
Christian-Albrechts-University of Kiel

An API Search Engine for Curry
submitted by

Sandra Dylus

Bachelor Thesis
Programming Languages and Compiler Construction

Prof. Dr. Michael Hanus
Department of Computer Science

Christian-Albrechts-University of Kiel

Advised by Prof. Dr. Michael Hanus
M. Sc. Björn Peemöller

Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus
fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich
gemacht. Die Arbeit wurde bisher in gleicher oderähnlicher For in keiner anderen Prü-
fungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Ort, Datum Unterschrift

II

Contents

1. Introduction 1

2. Preliminaries 5
2.1. The programming language Curry . 5
2.2. CurryDoc . 9
2.3. The Holumbus Framework . 10

3. Analysis 12
3.1. Extracted Information . 13
3.2. Searching . 15
3.3. Parsing User-Queries . 17

4. Implementation 19
4.1. CurryDoc Extension . 19
4.2. CurryIndexer Implementation . 22

4.2.1. Index Construction . 23
4.2.2. Document Construction . 28
4.2.3. Example . 30
4.2.4. Conclusion . 32

4.3. Searching . 32
4.3.1. General Idea and Usage of Parsers 33
4.3.2. Parsing User Queries . 37
4.3.3. Parsing Type Expressions . 39
4.3.4. Document Retrieval . 45

III

Contents

5. Conclusion 47
5.1. Summary and Results . 47
5.2. Outlook . 48

A. CurryDoc Instruction 50
A.1. Installation . 50
A.2. How-to-use . 50

A.2.1. Example . 51

B. Installation and Usage of Curr(y)gle 53
B.1. Installation . 53
B.2. How-to-use . 53

C. User-Query Syntax 55
C.1. Extended Backur Naur-Form of the Parser 55
C.2. Syntax Diagrams . 57

IV

List of Figures

1.1. Increasing Data Stock of hackageDB over the Past Five Years 2
1.2. Curr(y)gle - An API Search Engine for Curry 3

2.1. Directory Structure of the Holumbus Framework 11

3.1. Structure of Curr(y)gle . 13

4.1. Contexts for a ModuleInfo Data Structure 25
4.2. Contexts for a TypeInfo Data Structure 28
4.3. Contexts for a FunctionInfo data structure 29
4.4. Example Index Consisting of Search Keys and Documents 46

V

1

Introduction

This thesis examines the development of an API search engine for the functional logic
programming language Curry [4] and presents the results of this development. Currently,
online documentations are the only way to get an overview of the functions and data
types that Curry provides. More precisely, PAKCS1 and KiCS22, two implementations of
Curry, offer such online documentations for the modules that are part of the distribution.
Furthermore, these documentations are generated by a tool named CurryDoc that is
also part of PAKCS as well as KiCS2. Unfortunately, the generated documentation
is presented as a list of modules; under these circumstances, the search for a specific
function is complicated if one has to scan every module, albeit one knows where to start
searching.

The functional programming language Haskell [7] offers a similar documentation sys-
tem. The hackageDB3 is a collection of released Haskell packages; such packages mostly
consist of several modules. In the course of time, the amount of released and uploaded
packages has increased. Figure 1.1 shows this increase in the time between 2006 and the
beginning of 2012. Currently, the database consists of more than 4,000 packages and
40,000 functions. In 2004, Neil Mitchell started to work on Hoogle4, a search engine for
Haskell packages, which was written in Haskell. Hoogle browses the documentation of
Haskell modules available on hackageDB. These documentations are generated by Had-

1http://www.informatik.uni-kiel.de/~pakcs/
2http://www-ps.informatik.uni-kiel.de/kics2/
3http://hackage.haskell.org/packages/hackage.html
4http://haskell.org/hoogle

1

http://www.informatik.uni-kiel.de/~pakcs/
http://www-ps.informatik.uni-kiel.de/kics2/
http://hackage.haskell.org/packages/hackage.html
http://haskell.org/hoogle

1 Introduction

dock5 and the provided modules are part of the Glasgow Haskell Compiler6 (GHC), an
open source compiler and interactive environment for Haskell. Unfortunately, Hoogle
browses only these modules, but as we have learned, there are about 4000 of these
packages that consist of even more modules.

Figure 1.1.: Increasing Data Stock of hackageDB over the Past Five Years

In 2008, the FHWedel decided to build Hayoo! 7, a new search engine written in Haskell
that searches information about all available packages and corresponding modules of
hackageDB. We think that such a search engine simplifies the work with a language like
Haskell because it allows us to get a quick overview of functions that already exist and
use them in our implementations.

More precisely, the FH Wedel implemented a framework to build highly-flexible search
engines and Hayoo! was the first search engine application that was build with this
framework. Thus, this is the starting point of this thesis: inspired by Hayoo! and Hoogle,

5http://www.haskell.org/haddock/
6http://haskell.org/ghc
7http://holumbus.fh-wedel.de/hayoo/hayoo.html

2

http://www.haskell.org/haddock/
http://haskell.org/ghc
http://holumbus.fh-wedel.de/hayoo/hayoo.html

1 Introduction

we decided that Curry needs its own search engine. The search engine can improve the
work with Curry and forms a good addition to the existing documentation. Figure 3.1
shows Curr(y)gle - the web application of the search engine that we implemented.

Figure 1.2.: Curr(y)gle - An API Search Engine for Curry

The further chapters of this thesis are organized as follows. At first, Chapter 2 presents
the preliminiaries of this thesis. This includes basic information about the program-
ming language Curry, the introduction of CurryDoc – a tool to generate a HTML-
documentation of a given Curry source code that is quite similar to javadoc8. Further,
we introduce the Holumbus framework that is used to build the search engine. In Chap-

8http://www.oracle.com/technetwork/java/javase/documentation/

index-jsp-135444.html

3

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

1 Introduction

ter 3, we analyse the requirements to create an API search engine for Curry. The chapter
outlines the first ideas for the following implementation. Chapter 4 focusses on the most
important implementation ideas and decisions. At the very end, we discuss the results
of this development. Also, we give a short outlook on features and ideas to expand the
given result.

4

2

Preliminaries

This chapter gives a brief introduction to fundamentals that are necessary to compre-
hend the following chapters. The first section of this chapter gives an introduction to the
programming language Curry. It outlines main concepts and features of the language.
Furthermore, we present CurryDoc [3], a tool to generate documentation that is dis-
tributed with PAKCS, in the second section. The last section introduces the Holumbus1

framework, a library written in Haskell, to configure and build search engines.

2.1 The programming language Curry

Curry is a functional logic programming language created by an international develop-
ment team to provide a platform for research and teaching mostly. As the description
suggests, it offers features of both programming paradigms: functional and logic.

As in Haskell, a Curry program consists of function definitions and data structures.
A module Test is a program that is saved in a file named Test.curry. The syntax of a
Curry program is quite similar to the syntax of Haskell.

addTwo x = x + 2

The left-hand side of this function addTwo x is evaluated to the right-hand side x + 2,
i.e., the call addTwo 3 yields 3 + 2 = 5.
In general, an expression is evaluated by replacing the left-hand side of a definition

by the right-hand side. The evaluation proceeds one replacement after another until

1http://holumbus.fh-wedel.de/trac

5

http://holumbus.fh-wedel.de/trac

2 Preliminaries 2.1. The programming language Curry

it yields a value. A value is an expression that does not contain function calls but
only literals or data structures. If the last replacement does not result in a value, the
evaluation fails. Moreover, it is also possible that the amount of replacement steps are
infinite and the evaluation never succeeds nor fails. If an evaluation has more than one
possible replacement step, so-called subexpression can be evaluated. Curry uses lazy
evaluation, this means that such a subexpression is only evaluated, if its result is neces-
sary to continue the evaluation and every expression is evaluated just once. A functional
programming language can offer lazy evaluation because of referential transparency, this
means that the value of an expression only depends on the values of its subexpression
and does not depend on the time of the evaluation.

Furthermore, Curry supports function definition with pattern matching, which is often
used in functional and logic programming languages. Pattern matching is a concept that
allows variables and data constructors, like True and False, to occur in the arguments
on the left-hand side of a definition in order to use them on the right-hand side. The
boolean operation not is a good example for a definition with pattern matching. The
definition distinguishes between more than one input value, so we have to write one rule
for each possible input value.

not :: Bool → Bool

not False = True

not True = False

The first line is the type signature and says that the function expects a boolean value as
its argument and yields a boolean value as its result. The last two lines of the definition
are rules, that describe that the application not False yields True, whereas not True

yields False. There are no more possible values for the argument of the function not,
since Curry is a strongly-typed language and True and False are the only possible values
of boolean type. In addition, Curry also allows polymorphic functions. For instance,
the identity function returns the argument that it is applied to, regardless of the input
value’s type. That is, you can apply the function to all types of values, because the
type is not considered in the implementation. Hence, polymorphic types are indicated
by type variables. The following code presents the type signature and definition of the
identity function.

id :: a → a

id value = value

6

2 Preliminaries 2.1. The programming language Curry

Furthermore, functions are first-class citizens in Curry. This means that they can
appear as argument or a result of an expression as well as in a data structure. The most
popular use-case is the manipulation of all elements of a list by a given function. An
exemplar of a higher-order-function is the function map, which also exists in Haskell,
that takes two arguments, a function and a list and returns a list. It is important that
the type of the function’s argument matches the types of the elements of the list. For
example, a function that converts an integer to a character can be applied to a list of
integers and yields a list of characters. The following code presents the definition of the
function map.

map :: (a → b)→ [a]→ [b]

map func [] = []

map func (elem : list) = func elem : map func list

The first line presents the type signature. The function f :: (a → b) takes a value of
polymorphic type and returns this polymorphic type. The second argument is a list
of elements with the type the function func expects. Furthermore, the resulting list of
map contains elements of the same type as the resulting type of the function func. The
definition of map says that an empty list yields an empty list. In case of a list that
contains at least one element, func is applied to the each element of the list recursively.

Besides function definitions, a Curry program consists of data types definitions. PAKCS
provides predefined data types, like the boolean type that we mentioned above.

data Bool = True | False

This code defines a data type with the name Bool that has two nullary constructors False

and True with type Bool . Another interesting predefined data type is the polymorphic
list.

data [a] = [] a | a : [a]

The syntax for lists is the same as in Haskell. [] is the empty list, whereas 1 : 2 : 3 : []

is the same as [1, 2, 3] or 1 : [2, 3]. The latter representation is often used in pattern
matching, to use the first element of the list in the right-hand side of the definition.

In addition to the already mentioned functional characteristics, Curry also offers log-
ical variables and non-deterministic functions. Logic programming languages consist

7

2 Preliminaries 2.1. The programming language Curry

of rules, for example, we can define a constant function that represents my favourite
number,

favouriteNumber = 7

or in case of two favourite numbers, we define:

favouriteNumber = 3

favouriteNumber = 7

This function is non-deterministic because it returns different values for the same in-
put. The pattern of this function overlaps in functional programming languages and,
therefore, only the first definition will be used. Fortunately, Curry’s ability to search for
results allows to define those non-deterministic functions.

Curry also offers logic variables. A variable is called logic if it appears on the right-
hand side but not on the left-hand side of a rule. These variables are unbound values,
that are instantiated if the evaluation of an expression needs to know the value of the
logical variable in order to proceed. Furthermore, these variables can be bound to dif-
ferent values because Curry computes all possible solutions of an expression.

Curry provides two different approaches to evaluate an expression with logical vari-
ables. The first approach suspends the evaluation in the hope that the logical variable
will be bound by a concurrent evaluation of an expression. If there is no other expres-
sion to bind the value, the evaluation fails. This approach is called residuation and
Curry uses it for boolean operators, like the equality operator ≡. The second approach,
called narrowing, guesses a value for an unbound value. Constraint operators, like the
boolean constraint operator =:=, use narrowing for evaluation. In this context, Curry
distinguishes two types of operators: flexible operators that use narrowing and rigid
operators that use residuation. For example, arithmetic (i.e. +, −, ∗ etc) and other
primitive operations are rigid. However, these distinctions do not have any significance
for expressions without logical variables, so called ground expressions. As mentioned in
the previous section, Curry evaluates ground expressions with lazy strategy.

In summary, Curry has a strong type system and allows polymorphism. A Curry pro-
gram is a collection of function definition and data types. Furthermore, Curry provides
higher-order-functions, algebraic data structures and pattern matching. Logic variables
and non-determinism are logic features that Curry supports.

8

2 Preliminaries 2.2. CurryDoc

2.2 CurryDoc

CurryDoc is a tool to generate documentation for a program written in Curry. The
current version can generate either a HTML or LATEX file as output. CurryDoc works
similar to code generating tools like javadoc, as it uses the comments in the source code,
which are provided by the programmer. It also provides the type signatures of functions;
if the signature is not given in the source code, Curry can use its type inference algorithm
to provide the information. In addition, the CurryDoc tool analyses the program’s
structure and approximates the run-time behavior to gain further information [3]. This
analysis includes information about (in-)completeness, overlapping pattern matches and
(non-)deterministic functions. The following screenshot shows the online documentation
of the Curry module Prelude that is generated by CurryDoc.

CurryDoc is implemented in Curry and it uses the meta-programming module Flat-
Curry2 that provides an intermediate language representation of the Curry program to
analyse the special function properties. A FlatCurry program consists mainly of a list
of functions, a list of types and information about the module itself.

2http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/FlatCurry.html

9

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/FlatCurry.html

2 Preliminaries 2.3. The Holumbus Framework

2.3 The Holumbus Framework

The Holumbus Framework is a Haskell library created by students of FH Wedel in
context of two master’s theses [5][8]. Holumbus is a framework to build and configure
customizable search engines. The main idea of the framework is to collect data with
a specific structure, like a cooking recipe or an API of a programming language, and
to take advantage of this structure in order to improve the search results. In addition
to the framework, Hayoo! [1] was developed, an API search engine for the functional
programming language Haskell.

The framework supports three phases to create a working search engine: the crawling
(1), the indexing (2) and the searching phase (3).

1. In the process of crawling, the framework can automatically browse web pages of
given URIs in order to collect all data and information, respectively. The retrieved
pages are then passed to the indexer in order to preprocess the data.

2. In the indexing process the pages are analysed and stored in a data structure to
provide a fast information retrieval. The indexer preprocesses the data in order to
filter all relevant search criteria, e.g., an indexer could filter only PDF documents.
Additionally, instead of keeping a copy of the original document, e.g., a web page,
a characteristical data structure is created.

3. Finally, the fast information retrieval is the heart of the search engine. One can
access the information of the index by phrasing a search query. Commonly, the
search query is compared to the information stored in the index and convenient
matches, i.e., documents, are returned as results.

For the implementation of Curr(y)gle, we do not use the crawler part of Holumbus be-
cause we do not want to browse and parse web pages. We rather want to make use of
the existing CurryDoc and the information of Curry modules that the generated doc-
umentation provides. Therefore, we focus on the latter two features of the Holumbus
framework. Holumbus provides several modules for the to construct and access the in-
dex; the directory structure of the framework is illustrated in Figure 2.1. The module
Common provides implementations for the data structure to represent the searchable
information. This data structure is composed of two parts: search keys and documents.

10

2 Preliminaries 2.3. The Holumbus Framework

In Holumbus, the structure to hold the preprocessed data is called index and docu-
ments is the name for the data structure that holds the crawled information. Further
data structures that are used in the indexing process are stored in the folder Common,
whereas Inverted consists of the implementation for the data structure of the index.
Holumbus uses a structure called inverted filed or inverted index. This structure stores
the occurrences of each search criterion and a reference to its corresponding document.
Furthermore, Holumbus provides a mechanism to form and process a search request,
and a data structure to represent the result; additionally, the result can be subjected to
a ranking.

Holumbus

Crawler

Data

Index
Query

Query

Language

Grammar

Parser

Processor
Ranking

Result

Index

Common

Common
CompactDocuments

CompactIndex

Inverted

Explanation not used here directory Haskell file

Figure 2.1.: Directory Structure of the Holumbus Framework

11

3

Analysis

This chapter looks into the requirements to build and run Curr(y)gle, an API search
engine for Curry. The first section deals with the creation of an index that manages the
information that we want to provide, whereas the second and third section address the
process of searching for a query. In this context, we take a closer look at the Holumbus
framework and its features related to searching and evaluate the criteria to accomplish a
user-friendly search mechanism. Furthermore, we discuss the syntax Curr(y)gle should
provide to specify a search query.

Before we present the first ideas in more detail, we want to give an overview of the
structure of Curr(y)gle. The Figure 3.1 illustrates all relevant components that work
together in order to provide the search engine.

The first components, including the parser and the Holumbus framework, describe
the functionality of the web application, i.e., the searching phase. At first, the parser
analyses a given search term, like "map", and constructs a query data structure for
the Holumbus framework. Holumbus searches for the given search term in the provided
index and, in case of matching entries in the index, returns the documents that contain
the search term. At last, we prepare the results, in form of the documents, for the web
application.

We highlighted the second process of Curr(y)gle with dashed arrows. This process
describes the construction of the index that we pass to Holumbus in order to provide
the data that can be searched for. The main idea is to use the information generated
by CurryDoc. We prepare this data in order to fit the required data structure that

12

3 Analysis 3.1. Extracted Information

Holumbus provides. More precisely, we split the data in to search keys and documents
and pass this data to Holumbus as source for the index.

Parser Holumbus

Index

Name: rechts
Modul: NeuesPaar
Signatur: NeuesPaar → String
Beschreibung: Gibt den zweiten Eintrag aus
Nichtdetermistisch: Nein
Flexibel oder Rigide: Unbekannt

Funktionsinformation

Name: rechts
Modul: NeuesPaar
Signatur: NeuesPaar → String
Beschreibung: Gibt den zweiten Eintrag aus
Nichtdetermistisch: Nein
Flexibel oder Rigide: Unbekannt

Funktionsinformation

Name: rechts
Modul: NeuesPaar
Signatur: NeuesPaar → String
Beschreibung: Gibt den zweiten Eintrag aus
Nichtdetermistisch: Nein
Flexibel oder Rigide: Unbekannt

Funktionsinformation

Name: rechts
Modul: NeuesPaar
Signatur: NeuesPaar → String
Beschreibung: Gibt den zweiten Eintrag aus
Nichtdetermistisch: Nein
Flexibel oder Rigide: Flexibel

Funktionsinformation

1

<html>
 <head>
 <title>Curr(y)gle</title>
 <meta content="text/html; charset=UTF-8"
 http-equiv="content-type">
 <link rel="stylesheet" type="text/css" href="stylesheet.
 <script src="jquery-1.7.2.js"></script>
 <script src="searching.js"></script>
 <script src="bootstrap.js"></script>

 </head>
 <body>
 <div class="row-fluid">
 <div class="span12">
 <div class="hero-unit">
 <h1>Curr(y)gle</h1>
 <p>Keep calm and curry on</p>
 </div>
 </div>
 <div class="row-fluid">
 <div class="span3 visible-desktop">
 <div class="sidebar">S</div>
 </div>
 <div class="span9">
 <form onsubmit="return searchQuery();" class="well">
 <input id="query" type="search" value=$(oldquery)
 class="search-query"
 onkeyup="getCompletions(event)">

</html>

"map" Query Rendering

--- Testmodul
--- @author Sandra Dylus
module NeuesPaar where

--- Paar aus Zahl und Text
data NeuesPaar = Paar (Int,String)

--- Gibt den ersten Eintrag aus
links :: NeuesPaar → Int
links (Paar (zahl,text)) = zahl

--- Gibt den zweiten Eintrag aus
rechts :: NeuesPaar → String
rechts (Paar (zahl,text)) = text

CurryDoc
Name: rechts
Modul: NeuesPaar
Signatur: NeuesPaar → String
Beschreibung: Gibt den zweiten Eintrag aus
Nichtdetermistisch: Nein
Flexibel oder Rigide: Unbekannt

Funktionsinformation

Name: rechts
Modul: NeuesPaar
Signatur: NeuesPaar → String
Beschreibung: Gibt den zweiten Eintrag aus
Nichtdetermistisch: Nein
Flexibel oder Rigide: Unbekannt

Funktionsinformation

Name: rechts
Modul: NeuesPaar
Signatur: NeuesPaar → String
Beschreibung: Gibt den zweiten Eintrag aus
Nichtdetermistisch: Nein
Flexibel oder Rigide: Unbekannt

Funktionsinformation

Name: rechts
Modul: NeuesPaar
Signatur: NeuesPaar → String
Beschreibung: Gibt den zweiten Eintrag aus
Nichtdetermistisch: Nein
Flexibel oder Rigide: Flexibel

Funktionsinformation

Indexer

Search
Keys

Documents

Figure 3.1.: Structure of Curr(y)gle

In the following section, we elaborate on the index construction, including the function
of Holumbus and the usage of CurryDoc as source of the information in the index.
Furthermore, we outline the main functions of the parser that we implemented in order
to analyse the user queries.

3.1 Extracted Information

Search engines look up information, hence, we need to collect data that we can search
for. For Curr(y)gle, we want to collect data that provides information about the API
of Curry. Therefore, we first need to think what kind of information we can provide
and decide what we want to search for. Secondly, we introduce the idea behind the con-
struction of the index and the managed data that is traversed in the process of searching.

13

3 Analysis 3.1. Extracted Information

Usually, a web crawler is applied to browse web pages for data. But since Curry is
currently organized by the module documentation generated by CurryDoc, we already
have a mechanism to gain the information about a Curry module that we want to provide
for the index. In fact, we have even more specific function-related information because
we know if a function definition is non-deterministic or deterministic and if a given
function is flexible or rigid. In the following, we refer to these characteristics as context
and the following table presents the information or, more precisely, the contexts that we
want to provide:

Module Function Type

Name X X X

Author X

Type Signature X X

Description (in comments) X X X

Defining Module X X

Rigid/Flexible characteristics X

(Non-)-deterministic Definition X

In general, we want to distinguish between three kinds of information in a Curry mod-
ule: the defined data types and functions, and the module itself. We want to provide
the name and description for all three kinds; for the module we also store the author’s
name. Additionally, we gain a lot of information for functions that we can add to the
index: nondeterministic vs. deterministic definition, flexible vs. rigid definition, the
corresponding type expression and the name of the module that defines the function.
For types, we add the corresponding module and the type signature for its constructors.

Currently, CurryDoc processes Curry modules and generates documentation in form
of HTML or LATEX output. For our index, we do not want to use a document markup
language but the pure information about the Curry module, otherwise we would have to
parse the HTML-structures in order to filter the relevant information. This observation
leads to the idea of adding a new data structure that is generated by CurryDoc. For
this CurryDoc extension, we take advantage of the FlatCurry representation of a Curry
module to access the information we mentioned above. We discuss the actual implemen-
tation of the CurryDoc extension in the next chapter.

14

3 Analysis 3.2. Searching

We use the information, that we are generating with the CurryDoc extension, as
source for the index that we want to provide for Holumbus. As requirement to utilize
the framework, we have to use specific data structures. These structures arrange the
index to be split into two components: the search keys that we want to provide, and
the documents that correspond to the given search keys. Furthermore, a search keys
consists of the actual word that we want to search for and a context to differ between
several kinds of information. For example, if we have a Curry modul with information
about the module’s name and description, we provide a document structure and the
corresponding search keys consisting of context and word:

context search word

module "Duck"
description "It’s a duck"

ModuleInformation

Name: Duck

Description: It’s a duck

Thus, if we search for the word "Duck", Holumbus scans the given search words and, in
case of a hit, returns the corresponding document structure.

In summary, we want to extend the current CurryDoc implementation to generate a
new parseable data structure that contains information about a given Curry module.
This information covers, among other things, function and data structure definitions,
descriptions in the form of user comments, and meta information about the module.

3.2 Searching

After creating the data for the index, we want to actually use this information in a search
query. Thus, the first step is to think about the structure of a query, in the second step
we process the query, and lastly we need a representation of the results of the processed
query for further use.

Fortunately, these are all features the Holumbus framework provides. At first, we take
a look at the search mechanism and the query representation. The data structure Query

allows to search for a word or a phrase, both case-insensitive and case-sensitive.

15

3 Analysis 3.2. Searching

data Query = Word String

| Phrase String

| CaseWord String

| CasePhrase String

| ...

Since the search depends on user-input, the framework also allows fuzzy searching to scan
for results with spelling errors like transposed letters. Since the index data structure of
Holumbus uses pairs of words and contexts, a special mechanism to search for one or
more contexts is given. Furthermore, the structure provides binary operators to combine
multiple queries; supported operators are conjunctions, disjunctions and negations.

data Query = ...

| FuzzySearch String

| Specifier [Context] Query

| BinQuery BinOp Query Query

type Context = String

data BinOp = And | Or | But

After the construction of the query data structure, we pass the index, document and
query to Holumbus, by calling the function processQuery that, as the name suggests,
processes the query; the function is provided by Holumbus. When processing the query,
Holumbus only searches for prefixes of the given word or phrase in a query, we need to
keep this restriction in mind when we create the index in Section 4.2.

The return value of the successfully processed query is a data structure Result that
consists of the matching documents as well as possible word completions. Additionally,
each document and word completion has a calculated score between 0 and 1 that deter-
mines the relevance of the result. For documents, this score is calculated by the number
of occurrences of the search query in the document by default and represented as a float.
However, Holumbus also provides a mechanism to apply a customized ranking function
to calculate the score.

Let us proceed the examples of the previous section. We can construct the query

Specifier ["description"] "It"

and after processing, we get the following result:

16

3 Analysis 3.3. Parsing User-Queries

Result = {documents : {("Duck", 0.75)}
,word completions : {("It’s", 0.8)}}

ModuleInformation

Name: Duck

Description: It’s a duck

All modules, i.e. documents, whose description contain the word "it" and all possible
word completions (we have added random values as scores to the example for complete-
ness) are the result of the search. The word "Duck" stands for the document that we
already discussed in the previous section and the curly brackets { } symbolise the pos-
sibility of several documents and word completions as result. More precisely, the data
structure Result can hold a list of documents and word completions.

Summing up, we have discussed the mechanism to evaluate a query with the Holumbus
framework. The provided mechanism includes the data structures to represent a query,
which can be processed to a data structure consisting of the matching documents and
possible word completions.

3.3 Parsing User-Queries

The next question is how to construct the query for a given user-input. At first, we
have to decide about the criteria users can search for. Since the index provides the pairs
of contexts and search words, we can use these contexts to restrict the search results.
More precisely, we are able to construct the Query data structure with the Specifier

constructor to search in the given context, only. This structure of the index allows us
to search for modules, functions, types, signatures, and all other contexts we use during
the creation of the index.

The search mechanism (as part of the user-experience) is supposed to be as simple as
possible. The right use of a specific language can increase the usability. A good example
is the search term "IO", since in Curry IO is the name for a module, a type and a
constructor. Thus, the search for IO results in a great amount of hits. We can restrict
the search to a specific context to reduce the number of hits. Therefore, we provide

17

3 Analysis 3.3. Parsing User-Queries

specifiers to combine a context with a search term, for example ":function IO"

searches for IO in the context of function names only. But this special syntax restricts
the user in the use of the search engine, if the language gets more complex. Thus, in
order to provide a user-friendly search engine, we have to make a compromise between
a human-readable language and a language that can be parsed.

Besides these specifiers, we want to parse type expressions of Curry functions and
data types. During our test phase, we also studied Hayoo!, the first search engine
that was build with the Holumbus Framework. We recognized that Hayoo! is not
able to parse redundant parenthesized type expressions. In our opinion, this parsing
behavior can be irritating in the usage of the search engine, therefore, we want to
address the problem of redundant parentheses with great care when we parse signatures.
For instance, let’s assume a beginner searches for a function with the type expression
"IO -> (IO Int)". In this case, the type IO Int and unary type constructors in
general do not need parentheses, but as beginner you might think that they do. Thus,
we want to support parenthesized type expressions and parenthesized query parts in
general.

Last but not least, we want to provide logical conjunctions like AND, OR and NOT.
On the one hand, a combination of more search words is desirable because popular search
engines, like Google, support binary operations as feature. The popularity increases the
probability that users assume that binary operations are standard features and expect
search engines to provide the conjunction of several search terms. On the other hand,
if the desired result is still vague, a combination of more search words by a disjunction
OR helps to narrow down the search results. Additionally, AND and NOT can help to
search for a specific search term.

In the end, we want to provide an intuitive but powerful syntax for the search engine.
With specifiers to restrict the search results to a given context and with binary operators
to narrow down or extend the search, we want to provide a simple language for the
user queries. Additionally, we want to recognize type expressions, including function,
constructor and simple types as well as redundant parenthesized type expressions. Thus,
in order to reach this goal, we need to analyse the user input and construct an expression
of our Query data structure. Appendix C.1 describes the parser’s language as Extended
Backus-Naur Form (EBNF) and in Section 4.3 we discuss our actual implementation.

18

4

Implementation

This chapter presents the implementation of the search engine on the basis of some code
examples and the corresponding design ideas and decisions. At fitst, we take a look at
our extension for the current version of CurryDoc. In this context, we illustrate the
interaction between this extension and the index creation. The latter will be depicted
in detail in the second section. We specify the index and document data in more detail
and state some difficulties that arose due to the structure of the Holumbus framework.
The third section addresses the search process. We outline the function of the parser
that converts the user input into a query that can be processed by Holumbus. We
illustrate the general idea and implementation approach of a parser to introduce into
the subject and we give an excerpt of the implemented parser. Furthermore, we explain
the documental retrieval that Holumbus provides.

The last step to our search engine is the application itself. In order run the search
engine as a web application, we use the Snap Framework 1. Snap is a Haskell library to
simplify web development. We do not go into detail on this topic, albeit, Appendix B
shows how to run the application.

4.1 CurryDoc Extension

In the previous chapter, we discussed the general idea of an extension for CurryDoc to
extract the information about a module into a data structure. Later in the process, this
data structure serves as source for the index creation. In this section, we take a look at

1http://snapframework.com/about

19

http://snapframework.com/about

4 Implementation 4.1. CurryDoc Extension

the implementation of the extension of CurryDoc.
Since CurryDoc is written in Curry, we implemented our extension in Curry as well.

With this decision we benefit from already implemented functionalities and, on the other
hand, using the same programming language simplifies the integration of our implemen-
tation with the current CurryDoc version.

CurryDoc uses the meta-programming module FlatCurry to gain an intermediate data
structure of a Curry module. We can use this data structure for our purposes. Addi-
tionally, we can reuse functions already provided by CurryDoc. For example, CurryDoc
supports a special comment syntax to annotate the author and version of a module.
Furthermore, the arguments and the return value of a function can be described as well
as general descriptions.

At first, we discuss which information we want to provide in our data structures. The
following data structure

data CurryInfo =

CurryInfo ModuleInfo [FunctionInfo] [TypeInfo]

represents a Curry module, that consists of several function and data type defini-
tions and meta-information about the module itself. As next step, we want to describe
ModuleInfo, FunctionInfo and TypeInfo.

data ModuleInfo = ModuleInfo

String -- name
String -- author
String -- description

Like the name suggests, ModuleInfo represents the data corresponding to a Curry
module. The main information about a module consists of its name, author and descrip-
tion. We could also provide the version number of the implementation or the imported
modules, but we decided against it. The latter seems to be useless information for the
search engine, since the Curry modules are highly interrelated. Thus, searching for a
module results in a great amount of hits, since every correlating module will be shown
as well. Furthermore, we think the version number is not a significant characteristic for
a module. Therefore, we decided to focus on the three mentioned properties only.

20

4 Implementation 4.1. CurryDoc Extension

data FunctionInfo = FunctionInfo

String -- name
TypeExpr -- type signature
String -- corresponding module
String -- description
Bool -- True if the function is non-deterministic
FlexRigidResult -- flexible/rigid characteristic, conflicted or unknown value

FunctionInfo contains the characteristics for a given function like the function’s name
and description. Additionally, we decide to add the corresponding module to provide a
connection between the function and its module. This decision is based on the cause
that we do not keep the CurryInfo data structure as whole for the index construction,
but the three arguments consisting of the list of functions, the list of types and the
module information. Thanks to FlatCurry, we can also access function characteristics
like nondeterministic vs. deterministic, along with the information if a given function is
rigid or flexible. The data structure for the latter is defined as

data FlexRigidResult = UnknownFR | ConflictFR | KnownFlex | KnownRigid

analogue to the definition in the FlatCurry module. Since these are important character-
istics to distinguish Curry functions, FunctionInfo stores this information as a property.
In addition, FlatCurry provides a data structure TypeExpr to describe type expressions
of function definitions (see last chapter), hence, we can access the actual definition of a
function.

We use a function’s type signature as part of the FunctionInfo data structure, but
decided against the usage of a function’s definition since we could not think of a relevant
use-case for our search engine.

The data structure for types looks quite similar to FunctionInfo.

data TypeInfo = TypeInfo

String -- name
[(QName, [TypeExpr])] -- constructors and their signatures
[Int] -- type variables
String -- corresponding module
String -- description
Bool -- True for type synonyms, false for data types

21

4 Implementation 4.2. CurryIndexer Implementation

TypeInfo consists of a type’s name, description and corresponding module. Since the
module FlatCurry provides type expressions for functions, we also get information about
constructors for a given type. Therefore, we store a list of TypeExpr representing the
type’s constructors. Additionally, TypeInfo holds a list of integers to represent possible
type variables. The decision to use integers corresponds to the definition of TypeExpr ,
where type variables are represented as integers as well.

In the end, we feed the CurryInfo data structure with the specific module, function
and type information of a given Curry program, and our CurryDoc extension writes
the data structure into a file. For example, if we want to index the Prelude, thus, we
get a file named Prelude.cdoc. The final CurryDoc version allows two mechanisms to
generate the CurryInfo structure. You can generate the .cdoc-file only or you use the
HTML generation, where the .cdoc-file is also part of the output. We provide further
instructions for the usage of CurryDoc in Appendix A.

Due to the similar syntax, we can use the same data structures in Haskell as in Curry
to exchange those information about a Curry module. More precisely, we can parse the
.cdoc-file within our Haskell implementation and work with the data structure. In order
to do use this structure for the construction of the index, we need a Haskell program
that defines all the data structures used in CurryInfo including the nested structures.

Appendix A.2.1 shows an exemplary Curry module and the resulting data structures
that are generated by the CurryDoc extension.

4.2 CurryIndexer Implementation

This section illustrates how to create the index for the search engine. In our analysis,
we only discussed about the source of our information that is provided by the CurryDoc
extension. In the following, we present the data structures that Holumbus provides in
order to create the index. Furthermore, we talk about the advantages and disadvantages
of using the Holumbus framework and describe the implementation of the index creation
in more detail.

In the previous section, we have already described the required preparation in order
to create the index. On the Haskell side, we need to define the data structures that we

22

4 Implementation 4.2. CurryIndexer Implementation

use to build the CurryInfo structure that are already defined in the implementation of
the CurryDoc extension. Then, we can read the file, that is produced by the CurryDoc
extension, for further usage. Next, we process these data to fit the data structures
provided by Holumbus. In the end, we can either create a new index by writing each
structure to a file to store our information or update an existing index with additional
Curry modules. In order to update an existing index, we load the index and document
files and merge them with new data. Due to lazy evaluation, we cannot read and write
to the same file; it is not assured that we finish reading before we start to rewrite the
file. Therefore, we have to write temporary files and rename these files afterwards to
guarantee a clean outcome.

During the testing phase of the indexer, we noticed problems regarding duplicate data.
In particular, when we add a Curry module to the index twice, there is no mechanism to
detect the duplicated data. For this reason, we also manage a list of the modules, which
are stored in the index. Thus, every time we update the index with a given module, we
check if it already exists in the saved list of modules that are stored in the index. We
start the processing of the data if the module does not occur in the list and add the
module’s name to the list.

4.2.1 Index Construction

After we decided about the contents of the index, we need to discuss the data structure
to hold the information about a given Curry module. We make use of the Holumbus
framework that provides data structures to manage the collected data and implementa-
tions to operate on these structures. Holumbus uses two structures to store the data,
one for the documents we are indexing and the other one for the actual search keys that
we traverse when a search is performed. At first, we want to discuss the search keys.

Simply put, the search keys consist of pairs of strings, where the second component
contains the actual search word and the first component contains the context of this
word. In order to provide an example, let us assume that we have a Curry module Duck

and the following information about this module:

23

4 Implementation 4.2. CurryIndexer Implementation

("name","Duck")

("author","Donald")

("description",

"If it quacks like a duck & walks like a duck, it’s a duck.")

As addition to the design, the identifier of the document is stored in the index data
structure to provide an association between the search key and the document the data
was indexed from.

In fact, this concept of referencing to the documents in order to separate the data is
called inverted index or inverted file, which explains the name of the data type. Thus,
in the end, the data we pass to Holumbus is a collection of search keys and these search
keys consist of triples: the context, the actual search word and the reference to the
corresponding document.

Inverted =

("name","Duck", 1)

("author","Donald", 1)

("description","If it quacks [...] it’s a duck.", 1)

Holumbus’ data structure Inverted maps the words to their location, in our case,
the document that we describe later. More precisely, Inverted maps the search words
and contexts to their corresponding document. Additionally, Holumbus provides a data
structure that represents the position of the word in the document. We can use these
positions of words to reconstruct a phrase in a document. For example, if we have the
description "It’s a duck", the data structure represents this phrase with

("description","It’s", (1, 1))

("description","a", (1, 2))

("description","duck", (1, 3))

and with the information of the positions of the search word in the document, we can
reconstruct the phrase by searching for the document with identifier 1 and the positions
1 til 3. However, we would only need these positions if we wanted to provide phrase
queries. Since our main goal is to search for type expressions or function, module and
type names, we decided against the support of phrase queries. Therefore, we do not use
the position when indexing our data. Furthermore, the words are stored in prefix trees,

24

4 Implementation 4.2. CurryIndexer Implementation

which only allow prefix search, like we mentioned before. Due to the prefix search, we
came across some difficulties, which we discuss later.

When we index the CurryInfo structure, we examine its substructures ModuleInfo,
FunctionInfo and TypeInfo to gain the characteristic information. In this process, the
information is paired with a context and the contexts’ names correspond to the infor-
mation in these substructures. For instance, in ModuleInfo we keep the module’s name,
author and description. Table 4.1 illustrates the provided contexts and shows the cor-
responding property of the data structure ModuleInfo. We do not have much to do for

ModuleInfo

property context name

name "module"
author "author"
description "description"

Figure 4.1.: Contexts for a ModuleInfo Data Structure

a module’s name, but since a module can be written by several authors, we have to add
a context for each author stored in ModuleInfo. Since we only have a representation as
String , we need to process the string containing the author information.

In fact, the representation is not the main problem; the prefix search prohibits the
usage of the whole string as a word for our index. If we search for an author named
"Duck", we will not find "Donald Duck" since the search word "Duck" is not a prefix
of "Donald Duck". Therefore, we have to spilt the string on whitespaces to gain all
subparts of the string and add each part individually. A similar problem applies to the
description, thus, we split the description on whitespaces, too. In addition, we filter
words that are shorter than two characters to minimize redundant or, more precisely,
unserviceable data in the index.

We need the same preparation for the name of a function and its description in
FunctionInfo and the type’s name and description in TypeInfo. In addition, both struc-
tures hold their corresponding module’s name. In a first version, we used the same
context for a function or type’s defining module as for the name in ModuleInfo. How-
ever, we want to distinguish between a search for a module’s name and a function or
data structure in a specific module. Therefore, we decided to use two different contexts:

25

4 Implementation 4.2. CurryIndexer Implementation

one for ModuleInfo that we already introduced and the second one in the context of a
corresponding module for a function or data structure; for the latter we use "inModule".
Next, we take a look at type expressions, where we have the same problems due to the
prefix search.

The FlatCurry module provides a data structure that represents type expressions used
in function signatures and for constructors in data type definitions.

data TypeExpr = TVar TVarIndex

| FuncType TypeExpr TypeExpr

| TCons QName [TypeExpr]

It consists of three constructors to distinguish between

• a function type - FuncType TypeExpr TypeExpr

• a type variable - TVar TVarIndex

and

• a type constructor application - TCons QName [TypeExpr]

For the latter, the list of TypeExpr represens the type arguments of the defined con-
structors. Furthermore, TVarIndex is just a type synonym for Int and QName is a type
synonym for a tuple (String , String); QName represents a qualified name consisting of
the module’s name and the function’s or type constructor’s name. A type like Bool is
represented as a type constructor with an empty list, i.e. without any type arguments.
The following expression

FuncType (TCons (Prelude,Bool) [])

(FuncType (TCons (Prelude, Int) []))

(TCons (Prelude, Int) []))

is a function type and represents the type Bool → Int → Int . Next, we see the function
type

FuncType (TCons (Prelude, IO) [TVar 97])

(TCons (Prelude, IO) [TVar 97])

26

4 Implementation 4.2. CurryIndexer Implementation

that consists of two unary type constructors with type variables; the corresponding type
expression is IO a → IO a. As last example, we show the structure

TCons (Prelude,Maybe)

[(TCons (Prelude, IO) [(TCons (Prelude, []) [(TCons (Prelude,Char))])])]

that corresponds to the nested constructor type Maybe (IO String).

In order to add the type expression to the index, we convert the TypeExpr we store in
FunctionInfo and TypeInfo into a valid type expression that is consistent with the Curry
syntax, more precisely, we pretty print the data structure. This conversion yields a String

for further processing. Now let’s assume we want to search for a function that yields the
type HTMLExp. The first idea is to search for ":type HTMLExp" and look for further
information in the documentation. The problem is, we do not want the user to look for
information in the documentation, we rather want to provide a mechanism to cover this
scenario. Since we provide type expressions, the user can search for HTMLExp in the
context of signatures to get information about all the functions (and data structures)
that contain the type HTMLExp.
Unfortunately, in order to provide this behaviour, we have to modify the type expres-

sions, too. Due to the prefix search, we can only search for type signatures that begin
with HTMLExp, but a function’s type signature that yields the type HTMLExp ends
with HTMLExp. The first idea is to split a given type string on function arrows → and
add each part to the context. For the type expression

(Int → String)→ String → HTMLExp

we get the partitions "(Int", "String)", "String", "HTMLExp". As first consequence,
we lose the function type (Int → String). Secondly, we cannot only add simple or
constructor types (like String or Maybe Int) to the index if we want to provide the search
for type expressions with at least one function arrow. Thus, we decided not to convert
the TypeExpr to the corresponding string, but to decompose the type expression into
all its valid suffixes first. In this way, each suffix is paired with the context "signature",
converted into a type expression represented as String and added to the index. For
example, if we want to add the type expression

(Int → String)→ String → HTMLExp

27

4 Implementation 4.2. CurryIndexer Implementation

to the index, we actually add the following search keys:

("signature","(Int -> String)"),

("signature","String"),

("signature","HTMLExp")

Since TypeInfo stores a list of TypeExpr representing its constructors’ type signatures,
we have to apply the same splitting mechanism to all elements of the list of TypeExpr .
Additionally, we have to add the constructor name to the index manually because it
is not part of the TypeExprs, since its usage is rather similar to a function than to a
type. Table 4.2 summarizes the contexts of TypeInfo, whereas there are still contexts
of FunctionInfo left to be discussed. We distinguish between non-/deterministic and

TypeInfo

property context name

name "type"
constructor "function”
corres. module "inModule"
signature "signature"
description "description"

Figure 4.2.: Contexts for a TypeInfo Data Structure

flexible vs. rigid functions. For each characteristic that applies to a function, we add
the given context to the index. In case of a deterministic and flexible function, we
add ("flexible","") and ("det",""). The summary of all contexts concerning a
function is shown in Table 4.3.

Summing up, we process CurryInfo’s substructures ModuleInfo, FunctionInfo and
TypeInfo in order to pair their information with a context.

4.2.2 Document Construction

As the next step, we take a look at the second structure of the index: the documents.
In this context, we discuss the document’s role and value as part of the triple.

28

4 Implementation 4.2. CurryIndexer Implementation

FunctionInfo

property context name

name "function"
corres. module "inModule"
signature "signature"
description "description"

flexible/rigid
"flexible"
"rigid"

non-/deterministic
"nondet"
"det"

Figure 4.3.: Contexts for a FunctionInfo data structure

Each document, that we want to pass to the Holumbus framework, needs to be stored
in the data structure

data Document a = Document {title :: Title

, uri :: URI

, custom :: (Maybe a)}

that consists of a title, URI and customizable information. The latter has the poly-
morphic type a and determines the type for a document. For example, if we have a
document for the CurryInfo structure, we use Document CurryInfo as data structure.
For the creation of the index, we have to feed these documents with actual data.

As mentioned before, we can read the CurryInfo structure and use it in the process.
The first idea is to construct a document with CurryInfo as data structure for the
custom information. This idea is easy to implement since we just use the unmodified
data structure that CurryDoc produces. As consequence, all the information in the
corresponding index maps to this document only. When we search our index for an
information, we can relate a given search result to the corresponding CurryInfo, only;
we cannot distinguish if the search result is associated to the module, function or type
information of the given CurryInfo structure.
In order to provide a more differentiated representation of a Curry module in the

index, we choose not to use CurryInfo but its substructures ModuleInfo, FunctionInfo

and TypeInfo as document types, i.e., the custom information. However, if we want to

29

4 Implementation 4.2. CurryIndexer Implementation

distinguish between these three sources of information, we need to store three types of
documents. Nevertheless, this decision allows us to relate the information of a Curry
module to its functions, types or information about the module itself.

Furthermore, we decide that a Curry module is converted into more than this three
documents. We rather want to create a document for each function and data structure
of a given Curry module plus the module’s general information. In the end, we trace
back a search result to the exact function, data structure or module information since
we can take advantage of the devision of the CurryInfo data structure.

This design already determines the decision regarding the title and the URI. The title
corresponds to the name of the function, type or module. The value of the URI is an
argument to fill by the user when generating the index; the URI can point to a local
or online source for documentation. We designed the URI representation according to
the HTML-documentation provided by CurryDoc because the current main source for
Curry documentation, that can be accessed online2, is generated via CurryDoc. Since
this HTML-structure of a Curry module documentation provides anchors to the module’s
defined functions and data structures, we use this link mechanism for our URIs as well.
Thus, the URIs are build according to the following schema:

moduleURI = baseURL ++ moduleName ++ ".html"

functionURI = baseURL ++ moduleName ++ ".html"++ "#"++ funcName

typeURI = baseURL ++ moduleName ++ ".html"++ "#"++ typeName

4.2.3 Example

In the following, we list the steps of an example index construction for one Curry pro-
gram; we only consider the information about the functions of a given Curry module.

• At first, we extract the list of FunctionInfo of the given CurryInfo structure.

• For each FunctionInfo, we construct the pair of contexts and words and return the
list of pairs.

2http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC

30

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC

4 Implementation 4.2. CurryIndexer Implementation

-- contexts
[("function", functionName),

("inModule", functionModule),

("signature", functionSignature),

("flexible", functionFlexibleRigidStatus)

or ("rigid", functionFlexibleRigidStatus),

("nondet", functionNonDetStatus)

or ("det", functionNonDetStatus),

("description", functionDescription)

]

• Next, for each FunctionInfo, we need to construct the Document FunctionInfo

structure to store the data structure.

-- new document
Document {title = functionName

, uri = uriPath

, custom = Just theFunctionInfoStructure }

• We add all documents to construct the collection Documents FunctionInfo and
the first part of the index is complete.

• When we add each document to the collection, we can access the unique identifiers.
We use these identifiers to add the required document reference for the lists of
context-word-pairs.

• In order to construct the Inverted structure, we use a function Holumbus provides
to build this structure from a list of the required triples.

• In the end, we merge all Inverted structures.

• In case of (the first module of) a new index construction, the process is complete
and we gained a structure representing the index that is written into a file.

• Otherwise, we need to merge the new constructed index structure with an existing
index.

31

4 Implementation 4.3. Searching

4.2.4 Conclusion

We implemented a mechanism to create an index data structure that is traversed, when
we perform a search query, and one mechanism to store the corresponding document
that is linked to the index structure again. We create these index structures for the
three substructures of CurryInfo and, together, they represent the index. In the end,
each index structures – for modules, functions, types – is written into two files (separat-
ing search key and document structure again); these files serve as index.

Since we do not want our search engine to be built on just one Curry program, we
can update the index with new data. We already adressed the problem concerning
lazy evaluation but we ran into another problem as well. When we write the index
structure into a file, the data is compressed into structures named CompactInverted

and SmallDocuments . This means, when we load our files again, the search keys as
well as the document structures do not harmonize with the original data structures,
Inverted and Documents , anymore. We solve this problem by creating the Inverted and
Documents data structures as usually, and, as second step, we convert Inverted into the
CompactInverted data structure and Documents into the SmallDocuments data struc-
ture. We cannot merge the structures just yet, since we created new documents with
identifiers starting with 1. We need to adapt the DocIds such that the minimum of the
new structure is the maximum of the old one. Thereafter, we can merge the documents
and index structure and write the new file.

In the end, there are two ways to build an index with at least one given .cdoc-file of
a Curry program. One can start the index creation for the given file and the URI to
the corresponding documentation to either create a new index or to update an existing
one. We also provide a mechanism to read a .txt-file consisting of pairs of paths to
.cdoc-files and the corresponding URI. Further information about the usage is provided
in Appendix B.

4.3 Searching

In the main part of this section, we discuss the general idea of a parser, connect this
idea with our search engine and develop a simple parser as an example. The example

32

4 Implementation 4.3. Searching

addresses the problem of parsing expressions that can occur with and without parenthe-
ses. We choose this example because we want to support the same functionality for the
user queries in our search engine. Furthermore, we introduce Parsec3, a Haskell library
to build a fast parser. In this context, we present some code examples taken from the
implementation of Curr(y)gle and outline the advantages of using Parsec as well as some
problems that occurred during the development of the parser for Curr(y)gle.

The process of searching mainly consists of parsing the query since the Holumbus
framework already takes care of other requirements and tasks, like processing the query
and finding the result structure in the index. The only task left is to submit a score
calculation to Holumbus and preprocess the given result for the web application. There-
fore, we mainly focus on the query parser and just give a brief overview of the document
retrieval.

4.3.1 General Idea and Usage of Parsers

A parser is used to analyse a given input and compose a new data structure depending on
the information of the input. Parsing is an important topic among functional program-
mers and hence many papers discuss the development of parsers. The most popular
approaches use monadic parsers [6] but there are also alternatives using higher-order
functions [2].

In general, we want a parser to take an input value and return a new structure. Thus,
a parser can be described as follows:

type Parser σ α = σ → α

With the type definition above, we can run one parser on a given input. Commonly,
this input is of type Char , thus, we will use the type for the following parsers. The main
idea behind parsing is to apply several parsers and combine the results. More precisely,
we want to use a second a parser for the characters that the first parser did not consume.
In order to combine the results, the parser type needs a pair consisting of the parsing
result and the rest of the input, which has not been consumed. Additionally, we need to
consider that the parsing of an input may be ambiguous. This means, there can be more
than one way to parse the input and it is also possible that the input cannot be parsed
at all. Thus, we extend the result type to a be a list of pairs, representing the different

3http://legacy.cs.uu.nl/daan/parsec.html

33

http://legacy.cs.uu.nl/daan/parsec.html

4 Implementation 4.3. Searching

parsing alternatives or the empty list, if the parser fails. The idea behind this approach
was introduced by Philip Wadler [9]. Additionally, if we think about combining several
parsers, we have to adjust the applied argument. Instead of just one entity of the input
type, we want to parse several input values with several parsers. Therefore, we apply
the parser to a list of Char , i.e, String , and get the following type for the corresponding
parser.

type Parser α = String → [(α, String)]

Summing up, in general, a parser is parametrized with the type of the elements to
parse, in the following we use Char , and the resulting type α. The parser takes a String

and returns a list of possible parsed structures and the remaining characters. These
structures are pairs, where the first entry is the result and the second entry represents
the remaining input. An empty list denotes failure, whereas a non-empty list stands for
success.

In order to make use of more than one parser, we need parser combinators. Parser
combinators take two or more parsers as arguments in order to construct a new parser
that behaves like the combination of the given parsers. At first, we take a look at a
combinator for alternatives (also: choice combinator).

() :: Parser α→ Parser α→ Parser α

p 	 q = (λts → p ts ++ q ts)

For a given input, we apply parser p first and concatenate the resulting list with the
result of the application of parser q to the input. We get all possible combinations that
can be parsed by parser p or parser q .

Additionally, we want to combine parsers sequentially. There are three possibilities
to combine two parses, the first two are similar to the monadic operator >> and the
third one follows the same idea as the monadic bind operator >>=. We start with the
latter combinator. The following operator allows us to use the parsers sequentially and
combine their results.

(~) :: Parser (α→ β)→ Parser α→ Parser β

p ~ q = λts → [(f x , ts2) | (f , ts1)← p ts , (x , ts2)← q ts1]

The idea behind sequential application is to combine two parsers in order to gain a new
parser. More precisely, we run the first parser on an input and can run the second parser

34

4 Implementation 4.3. Searching

on the remaining input that the first parser did not consume. At first, we apply the
parser p to the input and gain a tuple consisting of f :: α→ β and the rest of the input
ts1 :: [σ]. Then we apply parser q to the remaining input, which results in a further
tuple (x , ts2) :: (α, String). Finally, we apply the gained function f x :: β and return it
as pair with the remaining input ts2.
In order to actually use the binding operator~, we have to apply a function to combine

the results.

(s) :: (α→ β)→ Parser σ α→ Parser σ β

f s p = λts → [(f x , ts1) | (x , ts1)← p ts]

The operator s works similar to the function map because the first argument is a
function and the second argument of s is applied to this function. At first, the function
runs the parser p for a given input, applies the given function to the first entry of the
resulting pair and returns the modified result.

We define the other two sequence combinators to show the interaction of the two
functions ~ and s. The other two sequence combinators also take two parsers, but
discard one parser’s result and return the other one’s result.

(∗>) :: Parser α→ Parser β → Parser β

p ∗> q = (λ qResult → qResult) s (λts → (p ~ q) ts)

This function discards the result of the first parser and returns the result of the second.
The function (<∗) works the other way around: the second result is discarded and we
return the result of the first parser.

These functions illustrate the fundamentals to build combinatorial parsers. In order
to get a better idea of the usage, we present a small example.

At first, we want to construct a parser to read a character and return it in the resulting
pair. Otherwise the parser returns an empty list for an empty String as input.

parsePredicate :: (Char → Bool)→ Parser Char

parsePredicate predicate ts =

case ts of

[]→ []

(t : tss)→ if predicate t then [(t , tss)] else [([], t : ts)])

With this function we can define simple parsers like parseAlphaNum that parses any
alphanumeric characters

35

4 Implementation 4.3. Searching

parseAlphaNum :: Parser Char

parseAlphaNum = parsePredicate isAlphaNum

or parseT that parses the character t .

parseT :: Parser Char

parseT = parseSymbol (t ≡)

We use the same scheme as above in order to construct a parser that reads a left
parenthesis and a parser that reads a right parenthesis.

parseLeft :: Parser Char

parseLeft = parsePredicate (’(’ ≡)

parseRight :: Parser Char

parseRight = parsePredicate (’)’ ≡)

Next, we need to define a parser for the word between the parentheses. Since we already
have a parser for characters and we want to parse a string, the main idea is to parse a
sequence of characters, i.e., to combine a sequence of parsePredicate.

parseWord :: Parser String

parseWord input =

(λ(c, cs)→ c : cs) s (parseAlphaNum ~ parseWord) input

For a given input string we run parseAlphaNum that reads the first character. Next,
parseWord is executed with the remaining input, hence we read one character after
another until the parsing fails or the input is read entirely. The parsed characters are
then composed to a list and the parser returns the parsed string, i.e., the sequence of
alphanumeric characters that we parsed.

Finally, we want a parser to read a parenthesized expression and discard the surround-
ing parentheses.

parseParenWord :: Parser String

parseParenWord input =

(λ expr → expr) s (parseLeft ~ parseWord ~ parseRight) input

With these parser combinators, we read the left parenthesis first, then the expression and
finally the right parenthesis. The function to combine the three results just returns the

36

4 Implementation 4.3. Searching

result of the function parseWord . If we are more precisly, the parser above does not parse
an expression with or without parentheses like we promised before. Instead, the parser
parseParenWord only parses a parenthesized sequence of alphanumeric characters. In
order to fix the parser, we need to add the choice combinator. Additionally, we want to
present a second implementation to discard the read parentheses.

parseParenWord2 :: Parser String

parseParenWord2 =

λts → (parseLeft ∗> parseParenWord2 <∗ parseRight)

	 parseWord

Summing up, we introduced the basic idea of parsers and implemented a small parser
that can read a word with or without parentheses. In the following, we have to keep in
mind that we build a parser by combining several parses that parse substructures.

4.3.2 Parsing User Queries

In our implementation we use the Haskell library Parsec to build the parser to read and
analyse the user queries. The main idea of Parsec is to use parser combinators instead
of parser generators. The latter can generate a parser for a given grammar, whereas the
combination of several parsers correlates to the idea we presented above.

The Parsec library called our attention, since the Holumbus framework uses the li-
brary to provide a simple parser. The parser handles binary operations like AND , OR,
and NOT for user queries. In the previous chapter we already mentioned our require-
ments on a parser for user queries. The parser that Holumbus provides, does not fulfill
these requirements, therefore, we implemented our own parser. In Appendix C, we give
an overview of the language that we provide for the user queries. After the previous
introduction of the basic ideas of a parser, we want to give an overview of the query
parser that Curr(y)gle provides. Following the overview, we want to present an excerpt
of our implementation.

The following syntax diagram illustrates the parseable queries.
A query can consists of context specifiers (":module IO", ":function map"

etc.), type expressions ("Int -> Int") and simple search terms ("map") and the
parenthesized version of all three components. Additionally, a query can be a sequence

37

4 Implementation 4.3. Searching

Expr

Query Bool Query

(Query)

Query

: Specifier

Signature

String

(Expr)

Expr

AND

OR

NOT

BoolOp

of the previous components or these components can occur in combination with binary
operators, like AND , OR, NOT . The presented parsers in the following section already
consider any trailing whitespaces, such that, the top-level parser for queries needs to
parse all leading whitespaces.

On the first layer, we apply the parser for the binary operations, since we want to
combine specifiers, signatures and simple search words. For search queries that consist
of several context specifications and a simple search word, the parser implicitly combines
the substructures with conjunctions, i.e., ":function map a → b" searches for a function
starting with map, whose type consists of the type expression a → b. The parser for
signatures is executed in case of the context for type expressions and also for any word
starting with an upper-case character that forms a valid type expression. This means,
the search terms ":signature IO" and "IO" yield the same Query-structure, hence, the
same search results. On the contrary, type variables alone are not parsed implicitly
because we also want to search for words without context, i.e., we search without a
context for any word starting with a lower-case character.

Additionally, the query parser always tries to parse as much words as possible. For
example, if a valid expression is followed by nonsense, we parse the input as far as
possible and discard the remaining input, i.e., "IO 1 !@#ˆ" yields the same results as
"IO". We also parse unbalanced parentheses that occur in the beginning or end of a
search query, e.g., the search quert ((Int → Int) yields the same as (Int → Int)) and
(Int → Int). We expect an intuitive usage of the search engine of this underlying parser
and all the features the parser provides. In addition to the EBNF that we have already
mentioned in the previous chapter, we also provide all figures of the following section and
the additional parsers that represent the query parser altogether (see Appendix C.2).

38

4 Implementation 4.3. Searching

4.3.3 Parsing Type Expressions

The following code focuses on our implementation of the parser for type expressions,
since such expressions are the main reason we decided to build a new parser. Further-
more, the implementation uses some special features Parsec provides that we want to
introduce.

At first, we take a look at all kinds of type expression that can compose a type
signature for a function or constructors of data types.

• type variables – a

• simple types – Int , Bool

• type constructors – Maybe Int , IO ()

• function types – Int → Bool

• list types – [Int]

• tuple types – (String , Int)

We use these substructures to build our parser for type expressions. Each item on
the list needs to be analysed by its own parser and step by step, we combine all parsers
according to valid Curry syntax for type expressions.

If you take a closer look at the list of type expressions, you see that all identifiers
we have to parse, start with an upper-case letter, except for type variables. Thus, at
first, we need a parser that reads all valid identifiers. Luckily, Parsec provides a feature
to define tokens that are used by the language and compose a parser for these tokens.
Tokens are constructs like whitespace, comments, identifiers, reserved words, numbers
or strings.

The module ParsecToken exports a function makeTokenParser that takes such a
language definition as argument and returns a record with a set of lexical parsers. Every
lexical parser already considers trailing whitespaces, hence we do not need to consider
whitespaces when we use a parser of the language record. The following code shows our
language definition for type expressions:

39

4 Implementation 4.3. Searching

signatureDef = emptyDef {identStart = upper

, identLetter = alphaNum

, reservedNames = ["AND","NOT","OR"]}

In order to define such a language, we take an empty definition record and update the
fields that we want to use. Identifiers start with an upper case (we handle type variables
separately) and consist of alphanumeric characters. The reserved names are words that

Upper

alphaNum

Identifier

are not allowed to occur as name in a type expression. Our parser also knows the binary
operations AND , NOT , and OR and since they are starting with an upper character,
they are potential type expressions. Therefore, we need the parser to fail on these
reserved names when parsing type expressions.

We use the defined lexical parsers in our implementation, including sigIdentifier ,
whitespace, aSymbol and lexemer , where the latter takes a parser as argument and
parses trailing white spaces; aSymbol does the same, but takes a string as argument.
Additionally, we have parsers paren and bracket for parentheses and brackets.
Before we examine the first type expression, we need to consider the type of our parser.

We are parsing a String into a TypeExpr , thus, in the definitions we used above, the
type of our parser corresponds to:

type TypeExprParser = Parser String TypeExpr

In contrary to the parser structure we presented above, Parsec does not return a list
of possible results. The data structure follows a different approach to determine if the
parser application was successful or not. On success, the parser returns the longest
possible match. The first substructures we want to parse are type variables and simple
types. Therefore, we first take a look at the following syntax diagrams.

A type variables is a single lower-case character.

varParser :: TypeExprParser

varParser = var s lower <∗ notFollowedBy alphaNum)

40

4 Implementation 4.3. Searching

lowerCase

TypeVariable Identifier

()

SimpleType

Thus, we do not allow type variables like abc. Thus, for a tye expression like IO abc the
function varParser fails on abc and we only read IO as a simple type. After parsing,
the function var converts the character into a TypeExpr .

The next parser handles simple types like Int and Bool , but also the unit type (). For
simple types, we need to parse one identifier and consider the unit type () as special
constructor.

primParser :: TypeExprParser

primParser = prim s (sigIdentifier 	 aSymbol "()")

The function prim wraps this identifier into a TCons-structure with no type arguments,
e.g., Int is represented as TCons ("Prelude","Int") [].
In case of n-ary type constructors, we parse at least one identifier, a whitespace, and

another type expression. For a better understanding, the following figures illustrate the
idea of a parser for constructor types.

Identifier ConsArgumentType

Signature –> Signature

ConstructorType

SimpleType

TypeVariable

ListType

TupleType

(ConstructorType)

(ConsArgumentType)

ConsArgumentType

At first, we parse an identifier like we do for primitive types and additionally, we need
whitespace and another type expression to follow.

41

4 Implementation 4.3. Searching

consParser :: TypeExprParser

consParser =

((λconstr expr → cons constr expr)

s sigIdentifier ~ whitespace ~ sepBy1 (signatureTerm False) whitespace)

The function sepBy1 takes two parsers as arguments, where the second one parses a
separator that occurs between the input of the first parser . At least one type ex-
pression (but no whitespace) needs to occur, otherwise the parser sepBy1 fails and
altogether consParser fails. Thus, in the consParser definition above, we parse at least
two type expressions separated by a white space or just one type expression. The parser
signatureTerm handles all the substructures we listed above, except for function types,
but we discuss the parser for function types later. The boolean value in the function
call signatureTerm indicates, if a constructor type may occur without parentheses. In
the definition above, constructor types after the first separator are only allowed to occur
with parentheses.

For example, we want to parse constructor types with one argument, like Maybe a and
IO a. If we combine these type constructors to one type expression, we get Maybe (IO a)

or IO (Maybe a). We have to parenthesize the inner type constructor because otherwise
constructions like IO Maybe a and Maybe IO a suggest that both constructors take two
type arguments instead of one.

Next, let’s take a look at the parsers for list types and tuple types, starting with lists.

[Signature]

ListType

A list can be any valid type expression enclosed by brackets.

listParser :: TypeExprParser

listParser =

(λtexpr → cons "[]" [texpr]) s bracket (signatureParser True)

We wrap the result in a type constructor with [] as constructor and the type expression
as type arguments, e.g., TCons ("Prelude","[]") [TCons ("Prelude","Int" [])]

for a list of Int . Whereas signatureTerm is the parser for any type expression besides
function types, signatureParser combines signatureTerm and function types, thus, it the

42

4 Implementation 4.3. Searching

main parser for type expressions. The boolean value in the function call signatureParser

indicates again, if a constructor type may appear without surrounding parentheses.
Next, we present the parser for tuple types in three steps. The first (and main) part

(Signature , Signature

,Signature

)

TupleType

looks quite similiar to the parser for constructor types. Only this time we parse any
kind of type expressions seperated by a comma instead of a white space.

parseTuple =

(λitem itemList → item : itemList) s

(signatureParser True)

~ aSymbol ","

~ sepBy1 (signatureParser True) (aSymbol ",")

We combine the first type expression and the list of following type expressions to a list.
This list represents the type arguments for the tuple constructor. Next, we need to build
the tuple constructor because the name of the constructor depends on the number of
arguments: (,) is a tuple constructor for a pair, whereas for a triple the name of the
constructor is (, ,).

tupleCons list = "("++ replicate (length list − 1) ’,’++ ")"

Depending on the length of the list of type arguments, we construct the tuple constructor.
And in the end, we combine the functions parseTuple and tupleCons to gain a parser
for tuples:

tupleParser :: TypeExprParser

tupleParser =

((λtuple → cons (tupleCons tuple) tuple)

s paren parseTuple)

The last parser we need to discuss handles function types like Int → Int . For an infix
operator, we always need to look ahead after parsing an identifier, if we come across the

43

4 Implementation 4.3. Searching

→-operator next. Luckily, the Parsec library provides a mechanism simplify the parsing
of such operators.

At first, we define the fixity and associativity of the operator and assign a function
that determines the result of the parsing.

signatureTable =

[[Infix ((λ → FuncType) s (aSymbol "->" x)) AssocRight]]

When parsing a function arrow→, we return the partial application of FuncType because
the two arguments of this constructor are the type expression to the left and right of the
operator. In order to use this parser, we use Parsec’s function buildExpressionParser

that takes such an definition table and a parser as arguments; the arguments of the
function arrow are then applied to the passed parser.

signatureParser :: TypeExprParser

signatureParser =

buildExpressionParser signatureTable (signatureTerm True)

In the definition of signatureParser , we assign signatureTerm as parser for the arguments
of the function types. We need to parametrize the function signatureTerm in order to
indicate if a constructor types nees to be parenthesized. A list or a tuple can consist of
functions types or type constructors without parentheses, whereas for a valid constructor
type, a function type or a nested contructor type as argument needs to be parenthesized.
Additionally, we want to parse redundant parenthesized type expressions as well. We
can offer this functionality with the following definition of signatureTerm:

signatureTerm :: Bool → TypeExprParser

signatureTerm allowConsParser =

(guard allowConsParser >> try consParser)

	 try tupleParser

	 paren (signatureParser False)

	 listParser

	 primParser

	 varParser

In order to guarantee that we can parse tuples, parenthesized function types and redun-
dant parentheses, we cannot consume any characters in case tupleParser fails, otherwise

44

4 Implementation 4.3. Searching

the parser for parenthesized expressions fails, too. Therefore, we have to try tuplesParser

first; if it fails, the result is discarded and we can try for parenthesized expressions next.
We do not need a try for the parenthesized expression because there are no other valid
expressions that start with an opening parenthesis, since we already ruled out the pos-
sibility of tuples. Therefore, the parser paren (signatureParser False) either fails on
the first character of an input or parses a valid parenthesized expression.4 The same
logic holds for the following three parsers, since they all expect distinct first characters.
For lists, the first input character has to be a left bracket, primParser only accepts an
upper-case character and varParser the opposite, a lower-case character.

In the end, we can parse any valid type expression, which is then converted into a
Query-Structure in order to be passed to Holumbus and to start the searching process.

4.3.4 Document Retrieval

Up to this point, we already constructed the index with information about Curry mod-
ules, functions and types. This information are given by search terms and the corre-
sponding documents. We can also parse a given user query in order to construct the
required data structure to communicate with Holumbus. The last part that we want to
look at, is the scanning of the search words and the retrieval of the documents. This part
is realized by Holumbus, therefore, we only want to sketch the idea instead of discussing
implementation details.

Let us assume, we have the index illustrated in Figure 4.4, consisting of search keys
and documents. When we search for "New", Holumbus scans the column search word
of the given table. In our example, Holumbus finds two rows, where this search word
occurs: the module with the name New and the type with the name NewPair. Thus,
Holumbus retrieves the documents that fit the identifiers that are recorded in these two
rows, i.e., the documents with the identifier 1 and 2, respectively. If we restrict our
query and search for ":module New", Holumbus only considers search words that
are combined with the context module. Thus, in our example, Holumbus returns the
document of the module information with the identifier 1.

4Here, we only consider well-balanced parentheses.

45

4 Implementation 4.3. Searching

context search word ID

module New 1
author Sandra 1
author Dylus 1
description Testing 1
description CurryDoc 1
type NewPair 2
signature (Int, String) 2
description Number 2
description Text 2

ModuleInformation

1

Name: New
Author: Sandra Dylus

Description: Testing CurryDoc

TypeInformation

2

Name: NewPair
Signature: (Int,String)

Description: Number & Text

Figure 4.4.: Example Index Consisting of Search Keys and Documents

In summary, we prepare and provide the information that Holumbus traverses when
it processes a search query and provides us with the document that fits the given query.

46

5

Conclusion

In the final chapter, we complete this thesis with a conclusion and give an outlook
on future works. At first, we review the progress of our implementation and tie in
with our introduction and the goals, requirements, and ideas we had in the beginning.
Furthermore, we provide an overview of ideas for future works.

5.1 Summary and Results

The main goal of this thesis was to build a search engine for the functional logic program-
ming language Curry in order to provide a simple way to look up functions, modules,
and data types of Curry libraries, e.g., the libraries distributed with PAKCS. Therefore,
we presented the CurryDoc tool to generate informative documentations for a given
Curry program. In Chapter 4.1, we demonstrated an extension of CurryDoc in order to
create the source of the search engine’s traversed data; the information is extracted from
Curry modules. This source produces a data structure that represents the given Curry
program that is then analysed in the following section in order to create an index for
the search engine. The index consists of the data we want to search for, i.e., the API of
the mentioned Curry libraries. The data we are indexing can be paired with a "context"
or, more precisely, every information we are indexing is categorized corresponding to its
"role" in the Curry program, e.g., a function’s name, the description of the module, a
data type’s signature. These pairs of contexts and words allow us to improve our search
engine because we can restrict a search term to one of these contexts. These restrictions
can minimize unwanted results and, therefore, make a contribution to a user-friendly

47

5 Conclusion 5.2. Outlook

search engine. In order to provide the usage of such specifiers to restrict a search term,
we need a non-ambiguous language for the search queries. Therefore, we have presented
a parser to analyse the search term in the last section of Chapter 4. In the end, we have
build a search engine to run as a web application.

5.2 Outlook

Last but not least, we want to discuss some ideas to extend this project. One func-
tionality we do not provide is an intelligent way to search for polymorphic types like
Hoogle, the search engine for Haskell, does. For example, let’s assume we search for a
function that concatenates two lists of integers. The best idea is to search for the sig-
nature of this function, i.e., "[Int] -> [Int]". Unfortunately, we will not find any
results, since there is no function with this specific type. However, there is a function
to concatenate two lists of elements with an arbitrary type, i.e., [a] → [a]. Like we
mentioned, Hoogle uses a mechanism to search for more general types in order to find
the suitable function for our example. In our opinion, there is one simple approach to
gain this functionality and another one that requires more resources. The first approach
just replaces each appearance of a type with a fixed type variable. For our example, we
can transform [Int]→ [Int] to [a]→ [a] if we look at the first type Int and replace this
and all following occurrences of Int with the type variable a. The next different type
expression is then replaced by the type variable b et cetera. Another idea is to unify
each type expresion, that we have in the index, with the searched signature and return
the successful unifications along with the matched type expressions. In the development
period of this search engine, we simply did not find the time to concern ourselves with
this topic. Albeit, we think such a feature would be an excellent addition of the already
existing functionality.

Furthermore, we think that the widely-used "did you mean?" suggestion can make
Curr(y)gle even more user-friendly. In case of misspellings, this feature helps to find
words that are lexicographical similar with the search term in order to proceed the
search. The Holumbus framework already provides a fuzzy search that can help to find
the best result for misspelled words.

48

5 Conclusion 5.2. Outlook

At last, we want to mention, that the interaction between the CurryDoc extension
and the Haskell implementation could be more modular. We tried to adjust the search
engine to the existing CurryDoc and its function of generating documentation. For
example, we compose the URI to provide the reference between a result entry and the
documentation in the implementation of the search engine. Another approach would
be to provide this kind of information in the CurryDoc extension because, then, we
can automatically consider adjustments in the documentation process, like changes in
the URI construction. The used contexts are another aspect; maybe a more flexible
adjustment of the context names is desirable. One method could be to construct the
CurryInfo data structures with several tuples, where the first entry represents the context
and the second entry the value. For example, ModuleInfo could look like this:

data ModuleInfo =

(String , String) -- (context, name)
(String , String) -- (context, author)
(String , String) -- (context, description)

These are just some ideas we had in the end of our development. However, we had
to differ between requirements and features and, of course, we decided to focus on the
requirements. We think that these features, that we just mentioned, are purely optional
and our search engine meets the requirements we made in the beginning, provides a
good user-experience and is a good starting point for further developments. During the
implementation of the CurryDoc extension, we wanted to look up a lot of functions and
suffered from the lack of a Hoogle-equivalent. We got really frustrated when browsing
the online documentation and reading each module in search of the convenient function.
Hence, we hope to do some good with this search engine and help to provide a more
efficient work-environment for Curry.

49

A

CurryDoc Instruction

A.1 Installation

The installation requires a running Curry, we recommend the PAKCS or KICS21 imple-
mentation.

Next, you need to modify the included Makefile, the path directories have to be
adjusted to your system. Afterwards, you can execute the Makefile in order to compile
CurryDoc.

A.2 How-to-use

You can either generate the .cdoc-file itself or the HTML representation, since the latter
generates the .cdoc-file as well. Furthermore, you can pass the directory of the Curry
module an its name, if the module is not located in your current directory.

$ currydoc [--nomarkdown] [--html|--tex|--cdoc] <module_name>

$ currydoc [--nomarkdown] [--html|--tex|--cdoc]

<doc directory> <module_name>

$ currydoc [--nomarkdown] --noindexhtml

<doc directory> <module_name>

$ currydoc --onlyindexhtml <doc directory> <module_names>

1http://www-ps.informatik.uni-kiel.de/kics2/

50

http://www-ps.informatik.uni-kiel.de/kics2/

A CurryDoc Instruction A.2. How-to-use

A.2.1 Example

The following code presents the data structures that is generated for a given Curry
module with the implemented extension for CurryDoc.

(CurryInfo

(ModuleInfo "NewPair"

"Sandra Dylus"

"Testing the .cdoc generation of CurryDoc\n")

[(FunctionInfo "left"

(FuncType (TCons ("NewPair","NewPair") [])

(TCons ("Prelude","Int") []))

"NewPair"

"Returns the first entry of a NewPair\n"

False

KnownFlex),

(FunctionInfo "right"

(FuncType (TCons ("NewPair","NewPair") [])

(TCons ("Prelude","[]")

[(TCons ("Prelude","Char") [])]))

"NewPair"

"Returns the second entry of a NewPair\n"

False

KnownFlex)]

[(TypeInfo "NewPair"

[(("NewPair","Pair"), [(TCons ("Prelude","(,)")

[(TCons ("Prelude","Int") []),

(TCons ("Prelude","[]")

[(TCons ("Prelude","Char") [])])])])]

[]

"NewPair"

"Pair of a number and a text\n"

False)])

The data structures was generated with the following exemplary Curry module New-
Pair, which contains two function definitions and a single definition of a data type.

51

A CurryDoc Instruction A.2. How-to-use

-- Testing the .cdoc generation of CurryDoc
-- @author Sandra Dylus

module NewPair where

-- Pair of a number and a text
data NewPair = Pair (Int ,String)

-- Returns the first entry of a NewPair
left ::NewPair → Int

left (Pair (int , str)) = int

-- Returns the second entry of a NewPair
right ::NewPair → String

right (Pair (int , str)) = str

52

B

Installation and Usage of Curr(y)gle

B.1 Installation

The distributed source directory contains a .cabal file; for the installation you simply
have to run cabal.

$ cabal configure

$ cabal build

$ cabal install

Alternatively, you can use the provided Setup.hs.

$ runhaskell Setup.hs configure

$ runhaskell Setup.hs build

$ runhaskell Setup.hs install

B.2 How-to-use

The installation process creates two binaries: curryIndexer and curryServer. The first
creates the index for a given directory that contains at least one .cdoc-file and a corre-
sponding URI. The .cdoc-file can be generated with the extended CurryDoc for a given
Curry module, the URI is the corresponding HTML documentation that can also be gen-
erated with CurryDoc. This package provides an example directory with three Curry
modules generated with CurryDoc that provide some .cdoc-files. So you can generate an

53

B Installation and Usage of Curr(y)gle B.2. How-to-use

index with these examples and the documentation provided by PAKCS. The curryIn-
dexer can either generate a new index or update the existing one. In order to distinguish
between these options, you can use the flag −−n for generating a new index and −−u
for updating the index.

$ curryIndexer ./example/CDOC_HTML

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/ --n

$ curryIndexer ./example/CDOC_URL

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/ --u

$ curryIndexer ./example/CDOC_XML

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/ --u

Since it can take a very long time to add each single module, you can pass a .txt-file
as argument that consists of pairs of .cdoc-file and URI to generate the index.

$ curryIndexer ./example/test.txt --n

If you have generated an index, you can run the web application on your localhost on
a given port with the curryServer.

$ curryServer -p 1337

54

C

User-Query Syntax

C.1 Extended Backur Naur-Form of the Parser

Query ::= {Expr } | Expr Bool Expr {Bool Expr } | "(" Query ")"

Expr ::= ":" Specifier | Signature | String | "(" Expr ")"

Bool ::= "AND" | "OR" | "NOT"
String ::= IdentStart {IdentLetter } | {Operator }
IdentStart ::= "_" | lower

IdentLetter ::= alphaNum | "’"
Operator ::= ":" | "!" | "#" | "$" | "%" | "&" | "*" | "+" | "."

| "/" | "<" | "/" | "<" | "=" | ">" | "?" | "@" | "\\"
| "^" | "|" | "-" | "~" | "_"

Signature ::= ConstructorType | ConsArgumentType

ConstructorType ::= Identifier ConsArgumentType | Signature "->" Signature

ConsArgumentType ::= PrimitiveType | TypeVariable | ListType | TupleType

| "(" ConstructorType ")" | "(" ConsArgumentType ")"

ListType ::= "[" Signature "]"

TupleType ::= "(" Signature "," Signature {"," Signature } ")"
PrimitiveType ::= Identifier | "()"
TypeVariable ::= lowerCase

Identifier ::= Upper {alphaNum }

55

C User-Query Syntax C.1. Extended Backur Naur-Form of the Parser

Specifier ::= SignatureSpecifier | ModuleSpecifier | FunctionSpecifier

| TypeSpecifier | AuthorSpecifier | InModuleSpecifier

| FlexibleSpecifier | RigidSpecifier

| NonDetSpecifier | DetSpecifier

SignatureSpecifier ::= "signature" [Signature] | "s" [Signature]

ModuleSpecifier ::= "module" [alphaNum] | "m" [alphaNum]

FunctionSpecifier ::= "function" [alphaNum] | "f" [alphaNum]

TypeSpecifier ::= "type" [alphaNum] | "t" [alphaNum]

AuthorSpecifier ::= "author" [alphaNum] | "a" [alphaNum]

InModuleSpecifier ::= "inModule" [alphaNum] | "in" [alphaNum]

FlexibleSpecifier ::= "flexible" | "fl"
RigidSpecifier ::= "rigid" | "r"
NonDeterSpecifier ::= "nondet" | "nd"
DetSpecifier ::= "det" | "d"

56

C User-Query Syntax C.2. Syntax Diagrams

C.2 Syntax Diagrams

Expr

Query Bool Query

(Query)

Query

: Specifier

Signature

String

(Expr)

Expr

AND

OR

NOT

BoolOp

IdentStart

IdentLetter

Operator

String

ConstructorType

ConsArgumentType

Signature

SimpleType

TypeVariable

ListType

TupleType

(ConstructorType)

(ConsArgumentType)

ConsArgumentType

_

lower

IdentStart

alphaNum

’

IdentLetter

Identifier ConsArgumentType

Signature –> Signature

ConstructorType

Upper

alphaNum

Identifier

lowerCase

TypeVariable

[Signature]

ListType

(Signature , Signature

,Signature

)

TupleType

Identifier

()

SimpleType

:

!

#

$

%

&

*

+

.

/

<

=

>

?

@

\

^

|

–

~

_

Operator

57

C User-Query Syntax C.2. Syntax Diagrams

signature

Signature

module

alphaNum

function

alphaNum

type

alphaNum

author

alphaNum

inModule

alphaNum

flexible

rigid

nondet

det

fl

ri

nd

d

s

Signature

m

alphaNum

f

alphaNum

t

alphaNum

a

alphaNum

in

alphaNum

Specifier

58

Bibliography

[1] Hayoo! Homepage. http://holumbus.fh-wedel.de/hayoo/hayoo.html.

[2] Jeroen Fokker. Functional parsers. In Advanced Functional Programming, First In-
ternational Spring School on Advanced Functional Programming Techniques-Tutorial
Text, London, UK, UK, 1995.

[3] M. Hanus. Currydoc: A documentation tool for declarative programs. In Proc. of
the 11th International Workshop on Functional and (Constraint) Logic Programming,
pages 225–228. Research Report, 2002.

[4] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Avail-
able at http://www.curry-language.org, 2006.

[5] Timo B. Hübel. The holumbus framework: Creating fast, flexible and highly cus-
tomizable search engines with haskell. Master’s thesis, FH Wedel University of Ap-
plied Sciences, 2008.

[6] Graham Hutton and Erik Meijer. Monadic Parsing in Haskell. Journal of Functional
Programming, pages 437–444, 1998.

[7] Simon L. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised
Report. Cambridge University Press, 2003.

[8] Sebastian M. Schlatt. The holumbus framework: Creating scalable and highly cus-
tomized crawlers and indexers. Master’s thesis, FH Wedel University of Applied
Sciences, 2008.

[9] Philip Wadler. How to replace failure by a list of successes. In Proc. of a conference on
Functional programming languages and computer architecture, pages 113–128, New
York, NY, USA, 1985.

59

http://holumbus.fh-wedel.de/hayoo/hayoo.html
http://www.curry-language.org

	Introduction
	Preliminaries
	The programming language Curry
	CurryDoc
	The Holumbus Framework

	Analysis
	Extracted Information
	Searching
	Parsing User-Queries

	Implementation
	CurryDoc Extension
	CurryIndexer Implementation
	Index Construction
	Document Construction
	Example
	Conclusion

	Searching
	General Idea and Usage of Parsers
	Parsing User Queries
	Parsing Type Expressions
	Document Retrieval

	Conclusion
	Summary and Results
	Outlook

	CurryDoc Instruction
	Installation
	How-to-use
	Example

	Installation and Usage of Curr(y)gle
	Installation
	How-to-use

	User-Query Syntax
	Extended Backur Naur-Form of the Parser
	Syntax Diagrams

