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1. Introduction

Most of today's graphics frameworks are designed according to what computers can draw
e�ciently instead of to how graphics can be best expressed and composed. As a result,
such frameworks are often limited in many respects, e.g., they o�er just a limited set
of shape primitives, a limited set of textures or allow only a�ne transformations (that
map parallel lines to parallel lines). This hinders the ease of programming 2D graphics
considerably, since the programmer is subject to the aforementioned restrictions.
For example, Figure 1.1 shows two graphics that are hard or even not at all expressable

in traditional graphics frameworks. Each of these graphics is a�ected by one of the above-
mentioned problems: The spiral is not a Bézier curve and the whirl transformation is no
a�ne transformation.

(a) Spiral. (b) Whirl transformation.

Figure 1.1.: Example graphics.

Paul Klint and Atze van der Ploeg, two Dutch, have recognized this de�cit and elabo-
rated a new declarative approach to resolution-independent 2D graphics which has been
published as a paper[1]. They also provide a reference implementation programmed in
Scala, a multi-paradigm programming language.
The goal of this thesis is to implement a library in the programming language Haskell

that follows this approach and just like the original reference implementation meets the
following design objectives:

- Simplicity : Our library is not to overwhelm a programmer with tons of concepts
and should therefore be usable without substantial previous knowledge.

- Expressivity : A programmer should be able to express his ideas in an intuitive
manner and should not need to be aware of any low-level concepts.

- Composability : Graphics should be composable and transformable in general ways.
- Resolution-independence: Graphics can be expressed independent of the actual
resolution, meaning that they can be rendered at any level of detail.
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1. Introduction

The further chapters are organized as follows. At �rst, Chapter 2 presents the pre-
liminaries of this thesis. This includes the introduction of some advanced features of
Haskell that we use in our implementation and that go beyond the existing knowledge of
previous lectures. With Cairo and SDL, we further introduce two libraries on which our
implementation relies. In Chapter 3 we then illustrate the design choices for our library.
Besides, some examples of usage are given. Chapter 4 deals with the main part of this
thesis: the implementation itself. This chapter �rst explains the basic concept and then
focuses on some speci�c implementation parts. Afterwards, we evaluate our implementa-
tion in Chapter 5 by comparing it to the original one considering performance and image
quality. Here, we also explain possible reasons for occurring di�erences. At the very end,
we discuss the results and give an outlook on some possibilities how to remedy remaining
de�ciencies.

2



2. Preliminaries

This chapter gives a brief introduction to fundamentals that are necessary to comprehend
the following chapters and our implementation.

2.1. Haskell

Supplementary to the features already known from previous lectures, we introduce some
advanced features of Haskell we make use of in our implementation.

2.1.1. Strictness

In General, Haskell uses a strategy called laziness to evaluate expressions whereat the
evaluation of an expression is delayed until its value is needed (non-strictness). Also,
repeated evaluations are avoided (sharing)[4].
Laziness can be useful to increase performance due to the avoidance of needless calcu-

lations. But more often than not it reduces performance by adding a constant overhead
to everything, meaning the unevaluated expression has to be stored, in case it is evalu-
ated later. Storing expressions is costly and unnecessary if the expression is going to be
evaluated anyway.
Compilers like the Glasgow Haskell Compiler (GHC) try to reduce the cost of laziness

by attempting to determine which function arguments are always evaluated by a function,
and hence let the caller evaluate them.
To help the compiler, Haskell provides several ways to enforce strict evaluation of

expressions[5]. For example, the GHC o�ers a language extension called BangPatterns.
To give an example, the arguments b and c of the following function f will always be
evaluated strictly (signalized with the exclamation mark):

f a !b !c = ...

Also, there is a variant of the in�x application operator ($) that evaluates its argument
strictly: ($!).
Last but not least, strictness annotations on constructor �elds can be used. For

example, both components of the following data type T will be fully evaluated to Ints
when the constructor is called:

data T = T !Int !Int

3



2. Preliminaries

In this thesis, there is no source code in which we use any of the described ways to
enforce strict evaluation, but the implementation itself makes use of them.

2.1.2. Foreign Function Interface

Via Haskell's Foreign Function Interface (FFI) it is possible call functions from other
languages (basically we use C in our thesis) and for C to call Haskell functions. The FFI
also allows us to call functions from the runtime system (RTS). We use this functionality
to be able to use some methods Cairo (see next section) normally provides but were not
provided by the Haskell bindings for Cairo.

2.2. Cairo

Cairo1 is a 2D graphics library that provides a vector graphics-based, device-independent
API. It is designed to use hardware acceleration when available.
Although, Cairo o�ers a lot of functionality, we just use it to draw lines, Bézier curves

and text paths, and to �ll or stroke them. Support for Haskell is provided via bindings2.

2.3. Simple DirectMedia Layer

Simple DirectMedia Layer3 (SDL) is a cross-platform multimedia library that acts as
a wrapper around operating-system-speci�c functions, providing a simple interface to
graphics, sound and input devices.
SDL is divided into several subsystems, namely video, audio, CD-ROM, joystick and

timer subsystem. Besides these, there exist a few separate o�cial libraries to provide
extended functionality, e.g., SDL_image for adding support for multiple image formats or
SDL_net for network support. In our implementation we only use the video subsystem,
the timer subsystem and SDL_image. To use SDL with Haskell, bindings4 are provided.

1http://www.cairographics.org/
2http://hackage.haskell.org/package/cairo
3http://www.libsdl.org/index.php
4http://hackage.haskell.org/package/SDL
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3. Design

The design choices we have made for our framework, correspond largely with those of the
original paper. Because they form the basis for our implementation, we illustrate them
in detail again along with some examples of usage.

3.1. Paths

In general, a path is a function of type R→ R2 and since the domain of such a function
is unbounded, it is per se not clear, where to begin and end a path. For this reason,
we restrict the domain uniformly to [0, 1]. Therefore, in order to de�ne a valid path, a
function must be well-de�ned and continuous on at least this interval.
To satisfy our requirement of resolution independence, we choose the coordinate system

of the codomain as follows: if the screen is square then the north west corner and south
east corner match the points 〈1, 1〉 and 〈−1,−1〉, respectively. The image of a path
function is intended to lie within this square and in the following, we will refer to it as
the main viewport. If the screen is non-square we simply extend the coordinate system
along the longer axis. This way, we ensure that graphics maintain their aspect-ratio and
the main viewport (shaded gray in Figure 3.1) is always visible.

(a) Square. (b) Landscape.

(c) Portrait.

Figure 3.1.: The coordinate system for di�erent aspect ratios.

Paths can be de�ned with the path constructor, which takes a function as described
above. As an example, Listing 3.1 shows the de�nition of a circle path. A more complex
example is the de�nition of a spiral path as done in Listing 3.2.

circlePath :: Path
circlePath = path $ \t → point (sin $ t ∗ 2 ∗ π) (cos $ t ∗ 2 ∗ π)

Listing 3.1.: Circle path de�nition.

5



3. Design

spiralPath :: Path
spiralPath = path $ \t → let e = exp 1

f = (1/50) ∗ (e ∗∗ (s/10))
s = 6 ∗ π ∗ (1 + t)

in point ( f ∗ (cos s)) ( f ∗ (sin s))

Listing 3.2.: Spiral path de�nition.

Although the path constructor is very convenient for de�ning arbitrary paths, it takes
much e�ort to express primitive ones such as lines or Bézier curves using it. Hence,
we provide special constructors for these, namely line, quad and cubic, each taking two
points as arguments denoting start and end of the path. The last two ones additionally
require one or two control points, respectively, specifying the course of the curve to be
given.
Despite all constructors mentioned so far it is still di�cult to de�ne paths that are

expressible as a combination of other paths. A good example for this may be a polygon
whose edges are lines. In order to simplify the de�nition of such paths, there is the join
operation. Given a list of paths it returns a single one representing the concatenation of
all list elements. The only condition each path understandably has to meet is that it has
to start at its predecessor's end, otherwise a runtime error will be thrown. Listing 3.3
shows how to de�ne a triangle using the line constructor along with the join operation.

trianglePath :: Path
trianglePath = join [( line a b) , ( line b c) , ( line c a)]

where

a = point 0 (−1)
b = point 1 1
c = point (−1) 1

Listing 3.3.: Triangle path de�nition.

At last, we provide the text constructor for de�ning paths on the basis of character
sequences (also called strings). Taking a string, a font name and a size it produces a path
representing the outline of the given string under consideration of the given parameters.
The resulting path is positioned in the center of the screen, closed and cannot be joined
with other paths. Note, that the size parameter is designed to be resolution-independent
and therefore does not specify the font size in pixels which is the intended behavior in the
original implementation but the size of 1em within our coordinate system. By the way,
the original implementation only features the ability to de�ne shapes (will be introduced
in the next section) on the basis of strings, but not paths, thus eliminating the possibility
to draw the outline of a string via invoking the stroke operation (again, see next section).

6



3.2. Shapes

3.2. Shapes

Shapes are based on paths and describe an area that can later be �lled using textures
(see Section 3.3). There are basically two ways to create a shape: Either you �ll a list of
paths by using the shape constructor or you stroke a single path. When using the shape
constructor, be sure that every given path is closed. One or more paths being not closed
will result in a runtime error to be thrown, since such a path does not enclose an area.
The stroke operation in contrast can also be applied to non-closed paths. Stroking a path
imitates the result of drawing it with a pen. Therefore, the stroke operation requires in
addition to the path itself a second parameter specifying the pen width. Listing 3.4
shows both these methods applied to the previously in Listing 3.1 de�ned circlePath.
The resulting shapes can be seen in Figure 3.2.

�lledCircle :: Shape
�lledCircle = shape [circlePath ]

strokedCircle :: Shape
strokedCircle = stroke circlePath $ 1/10

Listing 3.4.: Shape creation based on the circle path.

(a) Stroked circle path. (b) Filled circle path.

Figure 3.2.: Resulting shapes.

3.3. Textures

We have no possibility to declare the interior of a shape, yet. This is exactly what textures
are for. To allow arbitrary textures while also ensuring resolution independence, they are
generally described by a function that given a point returns the color at that point[2][3].
Thus, a texture function has the signature R2 → Color.
To demonstrate the versatility of this approach, consider the HSV color space in which

colors are de�ned by three components: hue, saturation and value. Hue determines the
base color, saturation expresses the amount of gray and value speci�es the brightness.For
a constant value, hue and saturation are equivalent to polar coordinates of any point
within our coordinate system. Having this in mind, we can de�ne a texture function

7



3. Design

by �rst converting the Cartesian coordinates of a given point to polar coordinates and
then return a color using the hsv constructor for colors. Listing 3.5 shows how to �nally
create a texture by giving our so-de�ned texture function as an argument to the texture
constructor.

colorTexture :: Texture
colorTexture = texture $ \p → let hue = atan2 (coordinate p) (ordinate p)

saturation = min 1 $ norm p
in hsv hue saturation 1

Listing 3.5.: Color texture de�nition.

To give another simpler example, think of a radial gradient. We can program such
a texture using the lerp function for performing linear interpolation of two colors. As
the interpolation parameter we simply pass the distance to the origin. The full texture
de�nition is shown in Listing 3.6.

radialGradientTexture :: Texture
radialGradientTexture = texture $ \p → lerp red black $ norm p

Listing 3.6.: Radial gradient texture de�nition.

Sometimes you may want to de�ne single-color textures. For this there is the �llColor
constructor which taking a color returns such a texture.
In order to make our library suitable for daily use, we also provide two functions to

create textures on the basis of image �les: �le and load. While load is an IO function and
bu�ers the image data in the main memory for better performance but to the detriment
of usability, �le as a non-IO function is much more intuitively usable and occupies less
memory during runtime at the cost of speed (see Subsection 4.4.2 for implementation
details). Both functions support the most commonly used image �le formats and take
the alpha channel, if present, into consideration.
The image is always positioned in that manner that it covers the largest possible area

within the main viewport while maintaining its aspect-ratio. Figure 3.3 visualizes this
method for di�erent aspect-ratios.

(a) Square image. (b) Landscape image. (c) Portrait image.

Figure 3.3.: Positioning of images within the main viewport.
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3.4. Textured Shapes

At all points that do not lie within the so-positioned image the resulting texture
function returns a fully transparent color.

3.4. Textured Shapes

As the name suggests, textured shapes are simply the combination of a shape and a
texture. Hereby, the area de�ned by the shape is �lled with the texture. For this reason
the constructor for textured shapes is simply named �ll. Remembering the previous
de�nitions �lledCircle and colorTexture (see Listing 3.4 respectively 3.5), we can produce
a drawable object as demonstrated in Listing 3.7. The result can be seen in Figure 3.4.

colorCircle :: TexturedShape
colorCircle = �ll �lledCircle colorTexture

Listing 3.7.: Textured shape de�nition example.

Figure 3.4.: Color circle.

We also provide the image constructor to o�er a more direct way to create a textured
shape on the basis of an image. Internally, the �le constructor for textures (introduced
in Section 3.3) is used.

3.5. Drawings

A drawing is a collection of textured shapes. It can be constructed by calling the drawing
constructor which takes a list of textured shapes. An example is given by Listing 3.8.

myDrawing :: Drawing
myDrawing = drawing [colorCircle]

Listing 3.8.: Drawing de�nition example.

By using the combine function, you can join multiple drawings to a single one. This
might be helpful when working with two or more drawings to represent di�erent layers.

9



3. Design

3.6. Transformations

Typically, traditional graphics frameworks just o�er a�ne transformations, such as trans-
lation, rotation, scaling and shearing. Even though many use cases are covered by these,
a whole range of interesting transformations is excluded. A more general and also more
expressive model is to describe transformations as a function of type R2 → R2.
In doing so, paths and hence shapes require the forward transformation, while tex-

tures require the inverse transformation. For example, to translate a textured shape
to the right, we move every point belonging to its shape to the right by applying the
forward transformation. But in order to get the right color at those points, remembering
that textures are represented by a function that given a point returns the color at that
point, we �rst have to apply the inverse transformation to be then able to query the
color. For this reason, both the forward and backward transformation has to be speci�ed
when de�ning transformations via the transformation constructor. An example for the
de�nition of such a transformation is given by Listing 3.9.

wave :: Transformation
wave = transformation (\p → let x = ordinate p

y = coordinate p
in point (x + (sin y)) y)

(\p → let x = ordinate p
y = coordinate p

in point (x − (sin y)) y)

Listing 3.9.: Wave transformation.

In the case, you want to de�ne an a�ne transformation, there is the a�neTransfor-
mation constructor. Since the inverse transformation can be easily computed for a�ne
transformations, it only requires the forward transformation to be given. It is speci�ed by
two components: a 2x2 matrix representing the linear mapping and a point representing
the translation. For a couple of a�ne transformations we o�er prede�ned constructors,
namely identity, rotate, scale, shear and translate.
To perform transformations on objects, we provide the transform operation. Taking a

transformation and the object to be transformed, it returns the transformed object. All
objects introduced so far are transformable. One bene�t of having both directions of a
transformation is that even transformations are transformable. Listing 3.10 shows how
we can apply a scaling transformation to our wave transformation de�ned in Listing 3.9
to produce smaller waves.

scaledWave :: Transformation
scaledWave = transform (scale s s) wave

where

s = 1/30

Listing 3.10.: Scaled wave transformation.

10



3.7. Window Management

Figure 3.5 can then be obtained by applying the scaled wave transformation to the
color circle de�ned in Listing 3.7.

Figure 3.5.: Transformed color circle.

3.7. Window Management

Because, unlike Java (and thus Scala), Haskell does not include a widget toolkit, we were
forced to decide on a completely di�erent solution in this aspect. With respect to the
goals set in Chapter 1 we wanted to provide a simple and easy-to-use way to create the
application window and be able to react to events such as mouse clicks or key presses.
Nevertheless, a programmer should still be able to focus on graphics programming.
To present our solution, Listing 3.11 shows the source code of an executable application.

For simplicity we omitted the de�nition of myDrawing which can be found in Section 3.5.
Its main method calls a method named run with a pair specifying the window resolution
and a list of functions that should be called whenever the corresponding event occurs
(therefore these function are referred to as callbacks). In this example, we just pass the
draw method using the Draw constructor which signalizes that this function returns the
drawing to be displayed. There are a few more con�gurable callbacks, listed in Table 3.1.

draw :: IO Drawing
draw = return $ myDrawing

main :: IO ()
main = run (640, 480) [(Draw draw)]

Listing 3.11.: Example application.

Constructor Callback signature

Draw IO Drawing
Init/Quit IO ()
KeyDown/KeyDown Key → [Modi�er] → IO ()
MouseDown/MouseUp Point → Button → IO ()
MouseMotion Point → IO ()
MouseWheel Point → Wheel → IO ()

Table 3.1.: Con�gurable callbacks

11





4. Implementation

Although the design is the same in many parts, our implementation di�ers signi�cantly
from the original one. This is partly because Haskell is a purely functional programming
language, while Scala is multi-paradigmatic. Of course, another reason is that we had
to use other libraries as a back-end, namely Cairo and SDL, since the originally used
Java2D is not available in Haskell.
In this chapter, we �rst describe the basic concept of our implementation and then take

a closer look at the implementation itself. Among other things we explain step-by-step
how rendering is done. In particular, we discuss those points at which we had to choose
other approaches than the original implementation or intercepted special cases in order
to achieve a better performance.

4.1. Basic Concept

TexturedShape

Shape Texture

Sampling

geometry

Filling/Stroking

raster

Texturing

color raster

Blitting

Figure 4.1.: Rendering
pipeline.

Similar to the original implementation, we implement the
described approach by mapping it to existing 2D graphics
frameworks (from now on referred to as graphics hosts).
But unlike the original implementation, we use not only
one but two libraries, as each alone do not cover the
needed functionality. Figure 4.1 shows how our imple-
mentation works conceptually where gray indicates func-
tionality from the graphics hosts.
Starting from a textured shape, the combination of a

shape and a texture, our �rst step is to translate the
shape into geometry, i.e., lines and Bézier curves (Sam-
pling). This geometry is then used to �ll or stroke the
shape, depending on its actual type, and thereby obtain
a raster telling us which pixels belong to the area de�ned
by the shape (Filling/Stroking). We then simply iterate
over these pixels and call the corresponding texture func-
tion for each pixel. This way a color raster representing
the textured shape is produced (Texturing). Finally, this
color raster is sent to the screen in order to be displayed
(Blitting).
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4. Implementation

4.2. Setup

When the run method is called, our �rst step is to set the number of cores to be used
to the number of available cores. Usually, this has to be done manually[6] by running
a program with +RTS -N. In order to provide a less complicated way for this and to
be in line with our design objectives as described in Chapter 1, we want this number
automatically to be set to the highest value possible. To do so, we use Haskell's FFI to
import a GHC-internal function namend getNumberOfProcessors allowing us to obtain
the number of available cores to which we then set the number of cores to be used by
our program.
Next, we initialize the video and timer subsystems of SDL and create the main window.

By invoking SDL's setVideoMode function we obtain the screen surface. With the �ll
surface and the color surface we create two additional (o�-screen) surfaces. While the
color surface, just like the screen surface, is managed by SDL, the �ll surface is a Cairo
surface. For each surface, there is a corresponding bu�er holding the pixel data: the
screen bu�er, the �ll bu�er and the color bu�er.
After calling the Init callback (see Table 3.1), if provided, we start the event loop

within our self-de�ned Run monad (see Listing 4.1).

type Run = ReaderT Environment IO

Listing 4.1.: Run monad.

This monad is introduced in order to simplify our implementation and combines the
Reader and IO monad. Instead of passing multiple arguments to all our subroutines,
the monad provides an environment which can be obtained by invoking the ask function.
The environment (represented by a record data type Environment) holds information
such as the screen resolution and allows us to easily access the surfaces and bu�ers.
After the event loop exited, we call the Quit callback, if con�gured, and then quit our

application.

4.3. Event Loop

The event loop is structured quite typically. First, we poll an event using SDL's pollEvent
function, then we match its actual type using a case of expression and �nally we execute
the corresponding action. The body of the event loop can be seen in Listing 4.2.
In case the polled event is SDL.Quit, we simply exit the loop. In any other case, we

process the event and afterwards, call again eventLoop. If there is no event to process
(represented by SDL.NoEvent), we call the Draw callback to receive the drawing from
the user application and pass it to the renderDrawing method. After the drawing has
been rendered, we refresh the screen and calculate the frames per second (FPS) using
SDL's timer subsystem. For any input event, such as a key press or a mouse click, we
call the corresponding callback if con�gured.

14



4.4. Rendering

eventLoop :: Run ()
eventLoop = do

event ← liftIO $ SDL.pollEvent
case event of

SDL.Quit → return ()
_ → do

case event of
SDL.NoEvent → ...
... → ...
_ → return ()

eventLoop

Listing 4.2.: Event loop body.

4.4. Rendering

We now focus on the main part of the implementation, the rendering process. In the
last section, we explained how we receive the drawing from the user application and that
it is passed to a function namend renderDrawing. This function is shown in Listing 4.4
and calls renderTexturedShape for each textured shape belonging to the drawing. This is
done by invoking mapM_ with the renderTexturedShape function and the list of textured
shapes the Drawing constructor (see Listing 4.3) holds. As you can see in Listing 4.5,
the data type TexturedShape is just the pair of a shape and a texture.

newtype Drawing = Drawing [TexturedShape]

Listing 4.3.: Data type for drawings.

renderDrawing :: Drawing → Run ()
renderDrawing (Drawing tss) = mapM_ renderTexturedShape tss

Listing 4.4.: renderDrawing method.

renderTexturedShape (shown in Listing 4.6) performs three steps on a given textured
shape. First, the shape is drawn by invoking renderShape. Secondly, we apply the texture
to the shape (renderTexture). And �nally, we display the result on the screen. While
the last step is simply done using a single SDL function named blitSurface, the other two
steps are more complex. For this reason, we explain them in detail, starting with the
�rst one.

4.4.1. Shapes

Internally, we distinguish three types of shapes, each having its own data constructor
as shown in Listing 4.7. While the �rst two data constructors correspond to the func-
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data TexturedShape = TexturedShape Shape Texture

Listing 4.5.: Data type for textured shapes.

renderTexturedShape :: TexturedShape → Run ()
renderTexturedShape (TexturedShape shape texture) = do

renderShape shape
renderTexture texture
environment ← ask
liftIO $ SDL.blitSurface (colorSurface environment) Nothing (screenSurface

environment) Nothing
return ()

Listing 4.6.: renderTexturedShape method.

tions shape and stroke introduced in Section 3.2, the third one, TransformedStrokeShape
represents a stroked shape to which a transformation has been applied.

data Shape = Shape [Path] |
Stroke Path Double |
TransformedStroke Path Double Transformation

Listing 4.7.: Data type for shapes.

Our renderShape function uses pattern matching on these constructors. In the follow-
ing three sections we explain, what actually is happens for each type of shape.

Filled Shapes

Listing 4.8 shows the renderShape function for the Shape constructor. The function
renderWithFillSurface (shown in Listing 4.9) is a helper function that clears the �ll
surface and performs some basic setup (e.g., we set the draw color to black) on it before
it starts executing the function provided as an argument, in this case �llPaths. �llPaths
draws every path in the given list using a method named drawPath and then �lls the
drawn paths by invoking Cairo's �ll operation.
Since the drawPath method is a central component of our implementation, we now

explain it in detail. It is primarily responsible for mapping our design approach e�ciently
to the graphics hosts.
First, you have to know, how paths are represented within our implementation. List-

ing 4.10 shows this. The constructors for path are largely self-explanatory, since they
correspond with the ones introduced in Section 3.1. Only the Text constructor has a
fourth �eld for storing the applied transformation.
The drawPath method, just like the renderShape function, also uses pattern matching.

Listing 4.11 shows the function. It expects a path, the width and height of the screen
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4.4. Rendering

renderShape (Shape ps) = renderWidthFillSurface �llPaths
where

�llPaths w h = mapM_ (\p → do {drawPath p w h True ; Cairo.�ll}) ps

Listing 4.8.: renderShape for the Shape constructor.

renderWidthFillSurface :: (Int → Int → Cairo.Render a) → Run a
renderWidthFillSurface rendering = do

environment ← ask
liftIO $ Cairo.renderWith ( �llSurface environment) $ do

Cairo.setSourceRGB 0 0 0
Cairo.paint
Cairo.setSourceRGB 1 1 1
Cairo.setLineCap Cairo.LineCapSquare
Cairo.setLineJoin Cairo.LineJoinMiter
rendering (width environment) (height environment)

Listing 4.9.: renderWithFillSurface helper function.

and a �ag specifying if the path to be drawn marks the beginning of a new path or is
part of another one.
A functional path is drawn as follows. First, we sample the path until the sampled

points are so close to each other that their distance is smaller than the size of a pixel.
Afterwards, we connect all these points with lines.
When we have to draw lines or Bézier curves, we just have to map the primitives to

the corresponding Cairo function. Only quadratic Bézier curves have to be converted to
cubic ones, since Cairo only supports drawing such.
Join paths are drawn by drawing all its sub paths. This is done by calling recursively

the drawPath function on each sub path.
At last, text paths are left. The di�culty here is to obtain the outline of the text as

lines and Bézier curves in order to be able to transform it if necessary. To achieve this,
we �rst draw the text then read the path's data internally created by Cairo. For this we
use some functions we had to import using Haskell's FFI, since the Cairo bindings do
not o�er them. Afterwards, we build join paths on the basis of this data and transform

data Path = FPath (Double → Point) |
Line !Point !Point |
Quad !Point !Point !Point |
Cubic !Point !Point !Point !Point |
Join [Path] |
Text String String Double Transformation

Listing 4.10.: Data type for paths.
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4. Implementation

these join paths with the stored transformation. All this is done by the convertText
function. These so-obtained join paths just have to be drawn what in turn is done by
calling drawPath for each join path.

Stroked Shape

Stroke shapes are created when applying the stroke operation (see Section 3.2) to a path.
The Stroke constructor holds the path to stroke and the pen width to stroke with.
What actually happens when calling renderShape with a stroked shape is shown in

Listing 4.12. We �rst set the line width, we then draw the path using the drawPath
method and at last, we stroke the drawn path by calling the stroke operation provided
by Cairo.

Transformed Stroked Shape

As long as we do not apply transformations to stroked shape, everything works �ne.
However, if we do so, the line width may vary along the underlying path. For example,
consider a rectangle. When we apply a scaling transformation to it, that scales by factor
2 in Y direction and leaves the X direction as it is, all horizontal edges become twice as
thick as they were before while the vertical edges remain unchanged.
To draw such a shape, we �rst sample the underlying path to obtain a decomposition

into small line segments. To each of these segments we then apply the inverse transfor-
mation of the stored transformation to obtain the untransformed counterpart of our line
segment, starting at S and ending at E (see Figure 4.2). By calculating the boundary
points L and R (their distance is equal to the originally de�ned line width) and trans-
forming these boundary points using the forward tranformation, we obtain the boundary
points of the transformed line segment. The distance of these transformed boundary
points to each other is then used as the line width when drawing the corresponding line
segment.

S

E

M

R

L

·

d̂

−→
d

−→r

Figure 4.2.: Transformed stroked shape line width calculation.

This method mostly works well, but in some cases we produce incorrect output images
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4.4. Rendering

(see Section 5.2).

4.4.2. Textures

When renderTexture is called, the previously called renderShape has already produced
the raster telling us which pixels are inside the shape. As explained earlier, we iterate
over these pixels. What actually happens when iterating over the pixels depends on
the texture's type. Listing 4.13 shows the data type for textures. FTexture represents a
functional texture while File describes an image texture. It is striking that in addition to
the �le path given by the String the File constructor has a �eld for a transformation. This
is analogous to the Text constructor for text paths or the TransformedStroke constructor
for shapes.

Multithreading

Instead of using only one thread to iterate over all pixels, we wanted to parallelize this
step. Therefore, we split the screen into multiple chunks and iterate simultaneously on
all these chunks.
The chunks are created by a self-de�ned function named buildChunks. We always

create twice as many chunks as there are cores to achieve better processor utilization.
Using mapM_ together with forkIO (provided by the Control.Concurrent.Thread.Group
package) on our list of chunks, we start multiple threads, each iterating on a certain
number of pixels. We then wait for all of them to �nish by calling wait (provided by the
same package).

Functional Textures

When having a function texture, we �rst test whether the current pixel we iterate over
is white. If this is the case, the pixel does not belong to the shape. Therfore, we set
the corresponding pixel in the color bu�er full transparent. If the current pixel is not
white, we know that it is part of the shape's inside. We then convert the screen point
to the corresponding point within our coordinate system in order to call the texture
function. Thus, we obtain the color of the textured shape at that point. Finally, we
combine the color with the value in the �ll bu�er, meaning that we would make the color
half-transparent in case the corresponding pixel in the �ll bu�er was gray (this happens
usually at the border of a shape due to anti-aliasing).

File Textures

If a image texture should be rendered, we �rst load the image to display into a SDL
surface using SDL_image. When iterating over the pixels in the �ll bu�er, we do nearly
the same as if we would do when rendering a functional texture, except that we obtain
the corresponding color by reading the pixel data of the SDL surface instead of by calling
a texture function.
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4. Implementation

4.5. Transformations

To handle transformations in an e�ective manner, we distinguish functional transforma-
tions and a�ne transformations. While the former are represented by two functions of
type Point → Point, the latter is de�ned by two matrices (see Listing 4.14).
In order to be able to use the transform operation with di�erent types (overloading),

we introduced a type class named Transformable (see Listing 4.15). Every transformable
object (see Section 3.6) provides an instance of this type class, de�ning how that object
is transformed.
Listing 4.16 shows the Transformable instance de�niton for the Path data type. Here,

we intercept a�ne transformations as a special case, because map lines and Bézier curves
again to lines and Bézier curves when applied.
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4.5. Transformations

drawPath :: Path → Int → Int → Bool → Cairo.Render ()
drawPath p@(FPath _) w h new = drawPoints $ sample p w h

where

drawPoints ((Point x y):ps) = do

moveEventuallyTo x y new
mapM_ (\(Point x y) → Cairo.lineTo x y) ps
if (isClosed p) then Cairo.closePath else return ()

drawPath (Line s e) w h new = do

moveEventuallyTo sx sy new
Cairo.lineTo ex ey

where

(Point sx sy) = toScreen s w h
(Point ex ey) = toScreen e w h

drawPath (Quad s e c) w h new = drawPath (Cubic s e c1 c2) w h new
where

c1 = s + ((2.0 / 3.0) |∗ (c − s))
c2 = e + ((2.0 / 3.0) |∗ (c − e))

drawPath (Cubic s e c1 c2) w h new = do

moveEventuallyTo sx sy new
Cairo.curveTo c1x c1y c2x c2y ex ey

where

(Point sx sy) = toScreen s w h
(Point ex ey) = toScreen e w h
(Point c1x c1y) = toScreen c1 w h
(Point c2x c2y) = toScreen c2 w h

drawPath j@(Join ps) w h new = drawPath' ps
where

drawPath' (p:ps) = do

drawPath p w h new
mapM_ (\p → drawPath p w h False) ps
if (isClosed j) then Cairo.closePath else return ()

drawPath t@(Text _ _ _ _) w h _ = do

joinPaths → convertText t w h
mapM_ (\p → drawPath p w h True) joinPaths

Listing 4.11.: drawPath method.
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renderShape (Stroke p l) = renderWidthFillSurface strokePath
where

strokePath w h = do

Cairo.setLineWidth $ l ∗ (fromIntegral $ min w h) / 2.0
drawPath p w h True
Cairo.stroke

Listing 4.12.: renderShape for the Stroke constructor.

data Texture = FTexture (Point → Color) |
File String Transformation

Listing 4.13.: Data type for textures.

data Transformation = FTransformation (Point → Point) (Point → Point) |
A�neTransformation Matrix Matrix

Listing 4.14.: Transformation data type.

class Transformable a where
transform :: Transformation → a → a

Listing 4.15.: Transformable type class.

instance Transformable Path where

transform f (FPath p) = FPath $ (transform f) . p
transform f@(A�neTransformation _ _) (Line s e) =

Line (transform f s) (transform f e)
transform f@(A�neTransformation _ _) (Quad s e c) =

Quad (transform f s) (transform f e) (transform f c)
transform f@(A�neTransformation _ _) (Cubic s e c1 c2) =

Cubic (transform f s) (transform f e) (transform f c1) (transform f c2)
transform f (Join ps) = Join [(transform f p) | p → ps]
transform f (Text str font size f ') = Text str font size (compose f f ')
transform f p = transform f $ toFPath p

Listing 4.16.: Transformable instance for paths.
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In this chapter we evaluate our implementation, mainly by comparing it to the original
one considering performance and image quality.

5.1. Performance

Before comparing our implementation to the original one, we want to �nd out to what
extent multithreading speeds up the performance when rendering textures (see Subsec-
tion 4.4.2). To do so, we rendered a complex texture, namely the Mandelbrot set, which
is also provided as a demo application, at a screen resolution of 1024x1024 using a various
number of cores1.

1 2 3 4
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Number of cores
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u
p

Single-threaded
Multi-threaded

Chart 5.1: Speedup due to multithreading

Chart 5.1 shows that the performance increases almost linearly with the number of
cores when multithreading is enabled. But if only one core is available multithreading
leads to an up to 15 percent worse performance compared to the single-threaded variant.
This is because multithreading procudes amn overhead that reduces the performance on
a single-core processor.
In order to compare our implementation's performance to to that of the original one,

we ran several benchmarks2.
The �rst one is to test the path stroking performance. For this, it renders 50 lines and

Bézier curves, 30 join paths, 30 functional paths and 20 text paths, all randomly created.
As we can see in Chart 5.2, our implementation a slower in the �rst two cases, but

about 12 times faster in stroking functional paths. The last value is missing for the

1Processor: Intel Core i7-3615QM 4x2.3GHz, Main memory: 8GB, Operating system: Ubuntu 12.04
LTS 64-Bit, GHC version: 7.4.1

2Processor: Intel Core 2 Duo T6400 2x2.0GHz, Main memory: 2GB, Operating system: Ubuntu 12.04
LTS 64-Bit, GHC version: 7.4.1
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Chart 5.2: Path stroking performance

original implementation, since it is unable to stroke text path.
Next, we tested the performance in path �lling. Similar to the �rst benchmark, we

render 30 join paths, 30 functional paths and 20 text paths and �ll them.
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Chart 5.3: Path �lling performance

Chart 5.3 shows that again, our implementation is slower than the original one (except
in case of text rendering).
Finally, we compared the texturing performance. For this, we rendered a functional

texture (the previously de�ned colorTexture, see Listing 3.5), a single-color texture and
two image textures, a small one (16x16 pixels) and a larger one (512x512 pixels).
The results can be seen in Chart 5.4. For unknown reasons, our implementation

renders functional textures signi�cantly slower than the original one, even though we
tried to optimize this process by parallelizing it and adding strictness annotations to the
source code. Our implementation's performance in this case is more than three times
worse. In the other three cases our implementation is about half as fast as the original
one.
All in all, our implementation's performance is obviously not as good as the original

one's.
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Chart 5.4: Texture rendering performance

5.2. Image Quality

Besides performance, we also compared the quality of the produced images. Even though
both implementations are based upon almost the same design choices, there are some
di�erences in image quality due to the di�erent realization.
At �rst, we stroked a triangle path as de�ned in Listing 3.3 and compare the output

images of both implementations to each other. As you can see in Figure 5.1a, the original
implementation produces unwanted white areas at the triangle's corners where the lines
representing its edges overlap. This presumably arises from applying the wrong �lling
rule (even-odd rule instead of non-zero winding rule). Another problem is that the upper
corner is not properly connected what in turn results in a non-closed triangle. It seems
as if the original implementation does not test whether the path to stroke is closed or
not. As Figure 5.1b shows, our implementation is not a�ected by any of these two issues.

(a) Original implementation. (b) Our implementation.

Figure 5.1.: Comparison of stroked triangles.

Secondly, we compared stroked triangles to which a scaling transformation had been
applied. Figure 5.2a shows that the original implementation su�ers again from the same
problems as in the �rst test case, but the dynamically changing line width was considered
correctly. Our implementation produces the image shown in Figure 5.2b. Since we
decompose the underlying path into small line segments and draw each of these line
segments with an individually calculated line width (see Subsection 4.4.1), we no longer
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know where edges appear and are therefore unable to connect them properly. This results
in the inaccurate output image shown here.

(a) Original implementation. (b) Our implementation.

Figure 5.2.: Comparison of transformed stroked triangles.

Next, we compared stroked spirals. The original implementation produces the output
image shown in Figure 5.3a in which a type of interference pattern appears at the inside
of the curve. Most likely, this is caused again by using the wrong �lling rule. The output
image generated by our implementation is shown in Figure 5.3b and looks as expected.

(a) Original implementation. (b) Our implementation.

Figure 5.3.: Comparison of stroked spirals.

At last, we displayed an image in both implementations. Since the size of the image was
chosen smaller than the screen's resolution, the image had to be resized. The di�erence
that can be seen in Figure 5.4 results from the fact that our implementation uses nearest-
neighbor interpolation while the original one uses bilinear interpolation.

(a) Original implementation. (b) Our implementation.

Figure 5.4.: Comparison of image textures.

Overall, the di�erences in image quality are considered to be minimal, not least because
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5.2. Image Quality

both implementations produce identical output images in all other test cases than those
shown here. Although we have shown examples in which the original implementation,
unlike ours, produces faulty output images, ultimately both implementations are not
entirely accurate and thus to be regarded as equal considering their image quality.
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6. Conclusion

In the �nal chapter, we review the results and give an outlook on future works.

6.1. Results

The main goal of this thesis was to implement a library following the approach originally
presented by Paul Klint and Atze van der Ploeg. In view of what we have achieved,
it can be said that we have attained the objectives set in Chapter 1. We provide a
library allowing programmers to realize resolution-independent 2D graphics in a simple
yet expressive and composable way. In some respects, our implementation is even more
�exible or kept simpler than the original one, for example text is realized as a path and
window management has shrunk to a single invocation of the run method.
But there is no denying the fact that our library's performance is in need of improve-

ment, especially when using functional textures. An approach to improve the overall
performance is presented and discussed in the next section.
Another fact to mention is that constructive solid geometry operations, such as union,

di�erence or intersection, are missing in our implementation. They o�er an elegant way
to de�ne and compose shapes, but have not been implemented due to their complexity.

6.2. Outlook

Last but not least, we want to discuss some ideas for future works. Since performance is
the main drawback of our implementation, it would make sense to concentrate e�orts on
this aspect. An approach to this problem is speeding up path rendering, i.e., �lling and
stroking of paths. One possible way to increase the path rendering performance lies in the
use of GPUs, since they are very powerful and predestined for such tasks. For example,
there is a proprietary extension to OpenGL called NV_path_rendering providing full
GPU-acceleration for path rendering[7]. Unfortunately, this extension is only available
on CUDA-capable GPUs by Nvidia and therefore not usable with all graphics boards.
Regardless, it would be interesting to pursue this idea.
Optimizing the texturing step would also be worthwhile, especially because this is the

major bottleneck of our implementation. For example, more strictness information (see
Subsection 2.1.1) could be added to the source code. Also, pro�ling1 might help to �nd
the causes for the insu�cient texture rendering performance. Once they were identi�ed,
they could be eliminated.

1http://www.haskell.org/haskellwiki/How_to_pro�le_a_Haskell_program
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6. Conclusion

Apart from the performance, missing features could be added, e.g., one could imple-
ment constructive solid geometry operations (see Section 6.1).
Finally, it would be desirable to improve the image quality when drawing transformed

stroked shapes (see Figure 5.2b in Section 5.2). To achieve this, the method for drawing
transformed stroked shapes would have to be changed. If the border of a transformed
stroke shape could be obtained as a closed path, we could use our already existing method
to draw �lled shapes in order to produce a correct output.
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A. Installation and Usage

A.1. Installation

The distributed source directory contains a .cabal �le, so you simply have to run cabal,
in order to compile and install our library:

$ cabal con�gure −−ghc
$ cabal build
$ cabal install

Alternatively, you can use the provided Setup.hs via runhaskell :

$ runhaskell Setup .hs con�gure −−ghc
$ runhaskell Setup .hs build
$ runhaskell Setup .hs install

As the --ghc switch already indicates, the GHC is required, since we make use of GHC-
speci�c language features.

A.2. Usage

After the installation has been successfully completed, you can use our library in your
own applications by simply importing it with the following single line of code:

import Deform

Moreover, you can compile and run the included sample applications, which are to be
found in the demos folder. Since many of them are kept very simple and therefore easy
to understand, they may serve as a good starting point to write your own applications
using our library.
All applications that use our library should be compiled at least with the -threaded

switch to enable multithreading and thereby beni�t from the optimizations we have made
in the texturing step of the rendering pipeline (see Subsection 4.4.2). We recommend
to use the -O2 and -optc-O3 options as well in order to achieve the best performance
possible:

ghc −−make −threaded −O2 −optc−O3 <source �le>.hs
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B. API Reference

Subsequently, we give a brief overview over the constructors and operations provided
by our library. Each function is listed along with its type signature. For a full list
of all available functions and data types including detailed explanations take a look at
the documentation which can be easily generated by invoking cabal with the haddock
argument:

$ cabal haddock

Again, this can also be done by executing the Setup.hs �le:

$ runhaskell Setup .hs haddock

Colors

Function Signature

hsv :: Double → Double → Double → Color
hsva :: Double → Double → Double → Double → Color
rgb :: Double → Double → Double → Color
rgba :: Double → Double → Double → Double → Color

Drawings

Function Signature

combine :: [Drawing] → Drawing
drawing :: [TexturedShape] → Drawing

Linear Interpolation

Function Signature

lerp :: A → A → Double → A
where A ∈ {Color, Double, Point}

lerpNoAlpha :: Color → Color → Double → Color
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B. API Reference

Paths

Function Signature

cubic :: Point → Point → Point → Point → Path
isClosed :: Path → Bool
isConnected :: Path → Path → Bool
join :: [Path] → Path
line :: Point → Point → Path
path :: (Double → Point) → Path
quad :: Point → Point → Point → Path
text :: String → String → Double → Path

Points

Function Signature

(.*) :: Point → Point → Double
(|*) :: Double → Point → Point
(*|) :: Point → Double → Point
(/|) :: Point → Double → Point
coordinate :: Point → Double
distance :: Point → Double
distanceSquared :: Point → Double
norm :: Point → Double
normSquared :: Point → Double
ordinate :: Point → Double
point :: Double → Double → Point

Shapes

Function Signature

shape :: [Path] → Shape
stroke :: Path → Double → Shape

Textured Shapes

Function Signature

�ll :: Shape → Texture → TexturedShape
image :: String → TexturedShape

34



Textures

Function Signature

�le :: String → Texture
�llColor :: Color → Texture
load :: String → IO Texture
texture :: (Point → Color) → Texture

Transformations

Function Signature

a�neTransformation :: (Double, Double, Double, Double)→
Point → Transformation

compose :: Transformation → Transformation →
Transformation

identity :: Transformation
inverse :: Transformation → Transformation
lens :: Point → Norm → Pro�le → Double → Double →

Double → Transformation
rotate :: Double → Transformation
scale :: Double → Double → Transformation
shear :: Double → Double → Transformation
transform :: Transformation → A → A

where A ∈ {Drawing, Path, Point, Shape, Texture
TexturedShape, Transformation}

transformation :: (Point → Point) → (Point → Point) →
Transformation

translate :: Double → Double → Transformation

Variables

Function Signature

get :: Variable a → IO a
modify :: Variable a → (a → a) → IO ()
set :: Variable a → a → IO ()
variable :: a → Variable a

Window Management

Function Signature

export :: String → IO Bool
run :: (Int , Int) → [Callback] → IO ()
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