
jasper paul sikorra

F O R E I G N C O D E I N T E G R AT I O N I N C U R RY

bachelor thesis

advised by

Prof. Dr. Michael Hanus
Dipl.-Inf. Jan Tikovsky

research group

Programming Languages and Compiler Construction

Institut für Informatik
Christian-Albrechts-Universität zu Kiel

March 2014





erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbständig
und ohne fremde Hilfe angefertigt und keine anderen als die angegebenen
Quellen und Hilfsmittel verwendet habe. Weiterhin versichere ich, dass diese
Arbeit noch nicht als Abschlussarbeit an anderer Stelle vorgelegen hat.

Datum Unterschrift





Abstract

The integration of formal languages with high specificity in program-
ming languages with many cases of application is often useful. If
libraries of the general-purpose-language are utilized to achieve this
goal, the formal language easily loses its conciseness. If the formal
language is integrated directly, the detection of errors is often prob-
lematic. A possible solution is the translation of the formal language
before the compilation.

As a proof of concept, the use of regular expressions and format
strings in Curry is allowed. The expressions containing foreign syn-
tax are translated and reinserted in the code as functions of Curry
libraries. After that, the code is passed to a regular compiler.

By creating a preprocessor for code integration, the conciseness and
the detection of type conflicts can be preserved. As a byproduct a tool
is created, which is open to enhancement with other domain specific
languages.
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Part I

I N T R O D U C T I O N



1 M O T I VAT I O N

This thesis discusses the conception of a platform for the integration
of domain specific languages (DSLs) in Curry[5] and its realization.

At the moment domain specific languages may only be integrated
if they are modified to use the same syntax and semantics as Curry.
This has some advantages: there is no need to alter the compiler
and the benefits of a full-grown declarative programming language
remain intact. On the downside the domain specific language often
loses its conciseness if the syntax is transformed. This loss of clarity

-- Regex syntax
(\+|-)?[0-9]+
-- Curry syntax
[Times (0,1) ([Xor ([Literal ('+')]) ([Literal ('-')])

]),Plus ([Bracket [Right (('0'),('9'))]])] �
Listing 1: Regular expression in original and Curry syntax

is displayed paradigmatically using regular expressions in Listing 1.
Another problem surfaces if the domain specific language is em-

bedded using its original syntax instead of libraries of the host lan-
guage. If this solution is chosen, the detection of errors, especially
type conflicts, becomes very difficult without modifying the compiler.
This problem is shown exemplarily in Listing 2 in Haskell1, a func-

import Text.Printf

pr :: Int -> IO ()
pr a = printf "%s" a �

Listing 2: A flawed printf call in Haskell

tional programming language very similar to Curry. The program
in the example is flawed, because the argument of printf should be
a string, but the function pr expects an integer. Though erroneous,
there is no problem compiling this example with GHC2. This is a
problem that occurs regularly if domain specific languages, which do
not use the syntax of the host language, are used in a general purpose

1 See http://www.haskell.org/onlinereport/intro.html for further infor-
mation on Haskell.

2 The Glasgow Haskell Compiler, https://www.haskell.org/ghc/
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language. If the use of arbitrary data types in regular expressions
is allowed, similar issues arise. This implies that the integration of
domain-specific formal languages is often problematic in respect of
type safety.

In this thesis a system for code integration is examined that tackles
both problems. By allowing the use of domain specific languages in
their native syntax the conciseness is kept, by translating the expres-
sions, which differ from Curry syntax, into functions of pure Curry,
strict typing and other advantages of the host language apply.

As a proof of concept, the use of two domain specific languages,
regular expressions and format strings with their unique syntax is
allowed. Regular expressions provide a method to describe formal
languages and are a well explored field of theoretical informatics. For-
mat strings are used for the formatting and insertion of variables in
strings. The syntax and semantics of format strings are simple and
they are still used on daily basis in different programming languages,
making them a great candidate for prototyping a platform for embed-
ded domain specific languages.

For the distinction and definition of domain specific languages in
Curry, a syntactic construct is specified, which allow the detection

import Format
printOut name age = ``format "hello %s. your age %i",

name,age'' �
Listing 3: Curry with an integrated format string expression

of foreign code. The recognized expression are translated by lan-
guage specific parsers and reinserted in the source code, resulting in
pure Curry programs. This method of translation is basically a pre-
processor for a Curry compiler. It enables the use of any computer
language with its own syntax, as long as a translator exists that is
able to convert the computer language to legal Curry code. Since
Curry is a Turing complete language, any computer program could
be integrated. This feature is particularly useful for domain specific
languages, though.

This thesis is segmented in four major parts.
In Part ii the fundamentals needed to integrate code are discussed:

the functional-logic programming language Curry is introduced, the
concept behind domain specific languages and their embedding is
explained and the basic functions of translators are examined.

In Part iii the implementation of the Code Integrator is discussed,
followed by a description of the libaries and parsers for format strings
as well as regular expressions.
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In Part iv the measurement of the run time complexity of the Code
Integrator is delineated briefly.

Concluding the thesis, the results are analyzed and possible prospects
are described in Part v.
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Part II

F U N D A M E N TA L S



2 C U R RY

2.1 functional-logic programming

Curry is a declarative, general purpose programming language. The
objective of declarative programming is to describe the problem and
its solutions instead of the method to solve it.[4]

A distinguishing mark of Curry is the amalgamation of three sub-
paradigms of declarative programming. The concepts of functional,
logic and constraint programming are interwoven in Curry to create
a new paradigm: functional-logic programming.

Functional programming is based on the λ-calculus, which was in-
troduced in the 1930s by Church.[13] The main goal of functional pro-
gramming is the minimization of side effects, which is achieved by re-
stricting the languages to evaluation of functions. Popular functional
programming languages are Haskell and a dialect of Lisp called Scheme1.

Logic programming tries to utilize mathematical logic in programs.
Logic programs mostly consists of facts and rules and permit the
use of partial information. A major logic programming language is
Prolog2.

Constraint programming is a generalization of the logic program-
ming paradigm. It programming extends logic programming with
evaluation under arithmetic and finite domains.[6] The enhancement
of Prolog with constraint satisfaction is one example.3

Often problems are solved easier under one paradigm than under
another. With Curry it is possible to use the advantages of all three
concepts in one language. To accomplish this, different ideas are
taken from all three paradigms. Functional programming character-
istics like higher order functions and lazy evaluation are imported,
logic programming supplies the possibility to work with partial in-
formation and logic variables, constraint programming delivers the
option to use constrained variables. By linking those paradigms new
paths in problem solving derive.4

2.2 programs in curry

The syntax and semantics of Curry are specified in the Curry Report[5].
A Curry program contains only type and function declarations and

1 See http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-1.html for further
information on Scheme.

2 A free implementation of Prolog is located at http://www.swi-prolog.org/.
3 A description of a constraint programming library for Prolog can be found at http:
//www.swi-prolog.org/man/clpfd.html.

4 The later introduced functional-logic Parser Combinator is a good example.
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module description necessary for modularization. The syntax of Curry
is very similar to Haskell.

2.2.1 Data types

Data types in Curry are declared with a type constructors of the form

data T α1. . . αn = C1 τ11. . . τ1n1 | . . . | Ck τk1. . . τknk

T is called the type constructor, C1, . . . , Ck data constructors and
α1, . . . , αn type variables. τ11, . . . , τknk are types again. In this way, data
types can be defined recursively, meaning that T can reappear as a
type τ on the right side. The declaration also determines the type of
the constructor Ci, which is

τi1 → . . . → τini → T α1. . . α2

This implies that data constructors can be conceived as functions,
which accords with the ideal of functional programming that every-
thing should be a function. In Listing 4 Maybe is declared, a poly-

data Maybe a = Just a | Nothing �
Listing 4: The data type Maybe

morphic data type with one type variable and two data construc-
tors. The first data constructor Just awaits one parameter of the type
a , the other data constructor Nothing does not have a parameter.
Some other declarations of data types can be found in Listing 5. List

data Bool = True | False
data List a = [] | a : List a
data Tree a = Branch (Tree a) (Tree a) | Leaf a �

Listing 5: More data types

and Tree are defined recursively, the data constructor of Bool has
no parameters. In Curry the data types for Booleans (Bool), con-
straints (Success), functions, integers (Int), floats (Float), lists, charac-
ters (Char), strings (String) and tuples are predefined.

If a data constructor Ci τi1. . . τini is applied in the form ci ti1. . . tini

then ti1. . . tini has the type τi1. . . τini . In Listing 6 the data type Tree
is used to define an actual binary tree.

For easier comprehension of the code, Curry enables the declara-
tion of type synonyms. Those have the form
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tree :: Tree Int
tree = Branch (Leaf 1) (Leaf 4) �

Listing 6: Application of a data constructor

type T α1. . . αn = τ

where T is the new type constructor and τ is the synonymous type.
Synonym types are interchangeable anywhere in the code.

2.2.2 Functions

Functions are defined in Curry in the form

f t1 . . . tn = e

f is the functions name, e the functions body and t1 . . . tn are data
terms, meaning that they are either variables or data constructors,
which again may contain data terms. The corresponding types to
functions may be declared explicitly in the form

f : τ1 → . . . → τn → τ

A function type declared like this assigns the data terms t1, . . . , tn the
types τ1, . . . , τn and e the type τ . In Listing 7 a square function is

square :: Int -> Int
square x = x * x �

Listing 7: Power of two function

defined on integers. In this case the explicit type of the square func-
tion is redundant because the operator ∗ is only defined on integers,
meaning the same function type would be determined by type infer-
ence.

Functions may also be written as conditioned equations in the form

f t1. . . t2 | c = e

These equations are only evaluated if the condition c is satisfied.
Curry supports pattern matching and multiple occurrence of the

same data term on the left side, which is disabled in Haskell. These
kind of functions are evaluated if the condition that the data terms

8



absolute x | x < 0 = (-1) * x
| otherwise = x �

Listing 8: Function with conditions

are equivalent is satisfied. Another feature that is not part of Haskell
is the possibility of using non-deterministic functions in Curry. Non-
deterministic functions consist of two or more equations which are
evaluated under the same conditions. In this way one function can
yield different results with the same input. In Listing 9 the function

throwCoin = "head"
throwCoin = "tail" �

Listing 9: Non-deterministic functions

throwCoin is declared, which will yield two values on a call: “head”
and “tail”. Curry also supports local definitions, which are functions,
variables or data terms limited to a defined domain. Local definitions
are defined in Curry with the keywords let ... in and where.

powerOfFour x = let y = square x
in square y �

Listing 10: Function with a local definition

2.2.3 Free variables

Free variables must be declared locally in Curry with the keywords
where . . . free. For each of those variables, which may also be called

f x | x =:= y = y
where y free

-- is equal to
f x = x �

Listing 11: Function with a free variable

unbound, values are computed which fulfill the equation. This is
done using a technique called narrowing. If we consider an example
call of f in Listing 11 with x = 3 then a possible solution for the
constraint is computed (y = 3) and after that the function is evaluated
( f 3 = 3).

9



2.2.4 Comments

Comments in Curry are designated in the same way as in Haskell by
using {- ... -} or - - ... and are ignored by the compiler.

2.2.5 Layout rule

Another similarity to Haskell is the layout rule used in Curry. In-
dentation may be used instead of curly brackets and semicolons to
identify syntactic contexts.

This means if lines following a keyword should belong to the same
syntactic entity, they need greater indentation than the keyword. The
minimal indentation is set by first term following the keyword. All
other lines in the same context must have the same or greater inden-
tation.

f x = h x where {g y = y+1 ; h z = (g z) * 2 }
-- equals
f x = h x

where g y = y+1
h z = (g z) * 2 �

Listing 12: Layout rule example

Exemplarily the layout rule is depicted in Listing 12. The local
function h belongs to the same syntactic entity as g and where.

2.2.6 Type system

Typing is the mapping of terms on types. If a term is assigned a type,
the term can only assume values in the range described by the type.
Type conflicts occur if a term has to assume a value, that is outside of
the range set by the type. Since type conflicts can be found at compile
time, typing is mostly used to detect errors in programs at an early
state.

In Curry every variable, data constructor and function has a static
type. The types of data constructors have to be declared explicitly,
the types of variables and functions may be stated or ascertained by
a type inference system. Curry uses the type inference proposed by
Hindley/Milner, which allows polymorphic types.

Polymorphic types contain type variables, which are able to as-
sume arbitrary types. The data type Maybe, depicted in Listing 4, is
a polymorphic type with one type variable. In Listing 13 the map
and the addThree functions are defined. The type of addThree is not
declared, but the Curry compiler still computes it.
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map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (e:es) = (f e):(map f es)

addThree l = map ((+) 3) l
-- Infered type (:t addThree)
-- addThree :: [Int] -> [Int] �

Listing 13: Type inference

Types in Curry are defined at compile time which allows the detec-
tion of type conflicts at a very early stage. For example if a function
awaits an integer but is passed a string, the compiler is able to recog-
nize the type conflict and will yield an error.
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3 D O M A I N S P E C I F I C L A N G U A G E S

3.1 introduction

Generic and specific approaches are discerned in many fields of
science.[14] Generic approaches apply to a wide, specific approaches
to a small set of problems. In computer science two kinds of program-
ming languages are distinguished by this characteristic: general pur-
pose languages (GPLs) and domain-specific languages (DSLs). Histor-
ically many languages that are counted as general purpose languages
today were created to perform in a certain area of computation.[14]
By growing into general purpose languages the need of creating spe-
cialized problem solvers reemerged. Two different solutions were de-
veloped to handle this task: subroutine libraries and domain specific
languages.

• Subroutine libraries are the classic method for solving a partic-
ular problem in a general purpose language.[14] They supply
reusable functions which are tailored for domains and use the
syntax and semantics of the GPL. An example subroutine li-
brary is the Parser module supplied with Curry which is fitted
to the particular assignment of parsing strings.

• Domain specific languages are usually small languages with
a narrowed, sometimes unique syntax and high expressiveness
aligned to solve a limited domain of problems.[3]

Today, there is a great diversity of DSLs separated in different classes
like programming, markup and modeling. Domain specific program-
ming languages sometimes contain general purpose languages and
thereby provide expressive power for a group of problems, while still
being able to handle others. On the other hand there are languages
like YACC1, which focus on generating only components or libraries
for bigger applications.

A typical domain specific programming language is SQL whose
only purpose is the creation and manipulation of relational databases.
In the example depicted in Listing 14, the exceptional syntax which
is adjusted to this particular aim becomes obvious. Another domain
specific language, which is used on wide base, is the markup lan-
guage HTML. This language is suited only for one task: the creation
of web pages presentable by a web browser.

1 YACC (abbreviation for “Yet Another Compiler Compiler”) is a LALR parser gener-
ator. See http://www.csa.syr.edu/~chapin/cis657/yacc.pdf for further
information.
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SELECT Lecture.title, Professor.name
FROM Professor, Lecture
WHERE Professor.PersNo = Lecture.PersNo �

Listing 14: An SQL query

<!DOCTYPE html>
<html>

<head><title>This is a title</title></head>
<body><p>Hello world!</p></body>

</html> �
Listing 15: An HTML page

The gap to a general purpose programming language is easily recog-
nizable. In this project two domain specific languages were integrated
into Curry: regular expressions and format strings.

3.2 regular expressions

The domain specific language of regular expressions (abbreviated to
regex) is often used in text processing. It also plays a part in theoreti-
cal informatics and formal language theory. Those formal languages,
which can be described with regular expressions, are called regular
and are the least expressive languages in the Chomsky hierarchy.[11]

3.2.1 Definition of Regular Expressions

In its basic form, a regular expression is a string r containing termi-
nal symbols of an alphabet Σ and some meta symbols. A regular
expression is then defined by the following rules:

1. ∅ is a regular expression

2. if a ∈ Σ then a is a regular expression

3. if s and t are regular expressions, then st (Concatenation), (s|t)
(Alternative) and s∗ (Star) are regular expressions

The relating semantics can be found in Table 1. For example, the
Star operator specifies the application of the expression any amount
of times. The regular expression in Listing 16 recognizes any string
containing only x and y and closing with xy. In the POSIX stan-
dard for regex more operators are defined which eases the creation
of more complex expressions. In the specification regular expressions
are divided in Basic Regular Expression (BRE) and Extended Regular
Expression (ERE) which use slightly different syntax.

13



regular expression recognized language

ε {ε}
a ∈ Σ {a}

st LsLt

(s|t) Ls ∪ Lt

s∗ Ls∗

Table 1: Semantics of regular expressions

(x|y)*xy �
Listing 16: A simple regular expression

(cats|dogs) are (very )* nice!{1,3} �
Listing 17: Another regular expression

The example shown in Listing 17 utilizes the ERE syntax, which al-
lows the use of unescaped curly brackets that denote how often a
regular expression has to be matched. In this case the exclamation
mark has to be matched between one and three times.

3.2.2 Types in Regular Expressions

In most cases regular expressions are defined to match strings, which
means the terminal symbols are characters. But regular expressions
can also be applied on generic lists of any kind, as long as a total order
is defined on the type of the elements. If this condition is satisfied,
each unique list element can be assigned a terminal symbol and the
normal syntax and semantics of regexs can be applied. In this way
regular expressions can be defined with polymorphic types.

3.3 format strings

The language of format strings is a very simple domain specific tem-
plate language well-known from its use in the printf function in C.
A format string consists of normal characters and placeholders called
format specifiers, which describe how a data type should be depicted.
It is used in similar ways in many programming languages including
Lisp, Perl, PHP, Python, Java and Haskell.

14



printf("Color %s","blue"); // Output: Color blue �
Listing 18: A printf call in C

3.3.1 Definition of Format Strings

A format string is composed of common characters and format speci-
fiers and has zero or more corresponding arguments. Each argument
is bound to one specifier and their attribution is implied by their or-
der of occurrence. While common characters can simply be copied
to the output string, format specifiers describe the formatting of the
assigned argument and are replaced by the result. A format specifier
is introduced by the character '%' followed by zero or more flags, an
optional minimum field width, an optional precision and a conver-
sion specifier setting the type of conversion. Consequently, it is of the
form

%[flags][width][.precision]type

where square brackets denote optionality. The type is only one char-
acter and determines the necessary type of the associated argument,
as well as its kind of conversion. For instance, if the type is 'X', then
the argument must be an integer and will be converted to hexadeci-
mal number system. The type may be the character '%'. In this case,
the format specifier will only yield this character and will not have
an assigned argument.

Width and precision are either integral numbers or the character
'*'. In the second case, the format specifier awaits another argument
of type integer, which defines the width or precision. The width
controls the minimum number of characters with which the format
specifier should be replaced. The precision describes the number of
characters used for displaying the converted argument. While the
width can never truncate or round a result, for the precision this is
well possible. The flags describe further modifications to the result,
setting the alignment, the use of an algebraic sign and the character
to fill whitespaces with.

float fl = 3.1468931
printf("%0*.4f", 8, fl); // Output: 003.1469 �

Listing 19: A printf call with a more complex format specifier

15



3.3.2 Types in Format Strings

In ordinary format strings only few types of arguments are possible.
Those are integers, floats, strings and characters. In C more types like
pointers are allowed, which are irrelevant in Curry.

The correctness of the argument types depends on the format speci-
fiers contained by the string. This implies that the format string must
be static at compile time if type safety at that point is desired, and
the string must be parsed before or during compilation.
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4 I N T E G R AT I O N O F D O M A I N S P E C I F I C
L A N G U A G E S

4.1 introduction

Two standard procedures in implementing a domain specific languages
can be discerned

• Interpretation and Compilation is the classical approach. The
domain specific language is integrated by creating a new com-
piler. This means there is no need for compromises. Type-
checking, error handling and optimization can be done directly
on the domain level which leads to high effectiveness.

• Extension of a base language will reuse a given language and
enhance it to fit the domain. Using this concept, the capabilities
of the base language remain intact leading to lesser effort.[9]

The first model is often selected for languages like SQL which benefit
hugely from specialized compilers. For small languages like regular
expressions and format strings the second way seems to fit better.
This approach is attempted with the Code Integrator.

4.2 extension of base languages with dsls

For the extension of base languages with domain specific languages
some models have evolved, the most important ones are domain spe-
cific libraries, preprocessing and compiler extension.

• The embedding of a DSL with domain specific libraries uses
the syntactic mechanisms of the base language for the imple-
mentation. This procedure requires the least effort, because the
compiler of the base language is reused in its original form. On
the downside, restricting the syntax often makes the domain
specific language lose its biggest benefit: the concision.

• The second model allows arbitrary syntax for the domain spe-
cific language and translates the DSL to the base language with
a preprocessor before compilation. This model often uses do-
main specific libraries, too, to facilitate the translation proce-
dure. The downside of this approach is the sacrifice of domain
level optimization.

• Extending the compiler is a similar approach as preprocessing
only that domain level optimization becomes possible by having
access to different levels of the compile process.
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An example for the first approach is the Parser library in Curry dis-
cussed in Section 5.2.2. This model is also used by the functional
programming language Lisp by allowing macro expanders, which
provide possibilities to enhance the Lisp syntax. Template Haskell1

uses a method, which is similar to the second approach. The third
approach is widely used in TCL[14] allowing a huge variety of DSLs.

4.3 code integration through preprocessing

A preprocessor is used in computer programs to prepare input for
a later state. Programming languages like Lisp and Scheme use pre-
processing to transform imperative and object-oriented programs into
functional programs and to enable the creation of minilanguages.2

The Code Integrator is a preprocessor used to translate code of a
domain specific language into a general purpose language like Curry.
After the translation, the code is compiled with a standard Curry
compiler. The advantage of this method is the retention of the original
syntax of the DSL, the possibility to use Curry’s safety mechanisms
like strict type-checking and the missing necessity to manipulate the
compiler. Beside the impossibility of domain level code optimization,
another drawback is the limited capability to deliver precise errors.
Errors found by the compiler in the translated code are given in the
base language and are therefore catchier to fix. In Figure 1 the process
of translation and compilation is elucidated. The preprocessor needs
its own error handling and errors could be passed to the compiler if
it provides this feature. In Listing 20 input and output of the Code

import Regex
-- before preprocessing
onlyAs s = s ``regex a*''
-- after preprocessing
onlyAs s = s `match` ([Star ([Literal ('a')])]) �

Listing 20: Regex in Curry before and after Preprocessing

Integrator are depicted. The output program uses the domain specific
Regex library.

1 See https://research.microsoft.com/en-us/um/people/simonpj/
papers/meta-haskell/meta-haskell.pdf for a descript of Template Haskell

2 See https://www.gnu.org/software/emacs/manual/html_node/elisp/
Macros.html for further information on Lisp macros
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Figure 1: Preprocessing a DSL
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5 T R A N S L AT O R S

A translator is a computer program, used to convert one formal lan-
guage into another. It is often used to translate a higher programming
language into machine code.[1] In this thesis a translator is applied
to transmute Curry program code with integrated domain specific
languages into pure Curry program code. Typically, the procedure of
translation is done in six steps:

1. lexical analysis (Scanner)

2. syntactic analysis (Parser)

3. semantic analysis

4. intermediate code generation

5. program optimization

6. code generation

While all steps are important for regular compilers, only the steps 1,
2 and 6 are necessary for the Code Integrator.

5.1 scanner

The task of a scanner is the lexical analysis, which means separating
the input in a chain of tokens. The resulting decomposition of the in-
put into logical units is an abstraction, which eases the task of parsing
on the next level.[10]

Normally, the input of a scanner is a string of characters and the
scanner is a finite state automaton accepting a regular grammar. The
scanner recognizes the valid atomic components of the languages,
which are often keywords like operators and constants. All atomic
components are then converted to corresponding tokens. The result
is a list of tokens, which constitute the partition of the input strings
syntax into the smallest logical units.

5.2 parser

A parser recognizes relations between the tokens and puts them in
a structure, in this way facilitating the work of the following levels
and validating the syntax of the input. The input of a parser is a list
of tokens. The parser verifies their use in the right context and, in
theory, transfers them into an abstract syntax tree (AST). Often such
a structure is never fully built.[10]
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Two major parsing algorithms exist, which are used on common
base: top-down and bottom-up parsing. Their names describe the
way they build the AST. Both algorithms only work if the recognized
language is produced by a deterministic context-free grammar.[11]

5.2.1 Parser-Combinators

In functional programming languages, Parser combinator libraries
are built to simplify the creation of parsers. A parser made of parser
combinators consists of many atomic parsers, which are joined to-
gether to create a new one. This new parser is able to recognize
a more complex grammar. An atomic parser works like a normal
parser, expecting a list of tokens and returning an abstract syntax
tree, if the parsing was successful.

For example, if two parsers are linked as alternatives, the languages
identified by each parser are recognized.

5.2.2 Functional-Logic Parsers

By interweaving concepts of functional and logic programming, new
kinds of parsers arise. The Curry Parser library is similar to other
parser combinators, but uses free variables to detect sequences of
characters in a string. The concept of this library and of functional-
logic parsers in general was developed by Caballero and Lopez-Fraguas
[2] and implemented in Curry by Hanus1.

A functional-logic parser using the Curry Parser library is shown
in Listing 21. This parser recognizes positive integers. Therefore,
operations like sequential application <*> or alternatives <||> are
provided. With >�>�> a representation is added to the parser.

import Parser
import Char

posInt = digit d <*> digits ds >>> (d:ds) where
d,ds free

digits = empty >>> []
<||> digit d <*> digits ds >>> (d:ds) where

d,ds free
digit = satisfy (\c -> isDigit c) ch >>> ch where

ch free �
Listing 21: Parsing a positive integer with the functional-logic parser

1 The implementation of the functional-logic parser can be found at http://www-ps.
informatik.uni-kiel.de/kics2/lib/CDOC/Parser.html
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5.3 target code generation

After parsing, the abstract syntax tree is transformed into code of the
target language. Often specific libraries are created to ease this task
by providing data types and functions, which reflect the structure of
the parsed language.
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I M P L E M E N TAT I O N



6 I M P L E M E N TAT I O N O F F O R E I G N C O D E
I N T E G R AT I O N I N C U R RY

6.1 specification

Foreign integrated code is embedded in Curry files. This means out-
side of it normal Curry syntax rules apply. Those can be found in
the Curry Report[5] and are partly described in Section 2.2. Prefer-
ably, the parser is ought to recognize as few syntactic constructs of
Curry as possible. This simplifies the task and accelerates the pro-
cess of parsing. Of cause, constructs like quotations and comments
need to be identified, because they escape the integrated code from
translation.

For the integration, a new syntactical construct is build to allow
the identification of foreign code by the parser. This task is not trivial
because a huge variety of languages must be recognizable if extensi-
bility should be preserved. To solve this problem, a special syntax for
the embedding is specified:

AccentGraves Langtag Whitespaces DSLExpression SingleQuotes

Integrated foreign code starts with two or more accent graves and
is terminated by the same amount of single quotes. The minimal
amount of accent graves necessary is determined by the occurrence of
accent graves and single quotes inside the integrated code. If n accent
graves or n single quotes appear in a row, at least n + 1 accent graves
and single quotes must bracket the integrated code. This implies that
the grammar of the language of integrated code is neither context-
free nor context-sensitive. Therefore, it is of Type-0 of the Chomsky
hierarchy.[10]

The accent graves are followed by the language tag. The language
tag is a string containing anything but whitespaces, tabs and new-
lines. At the moment, the following language tags have correspond-
ing translators: format, printf, regex, html and xml. The language tag is
followed by an arbitrary amount of whitespaces, tabs and newlines.
The indentation of the first term following the language tag, which is
the initial of the foreign code, sets the offset of the residual rest of the
expression. In this way, the normal Curry layout rules apply outside
of the integrated expression and new layout rules may be used inside
the foreign language. Some examples for legal integrated code are
depicted in Listing 22.

This specification allows the identification of integrated code and
the corresponding foreign language in Curry.
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initEmail s = s ``regex
[a-zA-Z0-9]
([a-zA-Z0-9\._])*

tailEmail s = s ``regex @
[a-zA-Z0-9][a-zA-Z0-9\-]*\.
([:alnum:][a-zA-Z0-9\-]*\.)*
[a-zA-Z]{2,4}''

printEl f = ``printf "%+20.3E",f'' >> putStr " km\n"
>> return ()

regexer s = s ````regex '''```''''' �
Listing 22: Legal integrated code

6.2 system design

As mentioned before, the used concept for the Code Integrator is pre-
processing. The preprocessor parses Curry code, which may contain
deviating designated syntax of a domain specific language. The iden-
tified expressions of the domain specific languages are then passed to
translators and converted to Curry expressions. The resulting expres-
sions are combined in their original order to generate the target code.
This procedure is displayed in Figure 2. It allows the easy extension
with more domain specific languages.

6.2.1 Error Handling

If the domain specific language code is integrated incorrectly or is
flawed, specific errors should be returned. This includes the output
of lines and columns where the errors occurred and tailored error
messages.

A concept to handle errors in functional language parsers is the use
of parser monads. The Happy parser generator 1 utilizes this model
to allow easy error definition and handling.

To improve the usefulness of Curry compiler errors with translated
domain specific language code, they should point to the right position
in the original domain specific language code. This means the start-
ing lines of the code blocks should not be altered. This is achieved by
inserting newlines in the translated code.

1 See haskell.org/happy/doc/html/sec-monads.html for a detailed descrip-
tion on how Happy provides error handling.
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Code Integration Parser

Curry with
DSL expressions

Curry CurryCurryDSL 1 DSL 2 DSL 1

DSL 1 Translator DSL 2 Translator

Combinator

Curry CurryCurry

Curry

Figure 2: Preprocessing of Curry with integrated code

6.2.2 Layout Rule

The offset of the integrated code should confirm to Curry layout rules.
This means the Code Integration parser needs to remove the offset in
every line of the domain specific language code to expose the real
code. Therefore the offset has to be calculated. If the code conflicts

printSome a b = ``format
"%s %d",

a''
-- expression without the offset
"%s %d",

a �
Listing 23: Curry layout rule with integrated code

with the layout rule, specific error messages must be created.

6.2.3 Domain Specific Libraries

For each domain specific language, a Curry library and a translator
must be created. The translators have to expect a position as well as
a string and must return the translated string. They must also pass
the errors occurring during the translation to the main module. The
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creation of regex and format libraries and parsers are described in
Chapter 7 and Chapter 8.

6.3 realization

6.3.1 The Objective

The first step in the process of implementation is the creation of a
parser that transfers Curry code with integrated expressions into a
special data type. This data type, depicted in Listing 24, is used for
both, integrated expressions and the Curry code between them, and
provides two positions, the language identifier and the expression

data StandardToken = StTk Pos Pos (Maybe Langtag) Code �
Listing 24: Declaration of the StandardToken in ParseTypes.curry

of the domain specific language. The first position is the one of the
whole code that is transformed, the second position marks the begin-
ning of the DSL’s expression. This is necessary to allow DSL specific
translators to create errors with correct lines and columns.

After this parser is built, it can be used in the translator to disas-
semble the input, which is then passed to the translators and concate-
nated.

6.3.2 The Parser Monad

The parser used for the recognition of the integrated expressions
should pass errors and warnings with attached positions back to the
main translator. As a consequence, error, warning and position han-
dling have to be available in nearly every function in the Code Inte-
gration parser. To ease this task, a library for handling positions and
three monads, one for errors, one for warnings and one for combining
both, were created.

data Pos = Pos Filename Absolute Line Column
initPos :: Filename -> Pos
lnDifference :: Pos -> Pos -> Line
colDifference :: Pos -> Pos -> Column
movePosByChar :: Pos -> Char -> Pos
movePosByString :: Pos -> String -> Pos �

Listing 25: Parsing Positions data type and some functions

For the task of providing precise positions a library, partly depicted
in Listing 25, was created. This library simplifies the task of moving
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the position by characters or strings and is also used for calculation
of offsets in the foreign code.

For the handling of errors and warnings two monads were created.
Those two monads were then combined, using a method that was
generally described by King/Wadler[8]. The type and the signatures
of some functions of the resulting parser monad are shown in List-
ing 26. An error is thrown by calling throwPM with a position and an

--- Combining ParseResult and Warnings monads into a
new monad type

type PM a = WM (PR a)
--- Encapsulate an Error Monad with a Warning Monad

creating a Parse Monad
warnPM :: PR a -> [Warning] -> PM a
--- Bind
bindPM :: PM a -> (a -> PM b) -> PM b
--- Lift
liftPM :: (a -> b) -> PM a -> PM b
--- Return without Warnings or Errors
cleanPM :: a -> PM a
--- Return without Errors but with Warnings
warnOKPM :: a -> [Warning] -> PM a
--- Throw an Error
throwPM :: Pos -> String -> PM _
--- Remove the Warning Monad from PM
discardWarningsPM :: PM a -> PR a
--- Extract the Warnings
getWarningsPM :: PM a -> [Warning]
--- Apply a function on each Warning
mapWarnsPM :: (Warning -> Warning) -> PM a -> PM a
--- Join multiple Parser Monads into one
sequencePM :: [PM a] -> PM [a] �

Listing 26: Parser Monad

error message. Warnings are attached to the result using the return
function warnOKPM. If no warnings and errors occurred, cleanPM is
used, a function that is the normal unit function of the monad.[7]
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6.3.3 The Parser

A string of Curry code

Parser Step 1
(finds the integrated expressions)

Parser Step 2
(disassembles the integrated

expressions)

Parser Step 3
(removes the offset in the
integrated expressions)

A list of standard tokens

Figure 3: Steps in the Code Integra-
tion Parser

With the StandardToken data type
in Listing 24 declared, the ob-
jective is obvious: take an ar-
bitrary string containing Curry
with or without integrated ex-
pressions and return an equiva-
lent list of StandardTokens. The
implied task was solved by cre-
ating a parser with three main
steps, which are shown in Fig-
ure 3. In the first step the
complete string is parsed and
quotes, single quotes, comments,
integrated expressions as well as
normal code are recognized. Af-
ter that the integrated expres-
sions are decomposed into a lan-
guage tag and foreign code. This
code still holds the offset, which
is part of the surrounding Curry
code. Therefore, the offset is re-
moved in the next step. The re-

sult is a list of StandardToken, which may then be used for the specific
translators.

The recognition of the integrated expressions in the first step is
done using the data type and the function, shown partly in Listing 27

and Listing 28. If a character is found that introduces an expres-
sion which needs special handling, a sub-function is called to parse it.
Otherwise, the character is cached in an accumulator. In this way, a
sequence of characters are kept until a special character is read. Then
the sequence is used to create a Normal data type. The function used

data L1Token = Normal Pos String -- normal Curry
| Exp Pos -- DSL code

Int -- number of idents
String -- DSL code �

Listing 27: Data type of the first level of the Parser

for the parsing on this level needs to recognize constructs that belong
to normal Curry, for example block comments and quotations, too.

The second and third step of the parser are done in one unit on
the next level. Here, all L1Tokens are converted to StandardTokens.
The integrated expressions are disassembled on this level, separating
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parserL1Iter acc accP p s@(c:cs)
-- Parse Quotations
| c == '\\"' = passThrough parseQuotation (

movePosByChar p '\\"') cs
| ...
| otherwise =
-- Recognize integrated expressions

let (n,r) = countAndDrop s_ident s
in if (min_number <= n)

-- Parse integrated expressions
then passThroughInt parseIntegrated �

Listing 28: The first level of the parser in CIParser.curry

the language tag and the code of the foreign language as well as
calculating its offset and the position. The function which is used for
this task is shown in Listing 29.

disassembleIntExp (Exp p i s) =
let

-- Recognize the language tag
(langtag,rest1) = break isSpace s
-- Recognize the whitespaces and the dsl
(spaces,dsl) = span isSpace rest1

in
if (null langtag) then throwPM p err_no_langtag

else
(...)
bindPM cleanDSL

(\cDSL -> cleanPM (StTk p posBeforeDSL (
Just langtag) cDSL)) �

Listing 29: Function for the disassembling of integrated expressions

First, it decomposes the integrated expression in a language tag,
whitespaces and the foreign code. Then the functions calculates the
offset by calling the function movePosByString on the leading identi-
fiers, the language tag and the following spaces and extracting the
resulting column of the position. Subsequently, the offset is removed
from the foreign code with help of a sub-function, which is applied
on each line. After this step the result is in form of a list of Standard-
Token and is ready for the specific translators.
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6.3.4 The Translator

The translator exploits the Code Integration parser to create a list of
StandardTokens from the input. The list elements are then passed to
the corresponding foreign language translators. The returned strings
are concatenated and newlines and whitespaces are inserted if nec-
essary. The result may then be written into a file. In Listing 30 the

translateString :: String -> String -> IO String
translateString name s =

do stw <- concatAllIOPM $ applyLangParsers $ ciparser
name s

putStr (formatWarnings (getWarnings stw))
return $ escapePR (discardWarnings stw) errfun �

Listing 30: The translation function for Strings

translation function for a string containing Curry with integrated ex-
pressions is shown. The parameter name is a arbitrary identifier, for
example a file path, relating to origin of the input string s. s is parsed
with the Code Integration parser and the integrated code is passed to
specific translators, depending on the language tag. The results are
then concatenated and warnings and errors are shown if necessary.
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7 I M P L E M E N TAT I O N O F A R E G E X L I B R A RY A N D
A R E G E X PA R S E R

7.1 the regex library

To allow the use of regular expressions in Curry, a library is created.
It should provides a function to match a string with an arbitrary reg-
ular expression. For this purpose, the function match, depicted in
Listing 32, and the data type Regex, depicted in Listing 31, are de-
clared.

type Regex a = [ORegex a]
data ORegex a = Nil

| Literal a
| Xor (Regex a) (Regex a)
| Star (Regex a)
| Plus (Regex a)
| AnyLiteral
| Bracket [Either a (a,a)]
| Times (Int,Int) (Regex a)

| ... �
Listing 31: Regex data type

A Regex is a list of polymorphic Regex operators. For each op-
erator, a specific data constructor is provided. The data constructor
Nil matches the empty list, Xor is the alternative operator and so on.
Xor, Star, Plus and Times have to contain regular expressions again to
fulfill their purpose.

This data type may now be used in the match function to check
whether a string conforms to its grammar. The match function termi-
nates if the regular expression, which is tested for matching a string,
is empty. If the string is empty too, the matching is successful, other-
wise it isn’t. If the Regex is not empty, the head element is matched
with part of the string. In some cases this is quite easy, for example
for Nil or a simple Literal, in other cases it requires the use of extra
sub-functions. Matching with regular expressions containing the Star,
Plus or Times operator is exceptionally tricky, because firstly, for each
repetition the whole residual string has to be matched with the resid-
ual Regex and secondly, each repetition may match multiple initials
of the string.

For the Star operator, the corresponding function solving this task
is shown in Listing 33. The matchstar function first tries to match the
string with the Regex zero times and then creates a list of Boolean
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match :: [a] -> Regex a -> Bool
match s r = case r of

[] -> if (s == []) then True else
False

(Nil:ors) -> match s ors
(Xor or1 or2:ors) -> match s (or1 ++ ors) || match

s (or2 ++ ors)
(Literal c:ors) -> case s of

[] -> False
(d:ds) -> if (d == c) then match ds ors else False

(Star r:ors) -> matchstar s r ors
(...) �

Listing 32: match function

matchstar :: [a] -> Regex a -> Regex a -> Bool
matchstar st r rgx = (||)

(match st rgx)
(tryeach (map (\x -> match x r) (inits st)) (tails st

) r rgx)

tryeach :: [Bool] -> [[a]] -> Regex a -> Regex a ->
Bool

tryeach [] [] _ _ = False
tryeach (b:bs) (t:ts) r rgx = (||)

(if b then (match t rgx || matchstar t r rgx)
else False)

(tryeach bs ts r rgx) �
Listing 33: Matching with the Star operator

values which represents whether an initial of the string is matched
with the Regex once. With this list and the corresponding tails of the
String the tryeach function is called. If the list contains True as head,
the matching of the residual string is tried. If this doesn’t lead to
success, the next initial of the string is tried.

7.2 the regex parser

7.2.1 Specification

Regular expressions are identified in Integrated Code with the lan-
guage tag regex. Their syntax and semantics conform to the Extended
Regular Expressions (ERE) defined in IEEE Std 1003.1. with one ex-
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ception:1 in the Code Integrator the operators < and > used to iden-
tify variables or Curry data terms. The selection of those identifiers
implies that arrow brackets in regular expressions cannot be used in
variables or data terms without escaping them. The escaping is done
with a leading backslash. Two examples displaying the inclusion of
Curry expressions in Regex are depicted in Listing 34.

madeOf :: [a] -> a -> a -> Bool
madeOf l v1 v2 = l ``regex (<v1>|<v2>)*''

soTrue :: Bool
soTrue = "a" ``regex <((\c -\> c) 'a')>'' �

Listing 34: Variables in Regex

The possible use of variables and data terms is the only difference
to Extended Regular Expressions.

7.2.2 Parsing

The regex parser enables the conversion of normal regex to Curry
expressions. Therefore, the regular expression must be parsed and
translated into the regex data type shown in Listing 31. Exemplarily,
the input and output of the translation process are shown in List-
ing 35. The procedure of the translation may be divided in three

-- Before
check s = s ``regex [a-z]*''
-- After
check s = s `match` ([Star ([Bracket [Right (('a'),('z

'))]])]) �
Listing 35: Conversion of a regex

steps: tokenizing, parsing and generation of the output string. The to-
kenization of the input string is the easiest step, matching characters
and escaped characters on tokens. Only special characters like oper-
ators have their unique token, other characters are just transformed
into one token containing them.

After that, the parsing of the list of tokens into a data structure
is carried out. The structure is displayed in Listing 36 and is very
similar to the one used in the Regex library, except the type variable
is set to string. This is necessary to enable the use of Curry data terms
in the regular expressions.

1 A free draft can be found at http://www.open-std.org/jtc1/sc22/open/
n4217.pdf. The same specification is described at http://pubs.opengroup.
org/onlinepubs/009695399/basedefs/xbd_chap09.html
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type Regex = [ORegex]
data ORegex = Nil

| Literal String
| Xor Regex Regex
| Star Regex
(...)
| Bracket [Either String (String,String)]
(...) �

Listing 36: Data structure after the parsing

parse :: Pos -> PM Regex -> [Token] -> PM Regex
parse _ prr [] = prr
parse p prr (t:ts) = bindPM prr (\r ->

case t of
TokenStar -> liftPM ((:) (Star r)) (parsen

p ts)
TokenBar -> parseBar p r ts
TokenPoint -> liftPM ((++) r) (parse p (

cleanPM [AnyLiteral]) ts)
(...)
TokenOSBracket -> liftPM ((++) r) (

parseOSBracket p ts)
(...)
TokenLiteral c -> liftPM ((++) r)

(parse p (cleanPM [
Literal (show c)])
ts)) �

Listing 37: The Regex Parse function

The main function for parsing is shown in Listing 37. This function
expects the position of the regular expression, the regular expression
which was parsed before, and a list of tokens and returns a Regex.
The necessity to keep the last parsed regular expression derives be-
cause ERE use suffix operators. The parse function forwards the input
to specific sub-functions depending on the head of the tokens.

After the main function returns, the output is processed by a code
generation function which yields a string containing data types and
functions of the Regex library. This code generation function basically
converts the Regex data type of the parser to the one of the library.
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8 I M P L E M E N TAT I O N O F A F O R M AT S T R I N G
L I B R A RY A N D F O R M AT S T R I N G PA R S E R

8.1 the format string library

The Format library allows the conversion of variables to strings and
is therefore similar to the show function in Curry. The major differ-
ence is the possibility to call the functions of the library with special
parameters, which define the formatting of the variable. The treat-
able data types and the possible formatting operations are implied
by the format string expressions specified in Section 3.3. To enable
type safety, a function for each type is created. At the moment func-
tions for Strings, Chars, Integers and Floats are implemented. These
primitives were chosen because they are the standard types used in
format expressions. The translator described in Section 8.2 utilizes
the functions of the library in the generated target code.

The formatting of the variable is determined by four data types:1

• The Typ, not to be mistaken for the actual type in Curry, de-
scribes how the variable is represented. For example, an integer
may be converted to hexadecimal or octal numeric system.

• The Flag holds information about the use of signs, decimal
points and alignment.

• The Width specifies the minimal amount of characters of the
string.

• The Precision defines the exact amount of characters to be printed,
for example after the decimal point of a float.

The formatting function for strings is depicted in Listing 38. This
function ignores the Typ and all flags but the minus flag. The pre-
cision and width parameters are applied and then the string is re-
turned.

Other format functions are more complicated. For example, the
function for formatting integers needs to convert integers into differ-
ent numeric systems.

Another complicated part of the implementation is the formatting
of floats, occasionally they have to be rounded or the exponent has
to be eliminated. To ease those tasks, a new data type for floats is
created. Corresponding to the data type, new functions are declared
to round and modify floats.

1 A more exact description of those arguments can be found in Section 3.3.
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type ShowSpec a = Typ -> Maybe Flag -> Maybe Width ->
Maybe Precision -> a -> String

(...)
showString :: ShowSpec String
showString _ mf mw mp s =

let flags = convertFlags mf
width = convertWidth mw
minusFlag = getMinusFlag flags
afterPrec = maybe s (flip take s) mp
afterWidth = if minusFlag

then fillWithCharsLeftAlign width '
' afterPrec

else fillWithCharsRightAlign width
' ' afterPrec

in afterWidth �
Listing 38: showString function

8.2 the format string parser

In the Format String parser, the functional-logic parser combinator
described in Listing 20 is exploited. This reduces the effort of con-
structing the parser, but is slightly slower because of the unbound
variables that need additional time to be evaluated. The syntax of
the parser combinator is similar to context free grammar definitions.
In Listing 39 one part of the parser is depicted. This part is on the

expression = quoted q <*> vars v >>> (q,v) where q,v
free

quoted = terminal '\"' <*> strsAndSpecs s <*>
terminal '\"' >>> s where s free

strsAndSpecs = empty >>> []
<||> str st >>> [Left st]
<||> spec sp <*> strsAndSpecs stsps >>> (Right sp:

stsps)
<||> str st <*> spec sp <*> strsAndSpecs stsps >>> (

Left st:Right sp:stsps) where st,sp,stsps free �
Listing 39: Part of the Format Parser

highest level of the parser and utilizes parsers on lower levels. expres-
sion reflects the structure of a format string, consisting of a quoted
string and some variables. The quotes string consists of two quota-
tion marks with common characters and specifiers in between.

This parser is called by a function that eliminates the non-
determinism, that might arise from the use of free variables. After
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this function is applied, the variables are assigned to specifiers. At
this point, the data type already looks very similar to the one used in
the Format library. The result is then used to generate the target code,
which consists of normal strings concatenated with format specifiers
in the form of calls to the library.
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9 R U N T I M E C O M P L E X I T Y

To evaluate the run time complexity of the Code Integrator, big files
with repetitive patterns were created. They either

• raise the amount of integrated expressions,

• raise the complexity of the integrated expressions

• or contain pure Curry code.

In all measurements the files were translated using the Code Integra-
tion 1.8 compiled with kics2 0.3.1. The time was measured using the
UNIX command time on a 2.2 GHz dual core notebook with 4 GB
of RAM. An example command used in this procedure is depicted in
Listing 40. To translate the foreign code, the dummy parser was used,

time ./bin/Translator examples/performance/5000dummy.
incurry e.curry �

Listing 40: Bash command to measure the time of translation

which only replaces newlines spaces and has linear time complexity.
Files with multiple occurrences of the line depicted in Listing 41

were used for the measurement on the translation of high amounts of
integrated expressions. The line was copied 5000, 10000, 15000 and

``dummy Hello!'' �
Listing 41: Line to measure huge amounts of integrated expressions

30000 times into files, which were then used as the input of the Code
Integrator. Table 2 lists the results. It is obvious, that the translation

Number of Lines Time

5000 0.410s

10000 0.774s

15000 1.125s

30000 2.311

Table 2: Results on huge amounts of integrated expressions

time is proportional to the number of lines. This is an indicator for
linear time complexity.
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Sequences Characters Time

1 409 0.005s

~50 9913 0.037

~100 19013 0.063s

~200 37831 0.113s

Table 3: Results on more complex integrated expressions

If the difficulty is raised by adding more symbols to the integrated
expressions, similar results occur. For example, four files were cre-
ated with a high amount of inner single quotes and accent graves.
The amount of outer accent graves and single quotes were always 100

and multiple sequences of 99 accent graves and 99 single quotes were
placed in the integrated expression in the way depicted in Listing 42.
In the first file only one sequence was used, which results in about
400 characters. In the second file 50 sequences were used, which re-
sults in about 9900 characters, in the third file 100 sequences were
used, which results in about 19000 characters and in the fourth file
200 sequences were used, which results in about 37800 characters.

`````dummy ````''''Hello!''''' �
Listing 42: Line of more complex integrated expressions

Again, the outcome, depicted in Table 3, indicates linear run time
complexity.

The Code Integrator was then tested on large files that do not con-
tain integrated expressions. Therefore, the CIParsers.curry source
code was inserted multiple times in a file and then translated. This is
a reasonable way to measure the performance, because CIParser.curry
contains all syntactic constructs of Curry, which could escape inte-
grated expressions, like quotes and comments, but does not hold
foreign code. The time was measured with the same method as de-
scribed above.

CIParsers Inserted Lines of Code Time

1 380 0.037s

2 760 0.079s

5 1900 0.148s

10 3800 0.277s

20 7600 0.551s

40 15200 1.170s

Table 4: Results on big, legal Curry files
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As depicted in Table 4, the consumed time for the translation pro-
cess is proportional to the amount of lines in the code. Each of the
results indicates that the parser for integrated expressions has linear
run time complexity.
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10 R E S U LT

The purpose of the Code Integrator was to provide an extendable
platform which allows the integration of domain specific languages
in Curry. Different concepts for the incorporation of DSLs in host
languages exist, each with up- and downsides.

The creation of domain specific libraries is easily accomplished, but
if directly used, reduces the conciseness of the language. If the DSL
is embedded using its own syntax and an external compiler, domain
level optimization is possible, but safety mechanisms of the host lan-
guage are bypassed. The modification of an existing compiler to sup-
port the DSL is complicated and hard to maintain.

Therefore, the selected approach was the construction of a prepro-
cessor. In this way, the conciseness of the DSL and the safety mecha-
nisms of the host language were kept.

With the Code Integrator, a platform was designed and imple-
mented that enables the use of DSLs with their original syntax in
Curry. The foreign code is translated to Curry before the compilation,
which allows the exploitation of its static analysis.

In the implementation, the translation is done by parsing specific
syntactic constructs, which contain the expressions of the DSL and
do not occur in regular Curry. The expressions are then passed to
translators which return equivalent legal Curry code.

The implementation was evaluated and all results indicate, that the
parse process that recognizes the integrated expressions and decom-
poses them and the process that recombines the translated code have
linear time complexity.

With the selected approach, the type safety of the host language
can be kept. For example, if the flawed printf example in Listing 2 is
embedded using integrated code (Listing 43), the compilation of the
translated file will break because of a type error.

import Format

pr :: Int -> IO ()
pr a = ``printf "%s",a''
-- Inferred type: [Prelude.Char] -> Prelude.IO ()
-- Expected type: Prelude.Int -> Prelude.IO () �

Listing 43: Flawed integrated printf expression

Regex and Format String were selected to prototype the integra-
tion of foreign code in Curry. For both languages, specific libraries
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were created to provide core functions. After that, parsers for the
conversion of the DSLs were implemented.

With this task completed, Regex and Format String may now be
used in Curry in the form of integrated code.

The Code Integrator is built to allow the simple addition of more
translators. A way to enhance the Code Integrator is described in
Appendix. A translator for real HTML to Curry’s HTML structure
was developed by Deppert1 and was integrated in the Code Integrator
without major troubles.

Code Integration using a preprocessor is a viable option for the en-
hancement of Curry. The advantages of the Code Integrator are clear:
conciseness and static safety mechanisms are kept. A disadvantage
is the impossibility to optimize the domain specific language during
compilation. The only way to improve the DSL expression is to write
better corresponding libraries in Curry and by generating better code
with the translator.

All in all, the Code Integrator is a simple, maintainable and extend-
able solution for the integration of domain specific languages.

1 The Bachelor thesis on this topic by Max Deppert is currently in progress.
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11 P R O S P E C T

The incoporation of the Code Integrator as a built-in preprocessor for
a Curry compiler is the main goal of near future work. The compiler
could enable the use of the translator, for example if a flag is passed.

Another task for the future is the extension of the Code Integrator
with more domain specific languages. The addition of more DSLs is
well possible, which was already proved by Deppert. A DSL, which is
a good candidate for such an enhancement, is the relational database
language SQL. An obstacle for realizing this task might be the vast-
ness of SQL’s syntax and the necessity of a corresponding SQL library
in Curry.

Possible improvement of the Code Integrator could also arise from
the use of parallelization. Since each integrated expression is trans-
lated separately, it might be possible to do this simultaneously. The
overhead created by parallelization might lead to ineffectiveness, though.

The implementation of a search algorithm in the regular expres-
sions library is a viable task, too. Instead of only matching whole
lists, regular expressions could be used to search and replace parts
of a list. A search algorithm is described by Thompson[12] and only
needs to be transferred to Curry.
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A P P E N D I X

requirements and installation

The compilation of the Code Integrator requires an installed Curry
compiler1, the build-management-tool make2 and the source code of
the project3. The right Curry compiler must be set in the Code In-
tegrator’s Makefile as CC. Using Windows it might be necessary to
modify some more options in the Makefile.

The source code can easily be compiled by running make in the
main folder.

In Listing 44 an example on how to install the Code Integrator
using pakcs and sed is shown. After the compilation the executable

# Change directory to the Code Integrators main folder
$ cd /path/to/CodeIntegrator
# set the correct curry compiler binary in the makefile
$ sed -i '48s/.*/CC = kics2/' Makefile
# run make
$ make �

Listing 44: Example Compilation Process

is placed in the bin folder of the Code Integrator. The Makefile also
supports the cleaning of the project folder by running make clean.

1 Compilers can be found at http://curry-language.org.
2 The GNU Make reference can be found at https://www.gnu.org/software/
make/ and the nmake reference for Windows at http://msdn.microsoft.com/
de-de/library/dd9y37ha.aspx

3 The source code is currently hosted nonpublic at https://git-ps.informatik.
uni-kiel.de/theses/2013-jsi-made-ba
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usage instructions

To translate a file with the Code Integrator execute the Translator
binary with two file paths as parameters: the file path to the input
file and the file path to were the translated file should be placed.
Then use a Curry compiler to compile the resulting file. If libraries
outside of the standard Curry search path are used, add them to the
compilers search path. Ways to do this can be found in the compiler’s
manual. Remember to import the correct libraries already in the file
that should be translated. For syntax and semantics of integrated

# Translate
$ sh path/to/CodeIntegrator/bin/Translator /path/to/

input/file /path/to/outputfile
# Add libraries to search path
$ CURRYPATH=$CURRYPATH:/path/to/CodeIntegrator/lib
$ export CURRYPATH
# Use with compiler
$ pakcs :l /path/to/outputfile �

Listing 45: Translating and compiling a file

code in Curry see Section 6.1, the Translator.curry module and the
examples.

Real World Example

The input file shown in Listing 46 is saved at $HOME/email.curry.

import Regex
isEmail s = s ``regex [a-zA-Z0-9]([a-zA-Z0-9\._])* @[a-

zA-Z0-9][a-zA-Z0-9\-]*\.([:alnum:][a-zA-Z0-9\-]*\.)

*[a-zA-Z]{2,4}'' �
Listing 46: Input file

$ sh $HOME/Bachelor/CodeIntegrator/bin/Translator $HOME
/email.curry $HOME/email_trans.curry

$ CURRYPATH=$CURRYPATH:$HOME/Bachelor/CodeIntegrator/
lib && export CURRYPATH

$ pakcs :l $HOME/email_trans.curry
ex1> isEmail "jsi@informatik.uni-kiel.de"
Result: True �

Listing 47: Real world example
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enhancement

The enhancement of the Code Integrator with more domain specific
languages is well possible. To integrate a new language a translation
function with the type

Pos→ String→ IO (PM String)

must be implemented and able to convert the DSL syntax to legal
Curry code. The data type PM and the relating functions are defined
and described in the ParseMonad.curry module. The Pos data type
and functions can be found in ParsePos.curry. The new translation
function must be imported and added to the cases in the parsers func-
tion in the Translator.curry module in the same way as it is shown in
Listing 48.

parsers :: Maybe Langtag -> LangParser
parsers = maybe iden pars

where
iden _ s = return $ cleanPM s
pars :: Langtag -> LangParser
pars l p =

case l of
"dummy" -> DummyParser.parse p
"format" -> FormatParser.parse p
"printf" -> FormatParser.parse p
(...)
-- EXAMPLE ENHANCEMENT
"new_lang" -> NewLangParser.parse p
_ -> (\_ -> return $ throwPM p ("Bad

langtag: " ++ l)) �
Listing 48: parsers function in Translator.curry
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