the reference graph in Fig-
ure 4.2 as an example for the reference schema in Figure 4.1. Consider the ref-
erence type rt between the types User and Company. The reference type rt is

21

4. Reference Graph Generator

satisfied for a proxy of type User if the proxy has an outgoing reference of this
type. Since U1 is a user and references the company C1, rt is satisfied for U1.
However, rt is not satisfied for U2, because U2 has no corresponding reference.
A proxy is fully defined if all required dependencies are satisfied. The proxies
U1 and U2 are both fully defined, since their only dependency rt is optional. The
reference graph in Figure 4.2 is fully defined, as all its proxies are fully defined.

The content of reference graphs should be inserted into the database at some
point. Depending on the configuration of the database, it can be non-trivial to
decide in which order the rows should be added to the database, as an arbitrary
order can lead to referential integrity constraint violations. When a proxy v
references another proxy w, then the corresponding database row of v cannot
be inserted into the database before w. The concept of topological orderings can
be useful to address this challenge.

Definition 4.2.3 (Topological Ordering). Let G = (V, E, s, t) be a multi-
graph. The list v ∈ V|V| is called a topological ordering if and only if
the following properties hold:

1. ∀i, j ∈ { 1, . . . , |V| } : i , j =⇒ vi , vj

2. ∀e ∈ E : ∀i, j ∈ { 1, . . . , |V| } : s(e) = vi ∧ t(e) = vj =⇒ i < j

G is called acyclic iff a topological ordering exists for G.

When a topological ordering of the reference graph is known, the rows can
be inserted into the database in the reversed order. We designed the algorithm
to return not only a reference graph but also a topological ordering. It is a
known property of graphs that a topological ordering of a graph only exists
if and only if the graph has no directed cycles. For simplicity, we defined the
term acyclic with the existence of a topological ordering instead of the absence
of a cycle. A consequence of the acyclic property is that a topological ordering
does not exist for some reference graphs. Therefore, we decide to restrict the
generated reference graphs to acyclic reference graphs.

4.3 The Algorithm

The algorithm we propose can be seen in Algorithm 1. The input is an arbitrary
reference schema RS = (V , E , sourceType, targetType, necessity), a set of prede-
fined initial proxies IP and an amount of iterations. All initial proxies must
have a type from V assigned. The output is a reference graph for RS, which
contains all the predefined proxies IP. For a proxy v ∈ V we call a reference
r ∈ E a forward reference of v iff s(r) = v and a backward reference iff t(r) = v.
The algorithm uses a method ExpandForward, which visits proxies to generate
forward references, and a method ExpandBackward, which visits proxies to gen-
erate backward references. The algorithm proceeds by alternatingly calling the

22

4.4. Expand Forward

Input: The reference schema RS,
set of initial proxies IP,
iteration amount ∈N

Output: The reference graph and a topological ordering of the proxies.
RG = initial reference graph with V = IP and E = ∅;
mark all vertices as unvisited;
RG, partial ordering = ExpandForward (RS, RG);
ordering = partial ordering;
repeat iteration amount times

RG = ExpandBackward (RS, RG);
RG, partial ordering = ExpandForward (RS, RG);
ordering = partial ordering ++ ordering;

end
return RG, ordering;

Algorithm 1: The proposed algorithm to generate a random reference graph
based on a reference schema.

ExpandForward and ExpandBackward methods. Calling the ExpandForward and
ExpandBackward methods only once would restrict the set of reference graphs
that can be generated. After a set amount of iterations, which is defined by
iteration amount, the algorithm terminates. The algorithm marks the proxies
mutually exclusively, depending on which references were already added:

unvisited The proxy has not been visited yet. It is possible that the proxy was
newly created by the algorithm or was one of the predefined proxies.

forward visited The proxy has been visited once to create forward references
and is fully defined. However, the algorithm did not visit the proxy a
second time yet, to generate backwards references.

backward visited The proxy has been visited twice: Once to generate forward
references and once to generate backward references.

Each time the ExpandForward method was executed, the reference graph only
consists of forward visited and backward visited proxies. Each time the Expand-
Backward method was executed, the reference graph only consists of proxies
marked as unvisited or backward visited. The algorithm calls the ExpandForward
method last, to return a fully defined reference graph. For simplicity, we do not
explicitly define the functions ϕ and ψ of the reference graph but define the type
of each proxy and reference once it is generated.

23

4. Reference Graph Generator

Function ExpandForward:
Input: The reference schema RS,
the current reference graph RG
Output: The updated reference graph and an ordering of the visited

proxies
ordering = empty list;
while there are unvisited proxies in RG do

selected = randomly pick unvisited proxy from RG;
for dependency← all non-satisfied dependencies of selected do
/* Boolean decides whether reference is generated

for optional dependency */

doesGenerateOptional = randomly generate Boolean;
if (dependency is required) or doesGenerateOptional then

target type = the target type of dependency;
/* set of potential targets of new edge */

POT =

{ p | (p is not forward visited) ∧ ϕ(p) = target type } \
{ selected } ;
/* Boolean decides whether existing proxy or

newly created proxy is target */

useExistingProxy = randomly generate Boolean;
if (POT , ∅) and useExistingProxy then

target = pick random element of POT;
else

target = new proxy of type target type;
add proxy target marked as unvisited to RG;

end
add edge from selected to target of type dependency to RG;

end
end
mark selected as forward visited;
append selected to ordering;

end
return RG, ordering

end
Algorithm 2: The method to create forward references.

24

4.4. Expand Forward

4.4 Expand Forward

The ExpandForward method, which is responsible to generate all required for-
ward references, can be seen in Algorithm 2. It proceeds by successively visiting
unvisited proxies in a random order and generating forward references for the
selected proxy. For all required dependencies of the selected proxy, the neces-
sary references are generated, so it is fully defined afterwards. The proxy which
is being referenced can either be a new proxy or an existing proxy of the correct
type. The random Boolean useExistingProxy determines which of these cases is
chosen. However, a new proxy is always generated, if no suitable existing proxy
exists. It is also decided randomly, whether a reference is created for an optional
dependency. This random decision is determined by the random Boolean does-
GenerateOptional. Note that the set POT does not contain the proxies marked
as forward visited, so no references to proxies which were visited precisely once
are generated. This is intentional, as due to this decision, only acyclic reference
graphs are generated. It is later shown that, apart from acyclicity, this decision
does not further restrict the set of reference graphs that can be generated. The
list ordering is the order in which the proxies were visited. It is later helpful to
find a topological ordering of the proxies but has no further purpose.

4.5 Expand Backward

The ExpandBackward method, which is responsible for adding backward refer-
ences, is shown in Algorithm 3. Every proxy marked as forward visited is visited
and a random amount of backward references is added. The source of the ref-
erence is always a new proxy of the corresponding type. The generation of
forward references and backward references was separated, as otherwise, de-
pending on the exact definition, cycles could be generated.

4.6 Example

As an example, we are going to demonstrate, how the reference graph in Fig-
ure 4.2 can be generated using Algorithm 1. The execution of the algorithm
in this example is visualized in Figure 4.3. We assume that T1 is the only ini-
tial proxy. The algorithm starts by calling ExpandForward. T1 is of type Task,
which means that there are two required dependencies of T1: One to User and
one to Company. Neither a user nor a company exists yet. Therefore, when T1

is visited by ExpandForward in step 2, a proxy of type Company and a proxy of
type User must be generated. We refer to the generated user as U1 and the gen-
erated company as C1. As both U1 and C1 are marked as unvisited, the algorithm
decides randomly which of the proxies to visit in step 3.

25

4. Reference Graph Generator

Function ExpandBackward:
Input: The reference schema RS,
the current reference graph RG
Output: The updated reference graph
for selected← all proxies marked as forward visited do

mark selected as backward visited;
for backwardDependency← all backward dependencies of selected do

amount = randomly choose one of N;
source type = sourceType(backwardDependency);
repeat amount times

source = new proxy of type source type;
add proxy source marked as unvisited to RG;
add edge from source to selected of type

backwardDependency to RG;
end

end
end
return RG

end
Algorithm 3: The method to create backward references.

We assume that U1 is visited first. As U1 is of type User, there is only one
optional dependency to Company. There are three different possible outcomes:

1. The algorithm does not add a dependency, as the only dependency is op-
tional. This is the case if doesGenerateOptional is false.

2. Since C1 is unvisited and of type Company, the algorithm generates a ref-
erence from U1 to C1.

3. The algorithm generates a new proxy of type Company. This only happens
when doesGenerateOptional is true and useExistingProxy is false.

In our case, the algorithm chose the second option and a reference from U1

to C1 is generated. In step 4, the algorithm can only visit C1, as it is the only
unvisited proxy. Since C1 has no dependencies, no references can be generated
and ExpandForward terminates. The reference graph is fully defined.

If and how often ExpandBackward is called depends on the iteration amount
parameter. We assume that iteration amount is set to one and ExpandBackward
is executed a single time. T1 does not have any backward dependencies, because
no object type references tasks in the reference schema in Figure 4.1. Therefore,
no backward references can be generated for T1 in step 5. In step 6, U1 is visited.
The only backward dependency of U1 is to Task, which means that a random
amount of tasks, which reference U1, is generated. In our case, the random

26

4.6. Example

T1 T1

U1 C1

T1

U1 C1

T1

U1 C1

T1

U1 C1

T1

U1 C1

T1

U1 C1 U2

T2

T1

U1 C1 U2

T2

T1

U1 C1

T2

unvisited

forward_visited

backward_visited

1 2

43

5 6

87

9

F

F F

F

F

B

B B

F ExpandForward

B ExpandBackward

Figure 4.3: An example execution of Algorithm 1, which demonstrates how the
reference graph in Figure 4.2 can be generated. There are two executions of the
ExpandForward method and one execution of the ExpandBackward method.

27

4. Reference Graph Generator

T2 U2 T1 U1 C1

1. ExpandForward execution2. ExpandForward execution

Figure 4.4: The returned ordering of the example execution in Figure 4.3. The
proxies are topologically ordered, as all proxies only reference later proxies.

amount is 0 and no further tasks are generated. C1 has two backward depen-
dencies: Task and User. Therefore, a random amount of tasks and users, which
reference C1, is generated in step 7. In this case, this leads to the generation of
the proxy T2 of type Task. As no further proxies are marked as forward visited,
ExpandBackward terminates.

At this point, the reference graph is not fully defined, as T2 does not reference
a user. In order to return a fully defined reference graph, the algorithm gen-
erally executes ExpandForward after every ExpandBackward execution. This
ExpandForward execution is shown in the steps 8 and 9. Afterwards, the algo-
rithm returns the generated reference graph.

We show the ordering returned in this example in Figure 4.4. The proxies are
topologically ordered, as all proxies only reference later proxies. The proxies of
one ExpandForward execution are in the order in which they were visited: In
the first ExpandForward execution, the proxies were visited in the order T1, U1,
C1. The proxies of the second ExpandForward execution were visited in the
order T2, U2. But the proxies of the first ExpandForward execution are listed
after the proxies of the second ExpandForward execution. This is necessary as
proxies from the second ExpandForward execution can reference proxies from
the first ExpandForward execution.

4.7 Properties of the Algorithm

In this section, we prove two properties of the algorithm:

Correctness All generated reference graphs fulfil certain properties, e.g. they
are fully defined.

Completeness All relevant reference graphs can be generated by the algorithm
and no corner cases are missed.

The completeness is important because an incomplete generator would lead
to an incomplete test. The descriptions of correctness and completeness are

28

4.7. Properties of the Algorithm

vague, as we do not describe, which reference graphs are relevant and what is
meant by certain properties. In order to avoid ambiguity, we introduce a term
called desired. We prove that all generated reference graphs are desired, and
vice versa, all desired reference graphs can be generated by the algorithm. This
implies that the set of all reference graphs that can be generated is equal to the
set of all desired reference graphs. To define the term desired, we first need to
define undirected paths:

Definition 4.7.1 (Undirected Path). Let G = (V, E, s, t) be a multigraph,
n ∈ N, v0, . . . , vn ∈ V, and d1, . . . , dn ∈ { ., / }. An undirected path is
the pair p = (v0, ((vi, di))

n
i=1) with the following properties:

1. ∀i ∈ { 1, . . . , n } : (di = .)⇒ (∃e ∈ E : s(e) = vi−1 ∧ t(e) = vi)

2. ∀i ∈ { 1, . . . , n } : (di = /)⇒ (∃e ∈ E : t(e) = vi−1 ∧ s(e) = vi)

We define source(p) B v0 and target(p) B vn. We call . a forward step
and / a backward step.

For simplicity, we relax the notation in some occasions and write (v0 d1 v1 . . .
dn vn) instead of p = (v0, ((vi, di))

n
i=1). Therefore, the path (v0, ((v1, /), (v2, .)))

is written as (v0 / v1 . v2). The definition of desired consists of five different
properties:

Definition 4.7.2 (Desired). Let IP be a set of initial proxies, RS = (V , E ,
sourceType, targetType, necessity) be a reference schema, and ϕ0 : IP→ V
be a function, which assigns types to the proxies in IP. Let RG = (V, E,
s, t, ϕ, ψ) be a reference graph for RS. RG is called desired if and only if
all the following properties are fulfilled:

1. RG is acyclic.

2. RG is fully defined.

3. For every proxy v ∈ V there exists an undirected path p with
source(p) ∈ IP and target(p) = v.

4. IP ⊆ V.

5. ϕ is an extension of ϕ0. This means that ∀v ∈ IP : ϕ(v) = ϕ0(v).

The first property is necessary for a topological ordering to exist. Also, in
many domains, cyclic data should be avoided. This restriction is further dis-
cussed in Section 4.8.2. The reference graph needs to be fully defined, as oth-
erwise NOT NULL constraints in the database would be violated. The third
property states that all proxies that are generated are connected to at least one
of the initial proxies in IP. This avoids that the algorithm generates data that is
irrelevant for the test. This restriction is also discussed in Section 4.8.2. The last

29

4. Reference Graph Generator

two properties state that the algorithm does not change the type or remove the
initial proxies in IP.

In Section 4.7.1 we prove that all reference graphs generated by the algo-
rithm are desired. We continue by proving that all desired reference graphs can
be generated by the algorithm in Section 4.7.2.

4.7.1 Correctness

In this subsection, we prove that all generated reference graphs are desired. As
the definition of desired consists of five different properties, we prove each of
the properties separately. We start with the property that the generated refer-
ence graph contains all initial proxies.

Lemma 4.7.1 (Initial Proxies are Contained) Let IP be the initial proxies of the
input and RG = (V, E, s, t, ϕ, ψ) be the returned reference graph from Algorithm 1.
Then, IP ⊆ V holds.

Proof. The algorithm starts by adding all proxies from IP to the reference graph.
The algorithm never removes any proxies. Therefore, IP ⊆ V holds. �

The next property states that all proxies are generated for a reason, i.e. for
all generated proxies there is an undirected path from one of the initial proxies
to the generated proxy.

Lemma 4.7.2 (Is IP Connected) Let IP be the initial proxies of the input and RG =

(V, E, s, t, ϕ, ψ) be the returned reference graph from Algorithm 1. Then, for every
proxy v ∈ V exists an undirected path p with source(p) ∈ IP and target(p) = v.

The proof for this theorem is omitted. It can be shown by an induction on the
edges in the order in which they were added. Initially, all proxies have such a
path, as V = IP and empty paths are allowed. Whenever a new edge is added,
either the source or the target must have existed previously. Therefore, the path
to the previously existing proxy can be extended to the newly created proxy
and the statement still holds.

For the proofs that all generated reference graphs are fully defined and acyc-
lic, we need an auxiliary loop invariant. The loop invariant states that no prox-
ies can be unvisited between iterations of the while loop.

Lemma 4.7.3 (Loop Invariant) Before and after each iteration of the while loop of
Algorithm 1, each proxy is either marked as forward visited or backward visited.

Proof. Whenever a proxy is added to the reference graph, the algorithm marks
it. So every proxy is marked in the algorithm. The ExpandForward method
only terminates, when no proxy is marked as unvisited. Before the first iteration
of the while loop, the method ExpandForward was once called. Before each new
iteration of the while loop, ExpandForward was called at the end of the previous

30

4.7. Properties of the Algorithm

iteration of the while loop. This means that at the beginning of each iteration, no
proxy is marked as unvisited. As every proxy has to be marked, it is an invariant
of the while loop that each proxy is either marked as forward visited or backward -
visited. �

Using the loop invariant, we can now prove that all generated reference
graphs are fully defined.

Lemma 4.7.4 (Is Fully Defined) Let RG = (V, E, s, t, ϕ, ψ) be the reference graph of
the result of an execution of the algorithm. Then, RG is fully defined.

Proof. The reference graph is fully defined iff all proxies are fully defined. Let
v ∈ V be a proxy. We know from Lemma 4.7.3 that v is either marked as for-
ward visited or backward visited. In both cases, v has been visited in ExpandFor-
ward. Consider the step, in which v was visited. Let d ∈ E be a required depen-
dency of v. We have to show that d is satisfied for v after v was visited. If d was
already satisfied previously, it is also satisfied afterwards, as the algorithm does
not remove edges. If d was not satisfied previously, there is an iteration of the
for loop in which d is selected, as all non-satisfied dependencies of v are chosen.
Because d is required, the outer if block is executed. This implies that an edge
from v with type d is created. Therefore, d is satisfied, and v is fully defined. �

To show that all generated reference graphs are acyclic, we use the ordering
of the proxies, which is returned by the algorithm. We prove that this order-
ing is a topological ordering of all proxies of the reference graphs. This implies
that the reference graph is acyclic, since it is a known property of graphs that
topological orderings only exist for acyclic graphs. The returned ordering of
the proxies, which we use, is composed of partial orderings, which are returned
from ExpandForward. We start by proving that these partial orderings are topo-
logically ordered.

Lemma 4.7.5 (ExpandForward Ordering) Let RG = (V, E, s, t, ϕ, ψ) be a reference
graph and (v1, . . . , vn) ∈ Vn such that (RG, (v1, . . . , vn)) is the result of an execution
of the ExpandForward method. Then

∀i, j ∈ { 1, . . . , n } , e ∈ E : s(e) = vi ∧ t(e) = vj =⇒ i < j

holds.

Proof. Let i, j ∈ { 1, . . . , n } and e ∈ E with s(e) = vi and t(e) = vj. Suppose, for
the sake of contradiction, that i ≥ j.

Both vi and vj were visited in the current ExpandForward execution, as they
were added to the ordering list. We know that vi = vj is impossible, as there is
an edge between these proxies and the algorithm does not create self-references.
Therefore, i > j holds. As the algorithm only adds elements to the ordering list,
when they are visited, we know that vi was visited after vj.

31

4. Reference Graph Generator

Case 1: The edge e was created in the current ExpandForward execution.

This implies that e was created when vi was visited, as s(e) = vi. We
now consider the step, where e is created. As vj has been visited before
vi, vj must be marked as forward visited. As t(e) = vj, target = vj holds.
Therefore, either vj ∈ POT holds or vj is newly created. The former is im-
possible as vj is marked as forward visited and POT only contains proxies
marked as unvisited or backward visited. The latter is impossible, as vj has
already been visited before. This is a contradiction.

Case 2: The edge e already existed before the current ExpandForward execu-
tion.

Then, vi and vj also already existed before this ExpandForward execution.
As vi and vj were visited in this execution, they were marked as unvisited.
However, the edge e is not possible, when both vi and vj have not been
visited before. This is a contradiction.

�

To complete the acyclicity proof, we need another invariant of the algorithm.
This invariant states that once a proxy was visited, the algorithm cannot gener-
ate an outgoing reference for this proxy at a later point.

Lemma 4.7.6 (Completed Proxies) Consider any step of the algorithm. Let v be
a proxy marked as forward visited or backward visited. There is no later step of the
algorithm where an edge e with s(e) = v is created.

Proof. We only need to look at the case that v is marked as forward visited, since
every proxy marked as backward visited was marked as forward visited previ-
ously. Therefore, proving the statement for all proxies marked as forward vis-
ited, also proves the statement for all proxies marked as backward visited. Let’s
assume, for the sake of contradiction, that there is a later step of the algorithm,
where an edge e with s(e) = v is created.

Case 1: The edge e is created in ExpandForward.

As s(e) = v, the edge e is created when v is visited. However, v already
has been visited previously, as v was marked as forward visited. This is a
contradiction.

Case 2: The edge e is created in ExpandBackward.

As s(e) = v, v must be a newly created proxy. However, v already existed
previously, as v is marked as forward visited. This is a contradiction.

�

32

4.7. Properties of the Algorithm

Finally, we prove that the returned ordering of the algorithm is a topological
ordering, and the reference graph is acyclic. We specify a loop invariant, which
states that the ordering is topologically ordered before and after each iteration
of the while loop. This implies that the ordering is also topologically ordered
when it is returned. Additionally, we have to show that all proxies uniquely
occur in this ordering.

Theorem 4.7.1 (Topological Ordering) Let (v1, . . . , vn) be the returned ordering
and RG = (V, E, s, t, ϕ, ψ) be the returned reference graph of the algorithm. Then,
(v1, . . . , vn) is a topological ordering of RG and RG is therefore acyclic.

Proof. To prove that (v1, . . . , vn) is a topological ordering of RG, we need to
show three properties:

1. (v1, . . . , vn) ∈ V|V|

2. ∀i, j ∈ { 1, . . . , |V| } : i , j =⇒ vi , vj

3. ∀e ∈ E : ∀i, j ∈ { 1, . . . , |V| } : s(e) = vi ∧ t(e) = vj =⇒ i < j

We know from Lemma 4.7.3 that each proxy is either marked as forward -
visited or backward visited when the algorithm terminates. Every proxy marked
as backward visited was marked as forward visited previously Therefore, Expand-
Forward visited all proxies and added them to ordering. This implies that every
proxy in V must appear in (v1, . . . , vn). The list ordering cannot contain dupli-
cates, as only unvisited proxies are added. This is already sufficient to see that
the first two properties are fulfilled. To prove the last property, we construct a
loop invariant proof.

Loop Invariant: Let RG = (V, E, s, t, ϕ, ψ) be the current reference graph and
(v1, . . . , vn) be the current ordering before an iteration of the while loop. Then

∀i, j ∈ { 1, . . . , n } , e ∈ E : s(e) = vi ∧ t(e) = vj =⇒ i < j

holds.

Initialization: RG and (v1, . . . , vn) are the result of the first ExpandForward
execution. Due to Lemma 4.7.5, this implies that the invariant is satisfied.

Maintenance: We now look at an arbitrary iteration of the while loop. Let
(v1, . . . , vm) be the partial ordering returned from ExpandForward and RG′ =
(V′, E′, s′, t′, ϕ′, ψ′) be the updated reference graph returned from ExpandFor-
ward. We know from Lemma 4.7.5 that

∀i, j ∈ { 1, . . . , m } , e ∈ E′ : s′(e) = vi ∧ t′(e) = vj =⇒ i < j. (4.1)

33

4. Reference Graph Generator

Let RG = (V, E, s, t, ϕ, ψ) be the reference graph and (vm+1, vm+n) be the
ordering before the current iteration of the while loop. We assume that the loop
invariant is fulfilled for RG and (vm+1, . . . , vm+n):

∀i, j ∈ {m + 1, . . . , m + n } , e ∈ E : s(e) = vi ∧ t(e) = vj =⇒ i < j. (4.2)

We need to show that the loop invariant is fulfilled for the reference graph RG′

and the combined ordering

(v1, . . . , vm, vm+1, . . . , vm+n).

Let
i, j ∈ { 1, . . . , m, m + 1, . . . , m + n }

and e ∈ E be an edge with s′(e) = vi and t′(e) = vj.

Case 1: i, j ∈ { 1, . . . , m }.
We know from Equation 4.1 that i < j.

Case 2: i, j ∈ {m + 1, . . . , m + n }.
Therefore, vi, vj ∈ V existed before the current while iteration. That means
that vi and vj are marked as forward visited or backward visited, due to
Lemma 4.7.3. If e < E holds, then e must have been created in the cur-
rent while iteration. This is not possible due to Lemma 4.7.6. If e ∈ E
holds, then we know i < j from Equation 4.2.

Case 3: i ∈ { 1, . . . , m } , j ∈ {m + 1, . . . , m + n }. Then, the following sequence
of inequalities holds:

i ≤ m i ∈ { 1, . . . , m }
< m + 1

≤ j j ∈ {m + 1, . . . , m + n }

Case 4: i ∈ {m + 1, . . . , m + n } , j ∈ { 1, . . . , m }.
Then, vi was already visited before the current iteration of the while loop
and vj was not visited in a previous iteration. Lemma 4.7.3 implies that
vj must have been created in the current iteration. Therefore, e must have
been created in the current iteration of the while loop as well. This is not
possible due to Lemma 4.7.6.

�

In the following theorem, we conclude the correctness proof by showing
that all generated reference graphs are desired. We state that ϕ0 is an input of
Algorithm 1, although ϕ0 is not mentioned in the pseudocode. The reason is

34

4.7. Properties of the Algorithm

that, for simplicity, the explicit definitions of the type functions are omitted in
the algorithm. Instead, the pseudocode defines the type, whenever a reference
or a proxy is generated. However, to express the following theorem formally, it
is necessary to define the types of the proxies in IP. This is achieved using the
function ϕ0.

Theorem 4.7.2 (Correctness) Let RS = (V , E , sourceType, targetType, necessity) be
a reference schema, IP be a set of initial proxies and ϕ0 : IP → V be a function, which
assigns types to the proxies in IP. Suppose Algorithm 1 is executed with RS, IP, and
ϕ0 as the input and RG = (V, E, s, t, ϕ, ψ) is the output. Then, RG is desired.

Proof. To show that RG is desired, we need to show the following properties:

1. RG is acyclic.

2. RG is fully defined.

3. For every proxy v ∈ V there exists an undirected path p with source(p) ∈
IP and target(p) = v.

4. IP ⊆ V.

5. ϕ is an extension of ϕ0. This means that ∀v ∈ IP : ϕ(v) = ϕ0(v).

We know from Theorem 4.7.1 that RG is acyclic. Lemma 4.7.4 states that
RG is fully defined. The third property is fulfilled due to Lemma 4.7.2. In
Lemma 4.7.1 it was stated that IP ⊆ V.

The last property is the only property that has not been proven yet. Let
v ∈ IP. We need to prove that ϕ(v) = ϕ0(v). ϕ0(v) is the type of v in the input
of the algorithm. ϕ(v) is the type of v in the reference graph of the output. The
type functions are not explicitly defined in the pseudocode, but at no point of
the algorithm is the type of a proxy changed. Therefore, ϕ(v) = ϕ0(v) holds. �

4.7.2 Completeness

The next thing we prove is that, given a reference schema and the initial proxies,
every desired reference graph can be generated by the algorithm. This means
that a set of random choices exists, such that the algorithm outputs the speci-
fied reference graph. We prove the statement by constructing such an execution.
In the construction, we define how the algorithm should behave in all random
steps. Instead of being randomized, the algorithm can be viewed as being de-
terministic, where all random choices are controlled externally.

We start by classifying the proxies of the reference graph. The method Ex-
pandForward creates forward references, i.e. if an edge e ∈ E is generated, s(e)
exists already. The method ExpandBackward only creates backward references,
i.e. t(e) exists already. When a reference e ∈ E is generated in ExpandBackward,

35

4. Reference Graph Generator

U1 C1 U2

T1 T2

C2

initial proxy

Figure 4.5: An example of a reference graph for the reference schema in Fig-
ure 4.1. C1 is the only proxy from the initial proxy set IP.

then s(e) is always a newly created proxy marked as unvisited. Therefore, s(e)
cannot be visited in the same ExpandBackward execution. This means that only
one layer of new proxies is generated, i.e. a direct predecessor of an existing ver-
tex can be generated, but not a transitive predecessor. ExpandBackward has to
be called multiple times, to generate a transitive predecessor. As an example,
consider the reference graph in Figure 4.5. Assuming that U2 is generated in a
given ExpandBackward execution, then T2 cannot be generated in the same ex-
ecution of ExpandBackward, because U2 is still marked as unvisited. However,
in the next iteration of ExpandBackward, T2 can be generated as well. There-
fore, we separate the proxies into different layers, such that all proxies in the
same layer can be generated in the same iteration of the algorithm. To achieve
this, we introduce a concept called rank, which labels proxies w.r.t. the layer in
which they are located:

Definition 4.7.3 (Rank). Let RS = (V , E , sourceType, targetType, necessity
) be a reference schema and IP be a set of initial proxies. Let RG =

(V, E, s, t, ϕ, ψ) be a desired reference graph. Let p = (v0, ((vi, di))
n
i=1)

be an undirected path. We call p an IP-path of v ∈ V iff v0 ∈ IP and
vn = v. We know that for all v ∈ V an IP-Path must exist, due to the
third property of desired. An IP-path of v is minimal iff no IP-path of
v with fewer backward steps exists. The rankRG(v) is defined as the
amount of backward steps of a minimal IP-path. When the reference
graph is unambiguous, we also write rank(v). Let n ∈ N. The proxy v
is called an n-rank-source of RG if and only if the following properties
are fulfilled:

1. rankRG(v) = n.

2. ∀w ∈ V : (rankRG(w) = n =⇒ ¬∃e ∈ E : s(e) = w ∧ t(e) = v).

For some n ∈ N a proxy is an n-rank-source iff the proxy is not referenced
by another proxy of the same rank. This can be visualized as a source node in
the subgraph which only contains proxies of the same rank. Figure 4.6 shows
the rank of the proxies from the reference graph in Figure 4.5. The proxy C1 has
a rank of 0, because it is an initial proxy itself and therefore the minimal IP-path

36

4.7. Properties of the Algorithm

U1

C1

U2T1

T2

Rank 0:

Rank 1:

Rank 2:

initial proxy

n-rank-source

C2

Figure 4.6: An overview of the rank of the proxies from the reference graph in
Figure 4.5.

Condition Proxy generated in

rank(v) = 0
v ∈ IP Not generated

v < IP First ExpandForward

rank(v) = n
with
n ∈N≥1

v is an n-rank-source ExpandBackward in n-th iteration

v is not an n-rank-source ExpandForward in n-th iteration

Table 4.1: An overview of the part of the algorithm in which each proxy is gen-
erated in the execution we construct.

is (C1). The minimal IP-path of the proxy U1 is (C1 / U1), which leads to a rank
of 1. Additionally, U1 is a 1-rank-source, because it is not referenced by a proxy
of the same rank. The proxy C2 has a rank of 2, because the minimal IP-path
is (C1 / U2 / T2 . C2), which has 2 backward steps. C2 is not a 2-rank-source,
because it is referenced by T2, which also has a rank of 2.

The rank can be used to determine in which iteration of the while loop in
Algorithm 1 the proxy can be generated. If the rank of a proxy v ∈ V is 0
it means that there is an IP-path of v without backward steps. Therefore, the
method ExpandBackward is not necessary to generate v and v can be generated
before the first while iteration. If the rank of v is 1 it means that every IP-path of v
has at least one backward step. This implies that v was not generated before the
first iteration, because ExpandBackward must be called at least once to generate
v.

Suppose RG is a desired reference graph. The idea of the construction of an
execution, which generates RG is as follows: A proxy v ∈ V with rank(v) = n
for some n ∈N≥1 is generated in the n-th iteration of the while loop. If the proxy
is an n-rank-source, the proxy is generated in ExpandBackward, and otherwise,
the proxy is generated by ExpandForward. A proxy v ∈ V with rank(v) = 0 is

37

4. Reference Graph Generator

only created iff v < IP. The reason is that proxies in IP are always retained and
directly added to the reference graph, independently of the generation of new
proxies. If rank(v) = 0 and v < IP hold, then the proxy is generated in the first
ExpandForward execution before the while loop. If a proxy v ∈ V is a 0-rank-
source, then v is not generated by the algorithm at all, because we later prove
that v ∈ IP holds. If a proxy v ∈ V is not a 0-rank-source, but rank(v) = 0 and
v < IP holds, then v is generated by ExpandForward before the while loop. An
overview of when each proxy is generated can be seen in Table 4.1. Following
these instructions, the reference graph in Figure 4.5 is generated as follows:

1. C1 is not generated by the algorithm, as it is the initial proxy.

2. No proxies are generated in the first ExpandForward execution (before the
while loop).

3. U1 and T1 are generated in the first iteration of the while loop in Expand-
Backward.

4. U2 is generated in the first iteration of the while loop in ExpandForward
(the second execution of ExpandForward).

5. T2 is generated in the second iteration of the while loop in ExpandBack-
ward.

6. C2 is generated in the second iteration of the while loop in ExpandForward
(the third execution of ExpandForward).

We begin the completeness proof by showing some important properties
regarding the rank of the proxies. The first property is that proxies cannot ref-
erence a proxy of a higher rank. This is fulfilled the example in Figure 4.6, since
no reference is pointing upwards.

Lemma 4.7.7 (No Edges to Higher Rank) Let RG = (V, E, s, t, ϕ, ψ) be a desired
reference graph. Let e ∈ E be an edge. Then, rank(t(e)) ≤ rank(s(e)) holds.

Proof. Let n = rank(s(e)) be the rank of s(e). Therefore, there is an IP-Path p =

(v0, ((vi, di))
m
i=1) with m ∈N, vm = s(e), and n backward steps. Let vm+1 = t(e)

and dm+1 = .. Consider the path p′ = (v0, ((vi, di))
m+1
i=1), where the edge e was

appended to the path p. Because p is an IP-path for s(e) with n backward steps,
p′ is an IP-path for t(e) with n backward steps. Therefore, a minimal IP-path for
t(e) cannot have more than n backward steps and rank(t(e)) ≤ n holds.

�

The next property is that every non-empty, minimal IP-path to an n-rank-
source ends with backward step. This property is useful to prove the two

38

4.7. Properties of the Algorithm

subsequent lemmas. We use the reference graph in Figure 4.6 as the exam-
ple again. The minimal IP-path of U1 is (C1 / U1), which only has one back-
ward step. The proxy T2 has two different minimal IP-paths: (C1 / U2 / T2)

and(C1 / T1 . U2 / T2). They are both minimal because we defined minimal
with the amount of backward steps and not the total length. Both of these paths
end with a backward step.

Lemma 4.7.8 (Backward Step in IP-Path) Let IP be a set of initial proxies and RG =

(V, E, s, t, ϕ, ψ) be a desired reference graph. Let v ∈ V be an n-rank-source for some
n ∈ N. Let p = (v0, ((vi, di))

m
i=1) be a minimal IP-Path of v with m ∈ N≥1. Then,

the last step of p is a backward step: dm = /.

Proof. As m ≥ 1 holds, p is not empty. Assume for the sake of contradiction
that the last step dm = .. Then, there is an edge e ∈ E with s(e) = vm−1 and
t(e) = vm. Let p′ = (v0, ((vi, di))

m−1
i=1) be the path p without the last step. As p is

an IP-Path, v0 ∈ IP holds. Therefore, p′ is an IP-Path of vm−1. The path p′ has n
backward steps and is also minimal, since otherwise, p would not be minimal.
This implies that rank(vm−1) = n. Therefore, v cannot be n-rank-source, as the
edge e exist. This is a contradiction. �

The following property states that every 0-rank-proxy is one of the initial
proxies in IP. This property is used to justify that we do not generate 0-rank-
proxies in the execution we construct. Generating these proxies is not required,
as the algorithm adopts them from the set of initial proxies. In the reference
graph in Figure 4.6, only C1 is a 0-rank-proxy. The property is fulfilled, since C1

is an initial proxy.

Lemma 4.7.9 (0-Rank-Source is in IP) Let IP be a set of initial proxies, RG = (V,
E, s, t, ϕ, ψ) be a desired reference graph, and v ∈ V be a 0-rank-source proxy. Then,
v ∈ IP holds.

Proof. By the definition of an n-rank-source, rank(v) = 0 holds. Therefore, an
IP-Path p = (v0, ((vi, di))

m
i=1) with vm = v, v0 ∈ IP and without backward steps

exists. Assume for the sake of contradiction that p is not empty, so m ≥ 1 holds.
Then, Lemma 4.7.8 implies that dm is a backward step, which is a contradiction.
This implies that m = 0. Therefore, we know:

m = 0 =⇒ vm = v0

=⇒ v = v0 vm = v

=⇒ v ∈ IP v0 ∈ IP

�

We already showed in Lemma 4.7.8 that every non-empty, minimal IP-path
to an n-rank-source ends with a backward step. The next-to-last proxy, which is

39

4. Reference Graph Generator

C1

T1

Rank 0:

Rank 1:

initial proxy

n-rank-source

Figure 4.7: The input reference graph RG’ before the execution of ExpandFor-
ward.

the target of this backward step, always has the rank below (n− 1). Therefore,
for every n-rank-source with n ∈N≥1, an edge to a proxy with rank n− 1 exists.
This does not apply to 0-rank-sources, as there is no rank below. In Figure 4.6
the proxies U1, T1 and T2 all have an edge to the rank below.

Lemma 4.7.10 (N-Rank-Source has Edge to Rank Below) Let IP be a set of initial
proxies, RG = (V, E, s, t, ϕ, ψ) be a desired reference graph and v ∈ V be an n-rank-
source for some n ∈N≥1. Then, a proxy w ∈ V with the properties

1. rank(w) = n− 1

2. ∃e ∈ E : s(e) = v ∧ t(e) = w

exists.

Proof. By the definition of an n-rank-source, rank(v) = n holds. Thus, a minimal
IP-Path p = (v0, ((vi, di))

m
i=1) for v with n backward steps exist. As n ≥ 1 holds,

p is not empty and m ≥ 1. We know from Lemma 4.7.8 that dm is a backward
step. Therefore, there is an edge e ∈ E with s(e) = vm and t(e) = vm−1. Let p′ =
(v0, ((vi, di))

m−1
i=1) be the path without the last step. The path p′ is an IP-Path of

vm−1, as v0 ∈ IP holds. As p contains n backward steps and dm is a backward
step, p′ contains n− 1 backward steps. We also know that p′ is minimal, since
otherwise, p would not be minimal. Therefore, rank(vm−1) = n− 1 holds. Due
to the edge e, both properties are satisfied for vm−1.

�

Using the previous lemmas, we can now define an important property of
ExpandForward. We specify which criteria the input reference graph RG′ must
fulfil, in order to guarantee that a given reference graph RG can be generated
by ExpandForward. As an example, an input reference graph RG′ is shown
in Figure 4.7 and the corresponding output reference graph RG is shown in
Figure 4.8. In order to guarantee that RG can be generated by ExpandForward
with RG′ as the input, RG′ must be a subgraph of RG. In the example, this is the
case, as all proxies in RG′ are also contained in RG.

We assume that ExpandForward only generates proxies of the same rank in
one iteration. This simplifies the proof and does not restrict the reference graphs

40

4.7. Properties of the Algorithm

C1

U1T1

Rank 0:

Rank 1:

initial proxy

n-rank-source

C2

Figure 4.8: The output reference graph RG after the execution of ExpandFor-
ward.

that can be generated by the algorithm. Assuming that the maximal rank of RG
is r, only proxies with a rank of r are added to RG′. This implies that every
proxy in RG with a rank smaller than r already exists in the input graph RG′.
In the example, the maximal rank is r = 1. Therefore, all proxies in RG with
a rank of 0 must also be contained in the reference graph RG′. This property
is satisfied, since C1 is the only proxy with a rank of 0 and C1 is contained in
both reference graphs. Additionally, all r-rank-proxies of RG must be contained
in RG′. In the example, T1 is the only 1-rank-proxy. If T1 was not contained
in the input reference graph, then T1, U1 and C2 could not be generated by the
ExpandForward execution.

In the proof, we specify the random choices of ExpandForward that would
lead to the generation of RG. The random order, in which ExpandForward visits
the proxies, must be a topological order. In our example, the only topological
order is (T1, U1, C2). Therefore, T1 is visited first and the proxy U1 is generated.
U1 is visited afterwards and the proxy C2 is generated. Finally, the proxy C2 is
visited and ExpandForward terminates.

Theorem 4.7.3 (ExpandForward Property) Let RS = (V , E , sourceType, target-
Type, necessity) be a reference schema, IP be a set of initial proxies and RG = (V, E,
s, t, ϕ, ψ) be a desired reference graph. Let r B maxv∈V

(
rankRG(v)

)
be the maximal

rank in RG. Let RG′ = (V′, E′, s′, t′, ϕ′, ψ′) be a subgraph of RG with the following
properties:

V′ ⊆ V

{ v ∈ V | rankRG(v) < r } ⊆ V′

{ v ∈ V | v is r-rank-source of RG } ⊆ V′

E′ ⊆ E

{ e ∈ E | rankRG(s(e)) < r } ⊆ E′

(s′ = s|E′) ∧ (t′ = t|E′) ∧ (ϕ′ = ϕ|V′) ∧ (ψ′ = ψ|E′)

Let all proxies v ∈ V′ with rankRG(v) = r be marked as unvisited and all proxies
v ∈ V with rankRG(v) < r be marked as backward visited. Then, there are random
choices such that ExpandForward generates RG when RS and RG′ are the input.

41

4. Reference Graph Generator

Proof. Let Vr be the set of all proxies in RG of rank r:

Vr = { v ∈ V | rankRG(v) = r }

As RG is acyclic, there exists a topological ordering of RG. Such an ordering
of the proxies exists for every subset of V, because still no edge to a previous
element in the ordering can exist. Therefore, there exists a list o ∈ V|Vr|

r with the
following properties:

∀i, j ∈ { 1, . . . , |Vr| } : i , j⇒ oi , oj

∀e ∈ E : ∀i, j ∈ { 1, . . . , |Vr| } : (s(e) = oi ∧ t(e) = oj)⇒ i < j

This means that it is possible to visit each proxy before any successor of that
proxy was visited. Let n B |Vr| be the amount of proxies of rank r. We show
that it is possible that ExpandForward visits the proxies in the order of the list
o = (o1, . . . , on), i.e. there are random choices, which lead to this order of visits.
Additionally, we show that RG can be generated, when the proxies are visited
in this order. To achieve this, we use a loop invariant proof:

Loop Invariant: Before the k-th iteration and after the (k − 1)-th iteration of
the while loop, it is possible that all the following statements hold:

1. Precisely the following proxies were visited:

{ o1, . . . , ok−1 } , (4.3)

2. Precisely the following proxies were generated:

{ v ∈ V | ∃e ∈ E : s(e) ∈ { o1, . . . , ok−1 } ∧ t(e) = v } \V′ (4.4)

3. Precisely the following references were generated:

{ e ∈ E | s(e) ∈ { o1, . . . , ok−1 } } \ E′. (4.5)

Initialization: Let k = 1. Before the first iteration of the while loop in Expand-
Forward no proxies were visited, no proxies were generated, and no edges were
generated. This corresponds to the statements in the loop invariant:

1. Visited proxies: { o1, . . . , o0 } = ∅

2. Generated proxies: { v ∈ V | ∃e ∈ E : s(e) ∈ ∅ ∧ t(e) = v } \V′ = ∅

3. Generated references: { e ∈ E | s(e) ∈ ∅ } \ E′ = ∅

42

4.7. Properties of the Algorithm

Maintenance: We assume that the three statements of the loop invariant are
satisfied before the k-th iteration. In order to show that it is possible that these
statements still hold after the k-th iteration, we specify random choices, which
lead to the fulfilment of these statements.

The first random decision is, which of the unvisited proxies to visit next.
First, we show that it is possible that the algorithm chooses the proxy ok in the
k-th iteration. This requires that ok is currently in the set of unvisited proxies.
There are two different cases:

Case 1: ok ∈ V′. By the assumption of the theorem, every proxy v ∈ V′ with
rankRG(v) = r is marked as unvisited. Therefore, ok was unvisited at the
beginning of the ExpandForward execution. Because ok < { o1, . . . , ok−1 },
we know from Equation 4.3 it has not been visited before in this Expand-
Forward execution. This implies that ok is in the set of unvisited proxies.

Case 2: ok < V′. Because ok ∈ { o1, . . . , on }, we know that rankRG(ok) = r.
Since ok < V′, the definition of V′ implies that ok is not an r-rank-source
of RG. The fact rankRG(ok) = r and the definition of r-rank-source imply
that a reference e ∈ E exists with rank(s(e)) = r and t(e) = ok. Since
rank(s(e)) = r, we know that s(e) ∈ { o1, . . . , on }. As o is topologically
ordered and s(e) references ok, s(e) ∈ { o1, . . . , ok−1 } holds. The second
property of the loop invariant in Equation 4.4 and the fact ok < V′ imply
that ok was generated. Because ok < { o1, . . . , ok−1 }, it has not been visited
before in this ExpandForward execution. This implies that ok is in the set
of unvisited proxies.

Therefore, ok is in the set of unvisited proxies and can be visited in the k-th
iteration.

We assume that the proxy ok is chosen in the k-th iteration and show that it
is possible that the statements of the invariant hold after the k-th iteration. The
next random choice is the Boolean value doesGenerateOptional. We assume does-
GenerateOptional to be true if and only if dependency is satisfied for the proxy
selected in RG. This is possible, since the value is chosen randomly. There-
fore, an optional reference is only created iff it exists in E. If the dependency is
required, the if block is always executed, as this is checked in the if condition.
This makes sense, as RG is desired and therefore fully defined. This implies that
there is an edge in E, which satisfies dependency for the proxy selected. So when-
ever the if block is executed, there is an edge e ∈ E with dependency = ϕ(e) and
s(e) = selected.

We assume that the next Boolean value useExistingProxy is true iff t(e) ∈
POT. This is possible, since this value is also chosen randomly. If t(e) does
not exist already, then it cannot be in POT and t(e) is newly created. The case
that t(e) already exists, but is marked as forward visited, is impossible, as that
would mean, that t(e) was visited before s(e). This can never happen, as we

43

4. Reference Graph Generator

visit the proxies in the order of the list o. If t(e) already exists and is marked as
unvisited or backward visited, then an element from POT is chosen as the target
of the new edge. In this case, we assume that the algorithm picks t(e) as the
random target. This is possible, since t(e) is marked as unvisited or backward -
visited, and therefore t(e) ∈ POT holds. Thus, the algorithm only creates edges
that are in E and proxies which are in V. So no additional unnecessary edges or
proxies are created.

The set of proxies generated in the previous iterations of the while loop is
known from the loop invariant:

Vprev = { v ∈ V | ∃e ∈ E : s(e) ∈ { o1, . . . , ok−1 } ∧ t(e) = v } \V′

Provided the mentioned random values were chosen, the set of proxies gener-
ated in this iteration is:

Vnew = { v ∈ V | ∃e ∈ E : s(e) = ok ∧ t(e) = v } \ (Vprev ∪V′).

The set of all generated proxies by ExpandForward is:

Vnew ∪Vprev = { v ∈ V | ∃e ∈ E : s(e) ∈ { o1, . . . , on } ∧ t(e) = v } \V′.

Therefore, the second property of the loop invariant is fulfilled. For brevity, we
omit the definition of the set of generated references. The new set of visited
proxies is { o1, . . . , ok }, since only ok was visited in this iteration.

Termination: We assume that the three statements of the loop invariant are
satisfied after the n-th iteration. This is possible, due to the loop invariant. To
prove that the algorithm terminates after n iterations, we have to show that no
proxies are unvisited. Let v ∈ V be a proxy.

Case 1: rankRG(v) < r. Due to the definition of V′, v ∈ V′ holds. By the theorem
assumption, all proxies in V′ with rankRG(v) < r are marked as backward -
visited.

Case 2: rankRG(v) = r. By the definition of Vr, v ∈ Vr holds. Therefore, v is
in { o1, . . . , on }. Equation 4.3 from the loop invariant states that v was
visited.

Therefore, all proxies in V are visited. Additionally, we have to show that all
proxies V \V′ and all references E \ E′ were generated. We know that all proxies
in V \V′ were generated, since we showed that all proxies in V are visited. Let
e ∈ E \ E′ be a reference.

e ∈ E \ E′ =⇒ rankRG(s(e)) = r Def. E′

=⇒ s(e) ∈ Vr Def. Vr

=⇒ s(e) ∈ { o1, . . . , on } Def. o

=⇒ e was generated e < E′and Equation 4.5

�

44

4.7. Properties of the Algorithm

The idea of the completeness proof is to show that all proxies with a rank
of n can be generated in the first n iterations of the while loop of Algorithm 1.
An edge is generated as soon as both the source and the target of the edge were
generated. To formally define the intermediated reference graphs, we use a
concept called induced subgraph:

Definition 4.7.4 (Induced Subgraph). Let RG = (V, E, s, t, ϕ, ψ) be a
reference graph and V′ ⊆ V be a subset of the proxies. Then, the in-
duced subgraph RG[V′] = (V′, E′, s′, t′, ϕ′, ψ′) is a reference graph with
the following properties:

1. E′ = { e ∈ E | s(e) ∈ V′ ∧ t(e) ∈ V′ }

2. (s′ = s|E′) ∧ (t′ = t|E′) ∧ (ϕ′ = ϕ|V′) ∧ (ψ′ = ψ|E′)

As the set V′, which defines the content of the induced subgraph, we use
the set of proxies with a specific rank and below. So for a given rank r, we use
V′ = { v ∈ V | rank(v) ≤ n } as the set of proxies. For the reference graph in
Figure 4.6 this means that for a rank r = 1 the set of proxies is { C1, U1, T1, U2 }.
The following property states that the induced subgraph which only contains
these proxies is desired.

Lemma 4.7.11 (Induced Subgraph is Desired) Let RS = (V , E , sourceType, tar-
getType, necessity) be a reference schema, IP be a set of initial proxies, ϕ0 : IP → V
be a function, which assigns types to the proxies in IP and RG = (V, E, s, t, ϕ, ψ)

be a desired reference graph. Let n ∈ N and V′ = { v ∈ V | rank(v) ≤ n }. Let
RG′ = RG[V′] be an induced subgraph of RG. Then, RG′ is desired.

Proof. This lemma states that a desired reference graph stays desired when all
proxies with a specific minimal rank or above are removed. For brevity, we
only prove the most important property of desired, which is that RG′ is still fully
defined.

Let v ∈ V′ be a proxy. Let d ∈ E be a required dependency of v. As RG is
fully defined, an edge e ∈ E with s(e) = v and ψ(e) = d exists. Assume for the
sake of contradiction that e < E′. Then, t(e) < V′ and rankRG(t(e)) > n holds
by the definition RG′. Since e < E′ holds, we know that rank(s(e)) ≤ n. This is
a contradiction, due to Lemma 4.7.7. Therefore, e ∈ E′ holds, and RG′ is fully
defined. �

We prove the completeness property by induction on the iteration of the
while loop. In the n-th iteration, all desired reference graphs with a maximal
rank of n can be generated.

Theorem 4.7.4 (Completeness) Let RS = (V , E , sourceType, targetType, necessity)
be a reference schema, IP be a set of initial proxies, m ∈ N be an amount of iterations,
and RG = (V, E, s, t, ϕ, ψ) be a desired reference graph with maxv∈V

(
rankRG(v)

)
≤

m. Then, RG can be generated by Algorithm 1 with RS, IP and m as the input.

45

4. Reference Graph Generator

Proof. Let RS = (V , E , sourceType, targetType, necessity) be a reference schema, IP
be a set of initial proxies and m ∈ N. We will only show that every reference
graph with a maximal rank of n with n ≤ m can be generated in n iterations
of the algorithm. This also implies that every reference graph can also be gen-
erated in m iterations, even if m > n. The reason is that it is possible that all
subsequent iterations do not alter the reference graph. This would happen if Ex-
pandBackward always chooses 0 as the amount of proxies to add. The method
ExpandForward would also not add any proxies, as there are no unvisited prox-
ies to visit. We prove the statement by induction on the maximal rank of the
reference graph:

Base Case: Let n = 0. Let RG = (V, E, s, t, ϕ, ψ) be a desired reference graph
with

max
v∈V

(
rankRG(v)

)
= n.

Therefore, all proxies have a rank of 0. Let RG′ be the initial reference graph
with only the initial proxies IP. We know from Lemma 4.7.9 that every 0-rank-
source proxy of RG is in IP. This means that all 0-rank-proxies of RG are in V′.
We now know from Theorem 4.7.3 that RG can be generated by the first Expand-
Forward execution. No proxy is marked as unvisited, as this is a postcondition of
ExpandForward. There is also no proxy marked as backward visited, as Expand-
Backward was never called. Therefore, all proxies are marked as forward visited.

Induction Hypothesis: Given some n ∈ N with n ≤ m, then every desired
reference graph with

max
v∈V

(
rankRG(v)

)
= n

can be generated in n iterations of the while loop of the algorithm such that every
proxy of rank n is marked as forward visited and all other proxies are marked as
backward visited.

Induction Step: Let RG = (V, E, s, t, ϕ, ψ) be a desired reference graph with

max
v∈V

(
rankRG(v)

)
= n + 1.

Let Vprev be defined as

Vprev = { v ∈ V | rankRG(v) < n + 1 } .

Let RGprev be the induced subgraph RG
[
Vprev

]
. We know from Lemma 4.7.11

that RGprev is desired. V contains proxies of rank n, because there exist IP-Paths
to proxies of rank n + 1. Therefore,

max
v∈Vprev

(
rankRG(v)

)
= n

46

4.7. Properties of the Algorithm

holds. Now we know from the Induction Hypothesis that RGprev can be gener-
ated in n iterations. We show that in the next iteration of the while loop, RG can
be generated.

First, we specify which random choices in the ExpandBackward method
lead to the generation of all (n + 1)-rank-source proxies. The only random
choice of this method is how many backward references are created per proxy.
We know from Lemma 4.7.10 that for each (n + 1)-rank-source proxy v ∈ V,
there is a successor w ∈ V of v with rankRG(w) = n. Since rankRG(w) = n holds,
we know that w ∈ Vprev holds, and w is contained in RGprev. By the induction
hypothesis, w is marked as forward visited and therefore visited in ExpandBack-
ward. When w is visited, the backward reference to v can be generated, as an
arbitrary amount of proxies is generated for every dependency of w. Therefore,
all (n + 1)-rank-source proxies can be generated. The proxy v might have mul-
tiple successors w, but the proxy v shall only be generated once. However, since
the amounts of generated proxies are random, it is possible that the backward
reference to v is only created for one of the successors. In this case, the set of
newly generated proxies is:

Vnew = { v ∈ V | v is (n + 1)-rank-source of RG }

Let RG′ = (V′, E′, s′, t′, ϕ′, ψ′) be the returned reference graph from Expand-
Backward assuming the specified random choices are made. Our goal is to use
Theorem 4.7.3 to show, that RG can be generated in the next ExpandForward
execution with RG′ as the input. Therefore, we have to show that the assump-
tions of Theorem 4.7.3 are fulfilled. We know that Vprev ⊆ V and Vnew ⊆ V hold.
V′ = Vprev ∪Vnew implies:

V′ ⊆ V

The definition of Vprev and the fact Vprev ⊆ V′ imply:

{ v ∈ V | rankRG(v) < n + 1 } ⊆ V′

The definition of Vnew and the fact Vnew ⊆ V′ imply:

{ v ∈ V | v is (n + 1)-rank-source of RG } ⊆ V′

Since RGprev is an induced subgraph of RG, all edges in Eprev are also contained
in E. We assumed that ExpandBackward only generates edges in E. Therefore,
we know:

E′ ⊆ E

The definition of Vprev, the definition of induced subgraph, and Lemma 4.7.7
imply:

{ v ∈ V | rank(v) ≤ n } = Vprev Def. Vprev

=⇒{ e ∈ E | rank(s(e)) ≤ n ∧ rank(t(e)) ≤ n } = Eprev Def. ind. subgr.

=⇒{ e ∈ E | rank(s(e)) ≤ n } = Eprev Lemma 4.7.7

=⇒{ e ∈ E | rank(s(e)) ≤ n } ⊆ E′ Eprev ⊆ E′

47

4. Reference Graph Generator

Therefore, we know from Theorem 4.7.3 that RG can be generated in the
following ExpandForward execution. All proxies v with rankRG(v) ≤ n are
marked as backward visited, as they were either already backward visited in the
previous iteration or were visited in ExpandBackward in the current iteration.
The proxies with rank n + 1 have been created in the current iteration, and
therefore cannot have been visited by ExpandBackward. As no proxies can be
marked as unvisited when ExpandForward terminates, these proxies are marked
as forward visited.

�

4.8 Discussion

In this section, the advantages, disadvantages and limitations of the algorithm
are discussed.

4.8.1 Termination

An important property of the algorithm, which was not discussed previously,
is its termination. The algorithm is not guaranteed to terminate under all con-
ditions. Consider the case that the reference schema contains a directed cycle
of which all edges are required. We call a cycle of this kind a required cycle.
It corresponds to a referential cycle of database tables, where each of the for-
eign keys is not nullable. Every reference graph, which contains at least one
proxy in the required cycle of the reference schema, therefore contains a cycle.
However, the algorithm we defined can only return acyclic reference graphs, so
it can never return. We do not consider this a notable limitation, as required
cycles are very problematic in general. For Azure SQL databases these cycles
are even prohibited [Azure, 2010]. A possible refinement of the algorithm is
to check if the reference schema has required cycles in advance, and possibly
return a corresponding error message.

A more interesting case is a referential cycle in the database, where at least
one of the foreign keys is nullable. We call such a cycle an optional cycle. If
a reference schema contains an optional cycle, the algorithm as it is currently
defined also does not guarantee termination, as the algorithm might randomly
decide to always create a reference, although it is optional. This problem can be
fixed with a small change: When the reference graph already reached a certain
size, references are no longer created when they are optional. Therefore, at some
point only required references are created and the algorithm terminates.

A reasonable change to the algorithm would be to have a different termi-
nation condition for the while loop. Currently, the while loop terminates after a
predefined amount of iterations. However, in some cases, it would make sense
to define a maximal amount of proxies instead. But if the size threshold is a

48

4.8. Discussion

maximal amount of proxies in the reference graph, it is possible that in one
iteration of the while loop no further proxies are generated. In this case, the al-
gorithm makes no progress towards the size threshold. Therefore, termination
cannot be guaranteed anymore. One way to solve this problem is to terminate
if the algorithm did not increase the size of the reference graph in one iteration.
In general, the termination condition must be chosen carefully.

4.8.2 Restrictions

The algorithm we proposed only generates desired reference graphs. The defi-
nition of desired already implies two limitations: The first limitation is that only
reference graphs are generated, where every proxy is connected to one of the
initial proxies. This is an intentional decision to avoid the generation of data-
base rows, which are completely unrelated to the database rows, we wanted to
generate. Consider the reference schema in Figure 4.1, and suppose we want
to generate a company to test its behaviour. To achieve this, the set of initial
proxies can be defined as a single proxy of type Company. In most cases, the
existence of a user only makes a difference to the behaviour, if it is in some way
connected to the company. For example, the connection could be that the user
works at the company or is assigned to a task of this company. Thus, the algo-
rithm does not generate unrelated users. However, there are exceptions to that
rule. For example, if the tested function searches for potential employees for
the company, then the existence of unrelated users can influence the result. It is
possible to solve this problem, by adding a random number of proxies of type
User to the initial proxy set beforehand. This example shows that it is impor-
tant to carefully define the initial proxy set, as otherwise corner cases may be
missed.

The second limitation caused by only generating desired reference graphs is
that only acyclic reference graphs are generated. This is also an intentional de-
cision, as it is often considered a good practice to avoid relationship cycles of
database entries. However, this does not mean that we prohibit cycles on a ta-
ble level. We will introduce an example, where allowing cycles on a row-level
can lead to problems: Let’s consider an approach to store a list-like structure in
a relational database. There is a database table Element with an optional field
successorId, which points to the next element in the list. If cycles were allowed,
an element could point to itself. Semantically, this would mean that the list is
infinitely large and has no last element. You would run into similar issues when
defining tree-like structures. Another problem is the insertion of cyclic content
into the database. When the content is acyclic, each row can be inserted before
it is referenced, so no integrity constraint violations occur. This is not possi-
ble when the content contains cycles. Even when all rows are inserted in the
same transaction, integrity constraint violations can occur, as in some database
management systems like PostgreSQL and Oracle, the foreign key constraints

49

4. Reference Graph Generator

are checked after each insert by default. This can be changed by adding DE-
FERRABLE INITIALLY DEFERRED to all relevant foreign keys, which means
that these constraints are only checked after the transaction is completed. How-
ever, it would be a significant limitation, if the test case generation only worked
on databases, where the foreign keys are labelled as DEFERRABLE INITIALLY
DEFERRED. For these reasons, we decided to generate acyclic reference graphs
only. Allowing self-references but no larger cycles would still avoid the problem
of inserting the content, but we still decided against it.

4.8.3 Constraints

We will now discuss, which constraints can be expressed using our approach
and which cannot. We divide constraints into three categories: The first cat-
egory is foreign key constraints. They can be expressed with our approach, as
the foreign key constraints are integrated into the reference schema and are used
to generate references. We call the second category local constraints, which are
constraints that only depend on the content of a single row. Examples are that
a numeric value has to be in a specified range or a NOT NULL constraint. Lo-
cal constraints are not modelled into the reference schema. But our approach
only generates proxies, which later should be replaced with actual database
rows with content. The generation of these rows should take local constraints
into account in order to satisfy them. We call constraints which do not fit in
the first two categories complex constraints. In general, complex constraints can-
not be expressed using our approach, which is one of the main limitations of
our approach. An example is that every company must have at least five em-
ployees. As these constraints can get arbitrarily complex, a constraint solver is
required to satisfy them reliably. There are approaches of test case generation
using constraint solvers, however, we considered this to be beyond the scope of
this thesis.

4.9 Implementation

We implemented the proposed algorithm in Scala in a project-independent li-
brary. As a proof of concept, the library was used to generate test data for a
real-world application. The reference graph generator uses the writer approach
from Chapter 3, so the output of the algorithm is a GenWithDBActions. There-
fore, the generation and insertion of the values are both encapsulated into a
single monad. This has the following benefits:

The generation of the graph is completely seed-based. If a test fails, the
failure can be reproduced by generating the same graph with the same
seed again.

50

4.9. Implementation

The reference graph generator can be combined with other generators.
Therefore, a previous generator can randomly generate the parameters of
the reference graph generator. Additionally, subsequent generators can
generate the input depending on the values which are inserted into the
database.

The generated database content can easily be inserted into the database
in a single transaction. For example, the forAllDB method, which is de-
scribed in Section 3.3, can be used, in order to insert all generated content
automatically before the property is evaluated.

4.9.1 HList

The generator returns the list of generated database rows. These are useful to
define the correct behaviour of a method. However, more important than all
rows, which were generated, are the generated rows, which correspond to the
initial proxies. For example, consider a set of initial proxies, which contains one
Proxy[User] and one Proxy[Company]. The algorithm potentially creates a lot
of database rows, but the most interesting part is the User, which corresponds
to the Proxy[User] and the Company, which corresponds to the Proxy[Company].
One possible approach is to separately return the set of all database rows which
correspond to one of the initial proxies. If the tester is interested in one specific
row, they could iterate over the set to find it. The type of the set would have to
be Set[Any], as the elements can have arbitrary types. This approach is flawed,
as the elements cannot be accessed in a type-safe manner and the tester has to
search for the values they are interested in. To solve this problem, we utilized
a concept called HList (heterogeneous list). An HList is a list of values with
different types, where the type of each element of the list is already known at
compile-time. At the same time, they are more powerful than tuples, as it is
possible to define operations as .map() on them, without knowing the size. In
our implementation, the initial proxies are modelled as an HList. The type of
the HList could be Proxy[User] :: Proxy[Company] :: HNil, which means the
list contains two elements: The first element is of type Proxy[User], and the
second element is of type Proxy[Company]. In this case, the initial proxy list can
be defined as follows:

val userProxy: Proxy[User] = ???

val companyProxy: Proxy[Company] = ???

val initialProxies = userProxy :: companyProxy :: HNil

As the output of the algorithm has the type GenWithDBActions, a property can
be defined using the forAllDB method from the writer approach.

val graphGen = ReferenceGraphGenerator.gen(initialProxies)

51

4. Reference Graph Generator

val prop = forAllDB(graphGen) {

case ProxySetup(initialRows , allRows) =>

val user: User = initialRows(_1)

val company: Company = initialRows(_2)

//test something

}

The generated database rows which correspond to the initial proxies are rep-
resented as an HList called initialRows. As the types of the initial proxies are
known at compile-time, the types of the generated values in initialRows can be
derived to be User :: Company :: HNil at compile-time. This makes it possible
to access these generated values in a type-safe manner.

4.9.2 Templates

The reference graph generator takes the values that should be generated as in-
put. Therefore, the tester can specify requirements like “two users U1 and U2 and
a company C1 shall be generated”. However, this does not specify in which rela-
tionship the generated values are. The generated users and the company can
either be connected or be independent of each other. In some test scenarios, the
relationship between the generated values is essential. To address this issue, a
template can be defined for proxies. The template contains some predefined ref-
erences of the proxy, which are taken into account by the algorithm. This makes
it possible to specify the requirement “two users U1 and U2 that work at the same
company C1 shall be generated”. This can be viewed as having an initial references
set IR additionally to the initial proxies set IP.

4.9.3 Configuration

As a preliminary step, the tester has to define the following methods, which
determine how proxies of a given type are generated:

genRefs Defines how forward references are generated for a proxy type. Here,
the tester can specify the probability that optional references are gener-
ated. For example, it can be specified that only for 20% of the generated
users a company is referenced. Additionally, the tester can control the
probability of the choice, whether existing or new proxies are referenced.

genBackRefs Defines how many backward references are generated for a given
type. For example, the tester can specify that for each company between
10 and 20 employees are generated. This customization is important, as
generating many backward references for all proxies can result in larger
reference graphs than necessary. It requires domain knowledge to decide,
which backward references are relevant, and which are not.

52

4.9. Implementation

gen Specifies how content for the attributes of the current database row is gen-
erated. For example, the tester can specify that the age of users is always
above 18. The tester should take database invariants and constraints,
which only affect the current row, into account, when they define this
method.

insertable Defines how the generated values can be inserted into the database.
The Insertable type, which is described in Section 3.3, can be used to
simplify the definition.

53

Chapter 5

Stateful Property-Based Testing

Testing the behaviour of a stateful system has two main challenges[Chays et al.,
2000]:

Controllability Putting a system into the desired state before execution of a test
case

Observability Observing its state after execution of the test cases

The controllability can be dealt with by generating data and inserting it into the
database before a test is executed. The writer approach in Chapter 3 and the ref-
erence graph generator in Chapter 4 are approaches which solely focus on this
challenge. The challenge of observability is more complex than it might seem.
The goal is to verify that the tested functionality made the correct changes to the
database. While it is easy to check whether all expected changes were made, it
is harder to verify that no additional undesirable changes were made. Compar-
ing the complete database state before and after the execution is unreasonably
complex.

The approach of stateful property-based testing, which was described in Sec-
tion 2.3, addresses the challenges of controllability and observability differently:
It treats the system as a black box and ignores the fact that a database is in-
volved. The system is brought into the state by the generation and the execution
of a random sequence of commands. If a single command is viewed as a test
case, all previous commands are responsible for the controllability of that test
case. The observability is solved implicitly: By testing whether all subsequent
commands behave as expected, it is indirectly checked, whether the system was
brought into the correct state. Because when the current command brings the
database into an undesired state, subsequent commands likely return different
values than expected. Therefore, each command can simultaneously address
both challenges.

In the context of this thesis, we used this approach to test two different
projects: The first one is a protocol system called Cap3 Protokollsystem1, and we

1https://protokollsystem.de/

55

https://protokollsystem.de/

5. Stateful Property-Based Testing

Generate command

Next Abstract State

FALSE
TRUE

NO

Execute command sequence
on SUTYES

SUCCESS

FAILURE

NO

YES

check
postconditions

check
preconditions

desired sequence
length reached?

Figure 5.1: A state diagram, which visualizes the generation of test cases using
the offline testing technique.

modelled a part of the application with 14 commands. The second one is an in-
ternal time tracking project called Captre, in which we tested most of the project
with 11 commands. There are already diverse case studies of stateful property-
based testing using either the QuickCheck or ScalaCheck framework, which
already show that the approach is effective at finding bugs (see Section 6.2). For
this reason, we do not present the projects and our tests in detail, but solely
discuss our experiences and the challenges we encountered.

5.1 Problem of Non-Determinism

Many real-world applications contain non-deterministic or unpredictable be-
haviours. Examples are the usage of timestamps, the generation of UUIDs and
the generation of tokens. The generation of UUIDs and tokens are randomized
by design and the value of a timestamp can be unpredictable from an outside
perspective, since the scheduler cannot be controlled. The goal of the abstract
model is to define the intended behaviour of the application, but in these cases,
there are many different possible behaviours and not a single correct one. De-
pending on which of two techniques is used for the test case generation, this
can present challenges. With the first technique – called offline testing [Veanes
et al., 2008] – the test generation and the test execution are independent phases.
In Figure 5.1 we show an exemplary state diagram for this technique. The com-
mand sequence is generated using exclusively the abstract model before any
command was executed on the system under test. We demonstrate how this can
present challenges in an example application that consists of two commands:

56

5.1. Problem of Non-Determinism

def createUser(name: String): UUID // non-deterministic

def getUserById(id: UUID): User

The command createUser can be executed without prerequisites and returns
the ID of the generated user. However, the command getUserById always fails,
unless it is called with the ID of a previously generated user. As the abstract
model cannot predict, which ID will be created by the system under test, no
valid command sequence can be created, beforehand. A small change to the
commands solves the problem:

def createUser(id: UUID, name: String): Unit

def getUserById(id: UUID): User

By passing the ID to the createUser method, the internal behaviour becomes
deterministic and can be predicted. Now, the abstract model can specify which
ID should be used, and therefore knows which is required by the getUserById
method.

The second technique used for the test case generation is called online testing
or on-the-fly testing[Veanes et al., 2008] and is visualized in Figure 5.2. In this
technique, the test generation and the test execution happen in the same phase.
Instead of generating the entire command sequence at once, one command is
generated and executed at a time. The result of the executed command influ-
ences the abstract model, and therefore also the generation of the subsequent
commands. When a part of the application is non-deterministic, the abstract
model can observe the non-deterministic choices in the results of the execu-
tion. Therefore, the non-deterministic behaviour no longer presents the demon-
strated challenges.

While QuickCheck uses the online-based technique, ScalaCheck – the frame-
work we use – employs the offline-based approach. One workaround for this
problem is to move all non-deterministic behaviours out of the core of the appli-
cation logic, as in the example above. Then, the core of the application is purely
deterministic and can be tested using this approach. The part of the application,
which makes the non-deterministic choices, is not tested. In many cases, this is
not a problem, as this part contains no application logic. However, the draw-
back of this workaround is that the implementation of the system under test has
to be altered for the test to work, which may be undesirable. Scenarios in which
the non-deterministic behaviour of the application cannot be clearly separated
from the application logic are also problematic. In the projects we tested, this
workaround was already sufficient, as most of the non-deterministic behaviour
was already separated from the application logic.

Andersson and Lindbom [2017] also ran into the problem of non-determin-
ism when testing with ScalaCheck. One workaround they propose is to let the
abstract model create its own independent abstract identifier for each command

57

5. Stateful Property-Based Testing

Generate command

Execute Command &
Next Abstract State

FALSE
TRUE

NO
YES

SUCCESS

FAILURE

FALSE

TRUE

check
postconditions

check
preconditions

desired sequence
length reached?

Figure 5.2: A state diagram, which visualizes the generation of test cases using
the online testing technique. Based on a diagram by Arts and Castro [2011].

that returns an identifier. When the command is executed, a mapping between
the abstract identifier and the actual identifier, which is returned by the sys-
tem under test, is created. This mapping is later used to compare the beha-
viour of the abstract model with the behaviour of the system under test. This
workaround solves the issue of non-deterministically chosen identifiers. How-
ever, other non-deterministic behaviours still present challenges. Therefore,
they tested a part of the application using the online testing approach. There
already exists an issue in the ScalaCheck repository regarding this problem, but
no solution is implemented at the time of writing2.

5.2 Challenge of Command Statistics

When an application is tested using stateful property-based testing, it may be
useful to see how often each command is executed. In particular, it is important
to know for the tester, whether commands, which have strong preconditions
and can only be executed in rare scenarios, are sufficiently tested. Addition-
ally, if a mistake in the implementation of the precondition is made, a particular
command may never be executed. It can also occur that a command is never
executed due to a bug in the precondition. Most property-based testing frame-

2https://github.com/typelevel/scalacheck/issues/199

58

https://github.com/typelevel/scalacheck/issues/199

5.2. Challenge of Command Statistics

works have a feature to classify test cases in order to collect statistics about the
generated data. As an example, we assume the following command sequences
were generated:

sequence 1: [Deposit, Withdraw, Withdraw, GetBalance , Withdraw]

sequence 2: [Deposit, Withdraw, Withdraw]

sequence 3: [Deposit, GetBalance]

Ideally, the statistics look something like this:

scala> prop.check

+ OK, passed 100 tests.

> Collected test data:

50% Withdraw

30% Deposit

20% GetBalance

To use the ScalaCheck statistics feature, the tester can use the method classify
to classify a test case with a label. One obvious approach is to classify a test case
with the name of the command each time a command is executed. ScalaCheck
then internally collects all labels that occurred in one test execution in a label
set. In the context of stateful property-based tests, one test execution is the
execution of an entire command sequence. Therefore, the collected label sets
are as follows:

label set 1: {Deposit, Withdraw, GetBalance}

label set 2: {Deposit, Withdraw}

label set 3: {Deposit, GetBalance}

Here, some information is already lost, as the labels are stored in a set. The set
only represents which labels occurred, and not in which order and how often
each label occurred.

After all test executions, ScalaCheck prints, for each label set, how often this
label set occurred. This leads to the following output:

scala> prop.check

+ OK, passed 100 tests.

> Collected test data:

33% Deposit, Withdraw, GetBalance

33% Deposit, Withdraw

33% Deposit, GetBalance

This is contrary to what we want, as ScalaCheck does not show, how often a sin-
gle command was executed, but how often each combination of commands was
executed. In a more realistic setting with numerous commands, long command
sequences, and numerous test executions, ScalaCheck prints many incompre-
hensible combinations of commands, where each combination of commands
only occurs a single time.

It is not easy to change the classify-approach for stateful property-based
testing without changing the classify-approach in general. The entire stateful

59

5. Stateful Property-Based Testing

property-based test is implemented as a regular property and is therefore ex-
ecuted just like other properties. One approach we considered is generating
a UUID each time a test case is classified with a command. The command in
combination with the UUID is then used as the label. Due to the uniqueness
of UUIDs, duplicate commands are no longer removed from the label set. We
implemented an alternative approach, where the entire sequence of generated
commands is put into a single label. After the execution of all command se-
quences, these labels are cumulated and evaluated. This way we were able to
gain the information, how often each command was executed. However, due
to the experimental nature of our implementation, we refrained from pursuing
it further.

5.3 Bug in Shrinking Algorithm

When ScalaCheck finds a failing command sequence, it tries to minimize the
counterexample in a process called shrinking. We noticed that there are scenar-
ios, where shrinking leads to invalid command sequences, in which not all pre-
conditions of the commands are satisfied. However, it turned out to be a known
bug. At the time of writing, a fix for the bug is in progress3. We switched to an
earlier version of ScalaCheck, where the bug does not exist.

5.4 General Experiences

Using the stateful property-based testing approach, we were able to find a bug
in a real-world application virtually without additional effort a week before
a release. Additionally, more minor issues and unexpected behaviours were
found. We noticed that the issues found by the property-based approach only
occur in scenarios, which likely would not have been explicitly tested in a con-
ventional unit test. This demonstrates the advantage of this approach: The test
is not limited by the thoroughness and creativity of the tester, due to the ran-
domized nature. Setting up the abstract model and the testing infrastructure
is an initial effort overhead, but adding more commands was in most cases
straightforward. We also noticed that the shrinking of the command sequence
can be surprisingly useful. The shrunken command sequence is often minimal
and can be viewed as a list of steps to reproduce the bug, which helps a lot to
isolate the source of the problem.

3https://github.com/typelevel/scalacheck/pull/739

60

https://github.com/typelevel/scalacheck/pull/739

5.5. Hybrid Approach

5.5 Hybrid Approach

In this section, we discuss the idea of generating an initial state of a stateful
property-based test as a preliminary step. For this purpose, the writer approach
in Chapter 3 and the reference graph generator in Chapter 4 can be used. As
we already discussed in the beginning of this chapter, the stateful property-
based testing approach addresses the challenge of controllability implicitly by
executing a random sequence of commands. This makes it seem unnecessary
to generate an initial state of the system additionally. However, there are still
reasons to put the system into a specific state as a preliminary step:

Databases may contain legacy data, which cannot be generated with the
current API anymore. When the commands represent the current state
of the API, it is not tested if the system still works for the legacy data.
Therefore, it makes sense to intentionally fill the database with legacy data
and test whether the system still behaves as expected afterwards.

There are stateful property-based tests that only cover one part of an ap-
plication. In those cases, it can be sensible or even necessary to insert data,
which cannot be created by that part of the application, into the database
beforehand. This makes a lot of sense in large applications, where a test
that covers the entire application is neither desired nor feasible.

In test cases, where large amounts of data should be generated, it is far
more efficient to generate and insert all data at once, instead of gener-
ating a long sequence of commands and executing all commands. This
is particularly important when there are numerous commands, and each
command only has a slight impact on the current state.

Some commands have very specific preconditions, which are rarely sat-
isfied. Therefore, it cannot be guaranteed if and how often a test case
with that command is executed. This problem can be solved by manually
bringing the system into a specific state and generating random command
sequences from there on.

In stateful property-based tests, the abstract model always has to match the
real system. If the database is initially filled with data, the abstract model fre-
quently has to contain a representation of that data as well. There are two ways
to achieve this with randomly generated data: The first approach is to use da-
tabase queries after the insertion to collect the data which should be contained
in the abstract model. This approach works independently of the data gener-
ation but requires the additional laborious step of querying the data from the
database. The cleaner approach is to collect the data while it is generated. In
general, this is unproblematic when the data generation is separated from the

61

5. Stateful Property-Based Testing

Stateful Property-Based Test

genInitialState

generates the initial state of the
abstract model

newSUT

creates a new system under test (SUT)
based on the initial state of the abstract

model

initialState
initial state of abstract

model

Figure 5.3: The genInitialState method generates the initial state of the ab-
stract model. ScalaCheck passes the initial state to the newSUT method at a later
point. Note that this image does not visualize the concept of stateful property-
based testing in general, but only the two depicted methods.

data insertion. However, the generation with the writer approach does not nec-
essarily return all generated values. A generator of type GenWithDBActions[A]
only returns a value of type A, although more data can be inserted into the data-
base. If the generator is specifically implemented for the stateful property-based
test, this is not a problem, as the type A can be chosen to contain all generated
data. Alternatively, the type A can even be the abstract state itself. In that case, a
generator of type GenWithDBActions[State] encapsulates both, the generation
of the abstract state and the insertion of corresponding data into the database.
When the reference graph generator is used, all generated values are contained
in A, so the abstract state can be constructed. An alternative approach, which
might seem plausible, is to first generate an abstract state and afterwards insert
all data from the abstract state into the database. However, this can be difficult
in practice, as in most cases the abstract state only contains a simplified repre-
sentation of the data and not actual data that can be inserted into the database.

In this section, we assume that the reference generator approach is chosen,
but the writer approach can be integrated in a similar fashion. There are dif-
ferent approaches to integrate the reference graph generation into the state-
ful property-based test. The initial state of the abstract model is generated
by the genInitialState method. The newSUT method uses the generated ini-
tial state to create and prepare the system under test (SUT), which in our case
means that data is inserted into the database. Figure 5.3 visualizes this re-
lation between genInitialState and newSUT. As the content of the reference
graph must be included in the abstract model and in the system under test, the
reference graph must be accessible to the genInitialState and newSUT meth-
ods, respectively. The reference graph must be accessible to the newSUT and
genInitialState methods, because they are responsible to include the content
of the reference graph into the abstract model and into the system under test,
respectively. We considered three approaches to integrate the reference graph
generation.

62

5.5. Hybrid Approach

Stateful Property-Based Test

genInitialState
initialState

Reference
Graph

Reference Graph
Generator

newSUT

creates a new system under test (SUT)
based on the initial state of the abstract

model

Figure 5.4: Illustration of the internal generation approach. The reference graph is
generated in the genInitialState method. The method appends this reference
graph to the initial state so that the newSUT method can insert the content of the
reference graph into the database.

5.5.1 Internal Generation

The first approach, which is illustrated in Figure 5.4, is to generate the setup
in the genInitialState method. Conceptually, this makes a lot of sense, as the
purpose of the reference graph generator is to generate the initial state of the
application. A problem of this approach is that the genInitialState method
only provides the state of the abstract model to the framework. The system un-
der test is only created at a later point in the newSUT method. When the system
under test is created in the newSUT method, the content of the reference graph
has to be inserted into the database so that the database matches the abstract
state. The abstract state is the only parameter of the newSUT method. There-
fore, all required information to put the database into the desired state must be
contained in the abstract state, which is passed to the newSUT method. This can
be achieved by adding the generated reference graph to the abstract state. A
drawback of this approach is that the reference graph has to be contained in the
abstract state indefinitely, although it might serve no purpose for the abstract
model of the application. We implemented a stateful property-based test using
this approach as a proof of concept.

5.5.2 External Generation

In this approach, the reference graph is generated independently of the stateful
property-based test. This approach is visualized in Figure 5.5. In order to make
the reference graph accessible to the genInitialState and newSUT methods, it is
passed to the test as an argument and made globally accessible inside the test.
The advantage over the previous approach is that the reference graph does not
need to be part of the abstract state anymore.

63

5. Stateful Property-Based Testing

Stateful Property-Based Test

Reference Graph
Generator

Reference
Graph

Reference
Graph

newSUT

creates a new system under test (SUT)
based on the initial state of the abstract

model

initialState
initial state of abstract

model
genInitialState

generates the initial state of the
abstract model

Figure 5.5: Illustration of the external generation approach. The reference graph
is generated independently of the stateful property-based test and passed to the
test as an argument.

Setup Command

Abstract Model

execute execute

System Under Test (SUT)

Reference Graph
Generator

Reference
Graph

Reference
Graph

Figure 5.6: Illustration of the generation in command approach. An additional
command called Setup Command is defined. The setup command can be exe-
cuted on the system under test to insert the generated values into the database.

5.5.3 Generation in Command

The third approach is visualized in Figure 5.6. It is conceptually different to
the previous two approaches, since the reference graph is not passed to the
genInitialState and newSUT methods at all. Instead, an additional command
called Setup Command is defined, which is responsible for the generation of the
reference graph. When the command is executed on the system under test, the
values are inserted into the database and when the command is executed on the
abstract model, the values are added to the state of the model. The tester can
use the part of the test which specifies the generation of the command sequence
to define when the Setup Command can be executed. One obvious choice is
to allow this command only as the head of the list, which corresponds to the
behaviour of the previous approaches. However, it is possible to allow the in-
sertion of more data at a later point as well. Here, the tester must be careful, as
allowing multiple Setup Commands might lead to unreasonably long execution
times. An advantage of this approach is that if a test fails, the Setup Command
can be removed in the shrinking process just like any other command. This
makes the minimal failing test case more comprehensible in situations, where
the reference graph generation did not contribute to the failure of the test.

64

Chapter 6

Related Work

We viewed two different fields as related work: The first one is test data gener-
ation. There is a variety of different approaches for test case generation, includ-
ing the generation of data specific for relational databases. We present some of
these approaches in Section 6.1. The second related field consists of different ap-
proaches of property-based testing or testing in general in the context of stateful
systems. We present these approaches and some case studies in Section 6.2.

6.1 Test Data Generation

Often, there are reasons why live data of a database cannot be used for testing:

The database does not contain sufficient test cases.

The database contains private or sensitive data.

There are approaches which use data mining tools like machine learning [Li,
2020] or statistical models [Patki et al., 2016] to examine the structure of real
database content and generate synthetic database content with similar charac-
teristics. As these approaches require real data to generate the test data, they
are unsuitable for regression testing, as real user data might not exist yet. It can
also be the case that existing user data is not diverse enough for some test cases,
or there exists no data for a new feature that should be tested before production.

There are also specification languages like SDDL (Synthetic Data Descrip-
tion Language)[Hoag and Thompson, 2007] and DGL (Data Generation Lan-
guage)[Bruno and Chaudhuri, 2005], which can be used to define how test data
should be generated. They are meant for populating entire databases with real-
istic values, while we want to generate a small amount of custom data, which
is suitable for a specific test case.

Some data generators focus especially on the performance and scalability
of the generation [Gray et al., 1994, Rabl and Jacobsen, 2012, Alsharif et al.,
2018]. Such generators are useful for benchmarks of database applications or

65

6. Related Work

DBMS. However, as property-based tests are meant to be executed frequently, it
is not feasible to generate a large database each time. Our focus is on generating
diverse data, which covers as many corner cases as possible, instead.

Chays et al. [2000] design a database generator with the purpose of test-
ing the correctness of an application. The generator takes the database schema
as the input and generates content, which satisfies the specified integrity con-
straints. The generator assumes that all database tables are specified in a topo-
logical ordering, i.e. each table only references tables at a previous position.
This assumption simplifies the generation of references, as the content for ta-
bles can be generated in the specified order. Whenever a referential integrity
constraint references a column of a different table, a random value from that
column can be picked, since content for the referenced table was generated pre-
viously. However, this implies that in contrast to our generator, the generator
does not work on database schemas with referential cycles. In a later refine-
ment, the generator automatically searches for a topological ordering, instead
of expecting the tables to be topologically ordered in the database schema. But
the problem of referential cycles is not addressed [Chays et al., 2004]. Houkjær
et al. [2006] propose an alternative approach, which can handle referential cy-
cles in the database schema. They build a graph model of the database schema,
which is similar to our reference schema in the sense that each vertex represents
a database table. Similarly to the other approach, the algorithm first gener-
ates content for tables that do not reference other tables. Data for a table with
references can be generated, as soon as data for all tables it references was gen-
erated. However, when the algorithm finds a referential cycle in the graph, it
proceeds as follows: The algorithm breaks the cycle by filling one of the foreign
key columns with temporary values. Now, data for all tables in the cycle can
be generated, successively. Once the generation is completed, the temporary
values are replaced with actual references. Contrary to our approach, cycles on
a row-level are not avoided.

The mentioned generators have the purpose of generating test case indepen-
dent databases and generate all entries for a given table at once. Our approach
on the other hand generates all entries separately in a demand-driven fashion.
This is intentional to avoid the generation of data, which is not required for a
specific test case. There are other approaches, where the generated database
content is tailored for a specific test case. Mannila and Raiha [1985] propose
a technique to generate database content based on a single SQL query using
functional dependencies. Later, Binnig et al. [2007a] propose a technique called
reverse query processing, which takes an SQL query and the corresponding query
result as the input, and generates database content, such that the query can re-
turn the given result. QAGen is a similar approach but has the purpose to test a
DBMS instead of a database application [Binnig et al., 2007b]. These approaches
are substantially different from our approach, as they calculate a minimal data-

66

6.2. Testing Stateful Systems

base, which satisfies specific criteria, while our approach is largely randomized
and takes a set of desired rows as input. To the best of our knowledge, no ap-
proaches of relational data generation specific for property-based testing were
proposed at the time of writing.

6.2 Testing Stateful Systems

There already exists a lot of research in the context of stateful property-based
testing. Arts et al. [2006] introduced the concept of stateful property-based test-
ing in a tool called Quviq QuickCheck. It was used to test telecommunication
software under development at Ericson. The approach was later extended to
generate multiple command sequences and execute them in parallel, which is
useful to test concurrent behaviour and thread-safety of applications. For this
purpose, the tool PULSE was introduced, which gives the test a higher control
over the schedule of an Erlang program and makes concurrent behaviour deter-
ministically reproducible [Claessen et al., 2009]. Multiple race conditions were
found using this approach in the Mnesia database management system [Hughes
and Bolinder, 2011]. However, PULSE was not used in this case study due to
technical difficulties. In a later case study, Quviq QuickCheck was used to test
AUTOSAR Basic Software for Volvo Cars and concluded that it is more efficient
and less costly compared to conventional testing approaches [Arts et al., 2015].
Another project tested using this approach is Dropbox [Hughes et al., 2016]. Ex-
amples of case studies for stateful property-based testing using the ScalaCheck
framework are the e-commerce platform Bizzkit [Christensen et al., 2019] and
the Orchestra system from Qmatic [Andersson and Lindbom, 2017].

67

Chapter 7

Conclusion

We presented an approach to extend the generators of property-based tests by
including the information, how generated values can be inserted into a data-
base. The approach is highly flexible and is especially useful to test custom
scenarios, defined by the tester. Just like conventional generators, the extended
generators are composable, such that a generator can be defined using existing
generators. This is useful to avoid redundant code and simplifies the generation
of values with numerous direct or indirect references.

Additionally, we proposed an algorithm, which automatically generates ref-
erences for a set of desired database entries. This reference generator can han-
dle situations, where it is difficult and laborious to manually write generators
that do not leave out corner cases. We have proven that the generator is com-
plete in the sense that all acyclic, connected database contents can be generated.
Most existing generators generate all values for a given table at once, while our
approach is demand-driven, as it proceeds on a row-level. The algorithm is
implemented in a library such that it can be used to generate test data for exist-
ing projects. The implementation is integrated with the ScalaCheck library, as
properties can be defined using the reference graph generator and the generator
can be combined with other generators. All generated values can automatically
be inserted into the database in an order, such that no referential integrity con-
straints are violated during the insertion.

Lastly, we proposed different techniques to combine the reference graph
generator with the existing approach of stateful property-based testing. This
hybrid approach has the advantage over a pure stateful property-based test that
the database can be initialized with data, which cannot be created by any of the
commands. This is a useful property when the stateful property-based test does
not cover the entire application. Additionally, it can be useful to test, whether
a new version of an application meets all expectations when it is executed on a
database with legacy data. We implemented a test using the hybrid approach
as a proof of concept.

69

7. Conclusion

7.1 Future Work

Shrinking is an important feature of property-based testing, as it makes test
failures more comprehensible and easier to reproduce. In the writer approach,
generators additionally collect database actions, which can be used to insert the
generated data into a database. When shrinking is only applied to the gener-
ated values, but not to the list of database actions, then database content does
not match the generated values anymore. Shrinking the generated values and
the list of database actions in a way that they still correspond to each other is
difficult to achieve in the writer approach. For this reason, we did not shrink the
generated values. In order to improve the practicality of the writer approach, it
makes sense to examine, if and how shrinking could be used in this case.

The contents of databases often have invariants between database tables,
which cannot be represented by just referential integrity and NOT NULL con-
straints. Currently, the reference graph generator only supports these two con-
straints. This is not a problem for invariants, which only affect a single database
row, as the tester can write custom generators for these rows, which take the in-
variants into account. But extending the reference graph generator to be able to
handle more inter-table constraints would be a great improvement. One exam-
ple is the ability to specify minimal and maximal cardinalities for relationships
between the content of two database tables. The tester can currently specify
that for a given database entry, at most n backward references are generated
in the ExpandBackward method. However, it is still possible that the entry is
referenced more than n times, as ExpandForward might create these references
when other entries are visited. This problem can be solved by keeping track
of how often each entry is being referenced and prohibiting the generation of
further references once the maximal cardinality is reached.

The reference graph generator needs information about the used database
schema, for example, which relationships between the tables exist. Currently,
the tester has to manually specify these details. However, as the schema of a da-
tabase can be queried, it is possible to automate this process. A suitable tool for
this task is the code generator from the Slick library, as it is meant to generate
code based on a database schema and is highly customizable1. When doing this,
an approach should be chosen, where all generated code can be overwritten, so
that the tester can customize the specifications and no flexibility is lost. This
is important because the tester knows database invariants, which cannot be de-
rived from the database schema. The code generator would significantly reduce
the overhead of setting up the reference graph generator for a new project.

1https://scala-slick.org/doc/3.3.3/code-generation.html

70

https://scala-slick.org/doc/3.3.3/code-generation.html

Bibliography

A. Alsharif, G. M. Kapfhammer, and P. McMinn. Domino: Fast and effective
test data generation for relational database schemas. In 2018 IEEE 11th Inter-
national Conference on Software Testing, Verification and Validation (ICST), pages
12–22. IEEE, 2018.

D. Andersson and D. Lindbom. Generative scenario-based testing on a real-
world system. Master’s thesis, Chalmers University of Technology, 2017.

T. Arts and L. M. Castro. Model-based testing of data types with side effects. In
Proceedings of the 10th ACM SIGPLAN Workshop on Erlang, pages 30–38, 2011.

T. Arts, J. Hughes, J. Johansson, and U. T. Wiger. Testing telecoms software with
quviq quickcheck. In M. Feeley and P. W. Trinder, editors, Proceedings of the
2006 ACM SIGPLAN Workshop on Erlang, Portland, Oregon, USA, September 16,
2006, pages 2–10. ACM, 2006. doi: 10.1145/1159789.1159792. URL https:
//doi.org/10.1145/1159789.1159792.

T. Arts, J. Hughes, U. Norell, and H. Svensson. Testing AUTOSAR software with
quickcheck. In Eighth IEEE International Conference on Software Testing, Verifica-
tion and Validation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015, pages
1–4. IEEE Computer Society, 2015. doi: 10.1109/ICSTW.2015.7107466. URL
https://doi.org/10.1109/ICSTW.2015.7107466.

E. Axelsson. Compilation as a typed edsl-to-edsl transformation. arXiv preprint
arXiv:1603.08865, 2016.

M. Azure. Finding circular foreign key references: Azure blog and
updates: Microsoft azure. https://azure.microsoft.com/en-gb/blog/

finding-circular-foreign-key-references/, Jul 2010.

C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. In 2007 IEEE
23rd International Conference on Data Engineering, pages 506–515. IEEE, 2007a.

C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. Qagen: generating query-aware
test databases. In Proceedings of the 2007 ACM SIGMOD international conference
on Management of data, pages 341–352, 2007b.

N. C. Brown and A. T. Sampson. A trip down memory lane in haskell, 2009.

71

https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1109/ICSTW.2015.7107466
https://azure.microsoft.com/en-gb/blog/finding-circular-foreign-key-references/
https://azure.microsoft.com/en-gb/blog/finding-circular-foreign-key-references/

N. Bruno and S. Chaudhuri. Flexible database generators. In K. Böhm, C. S.
Jensen, L. M. Haas, M. L. Kersten, P. Larson, and B. C. Ooi, editors, Pro-
ceedings of the 31st International Conference on Very Large Data Bases, Trond-
heim, Norway, August 30 - September 2, 2005, pages 1097–1107. ACM, 2005.
URL http://www.vldb.org/archives/website/2005/program/paper/wed/
p1097-bruno.pdf.

D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J. Weyuker. A framework
for testing database applications. In Proceedings of the 2000 ACM SIGSOFT
international symposium on Software testing and analysis, pages 147–157, 2000.

D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and E. J. Weyuker. An
agenda for testing relational database applications. Software Testing, verifica-
tion and reliability, 14(1):17–44, 2004.

L. Christensen, N. Heltner, A. Lascari, and N. Mølby. Sm2-tes project property-
based testing of the bizzkit api. Accessed on 10.6.2021, 2019. URL https:
//www.larspetri.dk/pdfs/tes.pdf.

K. Claessen and J. Hughes. Quickcheck: a lightweight tool for random testing
of haskell programs. In M. Odersky and P. Wadler, editors, Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP
’00), Montreal, Canada, September 18-21, 2000, pages 268–279. ACM, 2000. doi:
10.1145/351240.351266. URL https://doi.org/10.1145/351240.351266.

K. Claessen, M. Palka, N. Smallbone, J. Hughes, H. Svensson, T. Arts, and
U. Wiger. Finding race conditions in erlang with quickcheck and pulse. ACM
Sigplan Notices, 44(9):149–160, 2009.

M. Grabmüller. Monad transformers step by step. Draft paper, October, 2006.

J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly
generating billion-record synthetic databases. In Proceedings of the 1994 ACM
SIGMOD international conference on Management of data, pages 243–252, 1994.

F. Hebert. Property-Based Testing with PropEr, Erlang, and Elixir: Find Bugs Before
Your Users Do. Pragmatic Bookshelf, 2019.

J. E. Hoag and C. W. Thompson. A parallel general-purpose synthetic data
generator. SIGMOD Rec., 36(1):19–24, 2007. doi: 10.1145/1276301.1276305.
URL https://doi.org/10.1145/1276301.1276305.

K. Houkjær, K. Torp, and R. Wind. Simple and realistic data generation. In
Proceedings of the 32nd international conference on Very large data bases, pages
1243–1246, 2006.

72

http://www.vldb.org/archives/website/2005/program/paper/wed/p1097-bruno.pdf
http://www.vldb.org/archives/website/2005/program/paper/wed/p1097-bruno.pdf
https://www.larspetri.dk/pdfs/tes.pdf
https://www.larspetri.dk/pdfs/tes.pdf
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/1276301.1276305

J. Hughes, B. C. Pierce, T. Arts, and U. Norell. Mysteries of dropbox: property-
based testing of a distributed synchronization service. In 2016 IEEE Interna-
tional Conference on Software Testing, Verification and Validation (ICST), pages
135–145. IEEE, 2016.

J. M. Hughes and H. Bolinder. Testing a database for race conditions with quick-
check: None. In Proceedings of the 10th ACM SIGPLAN Workshop on Erlang,
pages 72–77, 2011.

W. Li. Supporting database constraints in synthetic data generation based on
generative adversarial networks. In D. Maier, R. Pottinger, A. Doan, W. Tan,
A. Alawini, and H. Q. Ngo, editors, Proceedings of the 2020 International Confer-
ence on Management of Data, SIGMOD Conference 2020, online conference [Port-
land, OR, USA], June 14-19, 2020, pages 2875–2877. ACM, 2020. doi: 10.1145/
3318464.3384414. URL https://doi.org/10.1145/3318464.3384414.

S. Liang, P. Hudak, and M. Jones. Monad transformers and modular inter-
preters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 333–343, 1995.

I. Lightbend. Slick - functional relational mapping for scala. https://

scala-slick.org/, 2012.

H. Mannila and K. J. Raiha. Test data for relational queries. In Proceedings of the
fifth ACM SIGACT-SIGMOD symposium on Principles of database systems, pages
217–223, 1985.

R. Nilsson. ScalaCheck: The Definitive Guide. Artima Press, 1 edition, 2014.

M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mi-
haylov, M. Schinz, E. Stenman, and M. Zenger. An overview of the scala
programming language. 2004.

N. Patki, R. Wedge, and K. Veeramachaneni. The synthetic data vault. In 2016
IEEE International Conference on Data Science and Advanced Analytics, DSAA
2016, Montreal, QC, Canada, October 17-19, 2016, pages 399–410. IEEE, 2016.
doi: 10.1109/DSAA.2016.49. URL https://doi.org/10.1109/DSAA.2016.
49.

T. Rabl and H.-A. Jacobsen. Big data generation. In Specifying Big Data Bench-
marks, pages 20–27. Springer, 2012.

M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and L. Nach-
manson. Model-based testing of object-oriented reactive systems with spec
explorer. In Formal methods and testing, pages 39–76. Springer, 2008.

73

https://doi.org/10.1145/3318464.3384414
https://scala-slick.org/
https://scala-slick.org/
https://doi.org/10.1109/DSAA.2016.49
https://doi.org/10.1109/DSAA.2016.49

Index

acyclic, 22

backward dependency, 20
backward reference, 22
backward step, 29
backward visited, 23

dependency, 20
desired, 29

ExpandBackward, 26
ExpandForward, 24

for-comprehension, 4
forward reference, 22
forward step, 29
forward visited, 23
fully defined, 21

GenWithDBActions, 9

induced subgraph, 45
Insertable, 15
IP-path, 36

multigraph, 19

n-rank-source, 36

property-based testing, 4
proxy, 20

QuickCheck, 4

rank, 36
reference, 20
reference graph, 20
reference schema, 20
referential integrity constraint, 9

satisfied, 21
ScalaCheck, 4
Slick, 10
stateful property-based testing, 5

topological ordering, 22

undirected path, 29
unvisited, 23

75

	Introduction
	Background
	Scala
	Property-Based Testing
	Stateful Property-Based Testing
	Mathematical Notations

	Writer Approach
	Motivating Example
	Generator Extension
	Refinements
	Discussion

	Reference Graph Generator
	Reference Schema
	Reference Graph
	The Algorithm
	Expand Forward
	Expand Backward
	Example
	Properties of the Algorithm
	Correctness
	Completeness

	Discussion
	Termination
	Restrictions
	Constraints

	Implementation
	HList
	Templates
	Configuration

	Stateful Property-Based Testing
	Problem of Non-Determinism
	Challenge of Command Statistics
	Bug in Shrinking Algorithm
	General Experiences
	Hybrid Approach
	Internal Generation
	External Generation
	Generation in Command

	Related Work
	Test Data Generation
	Testing Stateful Systems

	Conclusion
	Future Work

	Bibliography
	Index

