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Abstract. This work focuses on the precise quantification of bubble
streams from underwater gas seeps. The performance of the snake based
method and of ellipse fitting with the CMA-ES non-linear optimization
algorithm is evaluated. A novel improved snake based method is pre-
sented and the optimal choice of snake parameters is studied. A Kalman
filter is used for bubble tracking. The deviation between the measured
flux and a calibrated flux meter is 4% for small and 9% for larger bub-
bles. This work will allow a better data gathering on marine gas seeps
for future climatology and marine research.

1 Introduction

Underwater gas seeps have essential influence on marine life [6] and global
climate [12]. Modeling and understanding of their complex impacts on the bio-
sphere requires exact knowledge of the composition and volume of the emitted
gases and their absorption in the surrounding water [13].
Gas bubbles emerging from a seep in the sea floor are rising with high speed, and
may change form, contour and volume during their ascent [4]. The goal of this
research is the development of robust methods for automatic image processing,
which can be employed to extract the shape, motion and volume of bubbles from
image sequences.

The first part of this paper is dedicated to the detection of gas bubbles.
Several methods are compared, the snake [8] approach and ellipse fitting with the
CMA-ES [5] non-linear optimization algorithm. Diffuse back light illumination
is used, in a similar configuration as in previous work by [10], [11], or [15].

For the detection of bubbles different detection methods are established in
previous work. In [2] active contours are initialized using the boundaries of the
binarized input image. Another approach, presented in [3] uses a specialized
Hough transformation on the input image to locate the circular or ellipsoid
shape of bubbles. In [14] the application of a Canny edge detector [1] for con-
tour extraction is presented. These contours are fitted and smoothed with an
ellipse. In this work the Canny edge detection according to this publication [14]
is used as a baseline method. On this basis, methods and algorithms based on
the standard and improved snake algorithm are developed and evaluated. The
CMA-ES based ellipse fitting method with diverse novel fitness functions is in
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this work extensively studied. The results are compared with manual ground
truth evaluation of the bubble size.

In the second part of this work, methods for the tracking of bubbles and
measuring of their velocity are developed. The accuracy of the detection and
tracking methods in combination are verified by comparison with manually ob-
tained flux data. Figure 1 illustrates the typical irregular bubble shapes and the
bubble matching.

(a) Frame 1 (b) Frame 2 (c) Combined

Fig. 1. Movement of bubbles in between two frames at 100fps. The combination shows
frame 1 and 2 with the bubble detection in frame 2 in red and matching bubbles
connected in green.

2 Bubble Detection

In this section methods for the reliable detection of bubble contour in image
sequences are developed. The Canny Edge detector based method by [14] is used
as a baseline. It sporadically suffers from false detections, which motivates the
search for more stable algorithms. These false detections are caused by the light
area inside the bubble. As an improvement a bounding box is formed around
these detections and expanded. This bounding box is used as an initialization
for the snake [8] and CMA-ES [5] based methods, which are introduced, tested
and evaluated in the following.

2.1 Snake Method

The term snake was coined by Kass et al. in [8] and describes a spline, which is
adjusted by the snake method to fit a prior defined criterion. For every contour,
an energy function is declared. It can be described in two parts, the internal
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(a) (b)

(e)

(c) (d)

Fig. 2. Subfigures (a) to (d) show steps in the optimization process of the classic snake
algorithm, from initialization to termination. The control points are depicted in green,
while the linear interpolation in between them is shown in blue. Subfigure (e) shows
an imperfect detection with the classic snake algorithm on an image with low image
quality.

energy Eint, weighted with α and β, which is dependent purely on the snake’s
shape, and the external energy Eext. Let S : M → P be a snake, with M = [0, 1]
and P ⊂ R2 for all points on the snake. Let Sfinal be the optimal configuration
of the snake:

Sfinal = argmin(Eint(S) + Eext(S)) . (1)

Eint(S) =

∫ 1

0

α ‖S′(c)‖2 + β ‖S′′(c)‖2 dc . (2)

The external energy is used to describe the part of the energy, which depends
on the image signal. It is weighted with parameter γ. Given image I : [0, x] ×
[0, y]→ R+ with width x ∈ Z+ and height y ∈ Z+, it holds that:

Eext(S) =

∫ 1

0

−γ ‖∇I(S(c))‖2dc . (3)

The snake contour is initialized with the bounding box from the baseline local-
ization. Figure 2 shows different iterations of a succesful localization of a bubble
with a snake, from initialization to convergence.

The choice of snake parameters α, β and γ, which control the snakes affinity
to continuity, low curvature and high gradients have significant impact on the
convergence behaviour of snakes. An important question, which is not sufficiently
adressed in previous work, concerns the optimum choice of snake parameters. In
this work extensive investigation is done to find out, whether the snake param-
eters can stay constant, or must be adapted to each bubble stream, or perhaps
to each bubble. The entire parameter space of α,β and γ has been tested with
different bubble sequences. It was shown, that if α is high enough, then the pa-
rameters choice is not critical and the same optimized set of parameters can be
used for different bubble streams, even from different cameras.
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2.2 Gradient Snake Method

Figure 2(e) shows an example of a bubble in an low quality image sequence,
on which the classic snake approach seems not to work reliably due to light
area in the centre of the bubble, which causes areas with high gradients inside
the bubble. Therefore, a novel enhancement of the snake method is proposed,
which improves the detection of such bubbles, as can be seen in Figure 3(e).
The concept of the new gradient snake approach is shown on Figure 3, in which
different steps of the snake algorithm with the novel term are shown with the
image gradient vector depicted in green hues and contour normal vector in lilac
hues. They illustrate the effectiveness of the novel term particularly for the
detection of bubbles.

(a) (b)

(e)

(c) (d)

Fig. 3. Subfigures (a) to (d) show every third step in the optimization process of the
snake algorithm with directional gradient, from initialization to termination. Lilac hues
show the normal of the contour, green hues show the direction and magnitude of the
gradient indicated by the length of the greenish indicators. Subfigure (e) shows the
detection with the gradient snake algorithm on the same input image as Figure 2(e).

At position c, the dot product is applied to the image gradient and the
outwards normal n̂ of the contour. If they point in the same direction, the result
is positive and if they point in different directions it is negative. The result is
scaled with the squared absolute value of the image gradient and is similar to
Eext weighted with parameter γ. For the following applies:

Egd(S) =

∫ 1

0

−γ
〈
∇ I(S(c))

‖∇ I(S(c))‖
, n̂(S(c))

〉
‖∇ I(S(c))‖2 dc . (4)

Using the sum of the normal and gradient direction vectors, instead of the dot
product, has the advantage of gaining linear sensitivity to an angular difference
between n̂ and ∇S(c) over the cosine and lower computational complexity. The
difference is then scaled by 0.5 to achieve values, which are in the same scale as
the original snake algorithm, for coinciding vectors:

Egd(S) =

∫ 1

0

−0.5 γ

∥∥∥∥ ∇ I(S(c))

‖∇ I(S(c))‖
+ n̂(S(c))

∥∥∥∥ ‖∇ I(S(c))‖2dc . (5)
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2.3 CMA-ES Based Ellipse Fitting

Covariance Matrix Adaption - Evolution Strategy (CMA-ES) is a derivative
free non-linear optimization algorithm [5]. For the detection of gas bubbles the
algorithm is initialized with the expanded bounding box of the Canny edge
detection, as described in Section 2. The CMA-ES algorithm then adjusts an
ellipse to the bubble, according to a prior defined fitness function. The ellipse
used in the optimization is defined by five parameters, the horizontal and vertical
position of the bubble, its minor and major axis and a rotation parameter.
Different fitness functions have been developed and tested. Two designs showed
the best results, firstly a fitness function aiming for a high gradient on the edge of
the ellipse and secondly an area based fitness function evaluating the difference
between the mean intensities of the ellipse area and its surroundings.

2.4 Comparison of Detection Methods

Snake

Gradient direction snake

CMA- ESedge gradient

CMA- ESdifference of means

Canny edge

Fig. 4. Comparison of detection rates for several selected methods on an high quality
GoPro image sequence with manual ground truth on 20 images.

In Figure 4 the detection rates of different methods are compared with man-
ual ground truth for an image sequence of 20 images with ca. 10 bubbles visible
per frame. All tested methods show good results and a clear improvement com-
pared to the baseline Canny edge detector, however both snake based methods
showed the best performance. The fastest method is the classic snake algorithm
with timings of about 30ms per frame. Even though it is slower, being most re-
liable on images with low image quality (see Figure 3(e)), the gradient direction
snake has been determined as the bubble detection method of choice.

3 Bubble Tracking

Bubble tracking is employed to determine the movement of bubbles in between
two frames and from this data over the entire image sequence. To effectively
find the corresponding bubble detections between two frames, the bubble po-
sitions are detected in every frame. The bubble motion since the last frame is
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predicted using a Kalman filter [7]. These predictions and the new detections of
bubble positions are matched with minimum weighted matching between pre-
diction and measurement using the hungarian algorithm [9], with the distances
between these as edge weights. This resulting matching is the mapping of bub-
ble movement between the last frame and this frame. A resulting matching is
shown in Figure 1 on the right image. In the tested 20 sequences, with a bubble
detection rate according Figure 4, the tracking is highly reliable. For a sequence
such as Figure 1, the framerate can be lowered by 50% without deteriorating the
tracking quality.

4 Conclusion

Measured

Calculated

Fig. 5. Comparison between measured and calculated flux in liter per minute.

With the established methods for detecting and tracking bubbles, an accu-
rate measurement of the flow volume from images of bubble stream can be done
with high accuracy for wide range of flux volume, as shown in Figure 5. The
computed flux data has been compared with flux volume obtained by indepen-
dent measurement with a calibrated volume flux meter. With small bubbles a
very good accuracy of 4% deviation can be achieved, for medium bubbles the
deviation is 5% and for larger bubbles the deviation is higher with 9%. This can
be explained by the rather irregular shape of larger bubbles.

It has been shown, that the snake method and the CMA-ES method are well
suited for flux measurement of gas bubble seeps. The stability and performance
of both methods was explored and improved.
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